1/* vi: set sw=4 ts=4: */ 2/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net). 3 4 Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), 5 which also acknowledges contributions by Mike Burrows, David Wheeler, 6 Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, 7 Robert Sedgewick, and Jon L. Bentley. 8 9 Licensed under GPLv2 or later, see file LICENSE in this tarball for details. 10*/ 11 12/* 13 Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org). 14 15 More efficient reading of Huffman codes, a streamlined read_bunzip() 16 function, and various other tweaks. In (limited) tests, approximately 17 20% faster than bzcat on x86 and about 10% faster on arm. 18 19 Note that about 2/3 of the time is spent in read_unzip() reversing 20 the Burrows-Wheeler transformation. Much of that time is delay 21 resulting from cache misses. 22 23 I would ask that anyone benefiting from this work, especially those 24 using it in commercial products, consider making a donation to my local 25 non-profit hospice organization (www.hospiceacadiana.com) in the name of 26 the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003. 27 28 Manuel 29 */ 30 31#include "libbb.h" 32#include "unarchive.h" 33 34/* Constants for Huffman coding */ 35#define MAX_GROUPS 6 36#define GROUP_SIZE 50 /* 64 would have been more efficient */ 37#define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */ 38#define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ 39#define SYMBOL_RUNA 0 40#define SYMBOL_RUNB 1 41 42/* Status return values */ 43#define RETVAL_OK 0 44#define RETVAL_LAST_BLOCK (-1) 45#define RETVAL_NOT_BZIP_DATA (-2) 46#define RETVAL_UNEXPECTED_INPUT_EOF (-3) 47#define RETVAL_SHORT_WRITE (-4) 48#define RETVAL_DATA_ERROR (-5) 49#define RETVAL_OUT_OF_MEMORY (-6) 50#define RETVAL_OBSOLETE_INPUT (-7) 51 52/* Other housekeeping constants */ 53#define IOBUF_SIZE 4096 54 55/* This is what we know about each Huffman coding group */ 56struct group_data { 57 /* We have an extra slot at the end of limit[] for a sentinel value. */ 58 int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS]; 59 int minLen, maxLen; 60}; 61 62/* Structure holding all the housekeeping data, including IO buffers and 63 * memory that persists between calls to bunzip 64 * Found the most used member: 65 * cat this_file.c | sed -e 's/"/ /g' -e "s/'/ /g" | xargs -n1 \ 66 * | grep 'bd->' | sed 's/^.*bd->/bd->/' | sort | $PAGER 67 * and moved it (inbufBitCount) to offset 0. 68 */ 69struct bunzip_data { 70 /* I/O tracking data (file handles, buffers, positions, etc.) */ 71 unsigned inbufBitCount, inbufBits; 72 int in_fd, out_fd, inbufCount, inbufPos /*, outbufPos*/; 73 unsigned char *inbuf /*,*outbuf*/; 74 75 /* State for interrupting output loop */ 76 int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent; 77 78 /* The CRC values stored in the block header and calculated from the data */ 79 uint32_t headerCRC, totalCRC, writeCRC; 80 81 /* Intermediate buffer and its size (in bytes) */ 82 unsigned *dbuf, dbufSize; 83 84 /* For I/O error handling */ 85 jmp_buf jmpbuf; 86 87 /* Big things go last (register-relative addressing can be larger for big offsets) */ 88 uint32_t crc32Table[256]; 89 unsigned char selectors[32768]; /* nSelectors=15 bits */ 90 struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */ 91}; 92/* typedef struct bunzip_data bunzip_data; -- done in .h file */ 93 94 95/* Return the next nnn bits of input. All reads from the compressed input 96 are done through this function. All reads are big endian */ 97 98static unsigned get_bits(bunzip_data *bd, int bits_wanted) 99{ 100 unsigned bits = 0; 101 102 /* If