busybox/archival/libunarchive/decompress_bunzip2.c
<<
>>
Prefs
   1/* vi: set sw=4 ts=4: */
   2/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
   3
   4   Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
   5   which also acknowledges contributions by Mike Burrows, David Wheeler,
   6   Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
   7   Robert Sedgewick, and Jon L. Bentley.
   8
   9   Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
  10*/
  11
  12/*
  13        Size and speed optimizations by Manuel Novoa III  (mjn3@codepoet.org).
  14
  15        More efficient reading of Huffman codes, a streamlined read_bunzip()
  16        function, and various other tweaks.  In (limited) tests, approximately
  17        20% faster than bzcat on x86 and about 10% faster on arm.
  18
  19        Note that about 2/3 of the time is spent in read_unzip() reversing
  20        the Burrows-Wheeler transformation.  Much of that time is delay
  21        resulting from cache misses.
  22
  23        I would ask that anyone benefiting from this work, especially those
  24        using it in commercial products, consider making a donation to my local
  25        non-profit hospice organization (www.hospiceacadiana.com) in the name of
  26        the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003.
  27
  28        Manuel
  29 */
  30
  31#include "libbb.h"
  32#include "unarchive.h"
  33
  34/* Constants for Huffman coding */
  35#define MAX_GROUPS          6
  36#define GROUP_SIZE          50      /* 64 would have been more efficient */
  37#define MAX_HUFCODE_BITS    20      /* Longest Huffman code allowed */
  38#define MAX_SYMBOLS         258     /* 256 literals + RUNA + RUNB */
  39#define SYMBOL_RUNA         0
  40#define SYMBOL_RUNB         1
  41
  42/* Status return values */
  43#define RETVAL_OK                       0
  44#define RETVAL_LAST_BLOCK               (-1)
  45#define RETVAL_NOT_BZIP_DATA            (-2)
  46#define RETVAL_UNEXPECTED_INPUT_EOF     (-3)
  47#define RETVAL_SHORT_WRITE              (-4)
  48#define RETVAL_DATA_ERROR               (-5)
  49#define RETVAL_OUT_OF_MEMORY            (-6)
  50#define RETVAL_OBSOLETE_INPUT           (-7)
  51
  52/* Other housekeeping constants */
  53#define IOBUF_SIZE          4096
  54
  55/* This is what we know about each Huffman coding group */
  56struct group_data {
  57        /* We have an extra slot at the end of limit[] for a sentinel value. */
  58        int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS];
  59        int minLen, maxLen;
  60};
  61
  62/* Structure holding all the housekeeping data, including IO buffers and
  63 * memory that persists between calls to bunzip
  64 * Found the most used member:
  65 *  cat this_file.c | sed -e 's/"/ /g' -e "s/'/ /g" | xargs -n1 \
  66 *  | grep 'bd->' | sed 's/^.*bd->/bd->/' | sort | $PAGER
  67 * and moved it (inbufBitCount) to offset 0.
