1/* vi: set sw=4 ts=4: */ 2/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net). 3 4 Based on bzip2 decompression code by Julian R Seward (jseward@acm.org), 5 which also acknowledges contributions by Mike Burrows, David Wheeler, 6 Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten, 7 Robert Sedgewick, and Jon L. Bentley. 8 9 Licensed under GPLv2 or later, see file LICENSE in this source tree. 10*/ 11 12/* 13 Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org). 14 15 More efficient reading of Huffman codes, a streamlined read_bunzip() 16 function, and various other tweaks. In (limited) tests, approximately 17 20% faster than bzcat on x86 and about 10% faster on arm. 18 19 Note that about 2/3 of the time is spent in read_bunzip() reversing 20 the Burrows-Wheeler transformation. Much of that time is delay 21 resulting from cache misses. 22 23 (2010 update by vda: profiled "bzcat <84mbyte.bz2 >/dev/null" 24 on x86-64 CPU with L2 > 1M: get_next_block is hotter than read_bunzip: 25 %time seconds calls function 26 71.01 12.69 444 get_next_block 27 28.65 5.12 93065 read_bunzip 28 00.22 0.04 7736490 get_bits 29 00.11 0.02 47 dealloc_bunzip 30 00.00 0.00 93018 full_write 31 ...) 32 33 34 I would ask that anyone benefiting from this work, especially those 35 using it in commercial products, consider making a donation to my local 36 non-profit hospice organization (www.hospiceacadiana.com) in the name of 37 the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003. 38 39 Manuel 40 */ 41 42#include "libbb.h" 43#include "bb_archive.h" 44 45#if 0 46# define dbg(...) bb_error_msg(__VA_ARGS__) 47#else 48# define dbg(...) ((void)0) 49#endif 50 51/* Constants for Huffman coding */ 52#define MAX_GROUPS 6 53#define GROUP_SIZE 50 /* 64 would have been more efficient */ 54#define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */ 55#define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ 56#define SYMBOL_RUNA 0 57#define SYMBOL_RUNB 1 58 59/* Status return values */ 60#define RETVAL_OK 0 61#define RETVAL_LAST_BLOCK (dbg("%d", __LINE__), -1) 62#define RETVAL_NOT_BZIP_DATA (dbg("%d", __LINE__), -2) 63#define RETVAL_UNEXPECTED_INPUT_EOF (dbg("%d", __LINE__), -3) 64#define RETVAL_SHORT_WRITE (dbg("%d", __LINE__), -4) 65#define RETVAL_DATA_ERROR (dbg("%d", __LINE__), -5) 66#define RETVAL_OUT_OF_MEMORY (dbg("%d", __LINE__), -6) 67#define RETVAL_OBSOLETE_INPUT (dbg("%d", __LINE__), -7) 68 69/* Other housekeeping constants */ 70#define IOBUF_SIZE 4096 71 72/* This is what we know about each Huffman coding group */ 73struct group_data { 74 /* We have an extra slot at the end of limit[] for a sentinel value. */ 75 int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS]; 76 int minLen, maxLen; 77}; 78 79/* Structure holding all the housekeeping data, including IO buffers and 80 * memory that persists between calls to bunzip 81 * Found the most used member: 82 * cat this_file.c | sed -e 's/"/ /g' -e "s/'/ /g" | xargs -n1 \ 83 * | grep 'bd->' | sed 's/^.*bd->/bd->/' | sort | $PAGER 84 * and moved it (inbufBitCount) to offset 0. 