busybox/archival/gzip.c
<<
>>
Prefs
   1/* vi: set sw=4 ts=4: */
   2/*
   3 * Gzip implementation for busybox
   4 *
   5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
   6 *
   7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
   8 * "this is a stripped down version of gzip I put into busybox, it does
   9 * only standard in to standard out with -9 compression.  It also requires
  10 * the zcat module for some important functions."
  11 *
  12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
  13 * files as well as stdin/stdout, and to generally behave itself wrt
  14 * command line handling.
  15 *
  16 * Licensed under GPLv2 or later, see file LICENSE in this source tree.
  17 */
  18/* big objects in bss:
  19 * 00000020 b bl_count
  20 * 00000074 b base_length
  21 * 00000078 b base_dist
  22 * 00000078 b static_dtree
  23 * 0000009c b bl_tree
  24 * 000000f4 b dyn_dtree
  25 * 00000100 b length_code
  26 * 00000200 b dist_code
  27 * 0000023d b depth
  28 * 00000400 b flag_buf
  29 * 0000047a b heap
  30 * 00000480 b static_ltree
  31 * 000008f4 b dyn_ltree
  32 */
  33/* TODO: full support for -v for DESKTOP
  34 * "/usr/bin/gzip -v a bogus aa" should say:
  35a:       85.1% -- replaced with a.gz
  36gzip: bogus: No such file or directory
  37aa:      85.1% -- replaced with aa.gz
  38*/
  39
  40//config:config GZIP
  41//config:       bool "gzip"
  42//config:       default y
  43//config:       help
  44//config:         gzip is used to compress files.
  45//config:         It's probably the most widely used UNIX compression program.
  46//config:
  47//config:config FEATURE_GZIP_LONG_OPTIONS
  48//config:       bool "Enable long options"
  49//config:       default y
  50//config:       depends on GZIP && LONG_OPTS
  51//config:       help
  52//config:         Enable use of long options, increases size by about 106 Bytes
  53//config:
  54//config:config GZIP_FAST
  55//config:       int "Trade memory for gzip speed (0:small,slow - 2:fast,big)"
  56//config:       default 0
  57//config:       range 0 2
  58//config:       depends on GZIP
  59//config:       help
  60//config:         Enable big memory options for gzip.
  61//config:         0: small buffers, small hash-tables
  62//config:         1: larger buffers, larger hash-tables
  63//config:         2: larger buffers, largest hash-tables
  64//config:         Larger models may give slightly better compression
  65
  66//applet:IF_GZIP(APPLET(gzip, BB_DIR_BIN, BB_SUID_DROP))
  67//kbuild:lib-$(CONFIG_GZIP) += gzip.o
  68
  69//usage:#define gzip_trivial_usage
  70//usage:       "[-cfd] [FILE]..."
  71//usage:#define gzip_full_usage "\n\n"
  72//usage:       "Compress FILEs (or stdin)\n"
  73//usage:     "\n        -d      Decompress"
  74//usage:     "\n        -c      Write to stdout"
  75//usage:     "\n        -f      Force"
  76//usage:
  77//usage:#define gzip_example_usage
  78//usage:       "$ ls -la /tmp/busybox*\n"
  79//usage:       "-rw-rw-r--    1 andersen andersen  1761280 Apr 14 17:47 /tmp/busybox.tar\n"
  80//usage:       "$ gzip /tmp/busybox.tar\n"
  81//usage:       "$ ls -la /tmp/busybox*\n"
  82//usage:       "-rw-rw-r--    1 andersen andersen   554058 Apr 14 17:49 /tmp/busybox.tar.gz\n"
  83
  84#include "libbb.h"
  85#include "bb_archive.h"
  86
  87
  88/* ===========================================================================
  89 */
  90//#define DEBUG 1
  91/* Diagnostic functions */
  92#ifdef DEBUG
  93#  define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
  94#  define Trace(x) fprintf x
  95#  define Tracev(x) {if (verbose) fprintf x; }
  96#  define Tracevv(x) {if (verbose > 1) fprintf x; }
  97#  define Tracec(c,x) {if (verbose && (c)) fprintf x; }
  98#  define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
  99#else
 100#  define Assert(cond,msg)
 101#  define Trace(x)
 102#  define Tracev(x)
 103#  define Tracevv(x)
 104#  define Tracec(c,x)
 105#  define Tracecv(c,x)
 106#endif
 107
 108
 109/* ===========================================================================
 110 */
 111#if   CONFIG_GZIP_FAST == 0
 112# define SMALL_MEM
 113#elif CONFIG_GZIP_FAST == 1
 114# define MEDIUM_MEM
 115#elif CONFIG_GZIP_FAST == 2
 116# define BIG_MEM
 117#else
 118# error "Invalid CONFIG_GZIP_FAST value"
 119#endif
 120
 121#ifndef INBUFSIZ
 122#  ifdef SMALL_MEM
 123#    define INBUFSIZ  0x2000    /* input buffer size */
 124#  else
 125#    define INBUFSIZ  0x8000    /* input buffer size */
 126#  endif
 127#endif
 128
 129#ifndef OUTBUFSIZ
 130#  ifdef SMALL_MEM
 131#    define OUTBUFSIZ   8192    /* output buffer size */
 132#  else
 133#    define OUTBUFSIZ  16384    /* output buffer size */
 134#  endif
 135#endif
 136
 137#ifndef DIST_BUFSIZE
 138#  ifdef SMALL_MEM
 139#    define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
 140#  else
 141#    define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
 142#  endif
 143#endif
 144
 145/* gzip flag byte */
 146#define ASCII_FLAG   0x01       /* bit 0 set: file probably ascii text */
 147#define CONTINUATION 0x02       /* bit 1 set: continuation of multi-part gzip file */
 148#define EXTRA_FIELD  0x04       /* bit 2 set: extra field present */
 149#define ORIG_NAME    0x08       /* bit 3 set: original file name present */
 150#define COMMENT      0x10       /* bit 4 set: file comment present */
 151#define RESERVED     0xC0       /* bit 6,7:   reserved */
 152
 153/* internal file attribute */
 154#define UNKNOWN 0xffff
 155#define BINARY  0
 156#define ASCII   1
 157
 158#ifndef WSIZE
 159#  define WSIZE 0x8000  /* window size--must be a power of two, and */
 160#endif                  /*  at least 32K for zip's deflate method */
 161
 162#define MIN_MATCH  3
 163#define MAX_MATCH  258
 164/* The minimum and maximum match lengths */
 165
 166#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
 167/* Minimum amount of lookahead, except at the end of the input file.
 168 * See deflate.c for comments about the MIN_MATCH+1.
 169 */
 170
 171#define MAX_DIST  (WSIZE-MIN_LOOKAHEAD)
 172/* In order to simplify the code, particularly on 16 bit machines, match
 173 * distances are limited to MAX_DIST instead of WSIZE.
 174 */
 175
 176#ifndef MAX_PATH_LEN
 177#  define MAX_PATH_LEN   1024   /* max pathname length */
 178#endif
 179
 180#define seekable()    0 /* force sequential output */
 181#define translate_eol 0 /* no option -a yet */
 182
 183#ifndef BITS
 184#  define BITS 16
 185#endif
 186#define INIT_BITS 9             /* Initial number of bits per code */
 187
 188#define BIT_MASK    0x1f        /* Mask for 'number of compression bits' */
 189/* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
 190 * It's a pity that old uncompress does not check bit 0x20. That makes
 191 * extension of the format actually undesirable because old compress
 192 * would just crash on the new format instead of giving a meaningful
 193 * error message. It does check the number of bits, but it's more
 194 * helpful to say "unsupported format, get a new version" than
 195 * "can only handle 16 bits".
 196 */
 197
 198#ifdef MAX_EXT_CHARS
 199#  define MAX_SUFFIX  MAX_EXT_CHARS
 200#else
 201#  define MAX_SUFFIX  30
 202#endif
 203
 204
 205/* ===========================================================================
 206 * Compile with MEDIUM_MEM to reduce the memory requirements or
 207 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
 208 * entire input file can be held in memory (not possible on 16 bit systems).
 209 * Warning: defining these symbols affects HASH_BITS (see below) and thus
 210 * affects the compression ratio. The compressed output
 211 * is still correct, and might even be smaller in some cases.
 212 */
 213
 214#ifdef SMALL_MEM
 215#   define HASH_BITS  13        /* Number of bits used to hash strings */
 216#endif
 217#ifdef MEDIUM_MEM
 218#   define HASH_BITS  14
 219#endif
 220#ifndef HASH_BITS
 221#   define HASH_BITS  15
 222   /* For portability to 16 bit machines, do not use values above 15. */
 223#endif
 224
 225#define HASH_SIZE (unsigned)(1<<HASH_BITS)
 226#define HASH_MASK (HASH_SIZE-1)
 227#define WMASK     (WSIZE-1)
 228/* HASH_SIZE and WSIZE must be powers of two */
 229#ifndef TOO_FAR
 230#  define TOO_FAR 4096
 231#endif
 232/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
 233
 234
 235/* ===========================================================================
 236 * These types are not really 'char', 'short' and 'long'
 237 */
 238typedef uint8_t uch;
 239typedef uint16_t ush;
 240typedef uint32_t ulg;
 241typedef int32_t lng;
 242
 243typedef ush Pos;
 244typedef unsigned IPos;
 245/* A Pos is an index in the character window. We use short instead of int to
 246 * save space in the various tables. IPos is used only for parameter passing.
 247 */
 248
 249enum {
 250        WINDOW_SIZE = 2 * WSIZE,
 251/* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
 252 * input file length plus MIN_LOOKAHEAD.
