busybox/archival/libarchive/unxz/xz_dec_lzma2.c
<<
>>
Prefs
   1/*
   2 * LZMA2 decoder
   3 *
   4 * Authors: Lasse Collin <lasse.collin@tukaani.org>
   5 *          Igor Pavlov <http://7-zip.org/>
   6 *
   7 * This file has been put into the public domain.
   8 * You can do whatever you want with this file.
   9 */
  10
  11#include "xz_private.h"
  12#include "xz_lzma2.h"
  13
  14/*
  15 * Range decoder initialization eats the first five bytes of each LZMA chunk.
  16 */
  17#define RC_INIT_BYTES 5
  18
  19/*
  20 * Minimum number of usable input buffer to safely decode one LZMA symbol.
  21 * The worst case is that we decode 22 bits using probabilities and 26
  22 * direct bits. This may decode at maximum of 20 bytes of input. However,
  23 * lzma_main() does an extra normalization before returning, thus we
  24 * need to put 21 here.
  25 */
  26#define LZMA_IN_REQUIRED 21
  27
  28/*
  29 * Dictionary (history buffer)
  30 *
  31 * These are always true:
  32 *    start <= pos <= full <= end
  33 *    pos <= limit <= end
  34 *
  35 * In multi-call mode, also these are true:
  36 *    end == size
  37 *    size <= size_max
  38 *    allocated <= size
  39 *
  40 * Most of these variables are size_t to support single-call mode,
  41 * in which the dictionary variables address the actual output
  42 * buffer directly.
  43 */
  44struct dictionary {
  45        /* Beginning of the history buffer */
  46        uint8_t *buf;
  47
  48        /* Old position in buf (before decoding more data) */
  49        size_t start;
  50
  51        /* Position in buf */
  52        size_t pos;
  53
  54        /*
  55         * How full dictionary is. This is used to detect corrupt input that
  56         * would read beyond the beginning of the uncompressed stream.
  57         */
  58        size_t full;
  59
  60        /* Write limit; we don't write to buf[limit] or later bytes. */
  61        size_t limit;
  62
  63        /*
  64         * End of the dictionary buffer. In multi-call mode, this is
  65         * the same as the dictionary size. In single-call mode, this
  66         * indicates the size of the output buffer.
  67         */
  68        size_t end;
  69
  70        /*
  71         * Size of the dictionary as specified in Block Header. This is used
  72         * together with "full" to detect corrupt input that would make us
  73         * read beyond the beginning of the uncompressed stream.
  74         */
  75        uint32_t size;
  76
  77        /*
  78         * Maximum allowed dictionary size in multi-call mode.
  79         * This is ignored in single-call mode.
  80         */
  81        uint32_t size_max;
  82
  83        /*
  84         * Amount of memory currently allocated for the dictionary.
  85         * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
  86         * size_max is always the same as the allocated size.)
  87         */
  88        uint32_t allocated;
  89
  90        /* Operation mode */
  91        enum xz_mode mode;
  92};
  93
  94/* Range decoder */
  95struct rc_dec {
  96        uint32_t range;
  97        uint32_t code;
  98
  99        /*
 100         * Number of initializing bytes remaining to be read
 101         * by rc_read_init().
 102         */
 103        uint32_t init_bytes_left;
 104
 105        /*
 106         * Buffer from which we read our input. It can be either
 107         * temp.buf or the caller-provided input buffer.
 108         */
 109        const uint8_t *in;
 110        size_t in_pos;
 111        size_t in_limit;
 112};
 113
 114/* Probabilities for a length decoder. */
 115struct lzma_len_dec {
 116        /* Probability of match length being at least 10 */
 117        uint16_t choice;
 118
 119        /* Probability of match length being at least 18 */
 120        uint16_t choice2;
 121
 122        /* Probabilities for match lengths 2-9 */
 123        uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
 124
 125        /* Probabilities for match lengths 10-17 */
 126        uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
 127
 128        /* Probabilities for match lengths 18-273 */
 129        uint16_t high[LEN_HIGH_SYMBOLS];
 130};
 131
 132struct lzma_dec {
 133        /* Distances of latest four matches */
 134        uint32_t rep0;
 135        uint32_t rep1;
 136        uint32_t rep2;
 137        uint32_t rep3;
 138
 139        /* Types of the most recently seen LZMA symbols */
 140        enum lzma_state state;
 141
 142        /*
 143         * Length of a match. This is updated so that dict_repeat can
 144         * be called again to finish repeating the whole match.
 145         */
 146        uint32_t len;
 147
 148        /*
 149         * LZMA properties or related bit masks (number of literal
 150         * context bits, a mask dervied from the number of literal
 151         * position bits, and a mask dervied from the number
 152         * position bits)
 153         */
 154        uint32_t lc;
 155        uint32_t literal_pos_mask; /* (1 << lp) - 1 */
 156        uint32_t pos_mask;         /* (1 << pb) - 1 */
 157
 158        /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
 159        uint16_t is_match[STATES][POS_STATES_MAX];
 160
 161        /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
 162        uint16_t is_rep[STATES];
 163
 164        /*
 165         * If 0, distance of a repeated match is rep0.
