busybox/archival/gzip.c
<<
>>
Prefs
   1/* vi: set sw=4 ts=4: */
   2/*
   3 * Gzip implementation for busybox
   4 *
   5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
   6 *
   7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
   8 * "this is a stripped down version of gzip I put into busybox, it does
   9 * only standard in to standard out with -9 compression.  It also requires
  10 * the zcat module for some important functions."
  11 *
  12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
  13 * files as well as stdin/stdout, and to generally behave itself wrt
  14 * command line handling.
  15 *
  16 * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
  17 */
  18
  19/* big objects in bss:
  20 * 00000020 b bl_count
  21 * 00000074 b base_length
  22 * 00000078 b base_dist
  23 * 00000078 b static_dtree
  24 * 0000009c b bl_tree
  25 * 000000f4 b dyn_dtree
  26 * 00000100 b length_code
  27 * 00000200 b dist_code
  28 * 0000023d b depth
  29 * 00000400 b flag_buf
  30 * 0000047a b heap
  31 * 00000480 b static_ltree
  32 * 000008f4 b dyn_ltree
  33 */
  34
  35/* TODO: full support for -v for DESKTOP
  36 * "/usr/bin/gzip -v a bogus aa" should say:
  37a:       85.1% -- replaced with a.gz
  38gzip: bogus: No such file or directory
  39aa:      85.1% -- replaced with aa.gz
  40*/
  41
  42#include "libbb.h"
  43#include "unarchive.h"
  44
  45
  46/* ===========================================================================
  47 */
  48//#define DEBUG 1
  49/* Diagnostic functions */
  50#ifdef DEBUG
  51#  define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
  52#  define Trace(x) fprintf x
  53#  define Tracev(x) {if (verbose) fprintf x; }
  54#  define Tracevv(x) {if (verbose > 1) fprintf x; }
  55#  define Tracec(c,x) {if (verbose && (c)) fprintf x; }
  56#  define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
  57#else
  58#  define Assert(cond,msg)
  59#  define Trace(x)
  60#  define Tracev(x)
  61#  define Tracevv(x)
  62#  define Tracec(c,x)
  63#  define Tracecv(c,x)
  64#endif
  65
  66
  67/* ===========================================================================
  68 */
  69#define SMALL_MEM
  70
  71#ifndef INBUFSIZ
  72#  ifdef SMALL_MEM
  73#    define INBUFSIZ  0x2000    /* input buffer size */
  74#  else
  75#    define INBUFSIZ  0x8000    /* input buffer size */
  76#  endif
  77#endif
  78
  79#ifndef OUTBUFSIZ
  80#  ifdef SMALL_MEM
  81#    define OUTBUFSIZ   8192    /* output buffer size */
  82#  else
  83#    define OUTBUFSIZ  16384    /* output buffer size */
  84#  endif
  85#endif
  86
  87#ifndef DIST_BUFSIZE
  88#  ifdef SMALL_MEM
  89#    define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
  90#  else
  91#    define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
  92#  endif
  93#endif
  94
  95/* gzip flag byte */
  96#define ASCII_FLAG   0x01       /* bit 0 set: file probably ascii text */
  97#define CONTINUATION 0x02       /* bit 1 set: continuation of multi-part gzip file */
  98#define EXTRA_FIELD  0x04       /* bit 2 set: extra field present */
  99#define ORIG_NAME    0x08       /* bit 3 set: original file name present */
 100#define COMMENT      0x10       /* bit 4 set: file comment present */
 101#define RESERVED     0xC0       /* bit 6,7:   reserved */
 102
 103/* internal file attribute */
 104#define UNKNOWN 0xffff
 105#define BINARY  0
 106#define ASCII   1
 107
 108#ifndef WSIZE
 109#  define WSIZE 0x8000  /* window size--must be a power of two, and */
 110#endif                  /*  at least 32K for zip's deflate method */
 111
 112#define MIN_MATCH  3
 113#define MAX_MATCH  258
 114/* The minimum and maximum match lengths */
 115
 116#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
 117/* Minimum amount of lookahead, except at the end of the input file.
 118 * See deflate.c for comments about the MIN_MATCH+1.
 119 */
 120
 121#define MAX_DIST  (WSIZE-MIN_LOOKAHEAD)
 122/* In order to simplify the code, particularly on 16 bit machines, match
 123 * distances are limited to MAX_DIST instead of WSIZE.
 124 */
 125
 126#ifndef MAX_PATH_LEN
 127#  define MAX_PATH_LEN   1024   /* max pathname length */
 128#endif
 129
 130#define seekable()    0 /* force sequential output */
 131#define translate_eol 0 /* no option -a yet */
 132
 133#ifndef BITS
 134#  define BITS 16
 135#endif
 136#define INIT_BITS 9             /* Initial number of bits per code */
 137
 138#define BIT_MASK    0x1f        /* Mask for 'number of compression bits' */
 139/* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
 140 * It's a pity that old uncompress does not check bit 0x20. That makes
 141 * extension of the format actually undesirable because old compress
 142 * would just crash on the new format instead of giving a meaningful
 143 * error message. It does check the number of bits, but it's more
 144 * helpful to say "unsupported format, get a new version" than
 145 * "can only handle 16 bits".
 146 */
 147
 148#ifdef MAX_EXT_CHARS
 149#  define MAX_SUFFIX  MAX_EXT_CHARS
 150#else
 151#  define MAX_SUFFIX  30
 152#endif
 153
 154
 155/* ===========================================================================
 156 * Compile with MEDIUM_MEM to reduce the memory requirements or
 157 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
 158 * entire input file can be held in memory (not possible on 16 bit systems).
 159 * Warning: defining these symbols affects HASH_BITS (see below) and thus
 160 * affects the compression ratio. The compressed output
 161 * is still correct, and might even be smaller in some cases.
 162 */
 163
 164#ifdef SMALL_MEM
 165#   define HASH_BITS  13        /* Number of bits used to hash strings */
 166#endif
 167#ifdef MEDIUM_MEM
 168#   define HASH_BITS  14
 169#endif
 170#ifndef HASH_BITS
 171#   define HASH_BITS  15
 172   /* For portability to 16 bit machines, do not use values above 15. */
 173#endif
 174
 175#define HASH_SIZE (unsigned)(1<<HASH_BITS)
 176#define HASH_MASK (HASH_SIZE-1)
 177#define WMASK     (WSIZE-1)
 178/* HASH_SIZE and WSIZE must be powers of two */
 179#ifndef TOO_FAR
 180#  define TOO_FAR 4096
 181#endif
 182/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
 183
 184
 185/* ===========================================================================
 186 * These types are not really 'char', 'short' and 'long'
 187 */
 188typedef uint8_t uch;
 189typedef uint16_t ush;
 190typedef uint32_t ulg;
 191typedef int32_t lng;
 192
 193typedef ush Pos;
 194typedef unsigned IPos;
 195/* A Pos is an index in the character window. We use short instead of int to
 196 * save space in the various tables. IPos is used only for parameter passing.
 197 */
 198
 199enum {
 200        WINDOW_SIZE = 2 * WSIZE,
 201/* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
 202 * input file length plus MIN_LOOKAHEAD.
 203 */
 204
 205        max_chain_length = 4096,
 206/* To speed up deflation, hash chains are never searched beyond this length.
 207 * A higher limit improves compression ratio but degrades the speed.
 208 */
 209
 210        max_lazy_match = 258,
 211/* Attempt to find a better match only when the current match is strictly
 212 * smaller than this value. This mechanism is used only for compression
 213 * levels >= 4.
 214 */
 215
 216        max_insert_length = max_lazy_match,
 217/* Insert new strings in the hash table only if the match length
 218 * is not greater than this length. This saves time but degrades compression.
 219 * max_insert_length is used only for compression levels <= 3.
 220 */
 221
 222        good_match = 32,
 223/* Use a faster search when the previous match is longer than this */
 224
 225/* Values for max_lazy_match, good_match and max_chain_length, depending on
 226 * the desired pack level (0..9). The values given below have been tuned to
 227 * exclude worst case performance for pathological files. Better values may be
 228 * found for specific files.
 229 */
 230
 231        nice_match = 258,       /* Stop searching when current match exceeds this */
 232/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
 233 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
 234 * meaning.
 235 */
 236};
 237
 238
 239struct globals {
 240
 241        lng block_start;
 242
 243/* window position at the beginning of the current output block. Gets
 244 * negative when the window is moved backwards.
 245 */
 246        unsigned ins_h; /* hash index of string to be inserted */
 247
 248#define H_SHIFT  ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
 249/* Number of bits by which ins_h and del_h must be shifted at each
 250 * input step. It must be such that after MIN_MATCH steps, the oldest
 251 * byte no longer takes part in the hash key, that is:
 252 * H_SHIFT * MIN_MATCH >= HASH_BITS
 253 */
 254
 255        unsigned prev_length;
 256
 257/* Length of the best match at previous step. Matches not greater than this
 258 * are discarded. This is used in the lazy match evaluation.
