busybox/archival/libarchive/decompress_bunzip2.c
<<
>>
Prefs
   1/* vi: set sw=4 ts=4: */
   2/* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
   3
   4   Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
   5   which also acknowledges contributions by Mike Burrows, David Wheeler,
   6   Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
   7   Robert Sedgewick, and Jon L. Bentley.
   8
   9   Licensed under GPLv2 or later, see file LICENSE in this source tree.
  10*/
  11
  12/*
  13        Size and speed optimizations by Manuel Novoa III  (mjn3@codepoet.org).
  14
  15        More efficient reading of Huffman codes, a streamlined read_bunzip()
  16        function, and various other tweaks.  In (limited) tests, approximately
  17        20% faster than bzcat on x86 and about 10% faster on arm.
  18
  19        Note that about 2/3 of the time is spent in read_bunzip() reversing
  20        the Burrows-Wheeler transformation.  Much of that time is delay
  21        resulting from cache misses.
  22
  23        (2010 update by vda: profiled "bzcat <84mbyte.bz2 >/dev/null"
  24        on x86-64 CPU with L2 > 1M: get_next_block is hotter than read_bunzip:
  25        %time seconds   calls function
  26        71.01   12.69     444 get_next_block
  27        28.65    5.12   93065 read_bunzip
  28        00.22    0.04 7736490 get_bits
  29        00.11    0.02      47 dealloc_bunzip
  30        00.00    0.00   93018 full_write
  31        ...)
  32
  33
  34        I would ask that anyone benefiting from this work, especially those
  35        using it in commercial products, consider making a donation to my local
  36        non-profit hospice organization (www.hospiceacadiana.com) in the name of
  37        the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003.
  38
  39        Manuel
  40 */
  41
  42#include "libbb.h"
  43#include "bb_archive.h"
  44
  45#if 0
  46# define dbg(...) bb_error_msg(__VA_ARGS__)
  47#else
  48# define dbg(...) ((void)0)
  49#endif
  50
  51/* Constants for Huffman coding */
  52#define MAX_GROUPS          6
  53#define GROUP_SIZE          50      /* 64 would have been more efficient */
  54#define MAX_HUFCODE_BITS    20      /* Longest Huffman code allowed */
  55#define MAX_SYMBOLS         258     /* 256 literals + RUNA + RUNB */
  56#define SYMBOL_RUNA         0
  57#define SYMBOL_RUNB         1
  58
  59/* Status return values */
  60#define RETVAL_OK                       0
  61#define RETVAL_LAST_BLOCK               (dbg("%d", __LINE__), -1)
  62#define RETVAL_NOT_BZIP_DATA            (dbg("%d", __LINE__), -2)
  63#define RETVAL_UNEXPECTED_INPUT_EOF     (dbg("%d", __LINE__), -3)
  64#define RETVAL_SHORT_WRITE              (dbg("%d", __LINE__), -4)
  65#define RETVAL_DATA_ERROR               (dbg("%d", __LINE__), -5)
  66#define RETVAL_OUT_OF_MEMORY            (dbg("%d", __LINE__), -6)
  67#define RETVAL_OBSOLETE_INPUT           (dbg("%d", __LINE__), -7)
  68
  69/* Other housekeeping constants */
  70#define IOBUF_SIZE          4096
  71
  72/* This is what we know about each Huffman coding group */
  73struct group_data {
  74        /* We have an extra slot at the end of limit[] for a sentinel value. */
  75        int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS];
  76        int minLen, maxLen;
  77};
  78
  79/* Structure holding all the housekeeping data, including IO buffers and
  80 * memory that persists between calls to bunzip
  81 * Found the most used member:
  82 *  cat this_file.c | sed -e 's/"/ /g' -e "s/'/ /g" | xargs -n1 \
  83 *  | grep 'bd->' | sed 's/^.*bd->/bd->/' | sort | $PAGER
  84 * and moved it (inbufBitCount) to offset 0.