85 */ 86struct bunzip_data { 87 /* I/O tracking data (file handles, buffers, positions, etc.) */ 88 unsigned inbufBitCount, inbufBits; 89 int in_fd, out_fd, inbufCount, inbufPos /*, outbufPos*/; 90 uint8_t *inbuf /*,*outbuf*/; 91 92 /* State for interrupting output loop */ 93 int writeCopies, writePos, writeRunCountdown, writeCount; 94 int writeCurrent; /* actually a uint8_t */ 95 96 /* The CRC values stored in the block header and calculated from the data */ 97 uint32_t headerCRC, totalCRC, writeCRC; 98 99 /* Intermediate buffer and its size (in bytes) */ 100 uint32_t *dbuf; 101 unsigned dbufSize; 102 103 /* For I/O error handling */ 104 jmp_buf jmpbuf; 105 106 /* Big things go last (register-relative addressing can be larger for big offsets) */ 107 uint32_t crc32Table[256]; 108 uint8_t selectors[32768]; /* nSelectors=15 bits */ 109 struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */ 110}; 111/* typedef struct bunzip_data bunzip_data; -- done in .h file */ 112 113 114/* Return the next nnn bits of input. All reads from the compressed input 115 are done through this function. All reads are big endian */ 116static unsigned get_bits(bunzip_data *bd, int bits_wanted) 117{ 118 unsigned bits = 0; 119 /* Cache bd->inbufBitCount in a CPU register (hopefully): */ 120 int bit_count = bd->inbufBitCount; 121 122 /* If we need to get more data from the byte buffer, do so. (Loop getting 123 one byte at a time to enforce endianness and avoid unaligned access.) */ 124 while (bit_count < bits_wanted) { 125 126 /* If we need to read more data from file into byte buffer, do so */ 127 if (bd->inbufPos == bd->inbufCount) { 128 /* if "no input fd" case: in_fd == -1, read fails, we jump */ 129 bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE); 130 if (bd->inbufCount <= 0) 131 longjmp(bd->jmpbuf, RETVAL_UNEXPECTED_INPUT_EOF); 132 bd->inbufPos = 0; 133 } 134 135 /* Avoid 32-bit overflow (dump bit buffer to top of output) */ 136 if (bit_count >= 24) { 137 bits = bd->inbufBits & ((1 << bit_count) - 1); 138 bits_wanted -= bit_count; 139 bits <<= bits_wanted; 140 bit_count = 0; 141 } 142 143 /* Grab next 8 bits of input from buffer. */ 144 bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++]; 145 bit_count += 8; 146 } 147 148 /* Calculate result */ 149 bit_count -= bits_wanted; 150 bd->inbufBitCount = bit_count; 151 bits |= (bd->inbufBits >> bit_count) & ((1 << bits_wanted) - 1); 152 153 return bits; 154} 155 156/* Unpacks the next block and sets up for the inverse Burrows-Wheeler step. */ 157static int get_next_block(bunzip_data *bd) 158{ 159 struct group_data *hufGroup; 160 int dbufCount, dbufSize, groupCount, *base, *limit, selector, 161 i, j, t, runPos, symCount, symTotal, nSelectors, byteCount[256]; 162 int runCnt = runCnt; /* for compiler */ 163 uint8_t uc, symToByte[256], mtfSymbol[256], *selectors; 164 uint32_t *dbuf; 165 unsigned origPtr; 166 167 dbuf = bd->dbuf; 168 dbufSize = bd->dbufSize; 169 selectors = bd->selectors; 170 171/* In bbox, we are ok with aborting through setjmp which is set up in start_bunzip */ 172#if 0 173 /* Reset longjmp I/O error handling */ 174 i = setjmp(bd->jmpbuf); 175 if (i) return i; 176#endif 177 178 /* Read in header signature and CRC, then validate signature. 179 (last block signature means CRC is for whole file, return now) */ 180 i = get_bits(bd, 24); 181 j = get_bits(bd, 24); 182 bd->headerCRC = get_bits(bd, 32); 183 if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK; 184 if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA; 185 186 /* We can add support for blockRandomised if anybody complains. There was 187 some code for this in busybox 1.0.0-pre3, but nobody ever noticed that 188 it didn't actually work. */ 189 if (get_bits(bd, 1)) return RETVAL_OBSOLETE_INPUT; 190 origPtr = get_bits(bd, 24); 191 if ((int)origPtr > dbufSize) return RETVAL_DATA_ERROR; 192 193 /* mapping table: if some byte values are never used (encoding things 194 like ascii text), the compression code removes the gaps to have fewer 195 symbols to deal with, and writes a