 259 */
 260
 261        unsigned strstart;      /* start of string to insert */
 262        unsigned match_start;   /* start of matching string */
 263        unsigned lookahead;     /* number of valid bytes ahead in window */
 264
 265/* ===========================================================================
 266 */
 267#define DECLARE(type, array, size) \
 268        type * array
 269#define ALLOC(type, array, size) \
 270        array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type))
 271#define FREE(array) \
 272        do { free(array); array = NULL; } while (0)
 273
 274        /* global buffers */
 275
 276        /* buffer for literals or lengths */
 277        /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
 278        DECLARE(uch, l_buf, INBUFSIZ);
 279
 280        DECLARE(ush, d_buf, DIST_BUFSIZE);
 281        DECLARE(uch, outbuf, OUTBUFSIZ);
 282
 283/* Sliding window. Input bytes are read into the second half of the window,
 284 * and move to the first half later to keep a dictionary of at least WSIZE
 285 * bytes. With this organization, matches are limited to a distance of
 286 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
 287 * performed with a length multiple of the block size. Also, it limits
 288 * the window size to 64K, which is quite useful on MSDOS.
 289 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
 290 * be less efficient).
 291 */
 292        DECLARE(uch, window, 2L * WSIZE);
 293
 294/* Link to older string with same hash index. To limit the size of this
 295 * array to 64K, this link is maintained only for the last 32K strings.
 296 * An index in this array is thus a window index modulo 32K.
 297 */
 298        /* DECLARE(Pos, prev, WSIZE); */
 299        DECLARE(ush, prev, 1L << BITS);
 300
 301/* Heads of the hash chains or 0. */
 302        /* DECLARE(Pos, head, 1<<HASH_BITS); */
 303#define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
 304
 305/* number of input bytes */
 306        ulg isize;              /* only 32 bits stored in .gz file */
 307
 308/* bbox always use stdin/stdout */
 309#define ifd STDIN_FILENO        /* input file descriptor */
 310#define ofd STDOUT_FILENO       /* output file descriptor */
 311
 312#ifdef DEBUG
 313        unsigned insize;        /* valid bytes in l_buf */
 314#endif
 315        unsigned outcnt;        /* bytes in output buffer */
 316
 317        smallint eofile;        /* flag set at end of input file */
 318
 319/* ===========================================================================
 320 * Local data used by the "bit string" routines.
 321 */
 322
 323        unsigned short bi_buf;
 324
 325/* Output buffer. bits are inserted starting at the bottom (least significant
 326 * bits).
 327 */
 328
 329#undef BUF_SIZE
 330#define BUF_SIZE (8 * sizeof(G1.bi_buf))
 331/* Number of bits used within bi_buf. (bi_buf might be implemented on
 332 * more than 16 bits on some systems.)
 333 */
 334
 335        int bi_valid;
 336
 337/* Current input function. Set to mem_read for in-memory compression */
 338
 339#ifdef DEBUG
 340        ulg bits_sent;                  /* bit length of the compressed data */
 341#endif
 342
 343        uint32_t *crc_32_tab;
 344        uint32_t crc;   /* shift register contents */
 345};
 346
 347#define G1 (*(ptr_to_globals - 1))
 348
 349
 350/* ===========================================================================
 351 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
 352 * (used for the compressed data only)
 353 */
 354static void flush_outbuf(void)
 355{
 356        if (G1.outcnt == 0)
 357                return;
 358
 359        xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
 360        G1.outcnt = 0;
 361}
 362
 363
 364/* ===========================================================================
 365 */
 366/* put_8bit is used for the compressed output */
 367#define put_8bit(c) \
 368do { \
 369        G1.outbuf[G1.outcnt++] = (c); \
 370        if (G1.outcnt == OUTBUFSIZ) flush_outbuf(); \
 371} while (0)
 372
 373/* Output a 16 bit value, lsb first */
 374static void put_16bit(ush w)
 375{
 376        if (G1.outcnt < OUTBUFSIZ - 2) {
 377                G1.outbuf[G1.outcnt++] = w;
 378                G1.outbuf[G1.outcnt++] = w >> 8;
 379        } else {
 380                put_8bit(w);
 381                put_8bit(w >> 8);
 382        }
 383}
 384
 385static void put_32bit(ulg n)
 386{
 387        put_16bit(n);
 388        put_16bit(n >> 16);
 389}
 390
 391/* ===========================================================================
 392 * Run a set of bytes through the crc shift register.  If s is a NULL
 393 * pointer, then initialize the crc shift register contents instead.
 394 * Return the current crc in either case.
 395 */
 396static uint32_t updcrc(uch * s, unsigned n)
 397{
 398        uint32_t c = G1.crc;
 399        while (n) {
 400                c = G1.crc_32_tab[(uch)(c ^ *s++)] ^ (c >> 8);
 401                n--;
 402        }
 403        G1.crc = c;
 404        return c;
 405}
 406
 407
 408/* ===========================================================================
 409 * Read a new buffer from the current input file, perform end-of-line
 410 * translation, and update the crc and input file size.
 411 * IN assertion: size >= 2 (for end-of-line translation)
 412 */
 413static unsigned file_read(void *buf, unsigned size)
 414{
 415        unsigned len;
 416
 417        Assert(G1.insize == 0, "l_buf not empty");
 418
 419        len = safe_read(ifd, buf, size);
 420        if (len == (unsigned)(-1) || len == 0)
 421                return len;
 422
 423        updcrc(buf, len);
 424        G1.isize += len;
 425        return len;
 426}
 427
 428
 429/* ===========================================================================
 430 * Send a value on a given number of bits.
 431 * IN assertion: length <= 16 and value fits in length bits.
 432 */
 433static void send_bits(int value, int length)
 434{
 435#ifdef DEBUG
 436        Tracev((stderr, " l %2d v %4x ", length, value));
 437        Assert(length > 0 && length <= 15, "invalid length");
 438        G1.bits_sent += length;
 439#endif
 440        /* If not enough room in bi_buf, use (valid) bits from bi_buf and
 441         * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
 442         * unused bits in value.
 443         */
 444        if (G1.bi_valid > (int) BUF_SIZE - length) {
 445                G1.bi_buf |= (value << G1.bi_valid);
 446                put_16bit(G1.bi_buf);
 447                G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
 448                G1.bi_valid += length - BUF_SIZE;
 449        } else {
 450                G1.bi_buf |= value << G1.bi_valid;
 451                G1.bi_valid += length;
 452        }
 453}
 454
 455
 456/* ===========================================================================
 457 * Reverse the first len bits of a code, using straightforward code (a faster
 458 * method would use a table)
 459 * IN assertion: 1 <= len <= 15
 460 */
 461static unsigned bi_reverse(unsigned code, int len)
 462{
 463        unsigned res = 0;
 464
 465        while (1) {
 466                res |= code & 1;
 467                if (--len <= 0) return res;
 468                code >>= 1;
 469                res <<= 1;
 470        }
 471}
 472
 473
 474/* ===========================================================================
 475 * Write out any remaining bits in an incomplete byte.
 476 */
 477static void bi_windup(void)
 478{
 479        if (G1.bi_valid > 8) {
 480                put_16bit(G1.bi_buf);
 481        } else if (G1.bi_valid > 0) {
 482                put_8bit(G1.bi_buf);
 483        }
 484        G1.bi_buf = 0;
 485        G1.bi_valid = 0;
 486#ifdef DEBUG
 487        G1.bits_sent = (G1.bits_sent + 7) & ~7;
 488#endif
 489}
 490
 491
 492/* ===========================================================================
 493 * Copy a stored block to the zip file, storing first the length and its
 494 * one's complement if requested.
 495 */
 496static void copy_block(char *buf, unsigned len, int header)
 497{
 498        bi_windup();            /* align on byte boundary */
 499
 500        if (header) {
 501                put_16bit(len);
 502                put_16bit(~len);
 503#ifdef DEBUG
 504                G1.bits_sent += 2 * 16;
 505#endif
 506        }
 507#ifdef DEBUG
 508        G1.bits_sent += (ulg) len << 3;
 509#endif
 510        while (len--) {
 511                put_8bit(*buf++);
 512        }
 513}
 514
 515
 516/* ===========================================================================
 517 * Fill the window when the lookahead becomes insufficient.
 518 * Updates strstart and lookahead, and sets eofile if end of input file.
 519 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
 520 * OUT assertions: at least one byte has been read, or eofile is set;
 521 *    file reads are performed for at least two bytes (required for the
 522 *    translate_eol option).
 523 */
 524static void fill_window(void)
 525{
 526        unsigned n, m;
 527        unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
 528        /* Amount of free space at the end of the window. */
 529
 530        /* If the window is almost full and there is insufficient lookahead,
 531         * move the upper half to the lower one to make room in the upper half.
 532         */
 533        if (more == (unsigned) -1) {
 534                /* Very unlikely, but possible on 16 bit machine if strstart == 0
 535                 * and lookahead == 1 (input done one byte at time)
 536                 */
 537                more--;
 538        } else if (G1.strstart >= WSIZE + MAX_DIST) {
 539                /* By the IN assertion, the window is not empty so we can't confuse
 540                 * more == 0 with more == 64K on a 16 bit machine.
 541                 */
 542                Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
 543
 544                memcpy(G1.window, G1.window + WSIZE, WSIZE);
 545                G1.match_start -= WSIZE;
 546                G1.strstart -= WSIZE;   /* we now have strstart >= MAX_DIST: */
 547
 548                G1.block_start -= WSIZE;
 549
 550                for (n = 0; n < HASH_SIZE; n++) {
 551                        m = head[n];
 552                        head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
 553                }
 554                for (n = 0; n < WSIZE; n++) {
 555                        m = G1.prev[n];
 556                        G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
 557                        /* If n is not on any hash chain, prev[n] is garbage but
 558                         * its value will never be used.