we need to get more data from the byte buffer, do so. (Loop getting 103 one byte at a time to enforce endianness and avoid unaligned access.) */ 104 while ((int)(bd->inbufBitCount) < bits_wanted) { 105 106 /* If we need to read more data from file into byte buffer, do so */ 107 if (bd->inbufPos == bd->inbufCount) { 108 /* if "no input fd" case: in_fd == -1, read fails, we jump */ 109 bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE); 110 if (bd->inbufCount <= 0) 111 longjmp(bd->jmpbuf, RETVAL_UNEXPECTED_INPUT_EOF); 112 bd->inbufPos = 0; 113 } 114 115 /* Avoid 32-bit overflow (dump bit buffer to top of output) */ 116 if (bd->inbufBitCount >= 24) { 117 bits = bd->inbufBits & ((1 << bd->inbufBitCount) - 1); 118 bits_wanted -= bd->inbufBitCount; 119 bits <<= bits_wanted; 120 bd->inbufBitCount = 0; 121 } 122 123 /* Grab next 8 bits of input from buffer. */ 124 bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++]; 125 bd->inbufBitCount += 8; 126 } 127 128 /* Calculate result */ 129 bd->inbufBitCount -= bits_wanted; 130 bits |= (bd->inbufBits >> bd->inbufBitCount) & ((1 << bits_wanted) - 1); 131 132 return bits; 133} 134 135/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */ 136static int get_next_block(bunzip_data *bd) 137{ 138 struct group_data *hufGroup; 139 int dbufCount, nextSym, dbufSize, groupCount, *base, *limit, selector, 140 i, j, k, t, runPos, symCount, symTotal, nSelectors, byteCount[256]; 141 unsigned char uc, symToByte[256], mtfSymbol[256], *selectors; 142 unsigned *dbuf, origPtr; 143 144 dbuf = bd->dbuf; 145 dbufSize = bd->dbufSize; 146 selectors = bd->selectors; 147 148 /* Reset longjmp I/O error handling */ 149 i = setjmp(bd->jmpbuf); 150 if (i) return i; 151 152 /* Read in header signature and CRC, then validate signature. 153 (last block signature means CRC is for whole file, return now) */ 154 i = get_bits(bd, 24); 155 j = get_bits(bd, 24); 156 bd->headerCRC = get_bits(bd, 32); 157 if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK; 158 if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA; 159 160 /* We can add support for blockRandomised if anybody complains. There was 161 some code for this in busybox 1.0.0-pre3, but nobody ever noticed that 162 it didn't actually work. */ 163 if (get_bits(bd, 1)) return RETVAL_OBSOLETE_INPUT; 164 origPtr = get_bits(bd, 24); 165 if ((int)origPtr > dbufSize) return RETVAL_DATA_ERROR; 166 167 /* mapping table: if some byte values are never used (encoding things 168 like ascii text), the compression code removes the gaps to have fewer 169 symbols to deal with, and writes a sparse bitfield indicating which 170 values were present. We make a translation table to convert the symbols 171 back to the corresponding bytes. */ 172 t = get_bits(bd, 16); 173 symTotal = 0; 174 for (i = 0; i < 16; i++) { 175 if (t & (1 << (15-i))) { 176 k = get_bits(bd, 16); 177 for (j = 0; j < 16; j++) 178 if (k & (1 << (15-j))) 179 symToByte[symTotal++] = (16*i) + j; 180 } 181 } 182 183 /* How many different Huffman coding groups does this block use? */ 184 groupCount = get_bits(bd, 3); 185 if (groupCount < 2 || groupCount > MAX_GROUPS) 186 return RETVAL_DATA_ERROR; 187 188 /* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding 189 group. Read in the group selector list, which is stored as MTF encoded 190 bit runs. (MTF=Move To Front, as each value is used it's moved to the 191 start of the list.) */ 192 nSelectors = get_bits(bd, 15); 193 if (!nSelectors) return RETVAL_DATA_ERROR; 194 for (i = 0; i < groupCount; i++) mtfSymbol[i] = i; 195 for (i = 0; i < nSelectors; i++) { 196 197 /* Get next value */ 198 for (j = 0; get_bits(bd, 