linux/kernel/profile.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/profile.c
   4 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
   5 *  with configurable resolution, support for restricting the cpus on
   6 *  which profiling is done, and switching between cpu time and
   7 *  schedule() calls via kernel command line parameters passed at boot.
   8 *
   9 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
  10 *      Red Hat, July 2004
  11 *  Consolidation of architecture support code for profiling,
  12 *      Nadia Yvette Chambers, Oracle, July 2004
  13 *  Amortized hit count accounting via per-cpu open-addressed hashtables
  14 *      to resolve timer interrupt livelocks, Nadia Yvette Chambers,
  15 *      Oracle, 2004
  16 */
  17
  18#include <linux/export.h>
  19#include <linux/profile.h>
  20#include <linux/memblock.h>
  21#include <linux/notifier.h>
  22#include <linux/mm.h>
  23#include <linux/cpumask.h>
  24#include <linux/cpu.h>
  25#include <linux/highmem.h>
  26#include <linux/mutex.h>
  27#include <linux/slab.h>
  28#include <linux/vmalloc.h>
  29#include <linux/sched/stat.h>
  30
  31#include <asm/sections.h>
  32#include <asm/irq_regs.h>
  33#include <asm/ptrace.h>
  34
  35struct profile_hit {
  36        u32 pc, hits;
  37};
  38#define PROFILE_GRPSHIFT        3
  39#define PROFILE_GRPSZ           (1 << PROFILE_GRPSHIFT)
  40#define NR_PROFILE_HIT          (PAGE_SIZE/sizeof(struct profile_hit))
  41#define NR_PROFILE_GRP          (NR_PROFILE_HIT/PROFILE_GRPSZ)
  42
  43static atomic_t *prof_buffer;
  44static unsigned long prof_len;
  45static unsigned short int prof_shift;
  46
  47int prof_on __read_mostly;
  48EXPORT_SYMBOL_GPL(prof_on);
  49
  50static cpumask_var_t prof_cpu_mask;
  51#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
  52static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
  53static DEFINE_PER_CPU(int, cpu_profile_flip);
  54static DEFINE_MUTEX(profile_flip_mutex);
  55#endif /* CONFIG_SMP */
  56
  57int profile_setup(char *str)
  58{
  59        static const char schedstr[] = "schedule";
  60        static const char sleepstr[] = "sleep";
  61        static const char kvmstr[] = "kvm";
  62        int par;
  63
  64        if (!strncmp(str, sleepstr, strlen(sleepstr))) {
  65#ifdef CONFIG_SCHEDSTATS
  66                force_schedstat_enabled();
  67                prof_on = SLEEP_PROFILING;
  68                if (str[strlen(sleepstr)] == ',')
  69                        str += strlen(sleepstr) + 1;
  70                if (get_option(&str, &par))
  71                        prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
  72                pr_info("kernel sleep profiling enabled (shift: %u)\n",
  73                        prof_shift);
  74#else
  75                pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
  76#endif /* CONFIG_SCHEDSTATS */
  77        } else if (!strncmp(str, schedstr, strlen(schedstr))) {
  78                prof_on = SCHED_PROFILING;
  79                if (str[strlen(schedstr)] == ',')
  80                        str += strlen(schedstr) + 1;
  81                if (get_option(&str, &par))
  82                        prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
  83                pr_info("kernel schedule profiling enabled (shift: %u)\n",
  84                        prof_shift);
  85        } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
  86                prof_on = KVM_PROFILING;
  87                if (str[strlen(kvmstr)] == ',')
  88                        str += strlen(kvmstr) + 1;
  89                if (get_option(&str, &par))
  90                        prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
  91                pr_info("kernel KVM profiling enabled (shift: %u)\n",
  92                        prof_shift);
  93        } else if (get_option(&str, &par)) {
  94                prof_shift = clamp(par, 0, BITS_PER_LONG - 1);
  95                prof_on = CPU_PROFILING;
  96                pr_info("kernel profiling enabled (shift: %u)\n",