 253 */
 254
 255        max_chain_length = 4096,
 256/* To speed up deflation, hash chains are never searched beyond this length.
 257 * A higher limit improves compression ratio but degrades the speed.
 258 */
 259
 260        max_lazy_match = 258,
 261/* Attempt to find a better match only when the current match is strictly
 262 * smaller than this value. This mechanism is used only for compression
 263 * levels >= 4.
 264 */
 265
 266        max_insert_length = max_lazy_match,
 267/* Insert new strings in the hash table only if the match length
 268 * is not greater than this length. This saves time but degrades compression.
 269 * max_insert_length is used only for compression levels <= 3.
 270 */
 271
 272        good_match = 32,
 273/* Use a faster search when the previous match is longer than this */
 274
 275/* Values for max_lazy_match, good_match and max_chain_length, depending on
 276 * the desired pack level (0..9). The values given below have been tuned to
 277 * exclude worst case performance for pathological files. Better values may be
 278 * found for specific files.
 279 */
 280
 281        nice_match = 258,       /* Stop searching when current match exceeds this */
 282/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
 283 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
 284 * meaning.
 285 */
 286};
 287
 288
 289struct globals {
 290
 291        lng block_start;
 292
 293/* window position at the beginning of the current output block. Gets
 294 * negative when the window is moved backwards.
 295 */
 296        unsigned ins_h; /* hash index of string to be inserted */
 297
 298#define H_SHIFT  ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
 299/* Number of bits by which ins_h and del_h must be shifted at each
 300 * input step. It must be such that after MIN_MATCH steps, the oldest
 301 * byte no longer takes part in the hash key, that is:
 302 * H_SHIFT * MIN_MATCH >= HASH_BITS
 303 */
 304
 305        unsigned prev_length;
 306
 307/* Length of the best match at previous step. Matches not greater than this
 308 * are discarded. This is used in the lazy match evaluation.
 309 */
 310
 311        unsigned strstart;      /* start of string to insert */
 312        unsigned match_start;   /* start of matching string */
 313        unsigned lookahead;     /* number of valid bytes ahead in window */
 314
 315/* ===========================================================================
 316 */
 317#define DECLARE(type, array, size) \
 318        type * array
 319#define ALLOC(type, array, size) \
 320        array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type))
 321#define FREE(array) \
 322        do { free(array); array = NULL; } while (0)
 323
 324        /* global buffers */
 325
 326        /* buffer for literals or lengths */
 327        /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
 328        DECLARE(uch, l_buf, INBUFSIZ);
 329
 330        DECLARE(ush, d_buf, DIST_BUFSIZE);
 331        DECLARE(uch, outbuf, OUTBUFSIZ);
 332
 333/* Sliding window. Input bytes are read into the second half of the window,
 334 * and move to the first half later to keep a dictionary of at least WSIZE
 335 * bytes. With this organization, matches are limited to a distance of
 336 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
 337 * performed with a length multiple of the block size. Also, it limits
 338 * the window size to 64K, which is quite useful on MSDOS.
 339 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
 340 * be less efficient).
 341 */
 342        DECLARE(uch, window, 2L * WSIZE);
 343
 344/* Link to older string with same hash index. To limit the size of this
 345 * array to 64K, this link is maintained only for the last 32K strings.
 346 * An index in this array is thus a window index modulo 32K.
 347 */
 348        /* DECLARE(Pos, prev, WSIZE); */
 349        DECLARE(ush, prev, 1L << BITS);
 350
 351/* Heads of the hash chains or 0. */
 352        /* DECLARE(Pos, head, 1<<HASH_BITS); */
 353#define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
 354
 355/* number of input bytes */
 356        ulg isize;              /* only 32 bits stored in .gz file */
 357
 358/* bbox always use stdin/stdout */
 359#define ifd STDIN_FILENO        /* input file descriptor */
 360#define ofd STDOUT_FILENO       /* output file descriptor */
 361
 362#ifdef DEBUG
 363        unsigned insize;        /* valid bytes in l_buf */
 364#endif
 365        unsigned outcnt;        /* bytes in output buffer */
 366
 367        smallint eofile;        /* flag set at end of input file */
 368
 369/* ===========================================================================
 370 * Local data used by the "bit string" routines.
 371 */
 372
 373        unsigned short bi_buf;
 374
 375/* Output buffer. bits are inserted starting at the bottom (least significant
 376 * bits).
 377 */
 378
 379#undef BUF_SIZE
 380#define BUF_SIZE (8 * sizeof(G1.bi_buf))
 381/* Number of bits used within bi_buf. (bi_buf might be implemented on
 382 * more than 16 bits on some systems.)
 383 */
 384
 385        int bi_valid;
 386
 387/* Current input function. Set to mem_read for in-memory compression */
 388
 389#ifdef DEBUG
 390        ulg bits_sent;                  /* bit length of the compressed data */
 391#endif
 392
 393        /*uint32_t *crc_32_tab;*/
 394        uint32_t crc;   /* shift register contents */
 395};
 396
 397#define G1 (*(ptr_to_globals - 1))
 398
 399
 400/* ===========================================================================
 401 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
 402 * (used for the compressed data only)
 403 */
 404static void flush_outbuf(void)
 405{
 406        if (G1.outcnt == 0)
 407                return;
 408
 409        xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
 410        G1.outcnt = 0;
 411}
 412
 413
 414/* ===========================================================================
 415 */
 416/* put_8bit is used for the compressed output */
 417#define put_8bit(c) \
 418do { \
 419        G1.outbuf[G1.outcnt++] = (c); \
 420        if (G1.outcnt == OUTBUFSIZ) flush_outbuf(); \
 421} while (0)
 422
 423/* Output a 16 bit value, lsb first */
 424static void put_16bit(ush w)
 425{
 426        if (G1.outcnt < OUTBUFSIZ - 2) {
 427                G1.outbuf[G1.outcnt++] = w;
 428                G1.outbuf[G1.outcnt++] = w >> 8;
 429        } else {
 430                put_8bit(w);
 431                put_8bit(w >> 8);
 432        }
 433}
 434
 435static void put_32bit(ulg n)
 436{
 437        put_16bit(n);
 438        put_16bit(n >> 16);
 439}
 440
 441/* ===========================================================================
 442 * Run a set of bytes through the crc shift register.  If s is a NULL
 443 * pointer, then initialize the crc shift register contents instead.
 444 * Return the current crc in either case.
 445 */
 446static void updcrc(uch * s, unsigned n)
 447{
 448        G1.crc = crc32_block_endian0(G1.crc, s, n, global_crc32_table /*G1.crc_32_tab*/);
 449}
 450
 451
 452/* ===========================================================================
 453 * Read a new buffer from the current input file, perform end-of-line
 454 * translation, and update the crc and input file size.
 455 * IN assertion: size >= 2 (for end-of-line translation)
 456 */
 457static unsigned file_read(void *buf, unsigned size)
 458{
 459        unsigned len;
 460
 461        Assert(G1.insize == 0, "l_buf not empty");
 462
 463        len = safe_read(ifd, buf, size);
 464        if (len == (unsigned)(-1) || len == 0)
 465                return len;
 466
 467        updcrc(buf, len);
 468        G1.isize += len;
 469        return len;
 470}
 471
 472
 473/* ===========================================================================
 474 * Send a value on a given number of bits.
 475 * IN assertion: length <= 16 and value fits in length bits.
 476 */
 477static void send_bits(int value, int length)
 478{
 479#ifdef DEBUG
 480        Tracev((stderr, " l %2d v %4x ", length, value));
 481        Assert(length > 0 && length <= 15, "invalid length");
 482        G1.bits_sent += length;
 483#endif
 484        /* If not enough room in bi_buf, use (valid) bits from bi_buf and
 485         * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
 486         * unused bits in value.
 487         */
 488        if (G1.bi_valid > (int) BUF_SIZE - length) {
 489                G1.bi_buf |= (value << G1.bi_valid);
 490                put_16bit(G1.bi_buf);
 491                G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
 492                G1.bi_valid += length - BUF_SIZE;
 493        } else {
 494                G1.bi_buf |= value << G1.bi_valid;
 495                G1.bi_valid += length;
 496        }
 497}
 498
 499
 500/* ===========================================================================
 501 * Reverse the first len bits of a code, using straightforward code (a faster
 502 * method would use a table)
 503 * IN assertion: 1 <= len <= 15
 504 */
 505static unsigned bi_reverse(unsigned code, int len)
 506{
 507        unsigned res = 0;
 508
 509        while (1) {
 510                res |= code & 1;
 511                if (--len <= 0) return res;
 512                code >>= 1;
 513                res <<= 1;
 514        }
 515}
 516
 517
 518/* ===========================================================================
 519 * Write out any remaining bits in an incomplete byte.
 520 */
 521static void bi_windup(void)
 522{
 523        if (G1.bi_valid > 8) {
 524                put_16bit(G1.bi_buf);
 525        } else if (G1.bi_valid > 0) {
 526                put_8bit(G1.bi_buf);
 527        }
 528        G1.bi_buf = 0;
 529        G1.bi_valid = 0;
 530#ifdef DEBUG
 531        G1.bits_sent = (G1.bits_sent + 7) & ~7;
 532#endif
 533}
 534
 535
 536/* ===========================================================================
 537 * Copy a stored block to the zip file, storing first the length and its
 538 * one's complement if requested.
 539 */
 540static void copy_block(char *buf, unsigned len, int header)
 541{
 542        bi_windup();            /* align on byte boundary */
 543
 544        if (header) {
 545                put_16bit(len);
 546                put_16bit(~len);
 547#ifdef DEBUG
 548                G1.bits_sent += 2 * 16;
 549#endif
 550        }
 551#ifdef DEBUG
 552        G1.bits_sent += (ulg) len << 3;
 553#endif
 554        while (len--) {
 555                put_8bit(*buf++);
 556        }
 557}
 558
 559
 560/* ===========================================================================
 561 * Fill the window when the lookahead becomes insufficient.