 559                         */
 560                }
 561                more += WSIZE;
 562        }
 563        /* At this point, more >= 2 */
 564        if (!G1.eofile) {
 565                n = file_read(G1.window + G1.strstart + G1.lookahead, more);
 566                if (n == 0 || n == (unsigned) -1) {
 567                        G1.eofile = 1;
 568                } else {
 569                        G1.lookahead += n;
 570                }
 571        }
 572}
 573
 574
 575/* ===========================================================================
 576 * Set match_start to the longest match starting at the given string and
 577 * return its length. Matches shorter or equal to prev_length are discarded,
 578 * in which case the result is equal to prev_length and match_start is
 579 * garbage.
 580 * IN assertions: cur_match is the head of the hash chain for the current
 581 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 582 */
 583
 584/* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
 585 * match.s. The code is functionally equivalent, so you can use the C version
 586 * if desired.
 587 */
 588static int longest_match(IPos cur_match)
 589{
 590        unsigned chain_length = max_chain_length;       /* max hash chain length */
 591        uch *scan = G1.window + G1.strstart;    /* current string */
 592        uch *match;     /* matched string */
 593        int len;        /* length of current match */
 594        int best_len = G1.prev_length;  /* best match length so far */
 595        IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
 596        /* Stop when cur_match becomes <= limit. To simplify the code,
 597         * we prevent matches with the string of window index 0.
 598         */
 599
 600/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 601 * It is easy to get rid of this optimization if necessary.
 602 */
 603#if HASH_BITS < 8 || MAX_MATCH != 258
 604#  error Code too clever
 605#endif
 606        uch *strend = G1.window + G1.strstart + MAX_MATCH;
 607        uch scan_end1 = scan[best_len - 1];
 608        uch scan_end = scan[best_len];
 609
 610        /* Do not waste too much time if we already have a good match: */
 611        if (G1.prev_length >= good_match) {
 612                chain_length >>= 2;
 613        }
 614        Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
 615
 616        do {
 617                Assert(cur_match < G1.strstart, "no future");
 618                match = G1.window + cur_match;
 619
 620                /* Skip to next match if the match length cannot increase
 621                 * or if the match length is less than 2:
 622                 */
 623                if (match[best_len] != scan_end ||
 624                        match[best_len - 1] != scan_end1 ||
 625                        *match != *scan || *++match != scan[1])
 626                        continue;
 627
 628                /* The check at best_len-1 can be removed because it will be made
 629                 * again later. (This heuristic is not always a win.)
 630                 * It is not necessary to compare scan[2] and match[2] since they
 631                 * are always equal when the other bytes match, given that
 632                 * the hash keys are equal and that HASH_BITS >= 8.
 633                 */
 634                scan += 2, match++;
 635
 636                /* We check for insufficient lookahead only every 8th comparison;
 637                 * the 256th check will be made at strstart+258.
 638                 */
 639                do {
 640                } while (*++scan == *++match && *++scan == *++match &&
 641                                 *++scan == *++match && *++scan == *++match &&
 642                                 *++scan == *++match && *++scan == *++match &&
 643                                 *++scan == *++match && *++scan == *++match && scan < strend);
 644
 645                len = MAX_MATCH - (int) (strend - scan);
 646                scan = strend - MAX_MATCH;
 647
 648                if (len > best_len) {
 649                        G1.match_start = cur_match;
 650                        best_len = len;
 651                        if (len >= nice_match)
 652                                break;
 653                        scan_end1 = scan[best_len - 1];
 654                        scan_end = scan[best_len];
 655                }
 656        } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
 657                         && --chain_length != 0);
 658
 659        return best_len;
 660}
 661
 662
 663#ifdef DEBUG
 664/* ===========================================================================
 665 * Check that the match at match_start is indeed a match.
 666 */
 667static void check_match(IPos start, IPos match, int length)
 668{
 669        /* check that the match is indeed a match */
 670        if (memcmp(G1.window + match, G1.window + start, length) != 0) {
 671                bb_error_msg(" start %d, match %d, length %d", start, match, length);
 672                bb_error_msg("invalid match");
 673        }
 674        if (verbose > 1) {
 675                bb_error_msg("\\[%d,%d]", start - match, length);
 676                do {
 677                        fputc(G1.window[start++], stderr);
 678                } while (--length != 0);
 679        }
 680}
 681#else
 682#  define check_match(start, match, length) ((void)0)
 683#endif
 684
 685
 686/* trees.c -- output deflated data using Huffman coding
 687 * Copyright (C) 1992-1993 Jean-loup Gailly
 688 * This is free software; you can redistribute it and/or modify it under the
 689 * terms of the GNU General Public License, see the file COPYING.
 690 */
 691
 692/*  PURPOSE
 693 *      Encode various sets of source values using variable-length
 694 *      binary code trees.
 695 *
 696 *  DISCUSSION
 697 *      The PKZIP "deflation" process uses several Huffman trees. The more
 698 *      common source values are represented by shorter bit sequences.
 699 *
 700 *      Each code tree is stored in the ZIP file in a compressed form
 701 *      which is itself a Huffman encoding of the lengths of
 702 *      all the code strings (in ascending order by source values).
 703 *      The actual code strings are reconstructed from the lengths in
 704 *      the UNZIP process, as described in the "application note"
 705 *      (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
 706 *
 707 *  REFERENCES
 708 *      Lynch, Thomas J.
 709 *          Data Compression:  Techniques and Applications, pp. 53-55.
 710 *          Lifetime Learning Publications, 1985.  ISBN 0-534-03418-7.
 711 *
 712 *      Storer, James A.
 713 *          Data Compression:  Methods and Theory, pp. 49-50.
 714 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
 715 *
 716 *      Sedgewick, R.
 717 *          Algorithms, p290.
 718 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
 719 *
 720 *  INTERFACE
 721 *      void ct_init()
 722 *          Allocate the match buffer, initialize the various tables [and save
 723 *          the location of the internal file attribute (ascii/binary) and
 724 *          method (DEFLATE/STORE) -- deleted in bbox]
 725 *
 726 *      void ct_tally(int dist, int lc);
 727 *          Save the match info and tally the frequency counts.
 728 *
 729 *      ulg flush_block(char *buf, ulg stored_len, int eof)
 730 *          Determine the best encoding for the current block: dynamic trees,
 731 *          static trees or store, and output the encoded block to the zip
 732 *          file. Returns the total compressed length for the file so far.
 733 */
 734
 735#define MAX_BITS 15
 736/* All codes must not exceed MAX_BITS bits */
 737
 738#define MAX_BL_BITS 7
 739/* Bit length codes must not exceed MAX_BL_BITS bits */
 740
 741#define LENGTH_CODES 29
 742/* number of length codes, not counting the special END_BLOCK code */
 743
 744#define LITERALS  256
 745/* number of literal bytes 0..255 */
 746
 747#define END_BLOCK 256
 748/* end of block literal code */
 749
 750#define L_CODES (LITERALS+1+LENGTH_CODES)
 751/* number of Literal or Length codes, including the END_BLOCK code */
 752
 753#define D_CODES   30
 754/* number of distance codes */
 755
 756#define BL_CODES  19
 757/* number of codes used to transfer the bit lengths */
 758
 759/* extra bits for each length code */
 760static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
 761        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
 762        4, 4, 5, 5, 5, 5, 0
 763};
 764
 765/* extra bits for each distance code */
 766static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
 767        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
 768        10, 10, 11, 11, 12, 12, 13, 13
 769};
 770
 771/* extra bits for each bit length code */
 772static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
 773        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
 774
 775/* number of codes at each bit length for an optimal tree */
 776static const uint8_t bl_order[BL_CODES] ALIGN1 = {
 777        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
 778
 779#define STORED_BLOCK 0
 780#define STATIC_TREES 1
 781#define DYN_TREES    2
 782/* The three kinds of block type */
 783
 784#ifndef LIT_BUFSIZE
 785#  ifdef SMALL_MEM
 786#    define LIT_BUFSIZE  0x2000
 787#  else
 788#  ifdef MEDIUM_MEM
 789#    define LIT_BUFSIZE  0x4000
 790#  else
 791#    define LIT_BUFSIZE  0x8000
 792#  endif
 793#  endif
 794#endif
 795#ifndef DIST_BUFSIZE
 796#  define DIST_BUFSIZE  LIT_BUFSIZE
 797#endif
 798/* Sizes of match buffers for literals/lengths and distances.  There are
 799 * 4 reasons for limiting LIT_BUFSIZE to 64K:
 800 *   - frequencies can be kept in 16 bit counters
 801 *   - if compression is not successful for the first block, all input data is
 802 *     still in the window so we can still emit a stored block even when input
 803 *     comes from standard input.  (This can also be done for all blocks if
 804 *     LIT_BUFSIZE is not greater than 32K.)
 805 *   - if compression is not successful for a file smaller than 64K, we can
 806 *     even emit a stored file instead of a stored block (saving 5 bytes).
 807 *   - creating new Huffman trees less frequently may not provide fast
 808 *     adaptation to changes in the input data statistics. (Take for
 809 *     example a binary file with poorly compressible code followed by
 810 *     a highly compressible string table.) Smaller buffer sizes give
 811 *     fast adaptation but have of course the overhead of transmitting trees
 812 *     more frequently.