  68 */
  69struct bunzip_data {
  70        /* I/O tracking data (file handles, buffers, positions, etc.) */
  71        unsigned inbufBitCount, inbufBits;
  72        int in_fd, out_fd, inbufCount, inbufPos /*, outbufPos*/;
  73        unsigned char *inbuf /*,*outbuf*/;
  74
  75        /* State for interrupting output loop */
  76        int writeCopies, writePos, writeRunCountdown, writeCount, writeCurrent;
  77
  78        /* The CRC values stored in the block header and calculated from the data */
  79        uint32_t headerCRC, totalCRC, writeCRC;
  80
  81        /* Intermediate buffer and its size (in bytes) */
  82        unsigned *dbuf, dbufSize;
  83
  84        /* For I/O error handling */
  85        jmp_buf jmpbuf;
  86
  87        /* Big things go last (register-relative addressing can be larger for big offsets) */
  88        uint32_t crc32Table[256];
  89        unsigned char selectors[32768];                 /* nSelectors=15 bits */
  90        struct group_data groups[MAX_GROUPS];   /* Huffman coding tables */
  91};
  92/* typedef struct bunzip_data bunzip_data; -- done in .h file */
  93
  94
  95/* Return the next nnn bits of input.  All reads from the compressed input
  96   are done through this function.  All reads are big endian */
  97
  98static unsigned get_bits(bunzip_data *bd, int bits_wanted)
  99{
 100        unsigned bits = 0;
 101
 102        /* If we need to get more data from the byte buffer, do so.  (Loop getting
 103           one byte at a time to enforce endianness and avoid unaligned access.) */
 104        while ((int)(bd->inbufBitCount) < bits_wanted) {
 105
 106                /* If we need to read more data from file into byte buffer, do so */
 107                if (bd->inbufPos == bd->inbufCount) {
 108                        /* if "no input fd" case: in_fd == -1, read fails, we jump */
 109                        bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE);
 110                        if (bd->inbufCount <= 0)
 111                                longjmp(bd->jmpbuf, RETVAL_UNEXPECTED_INPUT_EOF);
 112                        bd->inbufPos = 0;
 113                }
 114
 115                /* Avoid 32-bit overflow (dump bit buffer to top of output) */
 116                if (bd->inbufBitCount >= 24) {
 117                        bits = bd->inbufBits & ((1 << bd->inbufBitCount) - 1);
 118                        bits_wanted -= bd->inbufBitCount;
 119                        bits <<= bits_wanted;
 120                        bd->inbufBitCount = 0;
 121                }
 122
 123                /* Grab next 8 bits of input from buffer. */
 124                bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++];
 125                bd->inbufBitCount += 8;
 126        }
 127
 128        /* Calculate result */
 129        bd->inbufBitCount -= bits_wanted;
 130        bits |= (bd->inbufBits >> bd->inbufBitCount) & ((1 << bits_wanted) - 1);
 131
 132        return bits;
 133}
 134
 135/* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
 136static int get_next_block(bunzip_data *bd)
 137{
 138        struct group_data *hufGroup;
 139        int dbufCount, nextSym, dbufSize, groupCount, *base, *limit, selector,
 140                i, j, k, t, runPos, symCount, symTotal, nSelectors, byteCount[256];
 141        unsigned char uc, symToByte[256], mtfSymbol[256], *selectors;
 142        unsigned *dbuf, origPtr;
 143
 144        dbuf = bd->dbuf;
 145        dbufSize = bd->dbufSize;
 146        selectors = bd->selectors;
 147
 148        /* Reset longjmp I/O error handling */
 149        i = setjmp(bd->jmpbuf);
 150        if (i) return i;
 151
 152        /* Read in header signature and CRC, then validate signature.
 153           (last block signature means CRC is for whole file, return now) */
 154        i = get_bits(bd, 24);
 155        j = get_bits(bd, 24);
 156        bd->headerCRC = get_bits(bd, 32);
 157        if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK;
 158        if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA;
 159
 160        /* We can add support for blockRandomised if anybody complains.  There was
 161           some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
 162           it didn't actually work. */
 163        if (get_bits(bd, 1)) return RETVAL_OBSOLETE_INPUT;
 164        origPtr = get_bits(bd, 24);
 165        if ((int)origPtr > dbufSize) return RETVAL_DATA_ERROR;
 166
 167        /* mapping table: if some byte values are never used (encoding things
 168           like ascii text), the compression code removes the gaps to have fewer
 169           symbols to deal with, and writes a sparse bitfield indicating which
 170           values were present.  We make a translation table to convert the symbols
 171           back to the corresponding bytes. */