  85 */
  86struct bunzip_data {
  87        /* I/O tracking data (file handles, buffers, positions, etc.) */
  88        unsigned inbufBitCount, inbufBits;
  89        int in_fd, out_fd, inbufCount, inbufPos /*, outbufPos*/;
  90        uint8_t *inbuf /*,*outbuf*/;
  91
  92        /* State for interrupting output loop */
  93        int writeCopies, writePos, writeRunCountdown, writeCount;
  94        int writeCurrent; /* actually a uint8_t */
  95
  96        /* The CRC values stored in the block header and calculated from the data */
  97        uint32_t headerCRC, totalCRC, writeCRC;
  98
  99        /* Intermediate buffer and its size (in bytes) */
 100        uint32_t *dbuf;
 101        unsigned dbufSize;
 102
 103        /* For I/O error handling */
 104        jmp_buf jmpbuf;
 105
 106        /* Big things go last (register-relative addressing can be larger for big offsets) */
 107        uint32_t crc32Table[256];
 108        uint8_t selectors[32768];  /* nSelectors=15 bits */
 109        struct group_data groups[MAX_GROUPS];  /* Huffman coding tables */
 110};
 111/* typedef struct bunzip_data bunzip_data; -- done in .h file */
 112
 113
 114/* Return the next nnn bits of input.  All reads from the compressed input
 115   are done through this function.  All reads are big endian */
 116static unsigned get_bits(bunzip_data *bd, int bits_wanted)
 117{
 118        unsigned bits = 0;
 119        /* Cache bd->inbufBitCount in a CPU register (hopefully): */
 120        int bit_count = bd->inbufBitCount;
 121
 122        /* If we need to get more data from the byte buffer, do so.  (Loop getting
 123           one byte at a time to enforce endianness and avoid unaligned access.) */
 124        while (bit_count < bits_wanted) {
 125
 126                /* If we need to read more data from file into byte buffer, do so */
 127                if (bd->inbufPos == bd->inbufCount) {
 128                        /* if "no input fd" case: in_fd == -1, read fails, we jump */
 129                        bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE);
 130                        if (bd->inbufCount <= 0)
 131                                longjmp(bd->jmpbuf, RETVAL_UNEXPECTED_INPUT_EOF);
 132                        bd->inbufPos = 0;
 133                }
 134
 135                /* Avoid 32-bit overflow (dump bit buffer to top of output) */
 136                if (bit_count >= 24) {
 137                        bits = bd->inbufBits & ((1 << bit_count) - 1);
 138                        bits_wanted -= bit_count;
 139                        bits <<= bits_wanted;
 140                        bit_count = 0;
 141                }
 142
 143                /* Grab next 8 bits of input from buffer. */
 144                bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++];
 145                bit_count += 8;
 146        }
 147
 148        /* Calculate result */
 149        bit_count -= bits_wanted;
 150        bd->inbufBitCount = bit_count;
 151        bits |= (bd->inbufBits >> bit_count) & ((1 << bits_wanted) - 1);
 152
 153        return bits;
 154}
 155
 156/* Unpacks the next block and sets up for the inverse Burrows-Wheeler step. */
 157static int get_next_block(bunzip_data *bd)
 158{
 159        struct group_data *hufGroup;
 160        int dbufCount, dbufSize, groupCount, *base, *limit, selector,
 161                i, j, t, runPos, symCount, symTotal, nSelectors, byteCount[256];
 162        int runCnt = runCnt; /* for compiler */
 163        uint8_t uc, symToByte[256], mtfSymbol[256], *selectors;
 164        uint32_t *dbuf;
 165        unsigned origPtr;
 166
 167        dbuf = bd->dbuf;
 168        dbufSize = bd->dbufSize;
 169        selectors = bd->selectors;
 170
 171/* In bbox, we are ok with aborting through setjmp which is set up in start_bunzip */
 172#if 0
 173        /* Reset longjmp I/O error handling */
 174        i = setjmp(bd->jmpbuf);
 175        if (i) return i;
 176#endif
 177
 178        /* Read in header signature and CRC, then validate signature.