1); j++) 199 if (j >= groupCount) return RETVAL_DATA_ERROR; 200 201 /* Decode MTF to get the next selector */ 202 uc = mtfSymbol[j]; 203 for (;j;j--) mtfSymbol[j] = mtfSymbol[j-1]; 204 mtfSymbol[0] = selectors[i] = uc; 205 } 206 207 /* Read the Huffman coding tables for each group, which code for symTotal 208 literal symbols, plus two run symbols (RUNA, RUNB) */ 209 symCount = symTotal + 2; 210 for (j = 0; j < groupCount; j++) { 211 unsigned char length[MAX_SYMBOLS]; 212 /* 8 bits is ALMOST enough for temp[], see below */ 213 unsigned temp[MAX_HUFCODE_BITS+1]; 214 int minLen, maxLen, pp; 215 216 /* Read Huffman code lengths for each symbol. They're stored in 217 a way similar to mtf; record a starting value for the first symbol, 218 and an offset from the previous value for everys symbol after that. 219 (Subtracting 1 before the loop and then adding it back at the end is 220 an optimization that makes the test inside the loop simpler: symbol 221 length 0 becomes negative, so an unsigned inequality catches it.) */ 222 t = get_bits(bd, 5) - 1; 223 for (i = 0; i < symCount; i++) { 224 for (;;) { 225 if ((unsigned)t > (MAX_HUFCODE_BITS-1)) 226 return RETVAL_DATA_ERROR; 227 228 /* If first bit is 0, stop. Else second bit indicates whether 229 to increment or decrement the value. Optimization: grab 2 230 bits and unget the second if the first was 0. */ 231 k = get_bits(bd, 2); 232 if (k < 2) { 233 bd->inbufBitCount++; 234 break; 235 } 236 237 /* Add one if second bit 1, else subtract 1. Avoids if/else */ 238 t += (((k+1) & 2) - 1); 239 } 240 241 /* Correct for the initial -1, to get the final symbol length */ 242 length[i] = t + 1; 243 } 244 245 /* Find largest and smallest lengths in this group */ 246 minLen = maxLen = length[0]; 247 for (i = 1; i < symCount; i++) { 248 if (length[i] > maxLen) maxLen = length[i]; 249 else if (length[i] < minLen) minLen = length[i]; 250 } 251 252 /* Calculate permute[], base[], and limit[] tables from length[]. 253 * 254 * permute[] is the lookup table for converting Huffman coded symbols 255 * into decoded symbols. base[] is the amount to subtract from the 256 * value of a Huffman symbol of a given length when using permute[]. 257 * 258 * limit[] indicates the largest numerical value a symbol with a given 259 * number of bits can have. This is how the Huffman codes can vary in 260 * length: each code with a value>limit[length] needs another bit. 261 */ 262 hufGroup = bd->groups + j; 263 hufGroup->minLen = minLen; 264 hufGroup->maxLen = maxLen; 265 266 /* Note that minLen can't be smaller than 1, so we adjust the base 267 and limit array pointers so we're not always wasting the first 268 entry. We do this again when using them (during symbol decoding).*/ 269 base = hufGroup->base - 1; 270 limit = hufGroup->limit - 1; 271 272 /* Calculate permute[]. Concurently, initialize temp[] and limit[]. */ 273 pp = 0; 274 for (i = minLen; i <= maxLen; i++) { 275 temp[i] = limit[i] = 0; 276 for (t = 0; t < symCount; t++) 277 if (length[t] == i) 278 hufGroup->permute[pp++] = t; 279 } 280 281 /* Count symbols coded for at each bit length */ 282 /* NB: in pathological cases, temp[8] can end ip being 256. 