 562 * Updates strstart and lookahead, and sets eofile if end of input file.
 563 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
 564 * OUT assertions: at least one byte has been read, or eofile is set;
 565 *    file reads are performed for at least two bytes (required for the
 566 *    translate_eol option).
 567 */
 568static void fill_window(void)
 569{
 570        unsigned n, m;
 571        unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
 572        /* Amount of free space at the end of the window. */
 573
 574        /* If the window is almost full and there is insufficient lookahead,
 575         * move the upper half to the lower one to make room in the upper half.
 576         */
 577        if (more == (unsigned) -1) {
 578                /* Very unlikely, but possible on 16 bit machine if strstart == 0
 579                 * and lookahead == 1 (input done one byte at time)
 580                 */
 581                more--;
 582        } else if (G1.strstart >= WSIZE + MAX_DIST) {
 583                /* By the IN assertion, the window is not empty so we can't confuse
 584                 * more == 0 with more == 64K on a 16 bit machine.
 585                 */
 586                Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
 587
 588                memcpy(G1.window, G1.window + WSIZE, WSIZE);
 589                G1.match_start -= WSIZE;
 590                G1.strstart -= WSIZE;   /* we now have strstart >= MAX_DIST: */
 591
 592                G1.block_start -= WSIZE;
 593
 594                for (n = 0; n < HASH_SIZE; n++) {
 595                        m = head[n];
 596                        head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
 597                }
 598                for (n = 0; n < WSIZE; n++) {
 599                        m = G1.prev[n];
 600                        G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
 601                        /* If n is not on any hash chain, prev[n] is garbage but
 602                         * its value will never be used.
 603                         */
 604                }
 605                more += WSIZE;
 606        }
 607        /* At this point, more >= 2 */
 608        if (!G1.eofile) {
 609                n = file_read(G1.window + G1.strstart + G1.lookahead, more);
 610                if (n == 0 || n == (unsigned) -1) {
 611                        G1.eofile = 1;
 612                } else {
 613                        G1.lookahead += n;
 614                }
 615        }
 616}
 617
 618
 619/* ===========================================================================
 620 * Set match_start to the longest match starting at the given string and
 621 * return its length. Matches shorter or equal to prev_length are discarded,
 622 * in which case the result is equal to prev_length and match_start is
 623 * garbage.
 624 * IN assertions: cur_match is the head of the hash chain for the current
 625 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 626 */
 627
 628/* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
 629 * match.s. The code is functionally equivalent, so you can use the C version
 630 * if desired.
 631 */
 632static int longest_match(IPos cur_match)
 633{
 634        unsigned chain_length = max_chain_length;       /* max hash chain length */
 635        uch *scan = G1.window + G1.strstart;    /* current string */
 636        uch *match;     /* matched string */
 637        int len;        /* length of current match */
 638        int best_len = G1.prev_length;  /* best match length so far */
 639        IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
 640        /* Stop when cur_match becomes <= limit. To simplify the code,
 641         * we prevent matches with the string of window index 0.
 642         */
 643
 644/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 645 * It is easy to get rid of this optimization if necessary.
 646 */
 647#if HASH_BITS < 8 || MAX_MATCH != 258
 648#  error Code too clever
 649#endif
 650        uch *strend = G1.window + G1.strstart + MAX_MATCH;
 651        uch scan_end1 = scan[best_len - 1];
 652        uch scan_end = scan[best_len];
 653
 654        /* Do not waste too much time if we already have a good match: */
 655        if (G1.prev_length >= good_match) {
 656                chain_length >>= 2;
 657        }
 658        Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
 659
 660        do {
 661                Assert(cur_match < G1.strstart, "no future");
 662                match = G1.window + cur_match;
 663
 664                /* Skip to next match if the match length cannot increase
 665                 * or if the match length is less than 2:
 666                 */
 667                if (match[best_len] != scan_end
 668                 || match[best_len - 1] != scan_end1
 669                 || *match != *scan || *++match != scan[1]
 670                ) {
 671                        continue;
 672                }
 673
 674                /* The check at best_len-1 can be removed because it will be made
 675                 * again later. (This heuristic is not always a win.)
 676                 * It is not necessary to compare scan[2] and match[2] since they
 677                 * are always equal when the other bytes match, given that
 678                 * the hash keys are equal and that HASH_BITS >= 8.
 679                 */
 680                scan += 2, match++;
 681
 682                /* We check for insufficient lookahead only every 8th comparison;
 683                 * the 256th check will be made at strstart+258.
 684                 */
 685                do {
 686                } while (*++scan == *++match && *++scan == *++match &&
 687                                 *++scan == *++match && *++scan == *++match &&
 688                                 *++scan == *++match && *++scan == *++match &&
 689                                 *++scan == *++match && *++scan == *++match && scan < strend);
 690
 691                len = MAX_MATCH - (int) (strend - scan);
 692                scan = strend - MAX_MATCH;
 693
 694                if (len > best_len) {
 695                        G1.match_start = cur_match;
 696                        best_len = len;
 697                        if (len >= nice_match)
 698                                break;
 699                        scan_end1 = scan[best_len - 1];
 700                        scan_end = scan[best_len];
 701                }
 702        } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
 703                         && --chain_length != 0);
 704
 705        return best_len;
 706}
 707
 708
 709#ifdef DEBUG
 710/* ===========================================================================
 711 * Check that the match at match_start is indeed a match.
 712 */
 713static void check_match(IPos start, IPos match, int length)
 714{
 715        /* check that the match is indeed a match */
 716        if (memcmp(G1.window + match, G1.window + start, length) != 0) {
 717                bb_error_msg(" start %d, match %d, length %d", start, match, length);
 718                bb_error_msg("invalid match");
 719        }
 720        if (verbose > 1) {
 721                bb_error_msg("\\[%d,%d]", start - match, length);
 722                do {
 723                        bb_putchar_stderr(G1.window[start++]);
 724                } while (--length != 0);
 725        }
 726}
 727#else
 728#  define check_match(start, match, length) ((void)0)
 729#endif
 730
 731
 732/* trees.c -- output deflated data using Huffman coding
 733 * Copyright (C) 1992-1993 Jean-loup Gailly
 734 * This is free software; you can redistribute it and/or modify it under the
 735 * terms of the GNU General Public License, see the file COPYING.
 736 */
 737
 738/*  PURPOSE
 739 *      Encode various sets of source values using variable-length
 740 *      binary code trees.
 741 *
 742 *  DISCUSSION
 743 *      The PKZIP "deflation" process uses several Huffman trees. The more
 744 *      common source values are represented by shorter bit sequences.
 745 *
 746 *      Each code tree is stored in the ZIP file in a compressed form
 747 *      which is itself a Huffman encoding of the lengths of
 748 *      all the code strings (in ascending order by source values).
 749 *      The actual code strings are reconstructed from the lengths in
 750 *      the UNZIP process, as described in the "application note"
 751 *      (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
 752 *
 753 *  REFERENCES
 754 *      Lynch, Thomas J.
 755 *          Data Compression:  Techniques and Applications, pp. 53-55.
 756 *          Lifetime Learning Publications, 1985.  ISBN 0-534-03418-7.
 757 *
 758 *      Storer, James A.
 759 *          Data Compression:  Methods and Theory, pp. 49-50.
 760 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
 761 *
 762 *      Sedgewick, R.
 763 *          Algorithms, p290.
 764 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
 765 *
 766 *  INTERFACE
 767 *      void ct_init()
 768 *          Allocate the match buffer, initialize the various tables [and save
 769 *          the location of the internal file attribute (ascii/binary) and
 770 *          method (DEFLATE/STORE) -- deleted in bbox]
 771 *
 772 *      void ct_tally(int dist, int lc);
 773 *          Save the match info and tally the frequency counts.
 774 *
 775 *      ulg flush_block(char *buf, ulg stored_len, int eof)
 776 *          Determine the best encoding for the current block: dynamic trees,
 777 *          static trees or store, and output the encoded block to the zip
 778 *          file. Returns the total compressed length for the file so far.
 779 */
 780
 781#define MAX_BITS 15
 782/* All codes must not exceed MAX_BITS bits */
 783
 784#define MAX_BL_BITS 7
 785/* Bit length codes must not exceed MAX_BL_BITS bits */
 786
 787#define LENGTH_CODES 29
 788/* number of length codes, not counting the special END_BLOCK code */
 789
 790#define LITERALS  256
 791/* number of literal bytes 0..255 */
 792
 793#define END_BLOCK 256
 794/* end of block literal code */
 795
 796#define L_CODES (LITERALS+1+LENGTH_CODES)
 797/* number of Literal or Length codes, including the END_BLOCK code */
 798
 799#define D_CODES   30
 800/* number of distance codes */
 801
 802#define BL_CODES  19
 803/* number of codes used to transfer the bit lengths */
 804
 805/* extra bits for each length code */
 806static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
 807        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
 808        4, 4, 5, 5, 5, 5, 0
 809};
 810
 811/* extra bits for each distance code */
 812static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
 813        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
 814        10, 10, 11, 11, 12, 12, 13, 13
 815};
 816
 817/* extra bits for each bit length code */
 818static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
 819        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
 820
 821/* number of codes at each bit length for an optimal tree */
 822static const uint8_t bl_order[BL_CODES] ALIGN1 = {
 823        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
 824
 825#define STORED_BLOCK 0
 826#define STATIC_TREES 1
 827#define DYN_TREES    2
 828/* The three kinds of block type */
 829
 830#ifndef LIT_BUFSIZE
 831#  ifdef SMALL_MEM
 832#    define LIT_BUFSIZE  0x2000
 833#  else
 834#  ifdef MEDIUM_MEM
 835#    define LIT_BUFSIZE  0x4000
 836#  else
 837#    define LIT_BUFSIZE  0x8000
 838#  endif
 839#  endif
 840#endif
 841#ifndef DIST_BUFSIZE
 842#  define DIST_BUFSIZE  LIT_BUFSIZE
 843#endif
 844/* Sizes of match buffers for literals/lengths and distances.  There are
 845 * 4 reasons for limiting LIT_BUFSIZE to 64K:
 846 *   - frequencies can be kept in 16 bit counters
 847 *   - if compression is not successful for the first block, all input data is
 848 *     still in the window so we can still emit a stored block even when input
 849 *     comes from standard input.  (This can also be done for all blocks if
 850 *     LIT_BUFSIZE is not greater than 32K.)