 166         * Otherwise check is_rep1.
 167         */
 168        uint16_t is_rep0[STATES];
 169
 170        /*
 171         * If 0, distance of a repeated match is rep1.
 172         * Otherwise check is_rep2.
 173         */
 174        uint16_t is_rep1[STATES];
 175
 176        /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
 177        uint16_t is_rep2[STATES];
 178
 179        /*
 180         * If 1, the repeated match has length of one byte. Otherwise
 181         * the length is decoded from rep_len_decoder.
 182         */
 183        uint16_t is_rep0_long[STATES][POS_STATES_MAX];
 184
 185        /*
 186         * Probability tree for the highest two bits of the match
 187         * distance. There is a separate probability tree for match
 188         * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
 189         */
 190        uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
 191
 192        /*
 193         * Probility trees for additional bits for match distance
 194         * when the distance is in the range [4, 127].
 195         */
 196        uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
 197
 198        /*
 199         * Probability tree for the lowest four bits of a match
 200         * distance that is equal to or greater than 128.
 201         */
 202        uint16_t dist_align[ALIGN_SIZE];
 203
 204        /* Length of a normal match */
 205        struct lzma_len_dec match_len_dec;
 206
 207        /* Length of a repeated match */
 208        struct lzma_len_dec rep_len_dec;
 209
 210        /* Probabilities of literals */
 211        uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
 212};
 213
 214struct lzma2_dec {
 215        /* Position in xz_dec_lzma2_run(). */
 216        enum lzma2_seq {
 217                SEQ_CONTROL,
 218                SEQ_UNCOMPRESSED_1,
 219                SEQ_UNCOMPRESSED_2,
 220                SEQ_COMPRESSED_0,
 221                SEQ_COMPRESSED_1,
 222                SEQ_PROPERTIES,
 223                SEQ_LZMA_PREPARE,
 224                SEQ_LZMA_RUN,
 225                SEQ_COPY
 226        } sequence;
 227
 228        /* Next position after decoding the compressed size of the chunk. */
 229        enum lzma2_seq next_sequence;
 230
 231        /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
 232        uint32_t uncompressed;
 233
 234        /*
 235         * Compressed size of LZMA chunk or compressed/uncompressed
 236         * size of uncompressed chunk (64 KiB at maximum)
 237         */
 238        uint32_t compressed;
 239
 240        /*
 241         * True if dictionary reset is needed. This is false before
 242         * the first chunk (LZMA or uncompressed).
 243         */
 244        bool need_dict_reset;
 245
 246        /*
 247         * True if new LZMA properties are needed. This is false
 248         * before the first LZMA chunk.
 249         */
 250        bool need_props;
 251};
 252
 253struct xz_dec_lzma2 {
 254        /*
 255         * The order below is important on x86 to reduce code size and
 256         * it shouldn't hurt on other platforms. Everything up to and
 257         * including lzma.pos_mask are in the first 128 bytes on x86-32,
 258         * which allows using smaller instructions to access those
 259         * variables. On x86-64, fewer variables fit into the first 128
 260         * bytes, but this is still the best order without sacrificing
 261         * the readability by splitting the structures.
 262         */
 263        struct rc_dec rc;
 264        struct dictionary dict;
 265        struct lzma2_dec lzma2;
 266        struct lzma_dec lzma;
 267
 268        /*
 269         * Temporary buffer which holds small number of input bytes between
 270         * decoder calls. See lzma2_lzma() for details.
 271         */
 272        struct {
 273                uint32_t size;
 274                uint8_t buf[3 * LZMA_IN_REQUIRED];
 275        } temp;
 276};
 277
 278/**************
 279 * Dictionary *
 280 **************/
 281
 282/*
 283 * Reset the dictionary state. When in single-call mode, set up the beginning
 284 * of the dictionary to point to the actual output buffer.
 285 */
 286static void XZ_FUNC dict_reset(struct dictionary *dict, struct xz_buf *b)
 287{
 288        if (DEC_IS_SINGLE(dict->mode)) {
 289                dict->buf = b->out + b->out_pos;
 290                dict->end = b->out_size - b->out_pos;
 291        }
 292
 293        dict->start = 0;
 294        dict->pos = 0;
 295        dict->limit = 0;
 296        dict->full = 0;
 297}
 298
 299/* Set dictionary write limit */
 300static void XZ_FUNC dict_limit(struct dictionary *dict, size_t out_max)
 301{
 302        if (dict->end - dict->pos <= out_max)
 303                dict->limit = dict->end;
 304        else
 305                dict->limit = dict->pos + out_max;
 306}
 307
 308/* Return true if at least one byte can be written into the dictionary. */
 309static __always_inline bool XZ_FUNC dict_has_space(const struct dictionary *dict)
 310{
 311        return dict->pos < dict->limit;
 312}
 313
 314/*
 315 * Get a byte from the dictionary at the given distance. The distance is
 316 * assumed to valid, or as a special case, zero when the dictionary is
 317 * still empty. This special case is needed for single-call decoding to
 318 * avoid writing a '\0' to the end of the destination buffer.