  97                        prof_shift);
  98        }
  99        return 1;
 100}
 101__setup("profile=", profile_setup);
 102
 103
 104int __ref profile_init(void)
 105{
 106        int buffer_bytes;
 107        if (!prof_on)
 108                return 0;
 109
 110        /* only text is profiled */
 111        prof_len = (_etext - _stext) >> prof_shift;
 112        buffer_bytes = prof_len*sizeof(atomic_t);
 113
 114        if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
 115                return -ENOMEM;
 116
 117        cpumask_copy(prof_cpu_mask, cpu_possible_mask);
 118
 119        prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
 120        if (prof_buffer)
 121                return 0;
 122
 123        prof_buffer = alloc_pages_exact(buffer_bytes,
 124                                        GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
 125        if (prof_buffer)
 126                return 0;
 127
 128        prof_buffer = vzalloc(buffer_bytes);
 129        if (prof_buffer)
 130                return 0;
 131
 132        free_cpumask_var(prof_cpu_mask);
 133        return -ENOMEM;
 134}
 135
 136/* Profile event notifications */
 137
 138static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
 139static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
 140static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
 141
 142void profile_task_exit(struct task_struct *task)
 143{
 144        blocking_notifier_call_chain(&task_exit_notifier, 0, task);
 145}
 146
 147int profile_handoff_task(struct task_struct *task)
 148{
 149        int ret;
 150        ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
 151        return (ret == NOTIFY_OK) ? 1 : 0;
 152}
 153
 154void profile_munmap(unsigned long addr)
 155{
 156        blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
 157}
 158
 159int task_handoff_register(struct notifier_block *n)
 160{
 161        return atomic_notifier_chain_register(&task_free_notifier, n);
 162}
 163EXPORT_SYMBOL_GPL(task_handoff_register);
 164
 165int task_handoff_unregister(struct notifier_block *n)
 166{
 167        return atomic_notifier_chain_unregister(&task_free_notifier, n);
 168}
 169EXPORT_SYMBOL_GPL(task_handoff_unregister);
 170
 171int profile_event_register(enum profile_type type, struct notifier_block *n)
 172{
 173        int err = -EINVAL;
 174
 175        switch (type) {
 176        case PROFILE_TASK_EXIT:
 177                err = blocking_notifier_chain_register(
 178                                &task_exit_notifier, n);
 179                break;
 180        case PROFILE_MUNMAP:
 181                err = blocking_notifier_chain_register(
 182                                &munmap_notifier, n);
 183                break;
 184        }
 185
 186        return err;
 187}
 188EXPORT_SYMBOL_GPL(profile_event_register);
 189
 190int profile_event_unregister(enum profile_type type, struct notifier_block *n)
 191{
 192        int err = -EINVAL;
 193
 194        switch (type) {
 195        case PROFILE_TASK_EXIT:
 196                err = blocking_notifier_chain_unregister(
 197                                &task_exit_notifier, n);
 198                break;
 199        case PROFILE_MUNMAP:
 200                err = blocking_notifier_chain_unregister(
 201                                &munmap_notifier, n);
 202                break;
 203        }
 204
 205        return err;
 206}
 207EXPORT_SYMBOL_GPL(profile_event_unregister);
 208
 209#if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
 210/*
 211 * Each cpu has a pair of open-addressed hashtables for pending
 212 * profile hits. read_profile() IPI's all cpus to request them
 213 * to flip buffers and flushes their contents to prof_buffer itself.
 214 * Flip requests are serialized by the profile_flip_mutex. The sole
 215 * use of having a second hashtable is for avoiding cacheline
 216 * contention that would otherwise happen during flushes of pending
 217 * profile hits required for the accuracy of reported profile hits
 218 * and so resurrect the interrupt livelock issue.