 179           (last block signature means CRC is for whole file, return now) */
 180        i = get_bits(bd, 24);
 181        j = get_bits(bd, 24);
 182        bd->headerCRC = get_bits(bd, 32);
 183        if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK;
 184        if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA;
 185
 186        /* We can add support for blockRandomised if anybody complains.  There was
 187           some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
 188           it didn't actually work. */
 189        if (get_bits(bd, 1)) return RETVAL_OBSOLETE_INPUT;
 190        origPtr = get_bits(bd, 24);
 191        if ((int)origPtr > dbufSize) return RETVAL_DATA_ERROR;
 192
 193        /* mapping table: if some byte values are never used (encoding things
 194           like ascii text), the compression code removes the gaps to have fewer
 195           symbols to deal with, and writes a sparse bitfield indicating which
 196           values were present.  We make a translation table to convert the symbols
 197           back to the corresponding bytes. */
 198        symTotal = 0;
 199        i = 0;
 200        t = get_bits(bd, 16);
 201        do {
 202                if (t & (1 << 15)) {
 203                        unsigned inner_map = get_bits(bd, 16);
 204                        do {
 205                                if (inner_map & (1 << 15))
 206                                        symToByte[symTotal++] = i;
 207                                inner_map <<= 1;
 208                                i++;
 209                        } while (i & 15);
 210                        i -= 16;
 211                }
 212                t <<= 1;
 213                i += 16;
 214        } while (i < 256);
 215
 216        /* How many different Huffman coding groups does this block use? */
 217        groupCount = get_bits(bd, 3);
 218        if (groupCount < 2 || groupCount > MAX_GROUPS)
 219                return RETVAL_DATA_ERROR;
 220
 221        /* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding
 222           group.  Read in the group selector list, which is stored as MTF encoded
 223           bit runs.  (MTF=Move To Front, as each value is used it's moved to the
 224           start of the list.) */
 225        for (i = 0; i < groupCount; i++)
 226                mtfSymbol[i] = i;
 227        nSelectors = get_bits(bd, 15);
 228        if (!nSelectors)
 229                return RETVAL_DATA_ERROR;
 230        for (i = 0; i < nSelectors; i++) {
 231                uint8_t tmp_byte;
 232                /* Get next value */
 233                int n = 0;
 234                while (get_bits(bd, 1)) {
 235                        if (n >= groupCount) return RETVAL_DATA_ERROR;
 236                        n++;
 237                }
 238                /* Decode MTF to get the next selector */
 239                tmp_byte = mtfSymbol[n];
 240                while (--n >= 0)
 241                        mtfSymbol[n + 1] = mtfSymbol[n];
 242                mtfSymbol[0] = selectors[i] = tmp_byte;
 243        }
 244
 245        /* Read the Huffman coding tables for each group, which code for symTotal
 246           literal symbols, plus two run symbols (RUNA, RUNB) */
 247        symCount = symTotal + 2;
 248        for (j = 0; j < groupCount; j++) {
 249                uint8_t length[MAX_SYMBOLS];
 250                /* 8 bits is ALMOST enough for temp[], see below */
 251                unsigned temp[MAX_HUFCODE_BITS+1];
 252                int minLen, maxLen, pp, len_m1;
 253
 254                /* Read Huffman code lengths for each symbol.  They're stored in
 255                   a way similar to mtf; record a starting value for the first symbol,
 256                   and an offset from the previous value for every symbol after that.