sparse bitfield indicating which 196 values were present. We make a translation table to convert the symbols 197 back to the corresponding bytes. */ 198 symTotal = 0; 199 i = 0; 200 t = get_bits(bd, 16); 201 do { 202 if (t & (1 << 15)) { 203 unsigned inner_map = get_bits(bd, 16); 204 do { 205 if (inner_map & (1 << 15)) 206 symToByte[symTotal++] = i; 207 inner_map <<= 1; 208 i++; 209 } while (i & 15); 210 i -= 16; 211 } 212 t <<= 1; 213 i += 16; 214 } while (i < 256); 215 216 /* How many different Huffman coding groups does this block use? */ 217 groupCount = get_bits(bd, 3); 218 if (groupCount < 2 || groupCount > MAX_GROUPS) 219 return RETVAL_DATA_ERROR; 220 221 /* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding 222 group. Read in the group selector list, which is stored as MTF encoded 223 bit runs. (MTF=Move To Front, as each value is used it's moved to the 224 start of the list.) */ 225 for (i = 0; i < groupCount; i++) 226 mtfSymbol[i] = i; 227 nSelectors = get_bits(bd, 15); 228 if (!nSelectors) 229 return RETVAL_DATA_ERROR; 230 for (i = 0; i < nSelectors; i++) { 231 uint8_t tmp_byte; 232 /* Get next value */ 233 int n = 0; 234 while (get_bits(bd, 1)) { 235 if (n >= groupCount) return RETVAL_DATA_ERROR; 236 n++; 237 } 238 /* Decode MTF to get the next selector */ 239 tmp_byte = mtfSymbol[n]; 240 while (--n >= 0) 241 mtfSymbol[n + 1] = mtfSymbol[n]; 242 mtfSymbol[0] = selectors[i] = tmp_byte; 243 } 244 245 /* Read the Huffman coding tables for each group, which code for symTotal 246 literal symbols, plus two run symbols (RUNA, RUNB) */ 247 symCount = symTotal + 2; 248 for (j = 0; j < groupCount; j++) { 249 uint8_t length[MAX_SYMBOLS]; 250 /* 8 bits is ALMOST enough for temp[], see below */ 251 unsigned temp[MAX_HUFCODE_BITS+1]; 252 int minLen, maxLen, pp, len_m1; 253 254 /* Read Huffman code lengths for each symbol. They're stored in 255 a way similar to mtf; record a starting value for the first symbol, 256 and an offset from the previous value for every symbol after that. 257 (Subtracting 1 before the loop and then adding it back at the end is 258 an optimization that makes the test inside the loop simpler: symbol 259 length 0 becomes negative, so an unsigned inequality catches it.) */ 260 len_m1 = get_bits(bd, 5) - 1; 261 for (i = 0; i < symCount; i++) { 262 for (;;) { 263 int two_bits; 264 if ((unsigned)len_m1 > (MAX_HUFCODE_BITS-1)) 265 return RETVAL_DATA_ERROR; 266 267 /* If first bit is 0, stop. Else second bit indicates whether 268 to increment or decrement the value. Optimization: grab 2 269 bits and unget the second if the first was 0. */ 270 two_bits = get_bits(bd, 2); 271 if (two_bits < 2) { 272 bd->inbufBitCount++; 273 break; 274 } 275 276 /* Add one if second bit 1, else subtract 1. Avoids if/else */ 277 len_m1 += (((two_bits+1) & 2) - 1); 278 } 279 280 /* Correct for the initial -1, to get the final symbol length */ 281 length[i] = len_m1 + 1; 282 } 283 284 /* Find largest and smallest lengths in this group */ 285 minLen = maxLen = length[0]; 286 for (i = 1; i < symCount; i++) { 287 if (length[i] > maxLen) maxLen = length[i]; 288 else if (length[i] < minLen) minLen = length[i]; 289 } 290 291 /* Calculate permute[], base[], and limit[] tables from length[]. 292 * 293 * permute[] is the lookup table for converting Huffman coded symbols 294 * into decoded symbols. base[] is the amount to subtract from the 295 * value of a Huffman symbol of a given length when using permute[]. 