 851 *   - if compression is not successful for a file smaller than 64K, we can
 852 *     even emit a stored file instead of a stored block (saving 5 bytes).
 853 *   - creating new Huffman trees less frequently may not provide fast
 854 *     adaptation to changes in the input data statistics. (Take for
 855 *     example a binary file with poorly compressible code followed by
 856 *     a highly compressible string table.) Smaller buffer sizes give
 857 *     fast adaptation but have of course the overhead of transmitting trees
 858 *     more frequently.
 859 *   - I can't count above 4
 860 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
 861 * memory at the expense of compression). Some optimizations would be possible
 862 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
 863 */
 864#define REP_3_6      16
 865/* repeat previous bit length 3-6 times (2 bits of repeat count) */
 866#define REPZ_3_10    17
 867/* repeat a zero length 3-10 times  (3 bits of repeat count) */
 868#define REPZ_11_138  18
 869/* repeat a zero length 11-138 times  (7 bits of repeat count) */
 870
 871/* ===========================================================================
 872*/
 873/* Data structure describing a single value and its code string. */
 874typedef struct ct_data {
 875        union {
 876                ush freq;               /* frequency count */
 877                ush code;               /* bit string */
 878        } fc;
 879        union {
 880                ush dad;                /* father node in Huffman tree */
 881                ush len;                /* length of bit string */
 882        } dl;
 883} ct_data;
 884
 885#define Freq fc.freq
 886#define Code fc.code
 887#define Dad  dl.dad
 888#define Len  dl.len
 889
 890#define HEAP_SIZE (2*L_CODES + 1)
 891/* maximum heap size */
 892
 893typedef struct tree_desc {
 894        ct_data *dyn_tree;      /* the dynamic tree */
 895        ct_data *static_tree;   /* corresponding static tree or NULL */
 896        const uint8_t *extra_bits;      /* extra bits for each code or NULL */
 897        int extra_base;         /* base index for extra_bits */
 898        int elems;                      /* max number of elements in the tree */
 899        int max_length;         /* max bit length for the codes */
 900        int max_code;           /* largest code with non zero frequency */
 901} tree_desc;
 902
 903struct globals2 {
 904
 905        ush heap[HEAP_SIZE];     /* heap used to build the Huffman trees */
 906        int heap_len;            /* number of elements in the heap */
 907        int heap_max;            /* element of largest frequency */
 908
 909/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
 910 * The same heap array is used to build all trees.
 911 */
 912
 913        ct_data dyn_ltree[HEAP_SIZE];   /* literal and length tree */
 914        ct_data dyn_dtree[2 * D_CODES + 1];     /* distance tree */
 915
 916        ct_data static_ltree[L_CODES + 2];
 917
 918/* The static literal tree. Since the bit lengths are imposed, there is no
 919 * need for the L_CODES extra codes used during heap construction. However
 920 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
 921 * below).
 922 */
 923
 924        ct_data static_dtree[D_CODES];
 925
 926/* The static distance tree. (Actually a trivial tree since all codes use
 927 * 5 bits.)
 928 */
 929
 930        ct_data bl_tree[2 * BL_CODES + 1];
 931
 932/* Huffman tree for the bit lengths */
 933
 934        tree_desc l_desc;
 935        tree_desc d_desc;
 936        tree_desc bl_desc;
 937
 938        ush bl_count[MAX_BITS + 1];
 939
 940/* The lengths of the bit length codes are sent in order of decreasing
 941 * probability, to avoid transmitting the lengths for unused bit length codes.
 942 */
 943
 944        uch depth[2 * L_CODES + 1];
 945
 946/* Depth of each subtree used as tie breaker for trees of equal frequency */
 947
 948        uch length_code[MAX_MATCH - MIN_MATCH + 1];
 949
 950/* length code for each normalized match length (0 == MIN_MATCH) */
 951
 952        uch dist_code[512];
 953
 954/* distance codes. The first 256 values correspond to the distances
 955 * 3 .. 258, the last 256 values correspond to the top 8 bits of
 956 * the 15 bit distances.
 957 */
 958
 959        int base_length[LENGTH_CODES];
 960
 961/* First normalized length for each code (0 = MIN_MATCH) */
 962
 963        int base_dist[D_CODES];
 964
 965/* First normalized distance for each code (0 = distance of 1) */
 966
 967        uch flag_buf[LIT_BUFSIZE / 8];
 968
 969/* flag_buf is a bit array distinguishing literals from lengths in
 970 * l_buf, thus indicating the presence or absence of a distance.
 971 */
 972
 973        unsigned last_lit;       /* running index in l_buf */
 974        unsigned last_dist;      /* running index in d_buf */
 975        unsigned last_flags;     /* running index in flag_buf */
 976        uch flags;               /* current flags not yet saved in flag_buf */
 977        uch flag_bit;            /* current bit used in flags */
 978
 979/* bits are filled in flags starting at bit 0 (least significant).
 980 * Note: these flags are overkill in the current code since we don't
 981 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
 982 */
 983
 984        ulg opt_len;             /* bit length of current block with optimal trees */
 985        ulg static_len;          /* bit length of current block with static trees */
 986
 987        ulg compressed_len;      /* total bit length of compressed file */
 988};
 989
 990#define G2ptr ((struct globals2*)(ptr_to_globals))
 991#define G2 (*G2ptr)
 992
 993
 994/* ===========================================================================
 995 */
 996static void gen_codes(ct_data * tree, int max_code);
 997static void build_tree(tree_desc * desc);
 998static void scan_tree(ct_data * tree, int max_code);
 999static void send_tree(ct_data * tree, int max_code);
1000static int build_bl_tree(void);
1001static void send_all_trees(int lcodes, int dcodes, int blcodes);
1002static void compress_block(ct_data * ltree, ct_data * dtree);
1003
1004
1005#ifndef DEBUG
1006/* Send a code of the given tree. c and tree must not have side effects */
1007#  define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
1008#else
1009#  define SEND_CODE(c, tree) \
1010{ \
1011        if (verbose > 1) bb_error_msg("\ncd %3d ", (c)); \
1012        send_bits(tree[c].Code, tree[c].Len); \
1013}
1014#endif
1015
1016#define D_CODE(dist) \
1017        ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
1018/* Mapping from a distance to a distance code. dist is the distance - 1 and
1019 * must not have side effects. dist_code[256] and dist_code[257] are never
1020 * used.
1021 * The arguments must not have side effects.
1022 */
1023
1024
1025/* ===========================================================================
1026 * Initialize a new block.
1027 */
1028static void init_block(void)
1029{
1030        int n; /* iterates over tree elements */
1031
1032        /* Initialize the trees. */
1033        for (n = 0; n < L_CODES; n++)
1034                G2.dyn_ltree[n].Freq = 0;
1035        for (n = 0; n < D_CODES; n++)
1036                G2.dyn_dtree[n].Freq = 0;
1037        for (n = 0; n < BL_CODES; n++)
1038                G2.bl_tree[n].Freq = 0;
1039
1040        G2.dyn_ltree[END_BLOCK].Freq = 1;
1041        G2.opt_len = G2.static_len = 0;
1042        G2.last_lit = G2.last_dist = G2.last_flags = 0;
1043        G2.flags = 0;
1044        G2.flag_bit = 1;
1045}
1046
1047
1048/* ===========================================================================
1049 * Restore the heap property by moving down the tree starting at node k,
1050 * exchanging a node with the smallest of its two sons if necessary, stopping
1051 * when the heap property is re-established (each father smaller than its
1052 * two sons).
1053 */
1054
1055/* Compares to subtrees, using the tree depth as tie breaker when
1056 * the subtrees have equal frequency. This minimizes the worst case length. */
1057#define SMALLER(tree, n, m) \
1058        (tree[n].Freq < tree[m].Freq \
1059        || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1060
1061static void pqdownheap(ct_data * tree, int k)
1062{
1063        int v = G2.heap[k];
1064        int j = k << 1;         /* left son of k */
1065
1066        while (j <= G2.heap_len) {
1067                /* Set j to the smallest of the two sons: */
1068                if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
1069                        j++;
1070
1071                /* Exit if v is smaller than both sons */
1072                if (SMALLER(tree, v, G2.heap[j]))
1073                        break;
1074
1075                /* Exchange v with the smallest son */
1076                G2.heap[k] = G2.heap[j];
1077                k = j;
1078
1079                /* And continue down the tree, setting j to the left son of k */
1080                j <<= 1;
1081        }
1082        G2.heap[k] = v;
1083}
1084
1085
1086/* ===========================================================================
1087 * Compute the optimal bit lengths for a tree and update the total bit length
1088 * for the current block.