 319 */
 320static __always_inline uint32_t XZ_FUNC dict_get(
 321                const struct dictionary *dict, uint32_t dist)
 322{
 323        size_t offset = dict->pos - dist - 1;
 324
 325        if (dist >= dict->pos)
 326                offset += dict->end;
 327
 328        return dict->full > 0 ? dict->buf[offset] : 0;
 329}
 330
 331/*
 332 * Put one byte into the dictionary. It is assumed that there is space for it.
 333 */
 334static inline void XZ_FUNC dict_put(struct dictionary *dict, uint8_t byte)
 335{
 336        dict->buf[dict->pos++] = byte;
 337
 338        if (dict->full < dict->pos)
 339                dict->full = dict->pos;
 340}
 341
 342/*
 343 * Repeat given number of bytes from the given distance. If the distance is
 344 * invalid, false is returned. On success, true is returned and *len is
 345 * updated to indicate how many bytes were left to be repeated.
 346 */
 347static bool XZ_FUNC dict_repeat(
 348                struct dictionary *dict, uint32_t *len, uint32_t dist)
 349{
 350        size_t back;
 351        uint32_t left;
 352
 353        if (dist >= dict->full || dist >= dict->size)
 354                return false;
 355
 356        left = min_t(size_t, dict->limit - dict->pos, *len);
 357        *len -= left;
 358
 359        back = dict->pos - dist - 1;
 360        if (dist >= dict->pos)
 361                back += dict->end;
 362
 363        do {
 364                dict->buf[dict->pos++] = dict->buf[back++];
 365                if (back == dict->end)
 366                        back = 0;
 367        } while (--left > 0);
 368
 369        if (dict->full < dict->pos)
 370                dict->full = dict->pos;
 371
 372        return true;
 373}
 374
 375/* Copy uncompressed data as is from input to dictionary and output buffers. */
 376static void XZ_FUNC dict_uncompressed(
 377                struct dictionary *dict, struct xz_buf *b, uint32_t *left)
 378{
 379        size_t copy_size;
 380
 381        while (*left > 0 && b->in_pos < b->in_size
 382                        && b->out_pos < b->out_size) {
 383                copy_size = min(b->in_size - b->in_pos,
 384                                b->out_size - b->out_pos);
 385                if (copy_size > dict->end - dict->pos)
 386                        copy_size = dict->end - dict->pos;
 387                if (copy_size > *left)
 388                        copy_size = *left;
 389
 390                *left -= copy_size;
 391
 392                memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
 393                dict->pos += copy_size;
 394
 395                if (dict->full < dict->pos)
 396                        dict->full = dict->pos;
 397
 398                if (DEC_IS_MULTI(dict->mode)) {
 399                        if (dict->pos == dict->end)
 400                                dict->pos = 0;
 401
 402                        memcpy(b->out + b->out_pos, b->in + b->in_pos,
 403                                        copy_size);
 404                }
 405
 406                dict->start = dict->pos;
 407
 408                b->out_pos += copy_size;
 409                b->in_pos += copy_size;
 410
 411        }
 412}
 413
 414/*
 415 * Flush pending data from dictionary to b->out. It is assumed that there is
 416 * enough space in b->out. This is guaranteed because caller uses dict_limit()
 417 * before decoding data into the dictionary.
 418 */
 419static uint32_t XZ_FUNC dict_flush(struct dictionary *dict, struct xz_buf *b)
 420{
 421        size_t copy_size = dict->pos - dict->start;
 422
 423        if (DEC_IS_MULTI(dict->mode)) {
 424                if (dict->pos == dict->end)
 425                        dict->pos = 0;
 426
 427                memcpy(b->out + b->out_pos, dict->buf + dict->start,
 428                                copy_size);
 429        }
 430
 431        dict->start = dict->pos;
 432        b->out_pos += copy_size;
 433        return copy_size;
 434}
 435
 436/*****************
 437 * Range decoder *
 438 *****************/
 439
 440/* Reset the range decoder. */
 441static void XZ_FUNC rc_reset(struct rc_dec *rc)
 442{
 443        rc->range = (uint32_t)-1;
 444        rc->code = 0;
 445        rc->init_bytes_left = RC_INIT_BYTES;
 446}
 447
 448/*
 449 * Read the first five initial bytes into rc->code if they haven't been
 450 * read already. (Yes, the first byte gets completely ignored.)