 172        t = get_bits(bd, 16);
 173        symTotal = 0;
 174        for (i = 0; i < 16; i++) {
 175                if (t & (1 << (15-i))) {
 176                        k = get_bits(bd, 16);
 177                        for (j = 0; j < 16; j++)
 178                                if (k & (1 << (15-j)))
 179                                        symToByte[symTotal++] = (16*i) + j;
 180                }
 181        }
 182
 183        /* How many different Huffman coding groups does this block use? */
 184        groupCount = get_bits(bd, 3);
 185        if (groupCount < 2 || groupCount > MAX_GROUPS)
 186                return RETVAL_DATA_ERROR;
 187
 188        /* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding
 189           group.  Read in the group selector list, which is stored as MTF encoded
 190           bit runs.  (MTF=Move To Front, as each value is used it's moved to the
 191           start of the list.) */
 192        nSelectors = get_bits(bd, 15);
 193        if (!nSelectors) return RETVAL_DATA_ERROR;
 194        for (i = 0; i < groupCount; i++) mtfSymbol[i] = i;
 195        for (i = 0; i < nSelectors; i++) {
 196
 197                /* Get next value */
 198                for (j = 0; get_bits(bd, 1); j++)
 199                        if (j >= groupCount) return RETVAL_DATA_ERROR;
 200
 201                /* Decode MTF to get the next selector */
 202                uc = mtfSymbol[j];
 203                for (;j;j--) mtfSymbol[j] = mtfSymbol[j-1];
 204                mtfSymbol[0] = selectors[i] = uc;
 205        }
 206
 207        /* Read the Huffman coding tables for each group, which code for symTotal
 208           literal symbols, plus two run symbols (RUNA, RUNB) */
 209        symCount = symTotal + 2;
 210        for (j = 0; j < groupCount; j++) {
 211                unsigned char length[MAX_SYMBOLS];
 212                /* 8 bits is ALMOST enough for temp[], see below */
 213                unsigned temp[MAX_HUFCODE_BITS+1];
 214                int minLen, maxLen, pp;
 215
 216                /* Read Huffman code lengths for each symbol.  They're stored in
 217                   a way similar to mtf; record a starting value for the first symbol,
 218                   and an offset from the previous value for everys symbol after that.
 219                   (Subtracting 1 before the loop and then adding it back at the end is
 220                   an optimization that makes the test inside the loop simpler: symbol
 221                   length 0 becomes negative, so an unsigned inequality catches it.) */
 222                t = get_bits(bd, 5) - 1;
 223                for (i = 0; i < symCount; i++) {
 224                        for (;;) {
 225                                if ((unsigned)t > (MAX_HUFCODE_BITS-1))
 226                                        return RETVAL_DATA_ERROR;
 227
 228                                /* If first bit is 0, stop.  Else second bit indicates whether
 229                                   to increment or decrement the value.  Optimization: grab 2
 230                                   bits and unget the second if the first was 0. */
 231                                k = get_bits(bd, 2);
 232                                if (k < 2) {
 233                                        bd->inbufBitCount++;
 234                                        break;
 235                                }
 236
 237                                /* Add one if second bit 1, else subtract 1.  Avoids if/else */
 238                                t += (((k+1) & 2) - 1);
 239                        }
 240
 241                        /* Correct for the initial -1, to get the final symbol length */
 242                        length[i] = t + 1;
 243                }
 244
 245                /* Find largest and smallest lengths in this group */
 246                minLen = maxLen = length[0];
 247                for (i = 1; i < symCount; i++) {
 248                        if (length[i] > maxLen) maxLen = length[i];
 249                        else if (length[i] < minLen) minLen = length[i];
 250                }
 251
 252                /* Calculate permute[], base[], and limit[] tables from length[].
 253                 *
 254                 * permute[] is the lookup table for converting Huffman coded symbols
 255                 * into decoded symbols.  base[] is the amount to subtract from the
 256                 * value of a Huffman symbol of a given length when using permute[].
 257                 *
 258                 * limit[] indicates the largest numerical value a symbol with a given
 259                 * number of bits can have.  This is how the Huffman codes can vary in
 260                 * length: each code with a value>limit[length] needs another bit.