283 * That's why uint8_t is too small for temp[]. */ 284 for (i = 0; i < symCount; i++) temp[length[i]]++; 285 286 /* Calculate limit[] (the largest symbol-coding value at each bit 287 * length, which is (previous limit<<1)+symbols at this level), and 288 * base[] (number of symbols to ignore at each bit length, which is 289 * limit minus the cumulative count of symbols coded for already). */ 290 pp = t = 0; 291 for (i = minLen; i < maxLen; i++) { 292 pp += temp[i]; 293 294 /* We read the largest possible symbol size and then unget bits 295 after determining how many we need, and those extra bits could 296 be set to anything. (They're noise from future symbols.) At 297 each level we're really only interested in the first few bits, 298 so here we set all the trailing to-be-ignored bits to 1 so they 299 don't affect the value>limit[length] comparison. */ 300 limit[i] = (pp << (maxLen - i)) - 1; 301 pp <<= 1; 302 t += temp[i]; 303 base[i+1] = pp - t; 304 } 305 limit[maxLen+1] = INT_MAX; /* Sentinel value for reading next sym. */ 306 limit[maxLen] = pp + temp[maxLen] - 1; 307 base[minLen] = 0; 308 } 309 310 /* We've finished reading and digesting the block header. Now read this 311 block's Huffman coded symbols from the file and undo the Huffman coding 312 and run length encoding, saving the result into dbuf[dbufCount++] = uc */ 313 314 /* Initialize symbol occurrence counters and symbol Move To Front table */ 315 memset(byteCount, 0, sizeof(byteCount)); /* smaller, maybe slower? */ 316 for (i = 0; i < 256; i++) { 317 //byteCount[i] = 0; 318 mtfSymbol[i] = (unsigned char)i; 319 } 320 321 /* Loop through compressed symbols. */ 322 323 runPos = dbufCount = selector = 0; 324 for (;;) { 325 326 /* Fetch next Huffman coding group from list. */ 327 symCount = GROUP_SIZE - 1; 328 if (selector >= nSelectors) return RETVAL_DATA_ERROR; 329 hufGroup = bd->groups + selectors[selector++]; 330 base = hufGroup->base - 1; 331 limit = hufGroup->limit - 1; 332 continue_this_group: 333 334 /* Read next Huffman-coded symbol. */ 335 336 /* Note: It is far cheaper to read maxLen bits and back up than it is 337 to read minLen bits and then an additional bit at a time, testing 338 as we go. Because there is a trailing last block (with file CRC), 339 there is no danger of the overread causing an unexpected EOF for a 340 valid compressed file. As a further optimization, we do the read 341 inline (falling back to a call to get_bits if the buffer runs 342 dry). The following (up to got_huff_bits:) is equivalent to 343 j = get_bits(bd, hufGroup->maxLen); 344 */ 345 while ((int)(bd->inbufBitCount) < hufGroup->maxLen) { 346 if (bd->inbufPos == bd->inbufCount) { 347 j = get_bits(bd, hufGroup->maxLen); 348 goto got_huff_bits; 349 } 350 bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++]; 351 bd->inbufBitCount += 8; 352 }; 353 bd->inbufBitCount -= hufGroup->maxLen; 354 j = (bd->inbufBits >> bd->inbufBitCount) & ((1 << hufGroup->maxLen) - 1); 355 356 got_huff_bits: 357 358 /* Figure how how many bits are in next symbol and unget extras */ 359 i = hufGroup->minLen; 360 while (j > limit[i]) ++i; 361 bd->inbufBitCount += (hufGroup->maxLen - i); 362 363 /* Huffman decode value to get nextSym (with bounds checking) */ 364 if (i > hufGroup->maxLen) 365 return RETVAL_DATA_ERROR; 366 j = (j >> (hufGroup->maxLen - i)) - base[i]; 367 if ((unsigned)j >= MAX_SYMBOLS) 368 return RETVAL_DATA_ERROR; 369 nextSym = hufGroup->permute[j]; 370 371 /* We have now decoded the symbol, which indicates either a new literal 372 byte, or a repeated run of the most recent literal byte. First, 373 check if nextSym indicates a repeated run, and if so loop collecting 374 how many times to repeat the last literal. */ 375 if ((unsigned)nextSym <= SYMBOL_RUNB) { /* RUNA or RUNB */ 376 377 /* If this is the start of a new run, zero out counter */ 378 if (!runPos) { 379 runPos = 1; 380 t = 0; 381 } 382 383 /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at 384 each bit position, add 1 or 2 instead. For example, 385 1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2. 