1089 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1090 *    above are the tree nodes sorted by increasing frequency.
1091 * OUT assertions: the field len is set to the optimal bit length, the
1092 *     array bl_count contains the frequencies for each bit length.
1093 *     The length opt_len is updated; static_len is also updated if stree is
1094 *     not null.
1095 */
1096static void gen_bitlen(tree_desc * desc)
1097{
1098        ct_data *tree = desc->dyn_tree;
1099        const uint8_t *extra = desc->extra_bits;
1100        int base = desc->extra_base;
1101        int max_code = desc->max_code;
1102        int max_length = desc->max_length;
1103        ct_data *stree = desc->static_tree;
1104        int h;                          /* heap index */
1105        int n, m;                       /* iterate over the tree elements */
1106        int bits;                       /* bit length */
1107        int xbits;                      /* extra bits */
1108        ush f;                          /* frequency */
1109        int overflow = 0;       /* number of elements with bit length too large */
1110
1111        for (bits = 0; bits <= MAX_BITS; bits++)
1112                G2.bl_count[bits] = 0;
1113
1114        /* In a first pass, compute the optimal bit lengths (which may
1115         * overflow in the case of the bit length tree).
1116         */
1117        tree[G2.heap[G2.heap_max]].Len = 0;     /* root of the heap */
1118
1119        for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1120                n = G2.heap[h];
1121                bits = tree[tree[n].Dad].Len + 1;
1122                if (bits > max_length) {
1123                        bits = max_length;
1124                        overflow++;
1125                }
1126                tree[n].Len = (ush) bits;
1127                /* We overwrite tree[n].Dad which is no longer needed */
1128
1129                if (n > max_code)
1130                        continue;       /* not a leaf node */
1131
1132                G2.bl_count[bits]++;
1133                xbits = 0;
1134                if (n >= base)
1135                        xbits = extra[n - base];
1136                f = tree[n].Freq;
1137                G2.opt_len += (ulg) f *(bits + xbits);
1138
1139                if (stree)
1140                        G2.static_len += (ulg) f * (stree[n].Len + xbits);
1141        }
1142        if (overflow == 0)
1143                return;
1144
1145        Trace((stderr, "\nbit length overflow\n"));
1146        /* This happens for example on obj2 and pic of the Calgary corpus */
1147
1148        /* Find the first bit length which could increase: */
1149        do {
1150                bits = max_length - 1;
1151                while (G2.bl_count[bits] == 0)
1152                        bits--;
1153                G2.bl_count[bits]--;    /* move one leaf down the tree */
1154                G2.bl_count[bits + 1] += 2;     /* move one overflow item as its brother */
1155                G2.bl_count[max_length]--;
1156                /* The brother of the overflow item also moves one step up,
1157                 * but this does not affect bl_count[max_length]
1158                 */
1159                overflow -= 2;
1160        } while (overflow > 0);
1161
1162        /* Now recompute all bit lengths, scanning in increasing frequency.
1163         * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1164         * lengths instead of fixing only the wrong ones. This idea is taken
1165         * from 'ar' written by Haruhiko Okumura.)
1166         */
1167        for (bits = max_length; bits != 0; bits--) {
1168                n = G2.bl_count[bits];
1169                while (n != 0) {
1170                        m = G2.heap[--h];
1171                        if (m > max_code)
1172                                continue;
1173                        if (tree[m].Len != (unsigned) bits) {
1174                                Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1175                                G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1176                                tree[m].Len = bits;
1177                        }
1178                        n--;
1179                }
1180        }
1181}
1182
1183
1184/* ===========================================================================
1185 * Generate the codes for a given tree and bit counts (which need not be
1186 * optimal).
1187 * IN assertion: the array bl_count contains the bit length statistics for
1188 * the given tree and the field len is set for all tree elements.
1189 * OUT assertion: the field code is set for all tree elements of non
1190 *     zero code length.
1191 */
1192static void gen_codes(ct_data * tree, int max_code)
1193{
1194        ush next_code[MAX_BITS + 1];    /* next code value for each bit length */
1195        ush code = 0;           /* running code value */
1196        int bits;                       /* bit index */
1197        int n;                          /* code index */
1198
1199        /* The distribution counts are first used to generate the code values
1200         * without bit reversal.
1201         */
1202        for (bits = 1; bits <= MAX_BITS; bits++) {
1203                next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
1204        }
1205        /* Check that the bit counts in bl_count are consistent. The last code
1206         * must be all ones.
1207         */
1208        Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
1209                        "inconsistent bit counts");
1210        Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1211
1212        for (n = 0; n <= max_code; n++) {
1213                int len = tree[n].Len;
1214
1215                if (len == 0)
1216                        continue;
1217                /* Now reverse the bits */
1218                tree[n].Code = bi_reverse(next_code[len]++, len);
1219
1220                Tracec(tree != G2.static_ltree,
1221                           (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
1222                                (n > ' ' ? n : ' '), len, tree[n].Code,
1223                                next_code[len] - 1));
1224        }
1225}
1226
1227
1228/* ===========================================================================
1229 * Construct one Huffman tree and assigns the code bit strings and lengths.
1230 * Update the total bit length for the current block.
1231 * IN assertion: the field freq is set for all tree elements.
1232 * OUT assertions: the fields len and code are set to the optimal bit length
1233 *     and corresponding code. The length opt_len is updated; static_len is
1234 *     also updated if stree is not null. The field max_code is set.
1235 */
1236
1237/* Remove the smallest element from the heap and recreate the heap with
1238 * one less element. Updates heap and heap_len. */
1239
1240#define SMALLEST 1
1241/* Index within the heap array of least frequent node in the Huffman tree */
1242
1243#define PQREMOVE(tree, top) \
1244do { \
1245        top = G2.heap[SMALLEST]; \
1246        G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1247        pqdownheap(tree, SMALLEST); \
1248} while (0)
1249
1250static void build_tree(tree_desc * desc)
1251{
1252        ct_data *tree = desc->dyn_tree;
1253        ct_data *stree = desc->static_tree;
1254        int elems = desc->elems;
1255        int n, m;                       /* iterate over heap elements */
1256        int max_code = -1;      /* largest code with non zero frequency */
1257        int node = elems;       /* next internal node of the tree */
1258
1259        /* Construct the initial heap, with least frequent element in
1260         * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1261         * heap[0] is not used.
1262         */
1263        G2.heap_len = 0;
1264        G2.heap_max = HEAP_SIZE;
1265
1266        for (n = 0; n < elems; n++) {
1267                if (tree[n].Freq != 0) {
1268                        G2.heap[++G2.heap_len] = max_code = n;
1269                        G2.depth[n] = 0;
1270                } else {
1271                        tree[n].Len = 0;
1272                }
1273        }
1274
1275        /* The pkzip format requires that at least one distance code exists,
1276         * and that at least one bit should be sent even if there is only one
1277         * possible code. So to avoid special checks later on we force at least
1278         * two codes of non zero frequency.
1279         */
1280        while (G2.heap_len < 2) {
1281                int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
1282
1283                tree[new].Freq = 1;
1284                G2.depth[new] = 0;
1285                G2.opt_len--;
1286                if (stree)
1287                        G2.static_len -= stree[new].Len;
1288                /* new is 0 or 1 so it does not have extra bits */
1289        }
1290        desc->max_code = max_code;
1291
1292        /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1293         * establish sub-heaps of increasing lengths:
1294         */
1295        for (n = G2.heap_len / 2; n >= 1; n--)
1296                pqdownheap(tree, n);
1297
1298        /* Construct the Huffman tree by repeatedly combining the least two
1299         * frequent nodes.
1300         */
1301        do {
1302                PQREMOVE(tree, n);      /* n = node of least frequency */
1303                m = G2.heap[SMALLEST];  /* m = node of next least frequency */
1304
1305                G2.heap[--G2.heap_max] = n;     /* keep the nodes sorted by frequency */
1306                G2.heap[--G2.heap_max] = m;
1307
1308                /* Create a new node father of n and m */
1309                tree[node].Freq = tree[n].Freq + tree[m].Freq;
1310                G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
1311                tree[n].Dad = tree[m].Dad = (ush) node;
1312#ifdef DUMP_BL_TREE
1313                if (tree == G2.bl_tree) {
1314                        bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1315                                        node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1316                }
1317#endif
1318                /* and insert the new node in the heap */
1319                G2.heap[SMALLEST] = node++;
1320                pqdownheap(tree, SMALLEST);
1321
1322        } while (G2.heap_len >= 2);
1323
1324        G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
1325
1326        /* At this point, the fields freq and dad are set. We can now
1327         * generate the bit lengths.
1328         */
1329        gen_bitlen((tree_desc *) desc);
1330
1331        /* The field len is now set, we can generate the bit codes */
1332        gen_codes((ct_data *) tree, max_code);
1333}
1334
1335
1336/* ===========================================================================
1337 * Scan a literal or distance tree to determine the frequencies of the codes
1338 * in the bit length tree. Updates opt_len to take into account the repeat
1339 * counts. (The contribution of the bit length codes will be added later
1340 * during the construction of bl_tree.)