 451 */
 452static bool XZ_FUNC rc_read_init(struct rc_dec *rc, struct xz_buf *b)
 453{
 454        while (rc->init_bytes_left > 0) {
 455                if (b->in_pos == b->in_size)
 456                        return false;
 457
 458                rc->code = (rc->code << 8) + b->in[b->in_pos++];
 459                --rc->init_bytes_left;
 460        }
 461
 462        return true;
 463}
 464
 465/* Return true if there may not be enough input for the next decoding loop. */
 466static inline bool XZ_FUNC rc_limit_exceeded(const struct rc_dec *rc)
 467{
 468        return rc->in_pos > rc->in_limit;
 469}
 470
 471/*
 472 * Return true if it is possible (from point of view of range decoder) that
 473 * we have reached the end of the LZMA chunk.
 474 */
 475static inline bool XZ_FUNC rc_is_finished(const struct rc_dec *rc)
 476{
 477        return rc->code == 0;
 478}
 479
 480/* Read the next input byte if needed. */
 481static __always_inline void XZ_FUNC rc_normalize(struct rc_dec *rc)
 482{
 483        if (rc->range < RC_TOP_VALUE) {
 484                rc->range <<= RC_SHIFT_BITS;
 485                rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
 486        }
 487}
 488
 489/*
 490 * Decode one bit. In some versions, this function has been splitted in three
 491 * functions so that the compiler is supposed to be able to more easily avoid
 492 * an extra branch. In this particular version of the LZMA decoder, this
 493 * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
 494 * on x86). Using a non-splitted version results in nicer looking code too.
 495 *
 496 * NOTE: This must return an int. Do not make it return a bool or the speed
 497 * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
 498 * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
 499 */
 500static __always_inline int XZ_FUNC rc_bit(struct rc_dec *rc, uint16_t *prob)
 501{
 502        uint32_t bound;
 503        int bit;
 504
 505        rc_normalize(rc);
 506        bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
 507        if (rc->code < bound) {
 508                rc->range = bound;
 509                *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
 510                bit = 0;
 511        } else {
 512                rc->range -= bound;
 513                rc->code -= bound;
 514                *prob -= *prob >> RC_MOVE_BITS;
 515                bit = 1;
 516        }
 517
 518        return bit;
 519}
 520
 521/* Decode a bittree starting from the most significant bit. */
 522static __always_inline uint32_t XZ_FUNC rc_bittree(
 523                struct rc_dec *rc, uint16_t *probs, uint32_t limit)
 524{
 525        uint32_t symbol = 1;
 526
 527        do {
 528                if (rc_bit(rc, &probs[symbol]))
 529                        symbol = (symbol << 1) + 1;
 530                else
 531                        symbol <<= 1;
 532        } while (symbol < limit);
 533
 534        return symbol;
 535}
 536
 537/* Decode a bittree starting from the least significant bit. */
 538static __always_inline void XZ_FUNC rc_bittree_reverse(struct rc_dec *rc,
 539                uint16_t *probs, uint32_t *dest, uint32_t limit)
 540{
 541        uint32_t symbol = 1;
 542        uint32_t i = 0;
 543
 544        do {
 545                if (rc_bit(rc, &probs[symbol])) {
 546                        symbol = (symbol << 1) + 1;
 547                        *dest += 1 << i;
 548                } else {
 549                        symbol <<= 1;
 550                }
 551        } while (++i < limit);
 552}
 553
 554/* Decode direct bits (fixed fifty-fifty probability) */
 555static inline void XZ_FUNC rc_direct(
 556                struct rc_dec *rc, uint32_t *dest, uint32_t limit)
 557{
 558        uint32_t mask;
 559
 560        do {
 561                rc_normalize(rc);
 562                rc->range >>= 1;
 563                rc->code -= rc->range;
 564                mask = (uint32_t)0 - (rc->code >> 31);
 565                rc->code += rc->range & mask;
 566                *dest = (*dest << 1) + (mask + 1);
 567        } while (--limit > 0);
 568}
 569
 570/********
 571 * LZMA *
 572 ********/
 573
 574/* Get pointer to literal coder probability array. */
 575static uint16_t * XZ_FUNC lzma_literal_probs(struct xz_dec_lzma2 *s)
 576{
 577        uint32_t prev_byte = dict_get(&s->dict, 0);
 578        uint32_t low = prev_byte >> (8 - s->lzma.lc);
 579        uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
 580        return s->lzma.literal[low + high];
 581}
 582
 583/* Decode a literal (one 8-bit byte) */
 584static void XZ_FUNC lzma_literal(struct xz_dec_lzma2 *s)
 585{
 586        uint16_t *probs;
 587        uint32_t symbol;
 588        uint32_t match_byte;
 589        uint32_t match_bit;
 590        uint32_t offset;
 591        uint32_t i;
 592
 593        probs = lzma_literal_probs(s);
 594
 595        if (lzma_state_is_literal(s->lzma.state)) {
 596                symbol = rc_bittree(&s->rc, probs, 0x100);
 597        } else {
 598                symbol = 1;
 599                match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
 600                offset = 0x100;
 601
 602                do {
 603                        match_bit = match_byte & offset;
 604                        match_byte <<= 1;
 605                        i = offset + match_bit + symbol;
 606
 607                        if (rc_bit(&s->rc, &probs[i])) {
 608                                symbol = (symbol << 1) + 1;
 609                                offset &= match_bit;
 610                        } else {
 611                                symbol <<= 1;
 612                                offset &= ~match_bit;
 613                        }
 614                } while (symbol < 0x100);
 615        }
 616