296 * 297 * limit[] indicates the largest numerical value a symbol with a given 298 * number of bits can have. This is how the Huffman codes can vary in 299 * length: each code with a value>limit[length] needs another bit. 300 */ 301 hufGroup = bd->groups + j; 302 hufGroup->minLen = minLen; 303 hufGroup->maxLen = maxLen; 304 305 /* Note that minLen can't be smaller than 1, so we adjust the base 306 and limit array pointers so we're not always wasting the first 307 entry. We do this again when using them (during symbol decoding). */ 308 base = hufGroup->base - 1; 309 limit = hufGroup->limit - 1; 310 311 /* Calculate permute[]. Concurently, initialize temp[] and limit[]. */ 312 pp = 0; 313 for (i = minLen; i <= maxLen; i++) { 314 int k; 315 temp[i] = limit[i] = 0; 316 for (k = 0; k < symCount; k++) 317 if (length[k] == i) 318 hufGroup->permute[pp++] = k; 319 } 320 321 /* Count symbols coded for at each bit length */ 322 /* NB: in pathological cases, temp[8] can end ip being 256. 323 * That's why uint8_t is too small for temp[]. */ 324 for (i = 0; i < symCount; i++) temp[length[i]]++; 325 326 /* Calculate limit[] (the largest symbol-coding value at each bit 327 * length, which is (previous limit<<1)+symbols at this level), and 328 * base[] (number of symbols to ignore at each bit length, which is 329 * limit minus the cumulative count of symbols coded for already). */ 330 pp = t = 0; 331 for (i = minLen; i < maxLen;) { 332 unsigned temp_i = temp[i]; 333 334 pp += temp_i; 335 336 /* We read the largest possible symbol size and then unget bits 337 after determining how many we need, and those extra bits could 338 be set to anything. (They're noise from future symbols.) At 339 each level we're really only interested in the first few bits, 340 so here we set all the trailing to-be-ignored bits to 1 so they 341 don't affect the value>limit[length] comparison. */ 342 limit[i] = (pp << (maxLen - i)) - 1; 343 pp <<= 1; 344 t += temp_i; 345 base[++i] = pp - t; 346 } 347 limit[maxLen] = pp + temp[maxLen] - 1; 348 limit[maxLen+1] = INT_MAX; /* Sentinel value for reading next sym. */ 349 base[minLen] = 0; 350 } 351 352 /* We've finished reading and digesting the block header. Now read this 353 block's Huffman coded symbols from the file and undo the Huffman coding 354 and run length encoding, saving the result into dbuf[dbufCount++] = uc */ 355 356 /* Initialize symbol occurrence counters and symbol Move To Front table */ 357 /*memset(byteCount, 0, sizeof(byteCount)); - smaller, but slower */ 358 for (i = 0; i < 256; i++) { 359 byteCount[i] = 0; 360 mtfSymbol[i] = (uint8_t)i; 361 } 362 363 /* Loop through compressed symbols. */ 364 365 runPos = dbufCount = selector = 0; 366 for (;;) { 367 int nextSym; 368 369 /* Fetch next Huffman coding group from list. */ 370 symCount = GROUP_SIZE - 1; 371 if (selector >= nSelectors) return RETVAL_DATA_ERROR; 372 hufGroup = bd->groups + selectors[selector++]; 373 base = hufGroup->base - 1; 374 limit = hufGroup->limit - 1; 375 376 continue_this_group: 377 /* Read next Huffman-coded symbol. */ 378 379 /* Note: It is far cheaper to read maxLen bits and back up than it is 380 to read minLen bits and then add additional bit at a time, testing 381 as we go. Because there is a trailing last block (with file CRC), 382 there is no danger of the overread causing an unexpected EOF for a 383 valid compressed file. 384 */ 385 if (1) { 386 /* As a further optimization, we do the read inline 387 (falling back to a call to get_bits if the buffer runs dry). 