 813 *   - I can't count above 4
 814 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
 815 * memory at the expense of compression). Some optimizations would be possible
 816 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
 817 */
 818#define REP_3_6      16
 819/* repeat previous bit length 3-6 times (2 bits of repeat count) */
 820#define REPZ_3_10    17
 821/* repeat a zero length 3-10 times  (3 bits of repeat count) */
 822#define REPZ_11_138  18
 823/* repeat a zero length 11-138 times  (7 bits of repeat count) */
 824
 825/* ===========================================================================
 826*/
 827/* Data structure describing a single value and its code string. */
 828typedef struct ct_data {
 829        union {
 830                ush freq;               /* frequency count */
 831                ush code;               /* bit string */
 832        } fc;
 833        union {
 834                ush dad;                /* father node in Huffman tree */
 835                ush len;                /* length of bit string */
 836        } dl;
 837} ct_data;
 838
 839#define Freq fc.freq
 840#define Code fc.code
 841#define Dad  dl.dad
 842#define Len  dl.len
 843
 844#define HEAP_SIZE (2*L_CODES + 1)
 845/* maximum heap size */
 846
 847typedef struct tree_desc {
 848        ct_data *dyn_tree;      /* the dynamic tree */
 849        ct_data *static_tree;   /* corresponding static tree or NULL */
 850        const uint8_t *extra_bits;      /* extra bits for each code or NULL */
 851        int extra_base;         /* base index for extra_bits */
 852        int elems;                      /* max number of elements in the tree */
 853        int max_length;         /* max bit length for the codes */
 854        int max_code;           /* largest code with non zero frequency */
 855} tree_desc;
 856
 857struct globals2 {
 858
 859        ush heap[HEAP_SIZE];     /* heap used to build the Huffman trees */
 860        int heap_len;            /* number of elements in the heap */
 861        int heap_max;            /* element of largest frequency */
 862
 863/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
 864 * The same heap array is used to build all trees.
 865 */
 866
 867        ct_data dyn_ltree[HEAP_SIZE];   /* literal and length tree */
 868        ct_data dyn_dtree[2 * D_CODES + 1];     /* distance tree */
 869
 870        ct_data static_ltree[L_CODES + 2];
 871
 872/* The static literal tree. Since the bit lengths are imposed, there is no
 873 * need for the L_CODES extra codes used during heap construction. However
 874 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
 875 * below).
 876 */
 877
 878        ct_data static_dtree[D_CODES];
 879
 880/* The static distance tree. (Actually a trivial tree since all codes use
 881 * 5 bits.)
 882 */
 883
 884        ct_data bl_tree[2 * BL_CODES + 1];
 885
 886/* Huffman tree for the bit lengths */
 887
 888        tree_desc l_desc;
 889        tree_desc d_desc;
 890        tree_desc bl_desc;
 891
 892        ush bl_count[MAX_BITS + 1];
 893
 894/* The lengths of the bit length codes are sent in order of decreasing
 895 * probability, to avoid transmitting the lengths for unused bit length codes.
 896 */
 897
 898        uch depth[2 * L_CODES + 1];
 899
 900/* Depth of each subtree used as tie breaker for trees of equal frequency */
 901
 902        uch length_code[MAX_MATCH - MIN_MATCH + 1];
 903
 904/* length code for each normalized match length (0 == MIN_MATCH) */
 905
 906        uch dist_code[512];
 907
 908/* distance codes. The first 256 values correspond to the distances
 909 * 3 .. 258, the last 256 values correspond to the top 8 bits of
 910 * the 15 bit distances.
 911 */
 912
 913        int base_length[LENGTH_CODES];
 914
 915/* First normalized length for each code (0 = MIN_MATCH) */
 916
 917        int base_dist[D_CODES];
 918
 919/* First normalized distance for each code (0 = distance of 1) */
 920
 921        uch flag_buf[LIT_BUFSIZE / 8];
 922
 923/* flag_buf is a bit array distinguishing literals from lengths in
 924 * l_buf, thus indicating the presence or absence of a distance.
 925 */
 926
 927        unsigned last_lit;       /* running index in l_buf */
 928        unsigned last_dist;      /* running index in d_buf */
 929        unsigned last_flags;     /* running index in flag_buf */
 930        uch flags;               /* current flags not yet saved in flag_buf */
 931        uch flag_bit;            /* current bit used in flags */
 932
 933/* bits are filled in flags starting at bit 0 (least significant).
 934 * Note: these flags are overkill in the current code since we don't
 935 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
 936 */
 937
 938        ulg opt_len;             /* bit length of current block with optimal trees */
 939        ulg static_len;          /* bit length of current block with static trees */
 940
 941        ulg compressed_len;      /* total bit length of compressed file */
 942};
 943
 944#define G2ptr ((struct globals2*)(ptr_to_globals))
 945#define G2 (*G2ptr)
 946
 947
 948/* ===========================================================================
 949 */
 950static void gen_codes(ct_data * tree, int max_code);
 951static void build_tree(tree_desc * desc);
 952static void scan_tree(ct_data * tree, int max_code);
 953static void send_tree(ct_data * tree, int max_code);
 954static int build_bl_tree(void);
 955static void send_all_trees(int lcodes, int dcodes, int blcodes);
 956static void compress_block(ct_data * ltree, ct_data * dtree);
 957
 958
 959#ifndef DEBUG
 960/* Send a code of the given tree. c and tree must not have side effects */
 961#  define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
 962#else
 963#  define SEND_CODE(c, tree) \
 964{ \
 965        if (verbose > 1) bb_error_msg("\ncd %3d ",(c)); \
 966        send_bits(tree[c].Code, tree[c].Len); \
 967}
 968#endif
 969
 970#define D_CODE(dist) \
 971        ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
 972/* Mapping from a distance to a distance code. dist is the distance - 1 and
 973 * must not have side effects. dist_code[256] and dist_code[257] are never
 974 * used.
 975 * The arguments must not have side effects.
 976 */
 977
 978
 979/* ===========================================================================
 980 * Initialize a new block.
 981 */
 982static void init_block(void)
 983{
 984        int n; /* iterates over tree elements */
 985
 986        /* Initialize the trees. */
 987        for (n = 0; n < L_CODES; n++)
 988                G2.dyn_ltree[n].Freq = 0;
 989        for (n = 0; n < D_CODES; n++)
 990                G2.dyn_dtree[n].Freq = 0;
 991        for (n = 0; n < BL_CODES; n++)
 992                G2.bl_tree[n].Freq = 0;
 993
 994        G2.dyn_ltree[END_BLOCK].Freq = 1;
 995        G2.opt_len = G2.static_len = 0;
 996        G2.last_lit = G2.last_dist = G2.last_flags = 0;
 997        G2.flags = 0;
 998        G2.flag_bit = 1;
 999}
1000
1001
1002/* ===========================================================================
1003 * Restore the heap property by moving down the tree starting at node k,
1004 * exchanging a node with the smallest of its two sons if necessary, stopping
1005 * when the heap property is re-established (each father smaller than its
1006 * two sons).
1007 */
1008
1009/* Compares to subtrees, using the tree depth as tie breaker when
1010 * the subtrees have equal frequency. This minimizes the worst case length. */
1011#define SMALLER(tree, n, m) \
1012        (tree[n].Freq < tree[m].Freq \
1013        || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1014
1015static void pqdownheap(ct_data * tree, int k)
1016{
1017        int v = G2.heap[k];
1018        int j = k << 1;         /* left son of k */
1019
1020        while (j <= G2.heap_len) {
1021                /* Set j to the smallest of the two sons: */
1022                if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
1023                        j++;
1024
1025                /* Exit if v is smaller than both sons */
1026                if (SMALLER(tree, v, G2.heap[j]))
1027                        break;
1028
1029                /* Exchange v with the smallest son */
1030                G2.heap[k] = G2.heap[j];
1031                k = j;
1032
1033                /* And continue down the tree, setting j to the left son of k */
1034                j <<= 1;
1035        }
1036        G2.heap[k] = v;
1037}
1038
1039
1040/* ===========================================================================
1041 * Compute the optimal bit lengths for a tree and update the total bit length
1042 * for the current block.
1043 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1044 *    above are the tree nodes sorted by increasing frequency.
1045 * OUT assertions: the field len is set to the optimal bit length, the
1046 *     array bl_count contains the frequencies for each bit length.
1047 *     The length opt_len is updated; static_len is also updated if stree is
1048 *     not null.
1049 */
1050static void gen_bitlen(tree_desc * desc)
1051{
1052        ct_data *tree = desc->dyn_tree;
1053        const uint8_t *extra = desc->extra_bits;
1054        int base = desc->extra_base;
1055        int max_code = desc->max_code;
1056        int max_length = desc->max_length;
1057        ct_data *stree = desc->static_tree;
1058        int h;                          /* heap index */
1059        int n, m;                       /* iterate over the tree elements */
1060        int bits;                       /* bit length */
1061        int xbits;                      /* extra bits */
1062        ush f;                          /* frequency */
1063        int overflow = 0;       /* number of elements with bit length too large */
1064
1065        for (bits = 0; bits <= MAX_BITS; bits++)
1066                G2.bl_count[bits] = 0;
1067
1068        /* In a first pass, compute the optimal bit lengths (which may
1069         * overflow in the case of the bit length tree).