 261                 */
 262                hufGroup = bd->groups + j;
 263                hufGroup->minLen = minLen;
 264                hufGroup->maxLen = maxLen;
 265
 266                /* Note that minLen can't be smaller than 1, so we adjust the base
 267                   and limit array pointers so we're not always wasting the first
 268                   entry.  We do this again when using them (during symbol decoding).*/
 269                base = hufGroup->base - 1;
 270                limit = hufGroup->limit - 1;
 271
 272                /* Calculate permute[].  Concurently, initialize temp[] and limit[]. */
 273                pp = 0;
 274                for (i = minLen; i <= maxLen; i++) {
 275                        temp[i] = limit[i] = 0;
 276                        for (t = 0; t < symCount; t++)
 277                                if (length[t] == i)
 278                                        hufGroup->permute[pp++] = t;
 279                }
 280
 281                /* Count symbols coded for at each bit length */
 282                /* NB: in pathological cases, temp[8] can end ip being 256.
 283                 * That's why uint8_t is too small for temp[]. */
 284                for (i = 0; i < symCount; i++) temp[length[i]]++;
 285
 286                /* Calculate limit[] (the largest symbol-coding value at each bit
 287                 * length, which is (previous limit<<1)+symbols at this level), and
 288                 * base[] (number of symbols to ignore at each bit length, which is
 289                 * limit minus the cumulative count of symbols coded for already). */
 290                pp = t = 0;
 291                for (i = minLen; i < maxLen; i++) {
 292                        pp += temp[i];
 293
 294                        /* We read the largest possible symbol size and then unget bits
 295                           after determining how many we need, and those extra bits could
 296                           be set to anything.  (They're noise from future symbols.)  At
 297                           each level we're really only interested in the first few bits,
 298                           so here we set all the trailing to-be-ignored bits to 1 so they
 299                           don't affect the value>limit[length] comparison. */
 300                        limit[i] = (pp << (maxLen - i)) - 1;
 301                        pp <<= 1;
 302                        t += temp[i];
 303                        base[i+1] = pp - t;
 304                }
 305                limit[maxLen+1] = INT_MAX; /* Sentinel value for reading next sym. */
 306                limit[maxLen] = pp + temp[maxLen] - 1;
 307                base[minLen] = 0;
 308        }
 309
 310        /* We've finished reading and digesting the block header.  Now read this
 311           block's Huffman coded symbols from the file and undo the Huffman coding
 312           and run length encoding, saving the result into dbuf[dbufCount++] = uc */
 313
 314        /* Initialize symbol occurrence counters and symbol Move To Front table */
 315        memset(byteCount, 0, sizeof(byteCount)); /* smaller, maybe slower? */
 316        for (i = 0; i < 256; i++) {
 317                //byteCount[i] = 0;
 318                mtfSymbol[i] = (unsigned char)i;
 319        }
 320
 321        /* Loop through compressed symbols. */
 322
 323        runPos = dbufCount = selector = 0;
 324        for (;;) {
 325
 326                /* Fetch next Huffman coding group from list. */
 327                symCount = GROUP_SIZE - 1;
 328                if (selector >= nSelectors) return RETVAL_DATA_ERROR;
 329                hufGroup = bd->groups + selectors[selector++];
 330                base = hufGroup->base - 1;
 331                limit = hufGroup->limit - 1;
 332 continue_this_group:
 333
 334                /* Read next Huffman-coded symbol. */
 335
 336                /* Note: It is far cheaper to read maxLen bits and back up than it is
 337                   to read minLen bits and then an additional bit at a time, testing
 338                   as we go.  Because there is a trailing last block (with file CRC),
 339                   there is no danger of the overread causing an unexpected EOF for a
 340                   valid compressed file.  As a further optimization, we do the read
 341                   inline (falling back to a call to get_bits if the buffer runs
 342                   dry).  The following (up to got_huff_bits:) is equivalent to
 343                   j = get_bits(bd, hufGroup->maxLen);
 344                 */
 345                while ((int)(bd->inbufBitCount) < hufGroup->maxLen) {
 346                        if (bd->inbufPos == bd->inbufCount) {
 347                                j = get_bits(bd, hufGroup->maxLen);
 348                                goto got_huff_bits;
 349                        }
 350                        bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++];
 351                        bd->inbufBitCount += 8;
 352                };
 353                bd->inbufBitCount -= hufGroup->maxLen;