1341 */
1342static void scan_tree(ct_data * tree, int max_code)
1343{
1344        int n;                          /* iterates over all tree elements */
1345        int prevlen = -1;       /* last emitted length */
1346        int curlen;                     /* length of current code */
1347        int nextlen = tree[0].Len;      /* length of next code */
1348        int count = 0;          /* repeat count of the current code */
1349        int max_count = 7;      /* max repeat count */
1350        int min_count = 4;      /* min repeat count */
1351
1352        if (nextlen == 0) {
1353                max_count = 138;
1354                min_count = 3;
1355        }
1356        tree[max_code + 1].Len = 0xffff; /* guard */
1357
1358        for (n = 0; n <= max_code; n++) {
1359                curlen = nextlen;
1360                nextlen = tree[n + 1].Len;
1361                if (++count < max_count && curlen == nextlen)
1362                        continue;
1363
1364                if (count < min_count) {
1365                        G2.bl_tree[curlen].Freq += count;
1366                } else if (curlen != 0) {
1367                        if (curlen != prevlen)
1368                                G2.bl_tree[curlen].Freq++;
1369                        G2.bl_tree[REP_3_6].Freq++;
1370                } else if (count <= 10) {
1371                        G2.bl_tree[REPZ_3_10].Freq++;
1372                } else {
1373                        G2.bl_tree[REPZ_11_138].Freq++;
1374                }
1375                count = 0;
1376                prevlen = curlen;
1377
1378                max_count = 7;
1379                min_count = 4;
1380                if (nextlen == 0) {
1381                        max_count = 138;
1382                        min_count = 3;
1383                } else if (curlen == nextlen) {
1384                        max_count = 6;
1385                        min_count = 3;
1386                }
1387        }
1388}
1389
1390
1391/* ===========================================================================
1392 * Send a literal or distance tree in compressed form, using the codes in
1393 * bl_tree.
1394 */
1395static void send_tree(ct_data * tree, int max_code)
1396{
1397        int n;                          /* iterates over all tree elements */
1398        int prevlen = -1;       /* last emitted length */
1399        int curlen;                     /* length of current code */
1400        int nextlen = tree[0].Len;      /* length of next code */
1401        int count = 0;          /* repeat count of the current code */
1402        int max_count = 7;      /* max repeat count */
1403        int min_count = 4;      /* min repeat count */
1404
1405/* tree[max_code+1].Len = -1; *//* guard already set */
1406        if (nextlen == 0)
1407                max_count = 138, min_count = 3;
1408
1409        for (n = 0; n <= max_code; n++) {
1410                curlen = nextlen;
1411                nextlen = tree[n + 1].Len;
1412                if (++count < max_count && curlen == nextlen) {
1413                        continue;
1414                } else if (count < min_count) {
1415                        do {
1416                                SEND_CODE(curlen, G2.bl_tree);
1417                        } while (--count);
1418                } else if (curlen != 0) {
1419                        if (curlen != prevlen) {
1420                                SEND_CODE(curlen, G2.bl_tree);
1421                                count--;
1422                        }
1423                        Assert(count >= 3 && count <= 6, " 3_6?");
1424                        SEND_CODE(REP_3_6, G2.bl_tree);
1425                        send_bits(count - 3, 2);
1426                } else if (count <= 10) {
1427                        SEND_CODE(REPZ_3_10, G2.bl_tree);
1428                        send_bits(count - 3, 3);
1429                } else {
1430                        SEND_CODE(REPZ_11_138, G2.bl_tree);
1431                        send_bits(count - 11, 7);
1432                }
1433                count = 0;
1434                prevlen = curlen;
1435                if (nextlen == 0) {
1436                        max_count = 138;
1437                        min_count = 3;
1438                } else if (curlen == nextlen) {
1439                        max_count = 6;
1440                        min_count = 3;
1441                } else {
1442                        max_count = 7;
1443                        min_count = 4;
1444                }
1445        }
1446}
1447
1448
1449/* ===========================================================================
1450 * Construct the Huffman tree for the bit lengths and return the index in
1451 * bl_order of the last bit length code to send.
1452 */
1453static int build_bl_tree(void)
1454{
1455        int max_blindex;        /* index of last bit length code of non zero freq */
1456
1457        /* Determine the bit length frequencies for literal and distance trees */
1458        scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1459        scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
1460
1461        /* Build the bit length tree: */
1462        build_tree(&G2.bl_desc);
1463        /* opt_len now includes the length of the tree representations, except
1464         * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1465         */
1466
1467        /* Determine the number of bit length codes to send. The pkzip format
1468         * requires that at least 4 bit length codes be sent. (appnote.txt says
1469         * 3 but the actual value used is 4.)
1470         */
1471        for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
1472                if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
1473                        break;
1474        }
1475        /* Update opt_len to include the bit length tree and counts */
1476        G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1477        Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1478
1479        return max_blindex;
1480}
1481
1482
1483/* ===========================================================================
1484 * Send the header for a block using dynamic Huffman trees: the counts, the
1485 * lengths of the bit length codes, the literal tree and the distance tree.
1486 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1487 */
1488static void send_all_trees(int lcodes, int dcodes, int blcodes)
1489{
1490        int rank;                       /* index in bl_order */
1491
1492        Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1493        Assert(lcodes <= L_CODES && dcodes <= D_CODES
1494                   && blcodes <= BL_CODES, "too many codes");
1495        Tracev((stderr, "\nbl counts: "));
1496        send_bits(lcodes - 257, 5);     /* not +255 as stated in appnote.txt */
1497        send_bits(dcodes - 1, 5);
1498        send_bits(blcodes - 4, 4);      /* not -3 as stated in appnote.txt */
1499        for (rank = 0; rank < blcodes; rank++) {
1500                Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1501                send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
1502        }
1503        Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
1504
1505        send_tree((ct_data *) G2.dyn_ltree, lcodes - 1);        /* send the literal tree */
1506        Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
1507
1508        send_tree((ct_data *) G2.dyn_dtree, dcodes - 1);        /* send the distance tree */
1509        Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
1510}
1511
1512
1513/* ===========================================================================
1514 * Save the match info and tally the frequency counts. Return true if
1515 * the current block must be flushed.
1516 */
1517static int ct_tally(int dist, int lc)
1518{
1519        G1.l_buf[G2.last_lit++] = lc;
1520        if (dist == 0) {
1521                /* lc is the unmatched char */
1522                G2.dyn_ltree[lc].Freq++;
1523        } else {
1524                /* Here, lc is the match length - MIN_MATCH */
1525                dist--;                 /* dist = match distance - 1 */
1526                Assert((ush) dist < (ush) MAX_DIST
1527                 && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1528                 && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1529                );
1530
1531                G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1532                G2.dyn_dtree[D_CODE(dist)].Freq++;
1533
1534                G1.d_buf[G2.last_dist++] = dist;
1535                G2.flags |= G2.flag_bit;
1536        }
1537        G2.flag_bit <<= 1;
1538
1539        /* Output the flags if they fill a byte: */
1540        if ((G2.last_lit & 7) == 0) {
1541                G2.flag_buf[G2.last_flags++] = G2.flags;
1542                G2.flags = 0;
1543                G2.flag_bit = 1;
1544        }
1545        /* Try to guess if it is profitable to stop the current block here */
1546        if ((G2.last_lit & 0xfff) == 0) {
1547                /* Compute an upper bound for the compressed length */
1548                ulg out_length = G2.last_lit * 8L;
1549                ulg in_length = (ulg) G1.strstart - G1.block_start;
1550                int dcode;
1551
1552                for (dcode = 0; dcode < D_CODES; dcode++) {
1553                        out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1554                }
1555                out_length >>= 3;
1556                Trace((stderr,
1557                                "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1558                                G2.last_lit, G2.last_dist, in_length, out_length,
1559                                100L - out_length * 100L / in_length));
1560                if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1561                        return 1;
1562        }
1563        return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1564        /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1565         * on 16 bit machines and because stored blocks are restricted to
1566         * 64K-1 bytes.
1567         */
1568}
1569
1570/* ===========================================================================
1571 * Send the block data compressed using the given Huffman trees
1572 */
1573static void compress_block(ct_data * ltree, ct_data * dtree)
1574{
1575        unsigned dist;          /* distance of matched string */
1576        int lc;                 /* match length or unmatched char (if dist == 0) */
1577        unsigned lx = 0;        /* running index in l_buf */
1578        unsigned dx = 0;        /* running index in d_buf */
1579        unsigned fx = 0;        /* running index in flag_buf */
1580        uch flag = 0;           /* current flags */
1581        unsigned code;          /* the code to send */
1582        int extra;              /* number of extra bits to send */
1583
1584        if (G2.last_lit != 0) do {
1585                if ((lx & 7) == 0)
1586                        flag = G2.flag_buf[fx++];
1587                lc = G1.l_buf[lx++];
1588                if ((flag & 1) == 0) {
1589                        SEND_CODE(lc, ltree);   /* send a literal byte */
1590                        Tracecv(lc > ' ', (stderr, " '%c' ", lc));
1591                } else {
1592                        /* Here, lc is the match length - MIN_MATCH */
1593                        code = G2.length_code[lc];
1594                        SEND_CODE(code + LITERALS + 1, ltree);  /* send the length code */
1595                        extra = extra_lbits[code];
1596                        if (extra != 0) {
1597                                lc -= G2.base_length[code];
1598                                send_bits(lc, extra);   /* send the extra length bits */
1599                        }
1600                        dist = G1.d_buf[dx++];
1601                        /* Here, dist is the match distance - 1 */
1602                        code = D_CODE(dist);
1603                        Assert(code < D_CODES, "bad d_code");
1604
1605                        SEND_CODE(code, dtree); /* send the distance code */
1606                        extra = extra_dbits[code];
1607                        if (extra != 0) {
1608                                dist -= G2.base_dist[code];
1609                                send_bits(dist, extra); /* send the extra distance bits */
1610                        }
1611                }                       /* literal or match pair ? */
1612                flag >>= 1;
1613        } while (lx < G2.last_lit);
1614
1615        SEND_CODE(END_BLOCK, ltree);
1616}
1617
1618
1619/* ===========================================================================
1620 * Determine the best encoding for the current block: dynamic trees, static
1621 * trees or store, and output the encoded block to the zip file. This function
1622 * returns the total compressed length for the file so far.