386 You can make any bit pattern that way using 1 less symbol than 387 the basic or 0/1 method (except all bits 0, which would use no 388 symbols, but a run of length 0 doesn't mean anything in this 389 context). Thus space is saved. */ 390 t += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */ 391 if (runPos < dbufSize) runPos <<= 1; 392 goto end_of_huffman_loop; 393 } 394 395 /* When we hit the first non-run symbol after a run, we now know 396 how many times to repeat the last literal, so append that many 397 copies to our buffer of decoded symbols (dbuf) now. (The last 398 literal used is the one at the head of the mtfSymbol array.) */ 399 if (runPos) { 400 runPos = 0; 401 if (dbufCount + t >= dbufSize) return RETVAL_DATA_ERROR; 402 403 uc = symToByte[mtfSymbol[0]]; 404 byteCount[uc] += t; 405 while (t--) dbuf[dbufCount++] = uc; 406 } 407 408 /* Is this the terminating symbol? */ 409 if (nextSym > symTotal) break; 410 411 /* At this point, nextSym indicates a new literal character. Subtract 412 one to get the position in the MTF array at which this literal is 413 currently to be found. (Note that the result can't be -1 or 0, 414 because 0 and 1 are RUNA and RUNB. But another instance of the 415 first symbol in the mtf array, position 0, would have been handled 416 as part of a run above. Therefore 1 unused mtf position minus 417 2 non-literal nextSym values equals -1.) */ 418 if (dbufCount >= dbufSize) return RETVAL_DATA_ERROR; 419 i = nextSym - 1; 420 uc = mtfSymbol[i]; 421 422 /* Adjust the MTF array. Since we typically expect to move only a 423 * small number of symbols, and are bound by 256 in any case, using 424 * memmove here would typically be bigger and slower due to function 425 * call overhead and other assorted setup costs. */ 426 do { 427 mtfSymbol[i] = mtfSymbol[i-1]; 428 } while (--i); 429 mtfSymbol[0] = uc; 430 uc = symToByte[uc]; 431 432 /* We have our literal byte. Save it into dbuf. */ 433 byteCount[uc]++; 434 dbuf[dbufCount++] = (unsigned)uc; 435 436 /* Skip group initialization if we're not done with this group. Done 437 * this way to avoid compiler warning. */ 438 end_of_huffman_loop: 439 if (symCount--) goto continue_this_group; 440 } 441 442 /* At this point, we've read all the Huffman-coded symbols (and repeated 443 runs) for this block from the input stream, and decoded them into the 444 intermediate buffer. There are dbufCount many decoded bytes in dbuf[]. 445 Now undo the Burrows-Wheeler transform on dbuf. 446 See http://dogma.net/markn/articles/bwt/bwt.htm 447 */ 448 449 /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ 450 j = 0; 451 for (i = 0; i < 256; i++) { 452 k = j + byteCount[i]; 453 byteCount[i] = j; 454 j = k; 455 } 456 457 /* Figure out what order dbuf would be in if we sorted it. */ 458 for (i = 0; i < dbufCount; i++) { 459 uc = (unsigned char)(dbuf[i] & 0xff); 460 dbuf[byteCount[uc]] |= (i << 8); 461 byteCount[uc]++; 462 } 463 464 /* Decode first byte by hand to initialize "previous" byte. Note that it 465 doesn't get output, and if the first three characters are identical 466 it doesn't qualify as a run (hence writeRunCountdown=5). */ 467 if (dbufCount) { 468 if ((int)origPtr >= dbufCount) return RETVAL_DATA_ERROR; 469 bd->writePos = dbuf[origPtr]; 470 bd->writeCurrent = (unsigned char)(bd->writePos & 0xff); 471 bd->writePos >>= 8; 472 bd->writeRunCountdown = 5; 473 } 474 bd->writeCount = dbufCount; 475 476 return RETVAL_OK; 477} 478 479/* Undo burrows-wheeler transform on intermediate buffer to produce output. 480 If start_bunzip was initialized with out_fd=-1, then up to len bytes of 481 data are written to outbuf. Return value is number of bytes written or 482 error (all errors are negative numbers). If out_fd!