 354                j = (bd->inbufBits >> bd->inbufBitCount) & ((1 << hufGroup->maxLen) - 1);
 355
 356 got_huff_bits:
 357
 358                /* Figure how how many bits are in next symbol and unget extras */
 359                i = hufGroup->minLen;
 360                while (j > limit[i]) ++i;
 361                bd->inbufBitCount += (hufGroup->maxLen - i);
 362
 363                /* Huffman decode value to get nextSym (with bounds checking) */
 364                if (i > hufGroup->maxLen)
 365                        return RETVAL_DATA_ERROR;
 366                j = (j >> (hufGroup->maxLen - i)) - base[i];
 367                if ((unsigned)j >= MAX_SYMBOLS)
 368                        return RETVAL_DATA_ERROR;
 369                nextSym = hufGroup->permute[j];
 370
 371                /* We have now decoded the symbol, which indicates either a new literal
 372                   byte, or a repeated run of the most recent literal byte.  First,
 373                   check if nextSym indicates a repeated run, and if so loop collecting
 374                   how many times to repeat the last literal. */
 375                if ((unsigned)nextSym <= SYMBOL_RUNB) { /* RUNA or RUNB */
 376
 377                        /* If this is the start of a new run, zero out counter */
 378                        if (!runPos) {
 379                                runPos = 1;
 380                                t = 0;
 381                        }
 382
 383                        /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
 384                           each bit position, add 1 or 2 instead.  For example,
 385                           1011 is 1<<0 + 1<<1 + 2<<2.  1010 is 2<<0 + 2<<1 + 1<<2.
 386                           You can make any bit pattern that way using 1 less symbol than
 387                           the basic or 0/1 method (except all bits 0, which would use no
 388                           symbols, but a run of length 0 doesn't mean anything in this
 389                           context).  Thus space is saved. */
 390                        t += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */
 391                        if (runPos < dbufSize) runPos <<= 1;
 392                        goto end_of_huffman_loop;
 393                }
 394
 395                /* When we hit the first non-run symbol after a run, we now know
 396                   how many times to repeat the last literal, so append that many
 397                   copies to our buffer of decoded symbols (dbuf) now.  (The last
 398                   literal used is the one at the head of the mtfSymbol array.) */
 399                if (runPos) {
 400                        runPos = 0;
 401                        if (dbufCount + t >= dbufSize) return RETVAL_DATA_ERROR;
 402
 403                        uc = symToByte[mtfSymbol[0]];
 404                        byteCount[uc] += t;
 405                        while (t--) dbuf[dbufCount++] = uc;
 406                }
 407
 408                /* Is this the terminating symbol? */
 409                if (nextSym > symTotal) break;
 410
 411                /* At this point, nextSym indicates a new literal character.  Subtract
 412                   one to get the position in the MTF array at which this literal is
 413                   currently to be found.  (Note that the result can't be -1 or 0,
 414                   because 0 and 1 are RUNA and RUNB.  But another instance of the
 415                   first symbol in the mtf array, position 0, would have been handled
 416                   as part of a run above.  Therefore 1 unused mtf position minus
 417                   2 non-literal nextSym values equals -1.) */
 418                if (dbufCount >= dbufSize) return RETVAL_DATA_ERROR;
 419                i = nextSym - 1;
 420                uc = mtfSymbol[i];
 421
 422                /* Adjust the MTF array.  Since we typically expect to move only a
 423                 * small number of symbols, and are bound by 256 in any case, using
 424                 * memmove here would typically be bigger and slower due to function
 425                 * call overhead and other assorted setup costs. */
 426                do {
 427                        mtfSymbol[i] = mtfSymbol[i-1];
 428                } while (--i);
 429                mtfSymbol[0] = uc;
 430                uc = symToByte[uc];
 431
 432                /* We have our literal byte.  Save it into dbuf. */
 433                byteCount[uc]++;
 434                dbuf[dbufCount++] = (unsigned)uc;
 435
 436                /* Skip group initialization if we're not done with this group.  Done
 437                 * this way to avoid compiler warning. */
 438 end_of_huffman_loop:
 439                if (symCount--) goto continue_this_group;
 440        }
 441
 442        /* At this point, we've read all the Huffman-coded symbols (and repeated
 443           runs) for this block from the input stream, and decoded them into the
 444           intermediate buffer.  There are dbufCount many decoded bytes in dbuf[].