1623 */
1624static ulg flush_block(char *buf, ulg stored_len, int eof)
1625{
1626        ulg opt_lenb, static_lenb;      /* opt_len and static_len in bytes */
1627        int max_blindex;                /* index of last bit length code of non zero freq */
1628
1629        G2.flag_buf[G2.last_flags] = G2.flags;   /* Save the flags for the last 8 items */
1630
1631        /* Construct the literal and distance trees */
1632        build_tree(&G2.l_desc);
1633        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1634
1635        build_tree(&G2.d_desc);
1636        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1637        /* At this point, opt_len and static_len are the total bit lengths of
1638         * the compressed block data, excluding the tree representations.
1639         */
1640
1641        /* Build the bit length tree for the above two trees, and get the index
1642         * in bl_order of the last bit length code to send.
1643         */
1644        max_blindex = build_bl_tree();
1645
1646        /* Determine the best encoding. Compute first the block length in bytes */
1647        opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1648        static_lenb = (G2.static_len + 3 + 7) >> 3;
1649
1650        Trace((stderr,
1651                        "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1652                        opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
1653                        G2.last_lit, G2.last_dist));
1654
1655        if (static_lenb <= opt_lenb)
1656                opt_lenb = static_lenb;
1657
1658        /* If compression failed and this is the first and last block,
1659         * and if the zip file can be seeked (to rewrite the local header),
1660         * the whole file is transformed into a stored file:
1661         */
1662        if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
1663                /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1664                if (buf == NULL)
1665                        bb_error_msg("block vanished");
1666
1667                copy_block(buf, (unsigned) stored_len, 0);      /* without header */
1668                G2.compressed_len = stored_len << 3;
1669
1670        } else if (stored_len + 4 <= opt_lenb && buf != NULL) {
1671                /* 4: two words for the lengths */
1672                /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1673                 * Otherwise we can't have processed more than WSIZE input bytes since
1674                 * the last block flush, because compression would have been
1675                 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1676                 * transform a block into a stored block.
1677                 */
1678                send_bits((STORED_BLOCK << 1) + eof, 3);        /* send block type */
1679                G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
1680                G2.compressed_len += (stored_len + 4) << 3;
1681
1682                copy_block(buf, (unsigned) stored_len, 1);      /* with header */
1683
1684        } else if (static_lenb == opt_lenb) {
1685                send_bits((STATIC_TREES << 1) + eof, 3);
1686                compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1687                G2.compressed_len += 3 + G2.static_len;
1688        } else {
1689                send_bits((DYN_TREES << 1) + eof, 3);
1690                send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
1691                                        max_blindex + 1);
1692                compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1693                G2.compressed_len += 3 + G2.opt_len;
1694        }
1695        Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
1696        init_block();
1697
1698        if (eof) {
1699                bi_windup();
1700                G2.compressed_len += 7; /* align on byte boundary */
1701        }
1702        Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
1703                        G2.compressed_len - 7 * eof));
1704
1705        return G2.compressed_len >> 3;
1706}
1707
1708
1709/* ===========================================================================
1710 * Update a hash value with the given input byte
1711 * IN  assertion: all calls to UPDATE_HASH are made with consecutive
1712 *    input characters, so that a running hash key can be computed from the
1713 *    previous key instead of complete recalculation each time.
1714 */
1715#define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1716
1717
1718/* ===========================================================================
1719 * Same as above, but achieves better compression. We use a lazy
1720 * evaluation for matches: a match is finally adopted only if there is
1721 * no better match at the next window position.
1722 *
1723 * Processes a new input file and return its compressed length. Sets
1724 * the compressed length, crc, deflate flags and internal file
1725 * attributes.
1726 */
1727
1728/* Flush the current block, with given end-of-file flag.
1729 * IN assertion: strstart is set to the end of the current match. */
1730#define FLUSH_BLOCK(eof) \
1731        flush_block( \
1732                G1.block_start >= 0L \
1733                        ? (char*)&G1.window[(unsigned)G1.block_start] \
1734                        : (char*)NULL, \
1735                (ulg)G1.strstart - G1.block_start, \
1736                (eof) \
1737        )
1738
1739/* Insert string s in the dictionary and set match_head to the previous head
1740 * of the hash chain (the most recent string with same hash key). Return
1741 * the previous length of the hash chain.
1742 * IN  assertion: all calls to INSERT_STRING are made with consecutive
1743 *    input characters and the first MIN_MATCH bytes of s are valid
1744 *    (except for the last MIN_MATCH-1 bytes of the input file). */
1745#define INSERT_STRING(s, match_head) \
1746do { \
1747        UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1748        G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1749        head[G1.ins_h] = (s); \
1750} while (0)
1751
1752static ulg deflate(void)
1753{
1754        IPos hash_head;         /* head of hash chain */
1755        IPos prev_match;        /* previous match */
1756        int flush;                      /* set if current block must be flushed */
1757        int match_available = 0;        /* set if previous match exists */
1758        unsigned match_length = MIN_MATCH - 1;  /* length of best match */
1759
1760        /* Process the input block. */
1761        while (G1.lookahead != 0) {
1762                /* Insert the string window[strstart .. strstart+2] in the
1763                 * dictionary, and set hash_head to the head of the hash chain:
1764                 */
1765                INSERT_STRING(G1.strstart, hash_head);
1766
1767                /* Find the longest match, discarding those <= prev_length.
1768                 */
1769                G1.prev_length = match_length;
1770                prev_match = G1.match_start;
1771                match_length = MIN_MATCH - 1;
1772
1773                if (hash_head != 0 && G1.prev_length < max_lazy_match
1774                 && G1.strstart - hash_head <= MAX_DIST
1775                ) {
1776                        /* To simplify the code, we prevent matches with the string
1777                         * of window index 0 (in particular we have to avoid a match
1778                         * of the string with itself at the start of the input file).
1779                         */
1780                        match_length = longest_match(hash_head);
1781                        /* longest_match() sets match_start */
1782                        if (match_length > G1.lookahead)
1783                                match_length = G1.lookahead;
1784
1785                        /* Ignore a length 3 match if it is too distant: */
1786                        if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1787                                /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1788                                 * but we will ignore the current match anyway.
1789                                 */
1790                                match_length--;
1791                        }
1792                }
1793                /* If there was a match at the previous step and the current
1794                 * match is not better, output the previous match:
1795                 */
1796                if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1797                        check_match(G1.strstart - 1, prev_match, G1.prev_length);
1798                        flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1799
1800                        /* Insert in hash table all strings up to the end of the match.
1801                         * strstart-1 and strstart are already inserted.
1802                         */
1803                        G1.lookahead -= G1.prev_length - 1;
1804                        G1.prev_length -= 2;
1805                        do {
1806                                G1.strstart++;
1807                                INSERT_STRING(G1.strstart, hash_head);
1808                                /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1809                                 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1810                                 * these bytes are garbage, but it does not matter since the
1811                                 * next lookahead bytes will always be emitted as literals.
1812                                 */
1813                        } while (--G1.prev_length != 0);
1814                        match_available = 0;
1815                        match_length = MIN_MATCH - 1;
1816                        G1.strstart++;
1817                        if (flush) {
1818                                FLUSH_BLOCK(0);
1819                                G1.block_start = G1.strstart;
1820                        }
1821                } else if (match_available) {
1822                        /* If there was no match at the previous position, output a
1823                         * single literal. If there was a match but the current match
1824                         * is longer, truncate the previous match to a single literal.
1825                         */
1826                        Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1827                        if (ct_tally(0, G1.window[G1.strstart - 1])) {
1828                                FLUSH_BLOCK(0);
1829                                G1.block_start = G1.strstart;
1830                        }
1831                        G1.strstart++;
1832                        G1.lookahead--;
1833                } else {
1834                        /* There is no previous match to compare with, wait for
1835                         * the next step to decide.
1836                         */
1837                        match_available = 1;
1838                        G1.strstart++;
1839                        G1.lookahead--;
1840                }
1841                Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
1842
1843                /* Make sure that we always have enough lookahead, except
1844                 * at the end of the input file. We need MAX_MATCH bytes
1845                 * for the next match, plus MIN_MATCH bytes to insert the
1846                 * string following the next match.
1847                 */
1848                while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1849                        fill_window();
1850        }
1851        if (match_available)
1852                ct_tally(0, G1.window[G1.strstart - 1]);
1853
1854        return FLUSH_BLOCK(1);  /* eof */
1855}
1856
1857
1858/* ===========================================================================
1859 * Initialize the bit string routines.
1860 */
1861static void bi_init(void)
1862{
1863        G1.bi_buf = 0;
1864        G1.bi_valid = 0;
1865#ifdef DEBUG
1866        G1.bits_sent = 0L;
1867#endif
1868}
1869
1870
1871/* ===========================================================================
1872 * Initialize the "longest match" routines for a new file
1873 */
1874static void lm_init(ush * flagsp)
1875{
1876        unsigned j;
1877
1878        /* Initialize the hash table. */
1879        memset(head, 0, HASH_SIZE * sizeof(*head));
1880        /* prev will be initialized on the fly */
1881
1882        /* speed options for the general purpose bit flag */
1883        *flagsp |= 2;   /* FAST 4, SLOW 2 */
1884        /* ??? reduce max_chain_length for binary files */
1885
1886        G1.strstart = 0;
1887        G1.block_start = 0L;
1888
1889        G1.lookahead = file_read(G1.window,
1890                        sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1891
1892        if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1893                G1.eofile = 1;
1894                G1.lookahead = 0;
1895                return;
1896        }
1897        G1.eofile = 0;
1898        /* Make sure that we always have enough lookahead. This is important
1899         * if input comes from a device such as a tty.