 219 *
 220 * The open-addressed hashtables are indexed by profile buffer slot
 221 * and hold the number of pending hits to that profile buffer slot on
 222 * a cpu in an entry. When the hashtable overflows, all pending hits
 223 * are accounted to their corresponding profile buffer slots with
 224 * atomic_add() and the hashtable emptied. As numerous pending hits
 225 * may be accounted to a profile buffer slot in a hashtable entry,
 226 * this amortizes a number of atomic profile buffer increments likely
 227 * to be far larger than the number of entries in the hashtable,
 228 * particularly given that the number of distinct profile buffer
 229 * positions to which hits are accounted during short intervals (e.g.
 230 * several seconds) is usually very small. Exclusion from buffer
 231 * flipping is provided by interrupt disablement (note that for
 232 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
 233 * process context).
 234 * The hash function is meant to be lightweight as opposed to strong,
 235 * and was vaguely inspired by ppc64 firmware-supported inverted
 236 * pagetable hash functions, but uses a full hashtable full of finite
 237 * collision chains, not just pairs of them.
 238 *
 239 * -- nyc
 240 */
 241static void __profile_flip_buffers(void *unused)
 242{
 243        int cpu = smp_processor_id();
 244
 245        per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
 246}
 247
 248static void profile_flip_buffers(void)
 249{
 250        int i, j, cpu;
 251
 252        mutex_lock(&profile_flip_mutex);
 253        j = per_cpu(cpu_profile_flip, get_cpu());
 254        put_cpu();
 255        on_each_cpu(__profile_flip_buffers, NULL, 1);
 256        for_each_online_cpu(cpu) {
 257                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
 258                for (i = 0; i < NR_PROFILE_HIT; ++i) {
 259                        if (!hits[i].hits) {
 260                                if (hits[i].pc)
 261                                        hits[i].pc = 0;
 262                                continue;
 263                        }
 264                        atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 265                        hits[i].hits = hits[i].pc = 0;
 266                }
 267        }
 268        mutex_unlock(&profile_flip_mutex);
 269}
 270
 271static void profile_discard_flip_buffers(void)
 272{
 273        int i, cpu;
 274
 275        mutex_lock(&profile_flip_mutex);
 276        i = per_cpu(cpu_profile_flip, get_cpu());
 277        put_cpu();
 278        on_each_cpu(__profile_flip_buffers, NULL, 1);
 279        for_each_online_cpu(cpu) {
 280                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
 281                memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
 282        }
 283        mutex_unlock(&profile_flip_mutex);
 284}
 285
 286static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
 287{
 288        unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
 289        int i, j, cpu;
 290        struct profile_hit *hits;
 291
 292        pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
 293        i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 294        secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
 295        cpu = get_cpu();
 296        hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
 297        if (!hits) {
 298                put_cpu();
 299                return;
 300        }
 301        /*
 302         * We buffer the global profiler buffer into a per-CPU
 303         * queue and thus reduce the number of global (and possibly
 304         * NUMA-alien) accesses. The write-queue is self-coalescing:
 305         */
 306        local_irq_save(flags);
 307        do {
 308                for (j = 0; j < PROFILE_GRPSZ; ++j) {
 309                        if (hits[i + j].pc == pc) {
 310                                hits[i + j].hits += nr_hits;
 311                                goto out;
 312                        } else if (!hits[i + j].hits) {
 313                                hits[i + j].pc = pc;
 314                                hits[i + j].hits = nr_hits;
 315                                goto out;
 316                        }
 317                }
 318                i = (i + secondary) & (NR_PROFILE_HIT - 1);
 319        } while (i != primary);
 320
 321        /*
 322         * Add the current hit(s) and flush the write-queue out
 323         * to the global buffer:
 324         */
 325        atomic_add(nr_hits, &prof_buffer[pc]);