 257                   (Subtracting 1 before the loop and then adding it back at the end is
 258                   an optimization that makes the test inside the loop simpler: symbol
 259                   length 0 becomes negative, so an unsigned inequality catches it.) */
 260                len_m1 = get_bits(bd, 5) - 1;
 261                for (i = 0; i < symCount; i++) {
 262                        for (;;) {
 263                                int two_bits;
 264                                if ((unsigned)len_m1 > (MAX_HUFCODE_BITS-1))
 265                                        return RETVAL_DATA_ERROR;
 266
 267                                /* If first bit is 0, stop.  Else second bit indicates whether
 268                                   to increment or decrement the value.  Optimization: grab 2
 269                                   bits and unget the second if the first was 0. */
 270                                two_bits = get_bits(bd, 2);
 271                                if (two_bits < 2) {
 272                                        bd->inbufBitCount++;
 273                                        break;
 274                                }
 275
 276                                /* Add one if second bit 1, else subtract 1.  Avoids if/else */
 277                                len_m1 += (((two_bits+1) & 2) - 1);
 278                        }
 279
 280                        /* Correct for the initial -1, to get the final symbol length */
 281                        length[i] = len_m1 + 1;
 282                }
 283
 284                /* Find largest and smallest lengths in this group */
 285                minLen = maxLen = length[0];
 286                for (i = 1; i < symCount; i++) {
 287                        if (length[i] > maxLen) maxLen = length[i];
 288                        else if (length[i] < minLen) minLen = length[i];
 289                }
 290
 291                /* Calculate permute[], base[], and limit[] tables from length[].
 292                 *
 293                 * permute[] is the lookup table for converting Huffman coded symbols
 294                 * into decoded symbols.  base[] is the amount to subtract from the
 295                 * value of a Huffman symbol of a given length when using permute[].
 296                 *
 297                 * limit[] indicates the largest numerical value a symbol with a given
 298                 * number of bits can have.  This is how the Huffman codes can vary in
 299                 * length: each code with a value>limit[length] needs another bit.
 300                 */
 301                hufGroup = bd->groups + j;
 302                hufGroup->minLen = minLen;
 303                hufGroup->maxLen = maxLen;
 304
 305                /* Note that minLen can't be smaller than 1, so we adjust the base
 306                   and limit array pointers so we're not always wasting the first
 307                   entry.  We do this again when using them (during symbol decoding). */
 308                base = hufGroup->base - 1;
 309                limit = hufGroup->limit - 1;
 310
 311                /* Calculate permute[].  Concurently, initialize temp[] and limit[]. */
 312                pp = 0;
 313                for (i = minLen; i <= maxLen; i++) {
 314                        int k;
 315                        temp[i] = limit[i] = 0;
 316                        for (k = 0; k < symCount; k++)
 317                                if (length[k] == i)
 318                                        hufGroup->permute[pp++] = k;
 319                }
 320
 321                /* Count symbols coded for at each bit length */
 322                /* NB: in pathological cases, temp[8] can end ip being 256.
 323                 * That's why uint8_t is too small for temp[]. */
 324                for (i = 0; i < symCount; i++) temp[length[i]]++;
 325
 326                /* Calculate limit[] (the largest symbol-coding value at each bit
 327                 * length, which is (previous limit<<1)+symbols at this level), and
 328                 * base[] (number of symbols to ignore at each bit length, which is
 329                 * limit minus the cumulative count of symbols coded for already). */
 330                pp = t = 0;
 331                for (i = minLen; i < maxLen;) {
 332                        unsigned temp_i = temp[i];
 333
 334                        pp += temp_i;
 335
 336                        /* We read the largest possible symbol size and then unget bits
 337                           after determining how many we need, and those extra bits could
 338                           be set to anything.  (They're noise from future symbols.)  At
 339                           each level we're really only interested in the first few bits,
 340                           so here we set all the trailing to-be-ignored bits to 1 so they
 341                           don't affect the value>limit[length] comparison. */
 342                        limit[i] = (pp << (maxLen - i)) - 1;
 343                        pp <<= 1;
 344                        t += temp_i;
 345                        base[++i] = pp - t;
 346                }
 347                limit[maxLen] = pp + temp[maxLen] - 1;
 348                limit[maxLen+1] = INT_MAX; /* Sentinel value for reading next sym. */
 349                base[minLen] = 0;
 350        }
 351
 352        /* We've finished reading and digesting the block header.  Now read this
 353           block's Huffman coded symbols from the file and undo the Huffman coding
 354           and run length encoding, saving the result into dbuf[dbufCount++] = uc */
 355
 356        /* Initialize symbol occurrence counters and symbol Move To Front table */
 357        /*memset(byteCount, 0, sizeof(byteCount)); - smaller, but slower */
 358        for (i = 0; i < 256; i++) {
 359                byteCount[i] = 0;
 360                mtfSymbol[i] = (uint8_t)i;
 361        }
 362
 363        /* Loop through compressed symbols. */
 364
 365        runPos = dbufCount = selector = 0;
 366        for (;;) {
 367                int nextSym;
 368
 369                /* Fetch next Huffman coding group from list. */
 370                symCount = GROUP_SIZE - 1;
 371                if (selector >= nSelectors) return RETVAL_DATA_ERROR;
 372                hufGroup = bd->groups + selectors[selector++];
 373                base = hufGroup->base - 1;
 374                limit = hufGroup->limit - 1;
 375
 376 continue_this_group:
 377                /* Read next Huffman-coded symbol. */
 378
 379                /* Note: It is far cheaper to read maxLen bits and back up than it is
 380                   to read minLen bits and then add additional bit at a time, testing
 381                   as we go.  Because there is a trailing last block (with file CRC),
 382                   there is no danger of the overread causing an unexpected EOF for a
 383                   valid compressed file.