388 */ 389 int new_cnt; 390 while ((new_cnt = bd->inbufBitCount - hufGroup->maxLen) < 0) { 391 /* bd->inbufBitCount < hufGroup->maxLen */ 392 if (bd->inbufPos == bd->inbufCount) { 393 nextSym = get_bits(bd, hufGroup->maxLen); 394 goto got_huff_bits; 395 } 396 bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++]; 397 bd->inbufBitCount += 8; 398 }; 399 bd->inbufBitCount = new_cnt; /* "bd->inbufBitCount -= hufGroup->maxLen;" */ 400 nextSym = (bd->inbufBits >> new_cnt) & ((1 << hufGroup->maxLen) - 1); 401 got_huff_bits: ; 402 } else { /* unoptimized equivalent */ 403 nextSym = get_bits(bd, hufGroup->maxLen); 404 } 405 /* Figure how many bits are in next symbol and unget extras */ 406 i = hufGroup->minLen; 407 while (nextSym > limit[i]) ++i; 408 j = hufGroup->maxLen - i; 409 if (j < 0) 410 return RETVAL_DATA_ERROR; 411 bd->inbufBitCount += j; 412 413 /* Huffman decode value to get nextSym (with bounds checking) */ 414 nextSym = (nextSym >> j) - base[i]; 415 if ((unsigned)nextSym >= MAX_SYMBOLS) 416 return RETVAL_DATA_ERROR; 417 nextSym = hufGroup->permute[nextSym]; 418 419 /* We have now decoded the symbol, which indicates either a new literal 420 byte, or a repeated run of the most recent literal byte. First, 421 check if nextSym indicates a repeated run, and if so loop collecting 422 how many times to repeat the last literal. */ 423 if ((unsigned)nextSym <= SYMBOL_RUNB) { /* RUNA or RUNB */ 424 425 /* If this is the start of a new run, zero out counter */ 426 if (runPos == 0) { 427 runPos = 1; 428 runCnt = 0; 429 } 430 431 /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at 432 each bit position, add 1 or 2 instead. For example, 433 1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2. 434 You can make any bit pattern that way using 1 less symbol than 435 the basic or 0/1 method (except all bits 0, which would use no 436 symbols, but a run of length 0 doesn't mean anything in this 437 context). Thus space is saved. */ 438 runCnt += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */ 439 if (runPos < dbufSize) runPos <<= 1; 440 goto end_of_huffman_loop; 441 } 442 443 /* When we hit the first non-run symbol after a run, we now know 444 how many times to repeat the last literal, so append that many 445 copies to our buffer of decoded symbols (dbuf) now. (The last 446 literal used is the one at the head of the mtfSymbol array.) */ 447 if (runPos != 0) { 448 uint8_t tmp_byte; 449 if (dbufCount + runCnt > dbufSize) { 450 dbg("dbufCount:%d+runCnt:%d %d > dbufSize:%d RETVAL_DATA_ERROR", 451 dbufCount, runCnt, dbufCount + runCnt, dbufSize); 452 return RETVAL_DATA_ERROR; 453 } 454 tmp_byte = symToByte[mtfSymbol[0]]; 455 byteCount[tmp_byte] += runCnt; 456 while (--runCnt >= 0) dbuf[dbufCount++] = (uint32_t)tmp_byte; 457 runPos = 0; 458 } 459 460 /* Is this the terminating symbol? */ 461 if (nextSym > symTotal) break; 462 463 /* At this point, nextSym indicates a new literal character. Subtract 464 one to get the position in the MTF array at which this literal is 465 currently to be found. (Note that the result can't be -1 or 0, 466 because 0 and 1 are RUNA and RUNB. But another instance of the 467 first symbol in the mtf array, position 0, would have been handled 468 as part of a run above. Therefore 1 unused mtf position minus 469 2 non-literal nextSym values equals -1.) */ 470 if (dbufCount >= dbufSize) return RETVAL_DATA_ERROR; 471 i = nextSym - 1; 472 uc = mtfSymbol[i]; 473 474 /* Adjust the MTF array. Since we typically expect to move only a 475 * small number of symbols, and are bound by 256 in any case, using 476 * memmove here would typically be bigger and slower due to function 477 * call overhead and other assorted setup costs. */ 478 do { 