 617        dict_put(&s->dict, (uint8_t)symbol);
 618        lzma_state_literal(&s->lzma.state);
 619}
 620
 621/* Decode the length of the match into s->lzma.len. */
 622static void XZ_FUNC lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
 623                uint32_t pos_state)
 624{
 625        uint16_t *probs;
 626        uint32_t limit;
 627
 628        if (!rc_bit(&s->rc, &l->choice)) {
 629                probs = l->low[pos_state];
 630                limit = LEN_LOW_SYMBOLS;
 631                s->lzma.len = MATCH_LEN_MIN;
 632        } else {
 633                if (!rc_bit(&s->rc, &l->choice2)) {
 634                        probs = l->mid[pos_state];
 635                        limit = LEN_MID_SYMBOLS;
 636                        s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
 637                } else {
 638                        probs = l->high;
 639                        limit = LEN_HIGH_SYMBOLS;
 640                        s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
 641                                        + LEN_MID_SYMBOLS;
 642                }
 643        }
 644
 645        s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
 646}
 647
 648/* Decode a match. The distance will be stored in s->lzma.rep0. */
 649static void XZ_FUNC lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
 650{
 651        uint16_t *probs;
 652        uint32_t dist_slot;
 653        uint32_t limit;
 654
 655        lzma_state_match(&s->lzma.state);
 656
 657        s->lzma.rep3 = s->lzma.rep2;
 658        s->lzma.rep2 = s->lzma.rep1;
 659        s->lzma.rep1 = s->lzma.rep0;
 660
 661        lzma_len(s, &s->lzma.match_len_dec, pos_state);
 662
 663        probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
 664        dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
 665
 666        if (dist_slot < DIST_MODEL_START) {
 667                s->lzma.rep0 = dist_slot;
 668        } else {
 669                limit = (dist_slot >> 1) - 1;
 670                s->lzma.rep0 = 2 + (dist_slot & 1);
 671
 672                if (dist_slot < DIST_MODEL_END) {
 673                        s->lzma.rep0 <<= limit;
 674                        probs = s->lzma.dist_special + s->lzma.rep0
 675                                        - dist_slot - 1;
 676                        rc_bittree_reverse(&s->rc, probs,
 677                                        &s->lzma.rep0, limit);
 678                } else {
 679                        rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
 680                        s->lzma.rep0 <<= ALIGN_BITS;
 681                        rc_bittree_reverse(&s->rc, s->lzma.dist_align,
 682                                        &s->lzma.rep0, ALIGN_BITS);
 683                }
 684        }
 685}
 686
 687/*
 688 * Decode a repeated match. The distance is one of the four most recently
 689 * seen matches. The distance will be stored in s->lzma.rep0.
 690 */
 691static void XZ_FUNC lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
 692{
 693        uint32_t tmp;
 694
 695        if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
 696                if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
 697                                s->lzma.state][pos_state])) {
 698                        lzma_state_short_rep(&s->lzma.state);
 699                        s->lzma.len = 1;
 700                        return;
 701                }
 702        } else {
 703                if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
 704                        tmp = s->lzma.rep1;
 705                } else {
 706                        if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
 707                                tmp = s->lzma.rep2;
 708                        } else {
 709                                tmp = s->lzma.rep3;
 710                                s->lzma.rep3 = s->lzma.rep2;
 711                        }
 712
 713                        s->lzma.rep2 = s->lzma.rep1;
 714                }
 715
 716                s->lzma.rep1 = s->lzma.rep0;
 717                s->lzma.rep0 = tmp;
 718        }
 719
 720        lzma_state_long_rep(&s->lzma.state);
 721        lzma_len(s, &s->lzma.rep_len_dec, pos_state);
 722}
 723
 724/* LZMA decoder core */
 725static bool XZ_FUNC lzma_main(struct xz_dec_lzma2 *s)
 726{
 727        uint32_t pos_state;
 728
 729        /*
 730         * If the dictionary was reached during the previous call, try to
 731         * finish the possibly pending repeat in the dictionary.
 732         */
 733        if (dict_has_space(&s->dict) && s->lzma.len > 0)
 734                dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
 735
 736        /*
 737         * Decode more LZMA symbols. One iteration may consume up to
 738         * LZMA_IN_REQUIRED - 1 bytes.
 739         */
 740        while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
 741                pos_state = s->dict.pos & s->lzma.pos_mask;
 742
 743                if (!rc_bit(&s->rc, &s->lzma.is_match[
 744                                s->lzma.state][pos_state])) {
 745                        lzma_literal(s);
 746                } else {
 747                        if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
 748                                lzma_rep_match(s, pos_state);
 749                        else
 750                                lzma_match(s, pos_state);
 751
 752                        if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
 753                                return false;
 754                }
 755        }
 756
 757        /*
 758         * Having the range decoder always normalized when we are outside
 759         * this function makes it easier to correctly handle end of the chunk.