1070         */
1071        tree[G2.heap[G2.heap_max]].Len = 0;     /* root of the heap */
1072
1073        for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1074                n = G2.heap[h];
1075                bits = tree[tree[n].Dad].Len + 1;
1076                if (bits > max_length) {
1077                        bits = max_length;
1078                        overflow++;
1079                }
1080                tree[n].Len = (ush) bits;
1081                /* We overwrite tree[n].Dad which is no longer needed */
1082
1083                if (n > max_code)
1084                        continue;       /* not a leaf node */
1085
1086                G2.bl_count[bits]++;
1087                xbits = 0;
1088                if (n >= base)
1089                        xbits = extra[n - base];
1090                f = tree[n].Freq;
1091                G2.opt_len += (ulg) f *(bits + xbits);
1092
1093                if (stree)
1094                        G2.static_len += (ulg) f * (stree[n].Len + xbits);
1095        }
1096        if (overflow == 0)
1097                return;
1098
1099        Trace((stderr, "\nbit length overflow\n"));
1100        /* This happens for example on obj2 and pic of the Calgary corpus */
1101
1102        /* Find the first bit length which could increase: */
1103        do {
1104                bits = max_length - 1;
1105                while (G2.bl_count[bits] == 0)
1106                        bits--;
1107                G2.bl_count[bits]--;    /* move one leaf down the tree */
1108                G2.bl_count[bits + 1] += 2;     /* move one overflow item as its brother */
1109                G2.bl_count[max_length]--;
1110                /* The brother of the overflow item also moves one step up,
1111                 * but this does not affect bl_count[max_length]
1112                 */
1113                overflow -= 2;
1114        } while (overflow > 0);
1115
1116        /* Now recompute all bit lengths, scanning in increasing frequency.
1117         * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1118         * lengths instead of fixing only the wrong ones. This idea is taken
1119         * from 'ar' written by Haruhiko Okumura.)
1120         */
1121        for (bits = max_length; bits != 0; bits--) {
1122                n = G2.bl_count[bits];
1123                while (n != 0) {
1124                        m = G2.heap[--h];
1125                        if (m > max_code)
1126                                continue;
1127                        if (tree[m].Len != (unsigned) bits) {
1128                                Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1129                                G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1130                                tree[m].Len = bits;
1131                        }
1132                        n--;
1133                }
1134        }
1135}
1136
1137
1138/* ===========================================================================
1139 * Generate the codes for a given tree and bit counts (which need not be
1140 * optimal).
1141 * IN assertion: the array bl_count contains the bit length statistics for
1142 * the given tree and the field len is set for all tree elements.
1143 * OUT assertion: the field code is set for all tree elements of non
1144 *     zero code length.
1145 */
1146static void gen_codes(ct_data * tree, int max_code)
1147{
1148        ush next_code[MAX_BITS + 1];    /* next code value for each bit length */
1149        ush code = 0;           /* running code value */
1150        int bits;                       /* bit index */
1151        int n;                          /* code index */
1152
1153        /* The distribution counts are first used to generate the code values
1154         * without bit reversal.
1155         */
1156        for (bits = 1; bits <= MAX_BITS; bits++) {
1157                next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
1158        }
1159        /* Check that the bit counts in bl_count are consistent. The last code
1160         * must be all ones.
1161         */
1162        Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
1163                   "inconsistent bit counts");
1164        Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1165
1166        for (n = 0; n <= max_code; n++) {
1167                int len = tree[n].Len;
1168
1169                if (len == 0)
1170                        continue;
1171                /* Now reverse the bits */
1172                tree[n].Code = bi_reverse(next_code[len]++, len);
1173
1174                Tracec(tree != G2.static_ltree,
1175                           (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
1176                                (n > ' ' ? n : ' '), len, tree[n].Code,
1177                                next_code[len] - 1));
1178        }
1179}
1180
1181
1182/* ===========================================================================
1183 * Construct one Huffman tree and assigns the code bit strings and lengths.
1184 * Update the total bit length for the current block.
1185 * IN assertion: the field freq is set for all tree elements.
1186 * OUT assertions: the fields len and code are set to the optimal bit length
1187 *     and corresponding code. The length opt_len is updated; static_len is
1188 *     also updated if stree is not null. The field max_code is set.
1189 */
1190
1191/* Remove the smallest element from the heap and recreate the heap with
1192 * one less element. Updates heap and heap_len. */
1193
1194#define SMALLEST 1
1195/* Index within the heap array of least frequent node in the Huffman tree */
1196
1197#define PQREMOVE(tree, top) \
1198do { \
1199        top = G2.heap[SMALLEST]; \
1200        G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1201        pqdownheap(tree, SMALLEST); \
1202} while (0)
1203
1204static void build_tree(tree_desc * desc)
1205{
1206        ct_data *tree = desc->dyn_tree;
1207        ct_data *stree = desc->static_tree;
1208        int elems = desc->elems;
1209        int n, m;                       /* iterate over heap elements */
1210        int max_code = -1;      /* largest code with non zero frequency */
1211        int node = elems;       /* next internal node of the tree */
1212
1213        /* Construct the initial heap, with least frequent element in
1214         * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1215         * heap[0] is not used.
1216         */
1217        G2.heap_len = 0;
1218        G2.heap_max = HEAP_SIZE;
1219
1220        for (n = 0; n < elems; n++) {
1221                if (tree[n].Freq != 0) {
1222                        G2.heap[++G2.heap_len] = max_code = n;
1223                        G2.depth[n] = 0;
1224                } else {
1225                        tree[n].Len = 0;
1226                }
1227        }
1228
1229        /* The pkzip format requires that at least one distance code exists,
1230         * and that at least one bit should be sent even if there is only one
1231         * possible code. So to avoid special checks later on we force at least
1232         * two codes of non zero frequency.
1233         */
1234        while (G2.heap_len < 2) {
1235                int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
1236
1237                tree[new].Freq = 1;
1238                G2.depth[new] = 0;
1239                G2.opt_len--;
1240                if (stree)
1241                        G2.static_len -= stree[new].Len;
1242                /* new is 0 or 1 so it does not have extra bits */
1243        }
1244        desc->max_code = max_code;
1245
1246        /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1247         * establish sub-heaps of increasing lengths:
1248         */
1249        for (n = G2.heap_len / 2; n >= 1; n--)
1250                pqdownheap(tree, n);
1251
1252        /* Construct the Huffman tree by repeatedly combining the least two
1253         * frequent nodes.
1254         */
1255        do {
1256                PQREMOVE(tree, n);      /* n = node of least frequency */
1257                m = G2.heap[SMALLEST];  /* m = node of next least frequency */
1258
1259                G2.heap[--G2.heap_max] = n;     /* keep the nodes sorted by frequency */
1260                G2.heap[--G2.heap_max] = m;
1261
1262                /* Create a new node father of n and m */
1263                tree[node].Freq = tree[n].Freq + tree[m].Freq;
1264                G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
1265                tree[n].Dad = tree[m].Dad = (ush) node;
1266#ifdef DUMP_BL_TREE
1267                if (tree == G2.bl_tree) {
1268                        bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1269                                        node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1270                }
1271#endif
1272                /* and insert the new node in the heap */
1273                G2.heap[SMALLEST] = node++;
1274                pqdownheap(tree, SMALLEST);
1275
1276        } while (G2.heap_len >= 2);
1277
1278        G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
1279
1280        /* At this point, the fields freq and dad are set. We can now
1281         * generate the bit lengths.
1282         */
1283        gen_bitlen((tree_desc *) desc);
1284
1285        /* The field len is now set, we can generate the bit codes */
1286        gen_codes((ct_data *) tree, max_code);
1287}
1288
1289
1290/* ===========================================================================
1291 * Scan a literal or distance tree to determine the frequencies of the codes
1292 * in the bit length tree. Updates opt_len to take into account the repeat
1293 * counts. (The contribution of the bit length codes will be added later
1294 * during the construction of bl_tree.)
1295 */
1296static void scan_tree(ct_data * tree, int max_code)
1297{
1298        int n;                          /* iterates over all tree elements */
1299        int prevlen = -1;       /* last emitted length */
1300        int curlen;                     /* length of current code */
1301        int nextlen = tree[0].Len;      /* length of next code */
1302        int count = 0;          /* repeat count of the current code */
1303        int max_count = 7;      /* max repeat count */
1304        int min_count = 4;      /* min repeat count */
1305
1306        if (nextlen == 0) {
1307                max_count = 138;
1308                min_count = 3;
1309        }
1310        tree[max_code + 1].Len = 0xffff; /* guard */
1311
1312        for (n = 0; n <= max_code; n++) {
1313                curlen = nextlen;
1314                nextlen = tree[n + 1].Len;
1315                if (++count < max_count && curlen == nextlen)
1316                        continue;
1317
1318                if (count < min_count) {
1319                        G2.bl_tree[curlen].Freq += count;
1320                } else if (curlen != 0) {
1321                        if (curlen != prevlen)
1322                                G2.bl_tree[curlen].Freq++;
1323                        G2.bl_tree[REP_3_6].Freq++;
1324                } else if (count <= 10) {
1325                        G2.bl_tree[REPZ_3_10].Freq++;
1326                } else {
1327                        G2.bl_tree[REPZ_11_138].Freq++;
1328                }
1329                count = 0;
1330                prevlen = curlen;
1331
1332                max_count = 7;
1333                min_count = 4;
1334                if (nextlen == 0) {
1335                        max_count = 138;
1336                        min_count = 3;
1337                } else if (curlen == nextlen) {
1338                        max_count = 6;
1339                        min_count = 3;
1340                }
1341        }
1342}
1343
1344
1345/* ===========================================================================
1346 * Send a literal or distance tree in compressed form, using the codes in
1347 * bl_tree.