 445           Now undo the Burrows-Wheeler transform on dbuf.
 446           See http://dogma.net/markn/articles/bwt/bwt.htm
 447         */
 448
 449        /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
 450        j = 0;
 451        for (i = 0; i < 256; i++) {
 452                k = j + byteCount[i];
 453                byteCount[i] = j;
 454                j = k;
 455        }
 456
 457        /* Figure out what order dbuf would be in if we sorted it. */
 458        for (i = 0; i < dbufCount; i++) {
 459                uc = (unsigned char)(dbuf[i] & 0xff);
 460                dbuf[byteCount[uc]] |= (i << 8);
 461                byteCount[uc]++;
 462        }
 463
 464        /* Decode first byte by hand to initialize "previous" byte.  Note that it
 465           doesn't get output, and if the first three characters are identical
 466           it doesn't qualify as a run (hence writeRunCountdown=5). */
 467        if (dbufCount) {
 468                if ((int)origPtr >= dbufCount) return RETVAL_DATA_ERROR;
 469                bd->writePos = dbuf[origPtr];
 470                bd->writeCurrent = (unsigned char)(bd->writePos & 0xff);
 471                bd->writePos >>= 8;
 472                bd->writeRunCountdown = 5;
 473        }
 474        bd->writeCount = dbufCount;
 475
 476        return RETVAL_OK;
 477}
 478
 479/* Undo burrows-wheeler transform on intermediate buffer to produce output.
 480   If start_bunzip was initialized with out_fd=-1, then up to len bytes of
 481   data are written to outbuf.  Return value is number of bytes written or
 482   error (all errors are negative numbers).  If out_fd!=-1, outbuf and len
 483   are ignored, data is written to out_fd and return is RETVAL_OK or error.
 484*/
 485int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len)
 486{
 487        const unsigned *dbuf;
 488        int pos, current, previous, gotcount;
 489
 490        /* If last read was short due to end of file, return last block now */
 491        if (bd->writeCount < 0) return bd->writeCount;
 492
 493        gotcount = 0;
 494        dbuf = bd->dbuf;
 495        pos = bd->writePos;
 496        current = bd->writeCurrent;
 497
 498        /* We will always have pending decoded data to write into the output
 499           buffer unless this is the very first call (in which case we haven't
 500           Huffman-decoded a block into the intermediate buffer yet). */
 501        if (bd->writeCopies) {
 502
 503                /* Inside the loop, writeCopies means extra copies (beyond 1) */
 504                --bd->writeCopies;
 505
 506                /* Loop outputting bytes */
 507                for (;;) {
 508
 509                        /* If the output buffer is full, snapshot state and return */
 510                        if (gotcount >= len) {
 511                                bd->writePos = pos;
 512                                bd->writeCurrent = current;
 513                                bd->writeCopies++;
 514                                return len;
 515                        }
 516
 517                        /* Write next byte into output buffer, updating CRC */
 518                        outbuf[gotcount++] = current;
 519                        bd->writeCRC = (bd->writeCRC << 8)
 520                                ^ bd->crc32Table[(bd->writeCRC >> 24) ^ current];
 521
 522                        /* Loop now if we're outputting multiple copies of this byte */
 523                        if (bd->writeCopies) {
 524                                --bd->writeCopies;
 525                                continue;
 526                        }
 527 decode_next_byte:
 528                        if (!bd->writeCount--) break;
 529                        /* Follow sequence vector to undo Burrows-Wheeler transform */
 530                        previous = current;