 384                 */
 385                if (1) {
 386                        /* As a further optimization, we do the read inline
 387                           (falling back to a call to get_bits if the buffer runs dry).
 388                         */
 389                        int new_cnt;
 390                        while ((new_cnt = bd->inbufBitCount - hufGroup->maxLen) < 0) {
 391                                /* bd->inbufBitCount < hufGroup->maxLen */
 392                                if (bd->inbufPos == bd->inbufCount) {
 393                                        nextSym = get_bits(bd, hufGroup->maxLen);
 394                                        goto got_huff_bits;
 395                                }
 396                                bd->inbufBits = (bd->inbufBits << 8) | bd->inbuf[bd->inbufPos++];
 397                                bd->inbufBitCount += 8;
 398                        };
 399                        bd->inbufBitCount = new_cnt; /* "bd->inbufBitCount -= hufGroup->maxLen;" */
 400                        nextSym = (bd->inbufBits >> new_cnt) & ((1 << hufGroup->maxLen) - 1);
 401 got_huff_bits: ;
 402                } else { /* unoptimized equivalent */
 403                        nextSym = get_bits(bd, hufGroup->maxLen);
 404                }
 405                /* Figure how many bits are in next symbol and unget extras */
 406                i = hufGroup->minLen;
 407                while (nextSym > limit[i]) ++i;
 408                j = hufGroup->maxLen - i;
 409                if (j < 0)
 410                        return RETVAL_DATA_ERROR;
 411                bd->inbufBitCount += j;
 412
 413                /* Huffman decode value to get nextSym (with bounds checking) */
 414                nextSym = (nextSym >> j) - base[i];
 415                if ((unsigned)nextSym >= MAX_SYMBOLS)
 416                        return RETVAL_DATA_ERROR;
 417                nextSym = hufGroup->permute[nextSym];
 418
 419                /* We have now decoded the symbol, which indicates either a new literal
 420                   byte, or a repeated run of the most recent literal byte.  First,
 421                   check if nextSym indicates a repeated run, and if so loop collecting
 422                   how many times to repeat the last literal. */
 423                if ((unsigned)nextSym <= SYMBOL_RUNB) { /* RUNA or RUNB */
 424
 425                        /* If this is the start of a new run, zero out counter */
 426                        if (runPos == 0) {
 427                                runPos = 1;
 428                                runCnt = 0;
 429                        }
 430
 431                        /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
 432                           each bit position, add 1 or 2 instead.  For example,
 433                           1011 is 1<<0 + 1<<1 + 2<<2.  1010 is 2<<0 + 2<<1 + 1<<2.