=-1, outbuf and len 483 are ignored, data is written to out_fd and return is RETVAL_OK or error. 484*/ 485int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len) 486{ 487 const unsigned *dbuf; 488 int pos, current, previous, gotcount; 489 490 /* If last read was short due to end of file, return last block now */ 491 if (bd->writeCount < 0) return bd->writeCount; 492 493 gotcount = 0; 494 dbuf = bd->dbuf; 495 pos = bd->writePos; 496 current = bd->writeCurrent; 497 498 /* We will always have pending decoded data to write into the output 499 buffer unless this is the very first call (in which case we haven't 500 Huffman-decoded a block into the intermediate buffer yet). */ 501 if (bd->writeCopies) { 502 503 /* Inside the loop, writeCopies means extra copies (beyond 1) */ 504 --bd->writeCopies; 505 506 /* Loop outputting bytes */ 507 for (;;) { 508 509 /* If the output buffer is full, snapshot state and return */ 510 if (gotcount >= len) { 511 bd->writePos = pos; 512 bd->writeCurrent = current; 513 bd->writeCopies++; 514 return len; 515 } 516 517 /* Write next byte into output buffer, updating CRC */ 518 outbuf[gotcount++] = current; 519 bd->writeCRC = (bd->writeCRC << 8) 520 ^ bd->crc32Table[(bd->writeCRC >> 24) ^ current]; 521 522 /* Loop now if we're outputting multiple copies of this byte */ 523 if (bd->writeCopies) { 524 --bd->writeCopies; 525 continue; 526 } 527 decode_next_byte: 528 if (!bd->writeCount--) break; 529 /* Follow sequence vector to undo Burrows-Wheeler transform */ 530 previous = current; 531 pos = dbuf[pos]; 532 current = pos & 0xff; 533 pos >>= 8; 534 535 /* After 3 consecutive copies of the same byte, the 4th 536 * is a repeat count. We count down from 4 instead 537 * of counting up because testing for non-zero is faster */ 538 if (--bd->writeRunCountdown) { 539 if (current != previous) 540 bd->writeRunCountdown = 4; 541 } else { 542 543 /* We have a repeated run, this byte indicates the count */ 544 bd->writeCopies = current; 545 current = previous; 546 bd->writeRunCountdown = 5; 547 548 /* Sometimes there are just 3 bytes (run length 0) */ 549 if (!bd->writeCopies) goto decode_next_byte; 550 551 /* Subtract the 1 copy we'd output anyway to get extras */ 552 --bd->writeCopies; 553 } 554 } 555 556 /* Decompression of this block completed successfully */ 557 bd->writeCRC = ~bd->writeCRC; 558 bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ bd->writeCRC; 559 560 /* If this block had a CRC error, force file level CRC error. */ 561 if (bd->writeCRC != bd->headerCRC) { 562 bd->totalCRC = bd->headerCRC + 1; 563 return RETVAL_LAST_BLOCK; 564 } 565 } 566 567 /* Refill the intermediate buffer by Huffman-decoding next block of input */ 568 /* (previous is just a convenient unused temp variable here) */ 569 previous = get_next_block(bd); 570 if (previous) { 571 bd->writeCount = previous; 572 return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount; 573 } 574 bd->writeCRC = ~0; 575 pos = bd->writePos; 576 current = bd->writeCurrent; 577 goto decode_next_byte; 578} 579 580/* Allocate the structure, read file header. If in_fd==-1, inbuf must contain 581 a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are 582 ignored, and data is read from file handle into temporary buffer. */ 583 584/* Because bunzip2 is used for help text unpacking, and because bb_show_usage() 585 should work for NOFORK applets too, we must be extremely careful to not leak 586 any allocations! */ 587int FAST_FUNC start_bunzip(bunzip_data **bdp, int in_fd, const unsigned char *inbuf, 588 int len) 589{ 590 bunzip_data *bd; 591 unsigned i; 592 enum { 593 BZh0 = ('B' << 24) + ('Z' << 16) + ('h' << 8) + '0', 594 h0 = ('h' << 8) + '0', 595 }; 596 597 /* Figure out how much data to allocate */ 598 i = sizeof(bunzip_data); 599 if (in_fd != -1) i += IOBUF_SIZE; 600 601 /* Allocate bunzip_data. Most fields initialize to zero. */ 602 bd = *bdp = xzalloc(i); 603 604 /* Setup input buffer */ 605 bd->in_fd = in_fd; 606 if (-1 == in_fd) { 607 /* in this case, bd->inbuf is read-only */ 608 bd->inbuf = (void*)inbuf; /* cast away const-ness */ 609 bd->inbufCount = len; 610 } else 611 bd->inbuf = (unsigned char *)(bd + 1); 612 613 /* Init the CRC32 table (big endian) */ 614 crc32_filltable(bd->crc32Table, 1); 615 616 /* Setup for I/O error handling via longjmp */ 617 i = setjmp(bd->jmpbuf); 618 if (i) return i; 619 620 /* Ensure that file starts with "BZh['1'-'9']." */ 621 /* Update: now caller verifies 1st two bytes, makes .gz/.bz2 622 * integration easier */ 623 /* was: */ 624 /* i = get_bits(bd, 32); */ 625 /* if ((unsigned)(i - BZh0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA; */ 626 i = get_bits(bd, 16); 627 if ((unsigned)(i - h0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA; 628 629 /* Fourth byte (ascii '1'-'9') indicates block size in units of 100k of 630 uncompressed data. Allocate intermediate buffer for block. */ 631 /* bd->dbufSize = 100000 * (i - BZh0); */ 632 bd->dbufSize = 100000 * (i - h0); 633 634 /* Cannot use xmalloc - may leak bd in NOFORK case! */ 635 bd->dbuf = malloc_or_warn(bd->dbufSize * sizeof(int)); 636 if (!bd->dbuf) { 637 free(bd); 638 xfunc_die(); 639 } 640 return RETVAL_OK; 641} 642 643void FAST_FUNC dealloc_bunzip(bunzip_data *bd) 644{ 645 free(bd->dbuf); 646 free(bd); 647} 648 649 650/* Decompress src_fd to dst_fd. Stops at end of bzip data, not end of file. */ 651IF_DESKTOP(long long) int FAST_FUNC 652unpack_bz2_stream(int src_fd, int dst_fd) 653{ 654 IF_DESKTOP(long long total_written = 0;) 655 char *outbuf; 656 bunzip_data *bd; 657 int i; 658 659 outbuf = xmalloc(IOBUF_SIZE); 660 i = start_bunzip(&bd, src_fd, NULL, 0); 661 if (!i) { 662 for (;;) { 663 i = read_bunzip(bd, outbuf, IOBUF_SIZE); 664 if (i <= 0) break; 665 if (i != full_write(dst_fd, outbuf, i)) { 666 i = RETVAL_SHORT_WRITE; 667 break; 668 } 669 IF_DESKTOP(total_written += i;) 670 } 671 } 672 673 /* Check CRC and release memory */ 674 675 if (i == RETVAL_LAST_BLOCK) { 676 if (bd->headerCRC != bd->totalCRC) { 677 bb_error_msg("CRC error"); 678 } else { 679 i = RETVAL_OK; 680 } 681 } else if (i == RETVAL_SHORT_WRITE) { 682 bb_error_msg("short write"); 683 } else { 684 bb_error_msg("bunzip error %d", i); 685 } 686 dealloc_bunzip(bd); 687 free(outbuf); 688 689 return i ? i : IF_DESKTOP(total_written) + 0; 690} 691 692IF_DESKTOP(long long) int FAST_FUNC 693unpack_bz2_stream_prime(int src_fd, int dst_fd) 694{ 695 uint16_t magic2; 696 xread(src_fd, &magic2, 2); 697 if (magic2 != BZIP2_MAGIC) { 698 bb_error_msg_and_die("invalid magic"); 699 } 700 return unpack_bz2_stream(src_fd, dst_fd); 701} 702 703#ifdef TESTING 704 705static char *const bunzip_errors[] = { 706 NULL, "Bad file checksum", "Not bzip data", 707 "Unexpected input EOF", "Unexpected output EOF", "Data error", 708 "Out of memory", "Obsolete (pre 0.9.5) bzip format not supported" 709}; 710 711/* Dumb little test thing, decompress stdin to stdout */ 712int main(int argc, char **argv) 713{ 714 int i; 715 char c; 716 717 int i = unpack_bz2_stream_prime(0, 1); 718 if (i < 0) 719 fprintf(stderr, "%s\n", bunzip_errors[-i]); 720 else if (read(STDIN_FILENO, &c, 1)) 721 fprintf(stderr, "Trailing garbage ignored\n"); 722 return -i; 723} 724#endif 725