 326        for (i = 0; i < NR_PROFILE_HIT; ++i) {
 327                atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
 328                hits[i].pc = hits[i].hits = 0;
 329        }
 330out:
 331        local_irq_restore(flags);
 332        put_cpu();
 333}
 334
 335static int profile_dead_cpu(unsigned int cpu)
 336{
 337        struct page *page;
 338        int i;
 339
 340        if (cpumask_available(prof_cpu_mask))
 341                cpumask_clear_cpu(cpu, prof_cpu_mask);
 342
 343        for (i = 0; i < 2; i++) {
 344                if (per_cpu(cpu_profile_hits, cpu)[i]) {
 345                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]);
 346                        per_cpu(cpu_profile_hits, cpu)[i] = NULL;
 347                        __free_page(page);
 348                }
 349        }
 350        return 0;
 351}
 352
 353static int profile_prepare_cpu(unsigned int cpu)
 354{
 355        int i, node = cpu_to_mem(cpu);
 356        struct page *page;
 357
 358        per_cpu(cpu_profile_flip, cpu) = 0;
 359
 360        for (i = 0; i < 2; i++) {
 361                if (per_cpu(cpu_profile_hits, cpu)[i])
 362                        continue;
 363
 364                page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
 365                if (!page) {
 366                        profile_dead_cpu(cpu);
 367                        return -ENOMEM;
 368                }
 369                per_cpu(cpu_profile_hits, cpu)[i] = page_address(page);
 370
 371        }
 372        return 0;
 373}
 374
 375static int profile_online_cpu(unsigned int cpu)
 376{
 377        if (cpumask_available(prof_cpu_mask))
 378                cpumask_set_cpu(cpu, prof_cpu_mask);
 379
 380        return 0;
 381}
 382
 383#else /* !CONFIG_SMP */
 384#define profile_flip_buffers()          do { } while (0)
 385#define profile_discard_flip_buffers()  do { } while (0)
 386
 387static void do_profile_hits(int type, void *__pc, unsigned int nr_hits)
 388{
 389        unsigned long pc;
 390        pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
 391        atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
 392}
 393#endif /* !CONFIG_SMP */
 394
 395void profile_hits(int type, void *__pc, unsigned int nr_hits)
 396{
 397        if (prof_on != type || !prof_buffer)
 398                return;
 399        do_profile_hits(type, __pc, nr_hits);
 400}
 401EXPORT_SYMBOL_GPL(profile_hits);
 402
 403void profile_tick(int type)
 404{
 405        struct pt_regs *regs = get_irq_regs();
 406
 407        if (!user_mode(regs) && cpumask_available(prof_cpu_mask) &&
 408            cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
 409                profile_hit(type, (void *)profile_pc(regs));
 410}
 411
 412#ifdef CONFIG_PROC_FS
 413#include <linux/proc_fs.h>
 414#include <linux/seq_file.h>
 415#include <linux/uaccess.h>
 416
 417static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
 418{
 419        seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask));
 420        return 0;
 421}
 422
 423static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
 424{
 425        return single_open(file, prof_cpu_mask_proc_show, NULL);
 426}
 427
 428static ssize_t prof_cpu_mask_proc_write(struct file *file,
 429        const char __user *buffer, size_t count, loff_t *pos)
 430{
 431        cpumask_var_t new_value;
 432        int err;
 433
 434        if (!zalloc_cpumask_var(&new_value, GFP_KERNEL))
 435                return -ENOMEM;
 436
 437        err = cpumask_parse_user(buffer, count, new_value);
 438        if (!err) {
 439                cpumask_copy(prof_cpu_mask, new_value);
 440                err = count;
 441        }
 442        free_cpumask_var(new_value);
 443        return err;
 444}
 445
 446static const struct proc_ops prof_cpu_mask_proc_ops = {
 447        .proc_open      = prof_cpu_mask_proc_open,
 448        .proc_read      = seq_read,
 449        .proc_lseek     = seq_lseek,
 450        .proc_release   = single_release,
 451        .proc_write     = prof_cpu_mask_proc_write,
 452};
 453
 454void create_prof_cpu_mask(void)
 455{
 456        /* create /proc/irq/prof_cpu_mask */
 457        proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops);
 458}
 459
 460/*
 461 * This function accesses profiling information. The returned data is
 462 * binary: the sampling step and the actual contents of the profile
 463 * buffer. Use of the program readprofile is recommended in order to
 464 * get meaningful info out of these data.