 434                           You can make any bit pattern that way using 1 less symbol than
 435                           the basic or 0/1 method (except all bits 0, which would use no
 436                           symbols, but a run of length 0 doesn't mean anything in this
 437                           context).  Thus space is saved. */
 438                        runCnt += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */
 439                        if (runPos < dbufSize) runPos <<= 1;
 440                        goto end_of_huffman_loop;
 441                }
 442
 443                /* When we hit the first non-run symbol after a run, we now know
 444                   how many times to repeat the last literal, so append that many
 445                   copies to our buffer of decoded symbols (dbuf) now.  (The last
 446                   literal used is the one at the head of the mtfSymbol array.) */
 447                if (runPos != 0) {
 448                        uint8_t tmp_byte;
 449                        if (dbufCount + runCnt > dbufSize) {
 450                                dbg("dbufCount:%d+runCnt:%d %d > dbufSize:%d RETVAL_DATA_ERROR",
 451                                                dbufCount, runCnt, dbufCount + runCnt, dbufSize);
 452                                return RETVAL_DATA_ERROR;
 453                        }
 454                        tmp_byte = symToByte[mtfSymbol[0]];
 455                        byteCount[tmp_byte] += runCnt;
 456                        while (--runCnt >= 0) dbuf[dbufCount++] = (uint32_t)tmp_byte;
 457                        runPos = 0;
 458                }
 459
 460                /* Is this the terminating symbol? */
 461                if (nextSym > symTotal) break;
 462
 463                /* At this point, nextSym indicates a new literal character.  Subtract
 464                   one to get the position in the MTF array at which this literal is
 465                   currently to be found.  (Note that the result can't be -1 or 0,
 466                   because 0 and 1 are RUNA and RUNB.  But another instance of the
 467                   first symbol in the mtf array, position 0, would have been handled
 468                   as part of a run above.  Therefore 1 unused mtf position minus
 469                   2 non-literal nextSym values equals -1.) */
 470                if (dbufCount >= dbufSize) return RETVAL_DATA_ERROR;
 471                i = nextSym - 1;
 472                uc = mtfSymbol[i];
 473
 474                /* Adjust the MTF array.  Since we typically expect to move only a
 475                 * small number of symbols, and are bound by 256 in any case, using
 476                 * memmove here would typically be bigger and slower due to function
 477                 * call overhead and other assorted setup costs. */
 478                do {
 479                        mtfSymbol[i] = mtfSymbol[i-1];
 480                } while (--i);
 481                mtfSymbol[0] = uc;
 482                uc = symToByte[uc];
 483
 484                /* We have our literal byte.  Save it into dbuf. */
 485                byteCount[uc]++;
 486                dbuf[dbufCount++] = (uint32_t)uc;
 487
 488                /* Skip group initialization if we're not done with this group.  Done
 489                 * this way to avoid compiler warning. */
 490 end_of_huffman_loop:
 491                if (--symCount >= 0) goto continue_this_group;
 492        }
 493
 494        /* At this point, we've read all the Huffman-coded symbols (and repeated
 495           runs) for this block from the input stream, and decoded them into the
 496           intermediate buffer.  There are dbufCount many decoded bytes in dbuf[].
 497           Now undo the Burrows-Wheeler transform on dbuf.
 498           See http://dogma.net/markn/articles/bwt/bwt.htm
 499         */
 500
 501        /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
 502        j = 0;
 503        for (i = 0; i < 256; i++) {
 504                int tmp_count = j + byteCount[i];
 505                byteCount[i] = j;
 506                j = tmp_count;
 507        }
 508
 509        /* Figure out what order dbuf would be in if we sorted it. */
 510        for (i = 0; i < dbufCount; i++) {
 511                uint8_t tmp_byte = (uint8_t)dbuf[i];
 512                int tmp_count = byteCount[tmp_byte];
 513                dbuf[tmp_count] |= (i << 8);
 514                byteCount[tmp_byte] = tmp_count + 1;
 515        }
 516
 517        /* Decode first byte by hand to initialize "previous" byte.  Note that it
 518           doesn't get output, and if the first three characters are identical
 519           it doesn't qualify as a run (hence writeRunCountdown=5). */
 520        if (dbufCount) {
 521                uint32_t tmp;
 522                if ((int)origPtr >= dbufCount) return RETVAL_DATA_ERROR;
 523                tmp = dbuf[origPtr];
 524                bd->writeCurrent = (uint8_t)tmp;
 525                bd->writePos = (tmp >> 8);
 526                bd->writeRunCountdown = 5;
 527        }
 528        bd->writeCount = dbufCount;
 529
 530        return RETVAL_OK;
 531}
 532
 533/* Undo Burrows-Wheeler transform on intermediate buffer to produce output.