 531                        pos = dbuf[pos];
 532                        current = pos & 0xff;
 533                        pos >>= 8;
 534
 535                        /* After 3 consecutive copies of the same byte, the 4th
 536                         * is a repeat count.  We count down from 4 instead
 537                         * of counting up because testing for non-zero is faster */
 538                        if (--bd->writeRunCountdown) {
 539                                if (current != previous)
 540                                        bd->writeRunCountdown = 4;
 541                        } else {
 542
 543                                /* We have a repeated run, this byte indicates the count */
 544                                bd->writeCopies = current;
 545                                current = previous;
 546                                bd->writeRunCountdown = 5;
 547
 548                                /* Sometimes there are just 3 bytes (run length 0) */
 549                                if (!bd->writeCopies) goto decode_next_byte;
 550
 551                                /* Subtract the 1 copy we'd output anyway to get extras */
 552                                --bd->writeCopies;
 553                        }
 554                }
 555
 556                /* Decompression of this block completed successfully */
 557                bd->writeCRC = ~bd->writeCRC;
 558                bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ bd->writeCRC;
 559
 560                /* If this block had a CRC error, force file level CRC error. */
 561                if (bd->writeCRC != bd->headerCRC) {
 562                        bd->totalCRC = bd->headerCRC + 1;
 563                        return RETVAL_LAST_BLOCK;
 564                }
 565        }
 566
 567        /* Refill the intermediate buffer by Huffman-decoding next block of input */
 568        /* (previous is just a convenient unused temp variable here) */
 569        previous = get_next_block(bd);
 570        if (previous) {
 571                bd->writeCount = previous;
 572                return (previous != RETVAL_LAST_BLOCK) ? previous : gotcount;
 573        }
 574        bd->writeCRC = ~0;
 575        pos = bd->writePos;
 576        current = bd->writeCurrent;
 577        goto decode_next_byte;
 578}
 579
 580/* Allocate the structure, read file header.  If in_fd==-1, inbuf must contain
 581   a complete bunzip file (len bytes long).  If in_fd!=-1, inbuf and len are
 582   ignored, and data is read from file handle into temporary buffer. */
 583
 584/* Because bunzip2 is used for help text unpacking, and because bb_show_usage()
 585   should work for NOFORK applets too, we must be extremely careful to not leak
 586   any allocations! */
 587int FAST_FUNC start_bunzip(bunzip_data **bdp, int in_fd, const unsigned char *inbuf,
 588                                                int len)
 589{
 590        bunzip_data *bd;
 591        unsigned i;
 592        enum {
 593                BZh0 = ('B' << 24) + ('Z' << 16) + ('h' << 8) + '0',
 594                h0 = ('h' << 8) + '0',
 595        };
 596
 597        /* Figure out how much data to allocate */
 598        i = sizeof(bunzip_data);
 599        if (in_fd != -1) i += IOBUF_SIZE;
 600
 601        /* Allocate bunzip_data.  Most fields initialize to zero. */
 602        bd = *bdp = xzalloc(i);
 603
 604        /* Setup input buffer */
 605        bd->in_fd = in_fd;
 606        if (-1 == in_fd) {
 607                /* in this case, bd->inbuf is read-only */
 608                bd->inbuf = (void*)inbuf; /* cast away const-ness */
 609                bd->inbufCount = len;
 610        } else
 611                bd->inbuf = (unsigned char *)(bd + 1);
 612
 613        /* Init the CRC32 table (big endian) */
 614        crc32_filltable(bd->crc32Table, 1);