1348 */
1349static void send_tree(ct_data * tree, int max_code)
1350{
1351        int n;                          /* iterates over all tree elements */
1352        int prevlen = -1;       /* last emitted length */
1353        int curlen;                     /* length of current code */
1354        int nextlen = tree[0].Len;      /* length of next code */
1355        int count = 0;          /* repeat count of the current code */
1356        int max_count = 7;      /* max repeat count */
1357        int min_count = 4;      /* min repeat count */
1358
1359/* tree[max_code+1].Len = -1; *//* guard already set */
1360        if (nextlen == 0)
1361                max_count = 138, min_count = 3;
1362
1363        for (n = 0; n <= max_code; n++) {
1364                curlen = nextlen;
1365                nextlen = tree[n + 1].Len;
1366                if (++count < max_count && curlen == nextlen) {
1367                        continue;
1368                } else if (count < min_count) {
1369                        do {
1370                                SEND_CODE(curlen, G2.bl_tree);
1371                        } while (--count);
1372                } else if (curlen != 0) {
1373                        if (curlen != prevlen) {
1374                                SEND_CODE(curlen, G2.bl_tree);
1375                                count--;
1376                        }
1377                        Assert(count >= 3 && count <= 6, " 3_6?");
1378                        SEND_CODE(REP_3_6, G2.bl_tree);
1379                        send_bits(count - 3, 2);
1380                } else if (count <= 10) {
1381                        SEND_CODE(REPZ_3_10, G2.bl_tree);
1382                        send_bits(count - 3, 3);
1383                } else {
1384                        SEND_CODE(REPZ_11_138, G2.bl_tree);
1385                        send_bits(count - 11, 7);
1386                }
1387                count = 0;
1388                prevlen = curlen;
1389                if (nextlen == 0) {
1390                        max_count = 138;
1391                        min_count = 3;
1392                } else if (curlen == nextlen) {
1393                        max_count = 6;
1394                        min_count = 3;
1395                } else {
1396                        max_count = 7;
1397                        min_count = 4;
1398                }
1399        }
1400}
1401
1402
1403/* ===========================================================================
1404 * Construct the Huffman tree for the bit lengths and return the index in
1405 * bl_order of the last bit length code to send.
1406 */
1407static int build_bl_tree(void)
1408{
1409        int max_blindex;        /* index of last bit length code of non zero freq */
1410
1411        /* Determine the bit length frequencies for literal and distance trees */
1412        scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1413        scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
1414
1415        /* Build the bit length tree: */
1416        build_tree(&G2.bl_desc);
1417        /* opt_len now includes the length of the tree representations, except
1418         * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1419         */
1420
1421        /* Determine the number of bit length codes to send. The pkzip format
1422         * requires that at least 4 bit length codes be sent. (appnote.txt says
1423         * 3 but the actual value used is 4.)
1424         */
1425        for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
1426                if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
1427                        break;
1428        }
1429        /* Update opt_len to include the bit length tree and counts */
1430        G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1431        Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1432
1433        return max_blindex;
1434}
1435
1436
1437/* ===========================================================================
1438 * Send the header for a block using dynamic Huffman trees: the counts, the
1439 * lengths of the bit length codes, the literal tree and the distance tree.
1440 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1441 */
1442static void send_all_trees(int lcodes, int dcodes, int blcodes)
1443{
1444        int rank;                       /* index in bl_order */
1445
1446        Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1447        Assert(lcodes <= L_CODES && dcodes <= D_CODES
1448                   && blcodes <= BL_CODES, "too many codes");
1449        Tracev((stderr, "\nbl counts: "));
1450        send_bits(lcodes - 257, 5);     /* not +255 as stated in appnote.txt */
1451        send_bits(dcodes - 1, 5);
1452        send_bits(blcodes - 4, 4);      /* not -3 as stated in appnote.txt */
1453        for (rank = 0; rank < blcodes; rank++) {
1454                Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1455                send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
1456        }
1457        Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
1458
1459        send_tree((ct_data *) G2.dyn_ltree, lcodes - 1);        /* send the literal tree */
1460        Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
1461
1462        send_tree((ct_data *) G2.dyn_dtree, dcodes - 1);        /* send the distance tree */
1463        Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
1464}
1465
1466
1467/* ===========================================================================
1468 * Save the match info and tally the frequency counts. Return true if
1469 * the current block must be flushed.
1470 */
1471static int ct_tally(int dist, int lc)
1472{
1473        G1.l_buf[G2.last_lit++] = lc;
1474        if (dist == 0) {
1475                /* lc is the unmatched char */
1476                G2.dyn_ltree[lc].Freq++;
1477        } else {
1478                /* Here, lc is the match length - MIN_MATCH */
1479                dist--;                 /* dist = match distance - 1 */
1480                Assert((ush) dist < (ush) MAX_DIST
1481                 && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1482                 && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1483                );
1484
1485                G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1486                G2.dyn_dtree[D_CODE(dist)].Freq++;
1487
1488                G1.d_buf[G2.last_dist++] = dist;
1489                G2.flags |= G2.flag_bit;
1490        }
1491        G2.flag_bit <<= 1;
1492
1493        /* Output the flags if they fill a byte: */
1494        if ((G2.last_lit & 7) == 0) {
1495                G2.flag_buf[G2.last_flags++] = G2.flags;
1496                G2.flags = 0;
1497                G2.flag_bit = 1;
1498        }
1499        /* Try to guess if it is profitable to stop the current block here */
1500        if ((G2.last_lit & 0xfff) == 0) {
1501                /* Compute an upper bound for the compressed length */
1502                ulg out_length = G2.last_lit * 8L;
1503                ulg in_length = (ulg) G1.strstart - G1.block_start;
1504                int dcode;
1505
1506                for (dcode = 0; dcode < D_CODES; dcode++) {
1507                        out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1508                }
1509                out_length >>= 3;
1510                Trace((stderr,
1511                           "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1512                           G2.last_lit, G2.last_dist, in_length, out_length,
1513                           100L - out_length * 100L / in_length));
1514                if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1515                        return 1;
1516        }
1517        return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1518        /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1519         * on 16 bit machines and because stored blocks are restricted to
1520         * 64K-1 bytes.
1521         */
1522}
1523
1524/* ===========================================================================
1525 * Send the block data compressed using the given Huffman trees
1526 */
1527static void compress_block(ct_data * ltree, ct_data * dtree)
1528{
1529        unsigned dist;          /* distance of matched string */
1530        int lc;                 /* match length or unmatched char (if dist == 0) */
1531        unsigned lx = 0;        /* running index in l_buf */
1532        unsigned dx = 0;        /* running index in d_buf */
1533        unsigned fx = 0;        /* running index in flag_buf */
1534        uch flag = 0;           /* current flags */
1535        unsigned code;          /* the code to send */
1536        int extra;              /* number of extra bits to send */
1537
1538        if (G2.last_lit != 0) do {
1539                if ((lx & 7) == 0)
1540                        flag = G2.flag_buf[fx++];
1541                lc = G1.l_buf[lx++];
1542                if ((flag & 1) == 0) {
1543                        SEND_CODE(lc, ltree);   /* send a literal byte */
1544                        Tracecv(lc > ' ', (stderr, " '%c' ", lc));
1545                } else {
1546                        /* Here, lc is the match length - MIN_MATCH */
1547                        code = G2.length_code[lc];
1548                        SEND_CODE(code + LITERALS + 1, ltree);  /* send the length code */
1549                        extra = extra_lbits[code];
1550                        if (extra != 0) {
1551                                lc -= G2.base_length[code];
1552                                send_bits(lc, extra);   /* send the extra length bits */
1553                        }
1554                        dist = G1.d_buf[dx++];
1555                        /* Here, dist is the match distance - 1 */
1556                        code = D_CODE(dist);
1557                        Assert(code < D_CODES, "bad d_code");
1558
1559                        SEND_CODE(code, dtree); /* send the distance code */
1560                        extra = extra_dbits[code];
1561                        if (extra != 0) {
1562                                dist -= G2.base_dist[code];
1563                                send_bits(dist, extra); /* send the extra distance bits */
1564                        }
1565                }                       /* literal or match pair ? */
1566                flag >>= 1;
1567        } while (lx < G2.last_lit);
1568
1569        SEND_CODE(END_BLOCK, ltree);
1570}
1571
1572
1573/* ===========================================================================
1574 * Determine the best encoding for the current block: dynamic trees, static
1575 * trees or store, and output the encoded block to the zip file. This function
1576 * returns the total compressed length for the file so far.
1577 */
1578static ulg flush_block(char *buf, ulg stored_len, int eof)
1579{
1580        ulg opt_lenb, static_lenb;      /* opt_len and static_len in bytes */
1581        int max_blindex;                /* index of last bit length code of non zero freq */
1582
1583        G2.flag_buf[G2.last_flags] = G2.flags;   /* Save the flags for the last 8 items */
1584
1585        /* Construct the literal and distance trees */
1586        build_tree(&G2.l_desc);
1587        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1588
1589        build_tree(&G2.d_desc);
1590        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1591        /* At this point, opt_len and static_len are the total bit lengths of
1592         * the compressed block data, excluding the tree representations.