 534   If start_bunzip was initialized with out_fd=-1, then up to len bytes of
 535   data are written to outbuf.  Return value is number of bytes written or
 536   error (all errors are negative numbers).  If out_fd!=-1, outbuf and len
 537   are ignored, data is written to out_fd and return is RETVAL_OK or error.
 538
 539   NB: read_bunzip returns < 0 on error, or the number of *unfilled* bytes
 540   in outbuf. IOW: on EOF returns len ("all bytes are not filled"), not 0.
 541   (Why? This allows to get rid of one local variable)
 542*/
 543int FAST_FUNC read_bunzip(bunzip_data *bd, char *outbuf, int len)
 544{
 545        const uint32_t *dbuf;
 546        int pos, current, previous;
 547        uint32_t CRC;
 548
 549        /* If we already have error/end indicator, return it */
 550        if (bd->writeCount < 0)
 551                return bd->writeCount;
 552
 553        dbuf = bd->dbuf;
 554
 555        /* Register-cached state (hopefully): */
 556        pos = bd->writePos;
 557        current = bd->writeCurrent;
 558        CRC = bd->writeCRC; /* small loss on x86-32 (not enough regs), win on x86-64 */
 559
 560        /* We will always have pending decoded data to write into the output
 561           buffer unless this is the very first call (in which case we haven't
 562           Huffman-decoded a block into the intermediate buffer yet). */
 563        if (bd->writeCopies) {
 564
 565 dec_writeCopies:
 566                /* Inside the loop, writeCopies means extra copies (beyond 1) */
 567                --bd->writeCopies;
 568
 569                /* Loop outputting bytes */
 570                for (;;) {
 571
 572                        /* If the output buffer is full, save cached state and return */
 573                        if (--len < 0) {
 574                                /* Unlikely branch.
 575                                 * Use of "goto" instead of keeping code here
 576                                 * helps compiler to realize this. */
 577                                goto outbuf_full;
 578                        }
 579
 580                        /* Write next byte into output buffer, updating CRC */
 581                        *outbuf++ = current;
 582                        CRC = (CRC << 8) ^ bd->crc32Table[(CRC >> 24) ^ current];
 583
 584                        /* Loop now if we're outputting multiple copies of this byte */
 585                        if (bd->writeCopies) {
 586                                /* Unlikely branch */
 587                                /*--bd->writeCopies;*/
 588                                /*continue;*/
 589                                /* Same, but (ab)using other existing --writeCopies operation
 590                                 * (and this if() compiles into just test+branch pair): */
 591                                goto dec_writeCopies;
 592                        }
 593 decode_next_byte:
 594                        if (--bd->writeCount < 0)
 595                                break; /* input block is fully consumed, need next one */
 596
 597                        /* Follow sequence vector to undo Burrows-Wheeler transform */
 598                        previous = current;
 599                        pos = dbuf[pos];
 600                        current = (uint8_t)pos;
 601                        pos >>= 8;
 602
 603                        /* After 3 consecutive copies of the same byte, the 4th
 604                         * is a repeat count.  We count down from 4 instead
 605                         * of counting up because testing for non-zero is faster */
 606                        if (--bd->writeRunCountdown != 0) {
 607                                if (current != previous)
 608                                        bd->writeRunCountdown = 4;
 609                        } else {
 610                                /* Unlikely branch */
 611                                /* We have a repeated run, this byte indicates the count */
 612                                bd->writeCopies = current;
 613                                current = previous;
 614                                bd->writeRunCountdown = 5;
 615
 616                                /* Sometimes there are just 3 bytes (run length 0) */