 760         */
 761        rc_normalize(&s->rc);
 762
 763        return true;
 764}
 765
 766/*
 767 * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
 768 * here, because LZMA state may be reset without resetting the dictionary.
 769 */
 770static void XZ_FUNC lzma_reset(struct xz_dec_lzma2 *s)
 771{
 772        uint16_t *probs;
 773        size_t i;
 774
 775        s->lzma.state = STATE_LIT_LIT;
 776        s->lzma.rep0 = 0;
 777        s->lzma.rep1 = 0;
 778        s->lzma.rep2 = 0;
 779        s->lzma.rep3 = 0;
 780
 781        /*
 782         * All probabilities are initialized to the same value. This hack
 783         * makes the code smaller by avoiding a separate loop for each
 784         * probability array.
 785         *
 786         * This could be optimized so that only that part of literal
 787         * probabilities that are actually required. In the common case
 788         * we would write 12 KiB less.
 789         */
 790        probs = s->lzma.is_match[0];
 791        for (i = 0; i < PROBS_TOTAL; ++i)
 792                probs[i] = RC_BIT_MODEL_TOTAL / 2;
 793
 794        rc_reset(&s->rc);
 795}
 796
 797/*
 798 * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
 799 * from the decoded lp and pb values. On success, the LZMA decoder state is
 800 * reset and true is returned.
 801 */
 802static bool XZ_FUNC lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
 803{
 804        if (props > (4 * 5 + 4) * 9 + 8)
 805                return false;
 806
 807        s->lzma.pos_mask = 0;
 808        while (props >= 9 * 5) {
 809                props -= 9 * 5;
 810                ++s->lzma.pos_mask;
 811        }
 812
 813        s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
 814
 815        s->lzma.literal_pos_mask = 0;
 816        while (props >= 9) {
 817                props -= 9;
 818                ++s->lzma.literal_pos_mask;
 819        }
 820
 821        s->lzma.lc = props;
 822
 823        if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
 824                return false;
 825
 826        s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
 827
 828        lzma_reset(s);
 829
 830        return true;
 831}
 832
 833/*********
 834 * LZMA2 *
 835 *********/
 836
 837/*
 838 * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
 839 * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
 840 * wrapper function takes care of making the LZMA decoder's assumption safe.
 841 *
 842 * As long as there is plenty of input left to be decoded in the current LZMA
 843 * chunk, we decode directly from the caller-supplied input buffer until
 844 * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
 845 * s->temp.buf, which (hopefully) gets filled on the next call to this
 846 * function. We decode a few bytes from the temporary buffer so that we can
 847 * continue decoding from the caller-supplied input buffer again.
 848 */
 849static bool XZ_FUNC lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
 850{
 851        size_t in_avail;
 852        uint32_t tmp;
 853
 854        in_avail = b->in_size - b->in_pos;
 855        if (s->temp.size > 0 || s->lzma2.compressed == 0) {
 856                tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
 857                if (tmp > s->lzma2.compressed - s->temp.size)
 858                        tmp = s->lzma2.compressed - s->temp.size;
 859                if (tmp > in_avail)
 860                        tmp = in_avail;
 861
 862                memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
 863
 864                if (s->temp.size + tmp == s->lzma2.compressed) {
 865                        memzero(s->temp.buf + s->temp.size + tmp,
 866                                        sizeof(s->temp.buf)
 867                                                - s->temp.size - tmp);
 868                        s->rc.in_limit = s->temp.size + tmp;
 869                } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
 870                        s->temp.size += tmp;
 871                        b->in_pos += tmp;
 872                        return true;
 873                } else {
 874                        s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
 875                }
 876
 877                s->rc.in = s->temp.buf;
 878                s->rc.in_pos = 0;
 879
 880                if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
 881                        return false;
 882
 883                s->lzma2.compressed -= s->rc.in_pos;
 884
 885                if (s->rc.in_pos < s->temp.size) {
 886                        s->temp.size -= s->rc.in_pos;
 887                        memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
 888                                        s->temp.size);
 889                        return true;
 890                }
 891
 892                b->in_pos += s->rc.in_pos - s->temp.size;
 893                s->temp.size = 0;
 894        }
 895
 896        in_avail = b->in_size - b->in_pos;
 897        if (in_avail >= LZMA_IN_REQUIRED) {
 898                s->rc.in = b->in;
 899                s->rc.in_pos = b->in_pos;
 900
 901                if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
 902                        s->rc.in_limit = b->in_pos + s->lzma2.compressed;
 903                else
 904                        s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
 905
 906                if (!lzma_main(s))
 907                        return false;
 908
 909                in_avail = s->rc.in_pos - b->in_pos;
 910                if (in_avail > s->lzma2.compressed)
 911                        return false;
 912
 913                s->lzma2.compressed -= in_avail;
 914                b->in_pos = s->rc.in_pos;
 915        }
 916
 917        in_avail = b->in_size - b->in_pos;
 918        if (in_avail < LZMA_IN_REQUIRED) {
 919                if (in_avail > s->lzma2.compressed)
 920                        in_avail = s->lzma2.compressed;
 921
 922                memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
 923                s->temp.size = in_avail;
 924                b->in_pos += in_avail;
 925        }
 926
 927        return true;
 928}
 929
 930/*
 931 * Take care of the LZMA2 control layer, and forward the job of actual LZMA
 932 * decoding or copying of uncompressed chunks to other functions.