1900         */
1901        while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1902                fill_window();
1903
1904        G1.ins_h = 0;
1905        for (j = 0; j < MIN_MATCH - 1; j++)
1906                UPDATE_HASH(G1.ins_h, G1.window[j]);
1907        /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1908         * not important since only literal bytes will be emitted.
1909         */
1910}
1911
1912
1913/* ===========================================================================
1914 * Allocate the match buffer, initialize the various tables and save the
1915 * location of the internal file attribute (ascii/binary) and method
1916 * (DEFLATE/STORE).
1917 * One callsite in zip()
1918 */
1919static void ct_init(void)
1920{
1921        int n;                          /* iterates over tree elements */
1922        int length;                     /* length value */
1923        int code;                       /* code value */
1924        int dist;                       /* distance index */
1925
1926        G2.compressed_len = 0L;
1927
1928#ifdef NOT_NEEDED
1929        if (G2.static_dtree[0].Len != 0)
1930                return;                 /* ct_init already called */
1931#endif
1932
1933        /* Initialize the mapping length (0..255) -> length code (0..28) */
1934        length = 0;
1935        for (code = 0; code < LENGTH_CODES - 1; code++) {
1936                G2.base_length[code] = length;
1937                for (n = 0; n < (1 << extra_lbits[code]); n++) {
1938                        G2.length_code[length++] = code;
1939                }
1940        }
1941        Assert(length == 256, "ct_init: length != 256");
1942        /* Note that the length 255 (match length 258) can be represented
1943         * in two different ways: code 284 + 5 bits or code 285, so we
1944         * overwrite length_code[255] to use the best encoding:
1945         */
1946        G2.length_code[length - 1] = code;
1947
1948        /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1949        dist = 0;
1950        for (code = 0; code < 16; code++) {
1951                G2.base_dist[code] = dist;
1952                for (n = 0; n < (1 << extra_dbits[code]); n++) {
1953                        G2.dist_code[dist++] = code;
1954                }
1955        }
1956        Assert(dist == 256, "ct_init: dist != 256");
1957        dist >>= 7;                     /* from now on, all distances are divided by 128 */
1958        for (; code < D_CODES; code++) {
1959                G2.base_dist[code] = dist << 7;
1960                for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
1961                        G2.dist_code[256 + dist++] = code;
1962                }
1963        }
1964        Assert(dist == 256, "ct_init: 256+dist != 512");
1965
1966        /* Construct the codes of the static literal tree */
1967        /* already zeroed - it's in bss
1968        for (n = 0; n <= MAX_BITS; n++)
1969                G2.bl_count[n] = 0; */
1970
1971        n = 0;
1972        while (n <= 143) {
1973                G2.static_ltree[n++].Len = 8;
1974                G2.bl_count[8]++;
1975        }
1976        while (n <= 255) {
1977                G2.static_ltree[n++].Len = 9;
1978                G2.bl_count[9]++;
1979        }
1980        while (n <= 279) {
1981                G2.static_ltree[n++].Len = 7;
1982                G2.bl_count[7]++;
1983        }
1984        while (n <= 287) {
1985                G2.static_ltree[n++].Len = 8;
1986                G2.bl_count[8]++;
1987        }
1988        /* Codes 286 and 287 do not exist, but we must include them in the
1989         * tree construction to get a canonical Huffman tree (longest code
1990         * all ones)
1991         */
1992        gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
1993
1994        /* The static distance tree is trivial: */
1995        for (n = 0; n < D_CODES; n++) {
1996                G2.static_dtree[n].Len = 5;
1997                G2.static_dtree[n].Code = bi_reverse(n, 5);
1998        }
1999
2000        /* Initialize the first block of the first file: */
2001        init_block();
2002}
2003
2004
2005/* ===========================================================================
2006 * Deflate in to out.
2007 * IN assertions: the input and output buffers are cleared.
2008 */
2009
2010static void zip(ulg time_stamp)
2011{
2012        ush deflate_flags = 0;  /* pkzip -es, -en or -ex equivalent */
2013
2014        G1.outcnt = 0;
2015
2016        /* Write the header to the gzip file. See algorithm.doc for the format */
2017        /* magic header for gzip files: 1F 8B */
2018        /* compression method: 8 (DEFLATED) */
2019        /* general flags: 0 */
2020        put_32bit(0x00088b1f);
2021        put_32bit(time_stamp);
2022
2023        /* Write deflated file to zip file */
2024        G1.crc = ~0;
2025
2026        bi_init();
2027        ct_init();
2028        lm_init(&deflate_flags);
2029
2030        put_8bit(deflate_flags);        /* extra flags */
2031        put_8bit(3);    /* OS identifier = 3 (Unix) */
2032
2033        deflate();
2034
2035        /* Write the crc and uncompressed size */
2036        put_32bit(~G1.crc);
2037        put_32bit(G1.isize);
2038
2039        flush_outbuf();
2040}
2041
2042
2043/* ======================================================================== */
2044static
2045IF_DESKTOP(long long) int FAST_FUNC pack_gzip(transformer_state_t *xstate UNUSED_PARAM)
2046{
2047        struct stat s;
2048
2049        /* Clear input and output buffers */
2050        G1.outcnt = 0;
2051#ifdef DEBUG
2052        G1.insize = 0;
2053#endif
2054        G1.isize = 0;
2055
2056        /* Reinit G2.xxx */
2057        memset(&G2, 0, sizeof(G2));
2058        G2.l_desc.dyn_tree     = G2.dyn_ltree;
2059        G2.l_desc.static_tree  = G2.static_ltree;
2060        G2.l_desc.extra_bits   = extra_lbits;
2061        G2.l_desc.extra_base   = LITERALS + 1;
2062        G2.l_desc.elems        = L_CODES;
2063        G2.l_desc.max_length   = MAX_BITS;
2064        //G2.l_desc.max_code     = 0;
2065        G2.d_desc.dyn_tree     = G2.dyn_dtree;
2066        G2.d_desc.static_tree  = G2.static_dtree;
2067        G2.d_desc.extra_bits   = extra_dbits;
2068        //G2.d_desc.extra_base   = 0;
2069        G2.d_desc.elems        = D_CODES;
2070        G2.d_desc.max_length   = MAX_BITS;
2071        //G2.d_desc.max_code     = 0;
2072        G2.bl_desc.dyn_tree    = G2.bl_tree;
2073        //G2.bl_desc.static_tree = NULL;
2074        G2.bl_desc.extra_bits  = extra_blbits,
2075        //G2.bl_desc.extra_base  = 0;
2076        G2.bl_desc.elems       = BL_CODES;
2077        G2.bl_desc.max_length  = MAX_BL_BITS;
2078        //G2.bl_desc.max_code    = 0;
2079
2080        s.st_ctime = 0;
2081        fstat(STDIN_FILENO, &s);
2082        zip(s.st_ctime);
2083        return 0;
2084}
2085
2086#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2087static const char gzip_longopts[] ALIGN1 =
2088        "stdout\0"              No_argument       "c"
2089        "to-stdout\0"           No_argument       "c"
2090        "force\0"               No_argument       "f"
2091        "verbose\0"             No_argument       "v"
2092#if ENABLE_GUNZIP
2093        "decompress\0"          No_argument       "d"
2094        "uncompress\0"          No_argument       "d"
2095        "test\0"                No_argument       "t"
2096#endif
2097        "quiet\0"               No_argument       "q"
2098        "fast\0"                No_argument       "1"
2099        "best\0"                No_argument       "9"
2100        ;
2101#endif
2102
2103/*
2104 * Linux kernel build uses gzip -d -n. We accept and ignore -n.
2105 * Man page says:
2106 * -n --no-name
2107 * gzip: do not save the original file name and time stamp.
2108 * (The original name is always saved if the name had to be truncated.)
2109 * gunzip: do not restore the original file name/time even if present
2110 * (remove only the gzip suffix from the compressed file name).
2111 * This option is the default when decompressing.
2112 * -N --name
2113 * gzip: always save the original file name and time stamp (this is the default)
2114 * gunzip: restore the original file name and time stamp if present.
2115 */
2116
2117int gzip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
2118#if ENABLE_GUNZIP
2119int gzip_main(int argc, char **argv)
2120#else
2121int gzip_main(int argc UNUSED_PARAM, char **argv)
2122#endif
2123{
2124        unsigned opt;
2125
2126#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2127        applet_long_options = gzip_longopts;
2128#endif
2129        /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
2130        opt = getopt32(argv, "cfv" IF_GUNZIP("dt") "q123456789n");
2131#if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2132        if (opt & 0x18) // -d and/or -t
2133                return gunzip_main(argc, argv);
2134#endif
2135        option_mask32 &= 0x7; /* ignore -q, -0..9 */
2136        //if (opt & 0x1) // -c
2137        //if (opt & 0x2) // -f
2138        //if (opt & 0x4) // -v
2139        argv += optind;
2140
2141        SET_PTR_TO_GLOBALS((char *)xzalloc(sizeof(struct globals)+sizeof(struct globals2))
2142                        + sizeof(struct globals));
2143
2144        /* Allocate all global buffers (for DYN_ALLOC option) */
2145        ALLOC(uch, G1.l_buf, INBUFSIZ);
2146        ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2147        ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2148        ALLOC(uch, G1.window, 2L * WSIZE);
2149        ALLOC(ush, G1.prev, 1L << BITS);
2150
2151        /* Initialize the CRC32 table */
2152        global_crc32_table = crc32_filltable(NULL, 0);
2153
2154        return bbunpack(argv, pack_gzip, append_ext, "gz");
2155}
2156