 465 */
 466static ssize_t
 467read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
 468{
 469        unsigned long p = *ppos;
 470        ssize_t read;
 471        char *pnt;
 472        unsigned long sample_step = 1UL << prof_shift;
 473
 474        profile_flip_buffers();
 475        if (p >= (prof_len+1)*sizeof(unsigned int))
 476                return 0;
 477        if (count > (prof_len+1)*sizeof(unsigned int) - p)
 478                count = (prof_len+1)*sizeof(unsigned int) - p;
 479        read = 0;
 480
 481        while (p < sizeof(unsigned int) && count > 0) {
 482                if (put_user(*((char *)(&sample_step)+p), buf))
 483                        return -EFAULT;
 484                buf++; p++; count--; read++;
 485        }
 486        pnt = (char *)prof_buffer + p - sizeof(atomic_t);
 487        if (copy_to_user(buf, (void *)pnt, count))
 488                return -EFAULT;
 489        read += count;
 490        *ppos += read;
 491        return read;
 492}
 493
 494/*
 495 * Writing to /proc/profile resets the counters
 496 *
 497 * Writing a 'profiling multiplier' value into it also re-sets the profiling
 498 * interrupt frequency, on architectures that support this.
 499 */
 500static ssize_t write_profile(struct file *file, const char __user *buf,
 501                             size_t count, loff_t *ppos)
 502{
 503#ifdef CONFIG_SMP
 504        extern int setup_profiling_timer(unsigned int multiplier);
 505
 506        if (count == sizeof(int)) {
 507                unsigned int multiplier;
 508
 509                if (copy_from_user(&multiplier, buf, sizeof(int)))
 510                        return -EFAULT;
 511
 512                if (setup_profiling_timer(multiplier))
 513                        return -EINVAL;
 514        }
 515#endif
 516        profile_discard_flip_buffers();
 517        memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
 518        return count;
 519}
 520
 521static const struct proc_ops profile_proc_ops = {
 522        .proc_read      = read_profile,
 523        .proc_write     = write_profile,
 524        .proc_lseek     = default_llseek,
 525};
 526
 527int __ref create_proc_profile(void)
 528{
 529        struct proc_dir_entry *entry;
 530#ifdef CONFIG_SMP
 531        enum cpuhp_state online_state;
 532#endif
 533
 534        int err = 0;
 535
 536        if (!prof_on)
 537                return 0;
 538#ifdef CONFIG_SMP
 539        err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE",
 540                                profile_prepare_cpu, profile_dead_cpu);
 541        if (err)
 542                return err;
 543
 544        err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE",
 545                                profile_online_cpu, NULL);
 546        if (err < 0)
 547                goto err_state_prep;
 548        online_state = err;
 549        err = 0;
 550#endif
 551        entry = proc_create("profile", S_IWUSR | S_IRUGO,
 552                            NULL, &profile_proc_ops);
 553        if (!entry)
 554                goto err_state_onl;
 555        proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t));
 556
 557        return err;
 558err_state_onl:
 559#ifdef CONFIG_SMP
 560        cpuhp_remove_state(online_state);
 561err_state_prep:
 562        cpuhp_remove_state(CPUHP_PROFILE_PREPARE);
 563#endif
 564        return err;
 565}
 566subsys_initcall(create_proc_profile);
 567#endif /* CONFIG_PROC_FS */
 568