 933 */
 934XZ_EXTERN NOINLINE enum xz_ret XZ_FUNC xz_dec_lzma2_run(
 935                struct xz_dec_lzma2 *s, struct xz_buf *b)
 936{
 937        uint32_t tmp;
 938
 939        while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
 940                switch (s->lzma2.sequence) {
 941                case SEQ_CONTROL:
 942                        /*
 943                         * LZMA2 control byte
 944                         *
 945                         * Exact values:
 946                         *   0x00   End marker
 947                         *   0x01   Dictionary reset followed by
 948                         *          an uncompressed chunk
 949                         *   0x02   Uncompressed chunk (no dictionary reset)
 950                         *
 951                         * Highest three bits (s->control & 0xE0):
 952                         *   0xE0   Dictionary reset, new properties and state
 953                         *          reset, followed by LZMA compressed chunk
 954                         *   0xC0   New properties and state reset, followed
 955                         *          by LZMA compressed chunk (no dictionary
 956                         *          reset)
 957                         *   0xA0   State reset using old properties,
 958                         *          followed by LZMA compressed chunk (no
 959                         *          dictionary reset)
 960                         *   0x80   LZMA chunk (no dictionary or state reset)
 961                         *
 962                         * For LZMA compressed chunks, the lowest five bits
 963                         * (s->control & 1F) are the highest bits of the
 964                         * uncompressed size (bits 16-20).
 965                         *
 966                         * A new LZMA2 stream must begin with a dictionary
 967                         * reset. The first LZMA chunk must set new
 968                         * properties and reset the LZMA state.
 969                         *
 970                         * Values that don't match anything described above
 971                         * are invalid and we return XZ_DATA_ERROR.
 972                         */
 973                        tmp = b->in[b->in_pos++];
 974
 975                        if (tmp >= 0xE0 || tmp == 0x01) {
 976                                s->lzma2.need_props = true;
 977                                s->lzma2.need_dict_reset = false;
 978                                dict_reset(&s->dict, b);
 979                        } else if (s->lzma2.need_dict_reset) {
 980                                return XZ_DATA_ERROR;
 981                        }
 982
 983                        if (tmp >= 0x80) {
 984                                s->lzma2.uncompressed = (tmp & 0x1F) << 16;
 985                                s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
 986
 987                                if (tmp >= 0xC0) {
 988                                        /*
 989                                         * When there are new properties,
 990                                         * state reset is done at
 991                                         * SEQ_PROPERTIES.
 992                                         */
 993                                        s->lzma2.need_props = false;
 994                                        s->lzma2.next_sequence
 995                                                        = SEQ_PROPERTIES;
 996
 997                                } else if (s->lzma2.need_props) {
 998                                        return XZ_DATA_ERROR;
 999
1000                                } else {
1001                                        s->lzma2.next_sequence
1002                                                        = SEQ_LZMA_PREPARE;
1003                                        if (tmp >= 0xA0)
1004                                                lzma_reset(s);
1005                                }
1006                        } else {
1007                                if (tmp == 0x00)
1008                                        return XZ_STREAM_END;
1009
1010                                if (tmp > 0x02)
1011                                        return XZ_DATA_ERROR;
1012
1013                                s->lzma2.sequence = SEQ_COMPRESSED_0;
1014                                s->lzma2.next_sequence = SEQ_COPY;
1015                        }
1016
1017                        break;
1018
1019                case SEQ_UNCOMPRESSED_1:
1020                        s->lzma2.uncompressed
1021                                        += (uint32_t)b->in[b->in_pos++] << 8;
1022                        s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
1023                        break;
1024
1025                case SEQ_UNCOMPRESSED_2:
1026                        s->lzma2.uncompressed
1027                                        += (uint32_t)b->in[b->in_pos++] + 1;
1028                        s->lzma2.sequence = SEQ_COMPRESSED_0;
1029                        break;
1030
1031                case SEQ_COMPRESSED_0:
1032                        s->lzma2.compressed
1033                                        = (uint32_t)b->in[b->in_pos++] << 8;
1034                        s->lzma2.sequence = SEQ_COMPRESSED_1;
1035                        break;
1036
1037                case SEQ_COMPRESSED_1:
1038                        s->lzma2.compressed
1039                                        += (uint32_t)b->in[b->in_pos++] + 1;
1040                        s->lzma2.sequence = s->lzma2.next_sequence;
1041                        break;
1042
1043                case SEQ_PROPERTIES:
1044                        if (!lzma_props(s, b->in[b->in_pos++]))
1045                                return XZ_DATA_ERROR;
1046
1047                        s->lzma2.sequence = SEQ_LZMA_PREPARE;
1048
1049                case SEQ_LZMA_PREPARE:
1050                        if (s->lzma2.compressed < RC_INIT_BYTES)
1051                                return XZ_DATA_ERROR;
1052
1053                        if (!rc_read_init(&s->rc, b))
1054                                return XZ_OK;
1055
1056                        s->lzma2.compressed -= RC_INIT_BYTES;
1057                        s->lzma2.sequence = SEQ_LZMA_RUN;
1058
1059                case SEQ_LZMA_RUN:
1060                        /*
1061                         * Set dictionary limit to indicate how much we want
1062                         * to be encoded at maximum. Decode new data into the
1063                         * dictionary. Flush the new data from dictionary to
1064                         * b->out. Check if we finished decoding this chunk.