1593         */
1594
1595        /* Build the bit length tree for the above two trees, and get the index
1596         * in bl_order of the last bit length code to send.
1597         */
1598        max_blindex = build_bl_tree();
1599
1600        /* Determine the best encoding. Compute first the block length in bytes */
1601        opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1602        static_lenb = (G2.static_len + 3 + 7) >> 3;
1603
1604        Trace((stderr,
1605                   "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1606                   opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
1607                   G2.last_lit, G2.last_dist));
1608
1609        if (static_lenb <= opt_lenb)
1610                opt_lenb = static_lenb;
1611
1612        /* If compression failed and this is the first and last block,
1613         * and if the zip file can be seeked (to rewrite the local header),
1614         * the whole file is transformed into a stored file:
1615         */
1616        if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
1617                /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1618                if (buf == NULL)
1619                        bb_error_msg("block vanished");
1620
1621                copy_block(buf, (unsigned) stored_len, 0);      /* without header */
1622                G2.compressed_len = stored_len << 3;
1623
1624        } else if (stored_len + 4 <= opt_lenb && buf != NULL) {
1625                /* 4: two words for the lengths */
1626                /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1627                 * Otherwise we can't have processed more than WSIZE input bytes since
1628                 * the last block flush, because compression would have been
1629                 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1630                 * transform a block into a stored block.
1631                 */
1632                send_bits((STORED_BLOCK << 1) + eof, 3);        /* send block type */
1633                G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
1634                G2.compressed_len += (stored_len + 4) << 3;
1635
1636                copy_block(buf, (unsigned) stored_len, 1);      /* with header */
1637
1638        } else if (static_lenb == opt_lenb) {
1639                send_bits((STATIC_TREES << 1) + eof, 3);
1640                compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1641                G2.compressed_len += 3 + G2.static_len;
1642        } else {
1643                send_bits((DYN_TREES << 1) + eof, 3);
1644                send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
1645                                           max_blindex + 1);
1646                compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1647                G2.compressed_len += 3 + G2.opt_len;
1648        }
1649        Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
1650        init_block();
1651
1652        if (eof) {
1653                bi_windup();
1654                G2.compressed_len += 7; /* align on byte boundary */
1655        }
1656        Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
1657                        G2.compressed_len - 7 * eof));
1658
1659        return G2.compressed_len >> 3;
1660}
1661
1662
1663/* ===========================================================================
1664 * Update a hash value with the given input byte
1665 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
1666 *    input characters, so that a running hash key can be computed from the
1667 *    previous key instead of complete recalculation each time.
1668 */
1669#define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1670
1671
1672/* ===========================================================================
1673 * Same as above, but achieves better compression. We use a lazy
1674 * evaluation for matches: a match is finally adopted only if there is
1675 * no better match at the next window position.
1676 *
1677 * Processes a new input file and return its compressed length. Sets
1678 * the compressed length, crc, deflate flags and internal file
1679 * attributes.
1680 */
1681
1682/* Flush the current block, with given end-of-file flag.
1683 * IN assertion: strstart is set to the end of the current match. */
1684#define FLUSH_BLOCK(eof) \
1685        flush_block( \
1686                G1.block_start >= 0L \
1687                        ? (char*)&G1.window[(unsigned)G1.block_start] \
1688                        : (char*)NULL, \
1689                (ulg)G1.strstart - G1.block_start, \
1690                (eof) \
1691        )
1692
1693/* Insert string s in the dictionary and set match_head to the previous head
1694 * of the hash chain (the most recent string with same hash key). Return
1695 * the previous length of the hash chain.
1696 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
1697 *    input characters and the first MIN_MATCH bytes of s are valid
1698 *    (except for the last MIN_MATCH-1 bytes of the input file). */
1699#define INSERT_STRING(s, match_head) \
1700do { \
1701        UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1702        G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1703        head[G1.ins_h] = (s); \
1704} while (0)
1705
1706static ulg deflate(void)
1707{
1708        IPos hash_head;         /* head of hash chain */
1709        IPos prev_match;        /* previous match */
1710        int flush;                      /* set if current block must be flushed */
1711        int match_available = 0;        /* set if previous match exists */
1712        unsigned match_length = MIN_MATCH - 1;  /* length of best match */
1713
1714        /* Process the input block. */
1715        while (G1.lookahead != 0) {
1716                /* Insert the string window[strstart .. strstart+2] in the
1717                 * dictionary, and set hash_head to the head of the hash chain:
1718                 */
1719                INSERT_STRING(G1.strstart, hash_head);
1720
1721                /* Find the longest match, discarding those <= prev_length.
1722                 */
1723                G1.prev_length = match_length;
1724                prev_match = G1.match_start;
1725                match_length = MIN_MATCH - 1;
1726
1727                if (hash_head != 0 && G1.prev_length < max_lazy_match
1728                 && G1.strstart - hash_head <= MAX_DIST
1729                ) {
1730                        /* To simplify the code, we prevent matches with the string
1731                         * of window index 0 (in particular we have to avoid a match
1732                         * of the string with itself at the start of the input file).
1733                         */
1734                        match_length = longest_match(hash_head);
1735                        /* longest_match() sets match_start */
1736                        if (match_length > G1.lookahead)
1737                                match_length = G1.lookahead;
1738
1739                        /* Ignore a length 3 match if it is too distant: */
1740                        if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1741                                /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1742                                 * but we will ignore the current match anyway.
1743                                 */
1744                                match_length--;
1745                        }
1746                }
1747                /* If there was a match at the previous step and the current
1748                 * match is not better, output the previous match:
1749                 */
1750                if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1751                        check_match(G1.strstart - 1, prev_match, G1.prev_length);
1752                        flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1753
1754                        /* Insert in hash table all strings up to the end of the match.
1755                         * strstart-1 and strstart are already inserted.
1756                         */
1757                        G1.lookahead -= G1.prev_length - 1;
1758                        G1.prev_length -= 2;
1759                        do {
1760                                G1.strstart++;
1761                                INSERT_STRING(G1.strstart, hash_head);
1762                                /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1763                                 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1764                                 * these bytes are garbage, but it does not matter since the
1765                                 * next lookahead bytes will always be emitted as literals.
1766                                 */
1767                        } while (--G1.prev_length != 0);
1768                        match_available = 0;
1769                        match_length = MIN_MATCH - 1;
1770                        G1.strstart++;
1771                        if (flush) {
1772                                FLUSH_BLOCK(0);
1773                                G1.block_start = G1.strstart;
1774                        }
1775                } else if (match_available) {
1776                        /* If there was no match at the previous position, output a
1777                         * single literal. If there was a match but the current match
1778                         * is longer, truncate the previous match to a single literal.
1779                         */
1780                        Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1781                        if (ct_tally(0, G1.window[G1.strstart - 1])) {
1782                                FLUSH_BLOCK(0);
1783                                G1.block_start = G1.strstart;
1784                        }
1785                        G1.strstart++;
1786                        G1.lookahead--;
1787                } else {
1788                        /* There is no previous match to compare with, wait for
1789                         * the next step to decide.
1790                         */
1791                        match_available = 1;
1792                        G1.strstart++;
1793                        G1.lookahead--;
1794                }
1795                Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
1796
1797                /* Make sure that we always have enough lookahead, except
1798                 * at the end of the input file. We need MAX_MATCH bytes
1799                 * for the next match, plus MIN_MATCH bytes to insert the
1800                 * string following the next match.
1801                 */
1802                while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1803                        fill_window();
1804        }
1805        if (match_available)
1806                ct_tally(0, G1.window[G1.strstart - 1]);
1807
1808        return FLUSH_BLOCK(1);  /* eof */
1809}
1810
1811
1812/* ===========================================================================
1813 * Initialize the bit string routines.
1814 */
1815static void bi_init(void)
1816{
1817        G1.bi_buf = 0;
1818        G1.bi_valid = 0;
1819#ifdef DEBUG
1820        G1.bits_sent = 0L;
1821#endif
1822}
1823
1824
1825/* ===========================================================================
1826 * Initialize the "longest match" routines for a new file
1827 */
1828static void lm_init(ush * flagsp)
1829{
1830        unsigned j;
1831
1832        /* Initialize the hash table. */
1833        memset(head, 0, HASH_SIZE * sizeof(*head));
1834        /* prev will be initialized on the fly */
1835
1836        /* speed options for the general purpose bit flag */
1837        *flagsp |= 2;   /* FAST 4, SLOW 2 */
1838        /* ??? reduce max_chain_length for binary files */
1839
1840        G1.strstart = 0;
1841        G1.block_start = 0L;
1842
1843        G1.lookahead = file_read(G1.window,
1844                        sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1845
1846        if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1847                G1.eofile = 1;
1848                G1.lookahead = 0;
1849                return;
1850        }
1851        G1.eofile = 0;
1852        /* Make sure that we always have enough lookahead. This is important
1853         * if input comes from a device such as a tty.
1854         */
1855        while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1856                fill_window();
1857
1858        G1.ins_h = 0;
1859        for (j = 0; j < MIN_MATCH - 1; j++)
1860                UPDATE_HASH(G1.ins_h, G1.window[j]);
1861        /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1862         * not important since only literal bytes will be emitted.