 615
 616        /* Setup for I/O error handling via longjmp */
 617        i = setjmp(bd->jmpbuf);
 618        if (i) return i;
 619
 620        /* Ensure that file starts with "BZh['1'-'9']." */
 621        /* Update: now caller verifies 1st two bytes, makes .gz/.bz2
 622         * integration easier */
 623        /* was: */
 624        /* i = get_bits(bd, 32); */
 625        /* if ((unsigned)(i - BZh0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA; */
 626        i = get_bits(bd, 16);
 627        if ((unsigned)(i - h0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA;
 628
 629        /* Fourth byte (ascii '1'-'9') indicates block size in units of 100k of
 630           uncompressed data.  Allocate intermediate buffer for block. */
 631        /* bd->dbufSize = 100000 * (i - BZh0); */
 632        bd->dbufSize = 100000 * (i - h0);
 633
 634        /* Cannot use xmalloc - may leak bd in NOFORK case! */
 635        bd->dbuf = malloc_or_warn(bd->dbufSize * sizeof(int));
 636        if (!bd->dbuf) {
 637                free(bd);
 638                xfunc_die();
 639        }
 640        return RETVAL_OK;
 641}
 642
 643void FAST_FUNC dealloc_bunzip(bunzip_data *bd)
 644{
 645        free(bd->dbuf);
 646        free(bd);
 647}
 648
 649
 650/* Decompress src_fd to dst_fd.  Stops at end of bzip data, not end of file. */
 651IF_DESKTOP(long long) int FAST_FUNC
 652unpack_bz2_stream(int src_fd, int dst_fd)
 653{
 654        IF_DESKTOP(long long total_written = 0;)
 655        char *outbuf;
 656        bunzip_data *bd;
 657        int i;
 658
 659        outbuf = xmalloc(IOBUF_SIZE);
 660        i = start_bunzip(&bd, src_fd, NULL, 0);
 661        if (!i) {
 662                for (;;) {
 663                        i = read_bunzip(bd, outbuf, IOBUF_SIZE);
 664                        if (i <= 0) break;
 665                        if (i != full_write(dst_fd, outbuf, i)) {
 666                                i = RETVAL_SHORT_WRITE;
 667                                break;
 668                        }
 669                        IF_DESKTOP(total_written += i;)
 670                }
 671        }
 672
 673        /* Check CRC and release memory */
 674
 675        if (i == RETVAL_LAST_BLOCK) {
 676                if (bd->headerCRC != bd->totalCRC) {
 677                        bb_error_msg("CRC error");
 678                } else {
 679                        i = RETVAL_OK;
 680                }
 681        } else if (i == RETVAL_SHORT_WRITE) {
 682                bb_error_msg("short write");
 683        } else {
 684                bb_error_msg("bunzip error %d", i);
 685        }
 686        dealloc_bunzip(bd);
 687        free(outbuf);
 688
 689        return i ? i : IF_DESKTOP(total_written) + 0;
 690}
 691
 692IF_DESKTOP(long long) int FAST_FUNC
 693unpack_bz2_stream_prime(int src_fd, int dst_fd)
 694{
 695        uint16_t magic2;
 696        xread(src_fd, &magic2, 2);
 697        if (magic2 != BZIP2_MAGIC) {
 698                bb_error_msg_and_die("invalid magic");
 699        }
 700        return unpack_bz2_stream(src_fd, dst_fd);
 701}
 702
 703#ifdef TESTING
 704
 705static char *const bunzip_errors[] = {
 706        NULL, "Bad file checksum", "Not bzip data",
 707        "Unexpected input EOF", "Unexpected output EOF", "Data error",
 708        "Out of memory", "Obsolete (pre 0.9.5) bzip format not supported"
 709};
 710
 711/* Dumb little test thing, decompress stdin to stdout */
 712int main(int argc, char **argv)
 713{
 714        int i;
 715        char c;
 716
 717        int i = unpack_bz2_stream_prime(0, 1);
 718        if (i < 0)
 719                fprintf(stderr, "%s\n", bunzip_errors[-i]);
 720        else if (read(STDIN_FILENO, &c, 1))
 721                fprintf(stderr, "Trailing garbage ignored\n");
 722        return -i;
 723}
 724#endif
 725