1065                         * In case the dictionary got full but we didn't fill
1066                         * the output buffer yet, we may run this loop
1067                         * multiple times without changing s->lzma2.sequence.
1068                         */
1069                        dict_limit(&s->dict, min_t(size_t,
1070                                        b->out_size - b->out_pos,
1071                                        s->lzma2.uncompressed));
1072                        if (!lzma2_lzma(s, b))
1073                                return XZ_DATA_ERROR;
1074
1075                        s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1076
1077                        if (s->lzma2.uncompressed == 0) {
1078                                if (s->lzma2.compressed > 0 || s->lzma.len > 0
1079                                                || !rc_is_finished(&s->rc))
1080                                        return XZ_DATA_ERROR;
1081
1082                                rc_reset(&s->rc);
1083                                s->lzma2.sequence = SEQ_CONTROL;
1084
1085                        } else if (b->out_pos == b->out_size
1086                                        || (b->in_pos == b->in_size
1087                                                && s->temp.size
1088                                                < s->lzma2.compressed)) {
1089                                return XZ_OK;
1090                        }
1091
1092                        break;
1093
1094                case SEQ_COPY:
1095                        dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
1096                        if (s->lzma2.compressed > 0)
1097                                return XZ_OK;
1098
1099                        s->lzma2.sequence = SEQ_CONTROL;
1100                        break;
1101                }
1102        }
1103
1104        return XZ_OK;
1105}
1106
1107XZ_EXTERN struct xz_dec_lzma2 * XZ_FUNC xz_dec_lzma2_create(
1108                enum xz_mode mode, uint32_t dict_max)
1109{
1110        struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL);
1111        if (s == NULL)
1112                return NULL;
1113
1114        s->dict.mode = mode;
1115        s->dict.size_max = dict_max;
1116
1117        if (DEC_IS_PREALLOC(mode)) {
1118                s->dict.buf = vmalloc(dict_max);
1119                if (s->dict.buf == NULL) {
1120                        kfree(s);
1121                        return NULL;
1122                }
1123        } else if (DEC_IS_DYNALLOC(mode)) {
1124                s->dict.buf = NULL;
1125                s->dict.allocated = 0;
1126        }
1127
1128        return s;
1129}
1130
1131XZ_EXTERN enum xz_ret XZ_FUNC xz_dec_lzma2_reset(
1132                struct xz_dec_lzma2 *s, uint8_t props)
1133{
1134        /* This limits dictionary size to 3 GiB to keep parsing simpler. */
1135        if (props > 39)
1136                return XZ_OPTIONS_ERROR;
1137
1138        s->dict.size = 2 + (props & 1);
1139        s->dict.size <<= (props >> 1) + 11;
1140
1141        if (DEC_IS_MULTI(s->dict.mode)) {
1142                if (s->dict.size > s->dict.size_max)
1143                        return XZ_MEMLIMIT_ERROR;
1144
1145                s->dict.end = s->dict.size;
1146
1147                if (DEC_IS_DYNALLOC(s->dict.mode)) {
1148                        if (s->dict.allocated < s->dict.size) {
1149                                vfree(s->dict.buf);
1150                                s->dict.buf = vmalloc(s->dict.size);
1151                                if (s->dict.buf == NULL) {
1152                                        s->dict.allocated = 0;
1153                                        return XZ_MEM_ERROR;
1154                                }
1155                        }
1156                }
1157        }
1158
1159        s->lzma.len = 0;
1160
1161        s->lzma2.sequence = SEQ_CONTROL;
1162        s->lzma2.need_dict_reset = true;
1163
1164        s->temp.size = 0;
1165
1166        return XZ_OK;
1167}
1168
1169XZ_EXTERN void XZ_FUNC xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
1170{
1171        if (DEC_IS_MULTI(s->dict.mode))
1172                vfree(s->dict.buf);
1173
1174        kfree(s);
1175}
1176