479 mtfSymbol[i] = mtfSymbol[i-1]; 480 } while (--i); 481 mtfSymbol[0] = uc; 482 uc = symToByte[uc]; 483 484 /* We have our literal byte. Save it into dbuf. */ 485 byteCount[uc]++; 486 dbuf[dbufCount++] = (uint32_t)uc; 487 488 /* Skip group initialization if we're not done with this group. Done 489 * this way to avoid compiler warning. */ 490 end_of_huffman_loop: 491 if (--symCount >= 0) goto continue_this_group; 492 } 493 494 /* At this point, we've read all the Huffman-coded symbols (and repeated 495 runs) for this block from the input stream, and decoded them into the 496 intermediate buffer. There are dbufCount many decoded bytes in dbuf[]. 497 Now undo the Burrows-Wheeler transform on dbuf. 498 See http://dogma.net/markn/articles/bwt/bwt.htm 499 */ 500 501 /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */ 502 j = 0; 503 for (i = 0; i < 256; i++) { 504 int tmp_count = j + byteCount[i]; 505 byteCount[i] = j; 506 j = tmp_count; 507 } 508 509 /* Figure out what order dbuf would be in if we sorted it. */ 510 for (i = 0; i < dbufCount; i++) { 511 uint8_t tmp_byte = (uint8_t)dbuf[i]; 512 int tmp_count = byteCount[tmp_byte]; 513 dbuf[tmp_count] |= (i << 8); 514 byteCount[tmp_byte] = tmp_count + 1; 515 } 516 517 /* Decode first byte by hand to initialize "previous" byte. Note that it 518 doesn't get output, and if the first three characters are identical 519 it doesn't qualify as a run (hence writeRunCountdown=5). */ 520 if (dbufCount) { 521 uint32_t tmp; 522 if ((int)origPtr >= dbufCount) return RETVAL_DATA_ERROR; 523 tmp = dbuf[origPtr]; 524 bd->writeCurrent = (uint8_t)tmp; 525 bd->writePos = (tmp >> 8); 526 bd->writeRunCountdown = 5; 527 } 528 bd->writeCount = dbufCount; 529 530 return RETVAL_OK; 531} 532 533/* Undo Burrows-Wheeler transform on intermediate buffer to produce output. 534 If start_bunzip was initialized with out_fd=-1, then up to len bytes of 535 data are written to outbuf. Return value is number of bytes written or 536 error (all errors are negative numbers). If out_fd!=-1, outbuf and len 537 are ignored, data is written to out_fd and return is RETVAL_OK or error. 538 539 NB: read_bunzip returns < 0 on error, or the number of *unfilled* bytes 540 in outbuf. IOW: on EOF returns len ("all bytes are not filled"), not 0. 541 (Why? This allows to get rid of one local variable) 542*/ 543int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len) 544{ 545 const uint32_t *dbuf; 546 int pos, current, previous; 547 uint32_t CRC; 548 549 /* If we already have error/end indicator, return it */ 550 if (bd->writeCount < 0) 551 return bd->writeCount; 552 553 dbuf = bd->dbuf; 554 555 /* Register-cached state (hopefully): */ 556 pos = bd->writePos; 557 current = bd->writeCurrent; 558 CRC = bd->writeCRC; /* small loss on x86-32 (not enough regs), win on x86-64 */ 559 560 /* We will always have pending decoded data to write into the output 561 buffer unless this is the very first call (in which case we haven't 562 Huffman-decoded a block into the intermediate buffer yet). */ 563 if (bd->writeCopies) { 564 565 dec_writeCopies: 566 /* Inside the loop, writeCopies means extra copies (beyond 1) */ 567 --bd->writeCopies; 568 569 /* Loop outputting bytes */ 570 for (;;) { 571 572 /* If the output buffer is full, save cached state and return */ 573 if (--len < 0) { 574 /* Unlikely branch. 