1863         */
1864}
1865
1866
1867/* ===========================================================================
1868 * Allocate the match buffer, initialize the various tables and save the
1869 * location of the internal file attribute (ascii/binary) and method
1870 * (DEFLATE/STORE).
1871 * One callsite in zip()
1872 */
1873static void ct_init(void)
1874{
1875        int n;                          /* iterates over tree elements */
1876        int length;                     /* length value */
1877        int code;                       /* code value */
1878        int dist;                       /* distance index */
1879
1880        G2.compressed_len = 0L;
1881
1882#ifdef NOT_NEEDED
1883        if (G2.static_dtree[0].Len != 0)
1884                return;                 /* ct_init already called */
1885#endif
1886
1887        /* Initialize the mapping length (0..255) -> length code (0..28) */
1888        length = 0;
1889        for (code = 0; code < LENGTH_CODES - 1; code++) {
1890                G2.base_length[code] = length;
1891                for (n = 0; n < (1 << extra_lbits[code]); n++) {
1892                        G2.length_code[length++] = code;
1893                }
1894        }
1895        Assert(length == 256, "ct_init: length != 256");
1896        /* Note that the length 255 (match length 258) can be represented
1897         * in two different ways: code 284 + 5 bits or code 285, so we
1898         * overwrite length_code[255] to use the best encoding:
1899         */
1900        G2.length_code[length - 1] = code;
1901
1902        /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1903        dist = 0;
1904        for (code = 0; code < 16; code++) {
1905                G2.base_dist[code] = dist;
1906                for (n = 0; n < (1 << extra_dbits[code]); n++) {
1907                        G2.dist_code[dist++] = code;
1908                }
1909        }
1910        Assert(dist == 256, "ct_init: dist != 256");
1911        dist >>= 7;                     /* from now on, all distances are divided by 128 */
1912        for (; code < D_CODES; code++) {
1913                G2.base_dist[code] = dist << 7;
1914                for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
1915                        G2.dist_code[256 + dist++] = code;
1916                }
1917        }
1918        Assert(dist == 256, "ct_init: 256+dist != 512");
1919
1920        /* Construct the codes of the static literal tree */
1921        /* already zeroed - it's in bss
1922        for (n = 0; n <= MAX_BITS; n++)
1923                G2.bl_count[n] = 0; */
1924
1925        n = 0;
1926        while (n <= 143) {
1927                G2.static_ltree[n++].Len = 8;
1928                G2.bl_count[8]++;
1929        }
1930        while (n <= 255) {
1931                G2.static_ltree[n++].Len = 9;
1932                G2.bl_count[9]++;
1933        }
1934        while (n <= 279) {
1935                G2.static_ltree[n++].Len = 7;
1936                G2.bl_count[7]++;
1937        }
1938        while (n <= 287) {
1939                G2.static_ltree[n++].Len = 8;
1940                G2.bl_count[8]++;
1941        }
1942        /* Codes 286 and 287 do not exist, but we must include them in the
1943         * tree construction to get a canonical Huffman tree (longest code
1944         * all ones)
1945         */
1946        gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
1947
1948        /* The static distance tree is trivial: */
1949        for (n = 0; n < D_CODES; n++) {
1950                G2.static_dtree[n].Len = 5;
1951                G2.static_dtree[n].Code = bi_reverse(n, 5);
1952        }
1953
1954        /* Initialize the first block of the first file: */
1955        init_block();
1956}
1957
1958
1959/* ===========================================================================
1960 * Deflate in to out.
1961 * IN assertions: the input and output buffers are cleared.
1962 */
1963
1964static void zip(ulg time_stamp)
1965{
1966        ush deflate_flags = 0;  /* pkzip -es, -en or -ex equivalent */
1967
1968        G1.outcnt = 0;
1969
1970        /* Write the header to the gzip file. See algorithm.doc for the format */
1971        /* magic header for gzip files: 1F 8B */
1972        /* compression method: 8 (DEFLATED) */
1973        /* general flags: 0 */
1974        put_32bit(0x00088b1f);
1975        put_32bit(time_stamp);
1976
1977        /* Write deflated file to zip file */
1978        G1.crc = ~0;
1979
1980        bi_init();
1981        ct_init();
1982        lm_init(&deflate_flags);
1983
1984        put_8bit(deflate_flags);        /* extra flags */
1985        put_8bit(3);    /* OS identifier = 3 (Unix) */
1986
1987        deflate();
1988
1989        /* Write the crc and uncompressed size */
1990        put_32bit(~G1.crc);
1991        put_32bit(G1.isize);
1992
1993        flush_outbuf();
1994}
1995
1996
1997/* ======================================================================== */
1998static
1999char* make_new_name_gzip(char *filename)
2000{
2001        return xasprintf("%s.gz", filename);
2002}
2003
2004static
2005IF_DESKTOP(long long) int pack_gzip(unpack_info_t *info UNUSED_PARAM)
2006{
2007        struct stat s;
2008
2009        /* Clear input and output buffers */
2010        G1.outcnt = 0;
2011#ifdef DEBUG
2012        G1.insize = 0;
2013#endif
2014        G1.isize = 0;
2015
2016        /* Reinit G2.xxx */
2017        memset(&G2, 0, sizeof(G2));
2018        G2.l_desc.dyn_tree     = G2.dyn_ltree;
2019        G2.l_desc.static_tree  = G2.static_ltree;
2020        G2.l_desc.extra_bits   = extra_lbits;
2021        G2.l_desc.extra_base   = LITERALS + 1;
2022        G2.l_desc.elems        = L_CODES;
2023        G2.l_desc.max_length   = MAX_BITS;
2024        //G2.l_desc.max_code     = 0;
2025        G2.d_desc.dyn_tree     = G2.dyn_dtree;
2026        G2.d_desc.static_tree  = G2.static_dtree;
2027        G2.d_desc.extra_bits   = extra_dbits;
2028        //G2.d_desc.extra_base   = 0;
2029        G2.d_desc.elems        = D_CODES;
2030        G2.d_desc.max_length   = MAX_BITS;
2031        //G2.d_desc.max_code     = 0;
2032        G2.bl_desc.dyn_tree    = G2.bl_tree;
2033        //G2.bl_desc.static_tree = NULL;
2034        G2.bl_desc.extra_bits  = extra_blbits,
2035        //G2.bl_desc.extra_base  = 0;
2036        G2.bl_desc.elems       = BL_CODES;
2037        G2.bl_desc.max_length  = MAX_BL_BITS;
2038        //G2.bl_desc.max_code    = 0;
2039
2040        s.st_ctime = 0;
2041        fstat(STDIN_FILENO, &s);
2042        zip(s.st_ctime);
2043        return 0;
2044}
2045
2046#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2047static const char gzip_longopts[] ALIGN1 =
2048        "stdout\0"              No_argument       "c"
2049        "to-stdout\0"           No_argument       "c"
2050        "force\0"               No_argument       "f"
2051        "verbose\0"             No_argument       "v"
2052#if ENABLE_GUNZIP
2053        "decompress\0"          No_argument       "d"
2054        "uncompress\0"          No_argument       "d"
2055        "test\0"                No_argument       "t"
2056#endif
2057        "quiet\0"               No_argument       "q"
2058        "fast\0"                No_argument       "1"
2059        "best\0"                No_argument       "9"
2060        ;
2061#endif
2062
2063/*
2064 * Linux kernel build uses gzip -d -n. We accept and ignore it.
2065 * Man page says:
2066 * -n --no-name
2067 * gzip: do not save the original file name and time stamp.
2068 * (The original name is always saved if the name had to be truncated.)
2069 * gunzip: do not restore the original file name/time even if present
2070 * (remove only the gzip suffix from the compressed file name).
2071 * This option is the default when decompressing.
2072 * -N --name
2073 * gzip: always save the original file name and time stamp (this is the default)
2074 * gunzip: restore the original file name and time stamp if present.
2075 */
2076
2077int gzip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
2078#if ENABLE_GUNZIP
2079int gzip_main(int argc, char **argv)
2080#else
2081int gzip_main(int argc UNUSED_PARAM, char **argv)
2082#endif
2083{
2084        unsigned opt;
2085
2086#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2087        applet_long_options = gzip_longopts;
2088#endif
2089        /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
2090        opt = getopt32(argv, "cfv" IF_GUNZIP("dt") "q123456789n");
2091#if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2092        if (opt & 0x18) // -d and/or -t
2093                return gunzip_main(argc, argv);
2094#endif
2095        option_mask32 &= 0x7; /* ignore -q, -0..9 */
2096        //if (opt & 0x1) // -c
2097        //if (opt & 0x2) // -f
2098        //if (opt & 0x4) // -v
2099        argv += optind;
2100
2101        SET_PTR_TO_GLOBALS((char *)xzalloc(sizeof(struct globals)+sizeof(struct globals2))
2102                        + sizeof(struct globals));
2103
2104        /* Allocate all global buffers (for DYN_ALLOC option) */
2105        ALLOC(uch, G1.l_buf, INBUFSIZ);
2106        ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2107        ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2108        ALLOC(uch, G1.window, 2L * WSIZE);
2109        ALLOC(ush, G1.prev, 1L << BITS);
2110
2111        /* Initialise the CRC32 table */
2112        G1.crc_32_tab = crc32_filltable(NULL, 0);
2113
2114        return bbunpack(argv, make_new_name_gzip, pack_gzip);
2115}
2116