575 * Use of "goto" instead of keeping code here 576 * helps compiler to realize this. */ 577 goto outbuf_full; 578 } 579 580 /* Write next byte into output buffer, updating CRC */ 581 *outbuf++ = current; 582 CRC = (CRC << 8) ^ bd->crc32Table[(CRC >> 24) ^ current]; 583 584 /* Loop now if we're outputting multiple copies of this byte */ 585 if (bd->writeCopies) { 586 /* Unlikely branch */ 587 /*--bd->writeCopies;*/ 588 /*continue;*/ 589 /* Same, but (ab)using other existing --writeCopies operation 590 * (and this if() compiles into just test+branch pair): */ 591 goto dec_writeCopies; 592 } 593 decode_next_byte: 594 if (--bd->writeCount < 0) 595 break; /* input block is fully consumed, need next one */ 596 597 /* Follow sequence vector to undo Burrows-Wheeler transform */ 598 previous = current; 599 pos = dbuf[pos]; 600 current = (uint8_t)pos; 601 pos >>= 8; 602 603 /* After 3 consecutive copies of the same byte, the 4th 604 * is a repeat count. We count down from 4 instead 605 * of counting up because testing for non-zero is faster */ 606 if (--bd->writeRunCountdown != 0) { 607 if (current != previous) 608 bd->writeRunCountdown = 4; 609 } else { 610 /* Unlikely branch */ 611 /* We have a repeated run, this byte indicates the count */ 612 bd->writeCopies = current; 613 current = previous; 614 bd->writeRunCountdown = 5; 615 616 /* Sometimes there are just 3 bytes (run length 0) */ 617 if (!bd->writeCopies) goto decode_next_byte; 618 619 /* Subtract the 1 copy we'd output anyway to get extras */ 620 --bd->writeCopies; 621 } 622 } /* for(;;) */ 623 624 /* Decompression of this input block completed successfully */ 625 bd->writeCRC = CRC = ~CRC; 626 bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ CRC; 627 628 /* If this block had a CRC error, force file level CRC error */ 629 if (CRC != bd->headerCRC) { 630 bd->totalCRC = bd->headerCRC + 1; 631 return RETVAL_LAST_BLOCK; 632 } 633 } 634 635 /* Refill the intermediate buffer by Huffman-decoding next block of input */ 636 { 637 int r = get_next_block(bd); 638 if (r) { /* error/end */ 639 bd->writeCount = r; 640 return (r != RETVAL_LAST_BLOCK) ? r : len; 641 } 642 } 643 644 CRC = ~0; 645 pos = bd->writePos; 646 current = bd->writeCurrent; 647 goto decode_next_byte; 648 649 outbuf_full: 650 /* Output buffer is full, save cached state and return */ 651 bd->writePos = pos; 652 bd->writeCurrent = current; 653 bd->writeCRC = CRC; 654 655 bd->writeCopies++; 656 657 return 0; 658} 659 660/* Allocate the structure, read file header. If in_fd==-1, inbuf must contain 661 a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are 662 ignored, and data is read from file handle into temporary buffer. */ 663 664/* Because bunzip2 is used for help text unpacking, and because bb_show_usage() 665 should work for NOFORK applets too, we must be extremely careful to not leak 666 any allocations! */ 667int FAST_FUNC start_bunzip(bunzip_data **bdp, int in_fd, 668 const void *inbuf, int len) 669{ 670 bunzip_data *bd; 671 unsigned i; 672 enum { 673 BZh0 = ('B' << 24) + ('Z' << 16) + ('h' << 8) + '0', 674 h0 = ('h' << 8) + '0', 675 }; 676 677 /* Figure out how much data to allocate */ 678 i = sizeof(bunzip_data); 679 if (in_fd != -1) i += IOBUF_SIZE; 680 681 /* Allocate bunzip_data. Most fields initialize to zero. */ 682 bd = *bdp = xzalloc(i); 683 684 /* Setup input buffer */ 685 bd->in_fd = in_fd; 686 if (-1 == in_fd) { 687 /* in this case, bd->inbuf is read-only */ 688 bd->inbuf = (void*)inbuf; /* cast away const-ness */ 689 } else { 690 bd->inbuf = (uint8_t*)(bd + 1); 691 memcpy(bd->inbuf, inbuf, len); 692 } 693 bd->inbufCount = len; 694 695 /* Init the CRC32 table (big endian) */ 696 crc32_filltable(bd->crc32Table, 1); 697 698 /* Setup for I/O error handling via longjmp */ 699 i = setjmp(bd->jmpbuf); 700 if (i) return i; 701 702 /* Ensure that file starts with "BZh['1'-'9']." */ 703 /* Update: now caller verifies 1st two bytes, makes .gz/.bz2 704 * integration easier */ 705 /* was: */ 706 /* i = get_bits(bd, 32); */ 707 /* if ((unsigned)(i - BZh0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA; */ 708 i = get_bits(bd, 16); 709 if ((unsigned)(i - h0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA; 710 711 /* Fourth byte (ascii '1'-'9') indicates block size in units of 100k of 712 uncompressed data. Allocate intermediate buffer for block. */ 713 /* bd->dbufSize = 100000 * (i - BZh0); */ 714 bd->dbufSize = 100000 * (i - h0); 715 716 /* Cannot use xmalloc - may leak bd in NOFORK case! */ 717 bd->dbuf = malloc_or_warn(bd->dbufSize * sizeof(bd->dbuf[0])); 718 if (!bd->dbuf) { 719 free(bd); 720 xfunc_die(); 721 } 722 return RETVAL_OK; 723} 724 725void FAST_FUNC dealloc_bunzip(bunzip_data *bd) 726{ 727 free(bd->dbuf); 728 free(bd); 729} 730 731 732/* Decompress src_fd to dst_fd. Stops at end of bzip data, not end of file. */ 733IF_DESKTOP(long long) int FAST_FUNC 734unpack_bz2_stream(transformer_state_t *xstate) 735{ 736 IF_DESKTOP(long long total_written = 0;) 737 bunzip_data *bd; 738 char *outbuf; 739 int i; 740 unsigned len; 741 742 if (check_signature16(xstate, BZIP2_MAGIC)) 743 return -1; 744 745 outbuf = xmalloc(IOBUF_SIZE); 746 len = 0; 747 while (1) { /* "Process one BZ... stream" loop */ 748 749 i = start_bunzip(&bd, xstate->src_fd, outbuf + 2, len); 750 751 if (i == 0) { 752 while (1) { /* "Produce some output bytes" loop */ 753 i = read_bunzip(bd, outbuf, IOBUF_SIZE); 754 if (i < 0) /* error? */ 755 break; 756 i = IOBUF_SIZE - i; /* number of bytes produced */ 757 if (i == 0) /* EOF? */ 758 break; 759 if (i != transformer_write(xstate, outbuf, i)) { 760 i = RETVAL_SHORT_WRITE; 761 goto release_mem; 762 } 763 IF_DESKTOP(total_written += i;) 764 } 765 } 766 767 if (i != RETVAL_LAST_BLOCK 768 /* Observed case when i == RETVAL_OK: 769 * "bzcat z.bz2", where "z.bz2" is a bzipped zero-length file 770 * (to be exact, z.bz2 is exactly these 14 bytes: 771 * 42 5a 68 39 17 72 45 38 50 90 00 00 00 00). 772 */ 773 && i != RETVAL_OK 774 ) { 775 bb_error_msg("bunzip error %d", i); 776 break; 777 } 778 if (bd->headerCRC != bd->totalCRC) { 779 bb_error_msg("CRC error"); 780 break; 781 } 782 783 /* Successfully unpacked one BZ stream */ 784 i = RETVAL_OK; 785 786 /* Do we have "BZ..." after last processed byte? 787 * pbzip2 (parallelized bzip2) produces such files. 788 */ 789 len = bd->inbufCount - bd->inbufPos; 790 memcpy(outbuf, &bd->inbuf[bd->inbufPos], len); 791 if (len < 2) { 792 if (safe_read(xstate->src_fd, outbuf + len, 2 - len) != 2 - len) 793 break; 794 len = 2; 795 } 796 if (*(uint16_t*)outbuf != BZIP2_MAGIC) /* "BZ"? */ 797 break; 798 dealloc_bunzip(bd); 799 len -= 2; 800 } 801 802 release_mem: 803 dealloc_bunzip(bd); 804 free(outbuf); 805 806 return i ? i : IF_DESKTOP(total_written) + 0; 807} 808 809#ifdef TESTING 810 811static char *const bunzip_errors[] = { 812 NULL, "Bad file checksum", "Not bzip data", 813 "Unexpected input EOF", "Unexpected output EOF", "Data error", 814 "Out of memory", "Obsolete (pre 0.9.5) bzip format not supported" 815}; 816 817/* Dumb little test thing, decompress stdin to stdout */ 818int main(int argc, char **argv) 819{ 820 char c; 821 822 int i = unpack_bz2_stream(0, 1); 823 if (i < 0) 824 fprintf(stderr, "%s\n", bunzip_errors[-i]); 825 else if (read(STDIN_FILENO, &c, 1)) 826 fprintf(stderr, "Trailing garbage ignored\n"); 827 return -i; 828} 829#endif 830