 617                                if (!bd->writeCopies) goto decode_next_byte;
 618
 619                                /* Subtract the 1 copy we'd output anyway to get extras */
 620                                --bd->writeCopies;
 621                        }
 622                } /* for(;;) */
 623
 624                /* Decompression of this input block completed successfully */
 625                bd->writeCRC = CRC = ~CRC;
 626                bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ CRC;
 627
 628                /* If this block had a CRC error, force file level CRC error */
 629                if (CRC != bd->headerCRC) {
 630                        bd->totalCRC = bd->headerCRC + 1;
 631                        return RETVAL_LAST_BLOCK;
 632                }
 633        }
 634
 635        /* Refill the intermediate buffer by Huffman-decoding next block of input */
 636        {
 637                int r = get_next_block(bd);
 638                if (r) { /* error/end */
 639                        bd->writeCount = r;
 640                        return (r != RETVAL_LAST_BLOCK) ? r : len;
 641                }
 642        }
 643
 644        CRC = ~0;
 645        pos = bd->writePos;
 646        current = bd->writeCurrent;
 647        goto decode_next_byte;
 648
 649 outbuf_full:
 650        /* Output buffer is full, save cached state and return */
 651        bd->writePos = pos;
 652        bd->writeCurrent = current;
 653        bd->writeCRC = CRC;
 654
 655        bd->writeCopies++;
 656
 657        return 0;
 658}
 659
 660/* Allocate the structure, read file header.  If in_fd==-1, inbuf must contain
 661   a complete bunzip file (len bytes long).  If in_fd!=-1, inbuf and len are
 662   ignored, and data is read from file handle into temporary buffer. */
 663
 664/* Because bunzip2 is used for help text unpacking, and because bb_show_usage()
 665   should work for NOFORK applets too, we must be extremely careful to not leak
 666   any allocations! */
 667int FAST_FUNC start_bunzip(bunzip_data **bdp, int in_fd,
 668                const void *inbuf, int len)
 669{
 670        bunzip_data *bd;
 671        unsigned i;
 672        enum {
 673                BZh0 = ('B' << 24) + ('Z' << 16) + ('h' << 8) + '0',
 674                h0 = ('h' << 8) + '0',
 675        };
 676
 677        /* Figure out how much data to allocate */
 678        i = sizeof(bunzip_data);
 679        if (in_fd != -1) i += IOBUF_SIZE;
 680
 681        /* Allocate bunzip_data.  Most fields initialize to zero. */
 682        bd = *bdp = xzalloc(i);
 683
 684        /* Setup input buffer */
 685        bd->in_fd = in_fd;
 686        if (-1 == in_fd) {
 687                /* in this case, bd->inbuf is read-only */
 688                bd->inbuf = (void*)inbuf; /* cast away const-ness */
 689        } else {
 690                bd->inbuf = (uint8_t*)(bd + 1);
 691                memcpy(bd->inbuf, inbuf, len);
 692        }
 693        bd->inbufCount = len;
 694
 695        /* Init the CRC32 table (big endian) */
 696        crc32_filltable(bd->crc32Table, 1);
 697
 698        /* Setup for I/O error handling via longjmp */
 699        i = setjmp(bd->jmpbuf);
 700        if (i) return i;
 701
 702        /* Ensure that file starts with "BZh['1'-'9']." */
 703        /* Update: now caller verifies 1st two bytes, makes .gz/.bz2
 704         * integration easier */
 705        /* was: */
 706        /* i = get_bits(bd, 32); */
 707        /* if ((unsigned)(i - BZh0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA; */
 708        i = get_bits(bd, 16);
 709        if ((unsigned)(i - h0 - 1) >= 9) return RETVAL_NOT_BZIP_DATA;
 710
 711        /* Fourth byte (ascii '1'-'9') indicates block size in units of 100k of
 712           uncompressed data.  Allocate intermediate buffer for block. */
 713        /* bd->dbufSize = 100000 * (i - BZh0); */
 714        bd->dbufSize = 100000 * (i - h0);
 715
 716        /* Cannot use xmalloc - may leak bd in NOFORK case! */
 717        bd->dbuf = malloc_or_warn(bd->dbufSize * sizeof(bd->dbuf[0]));
 718        if (!bd->dbuf) {
 719                free(bd);
 720                xfunc_die();
 721        }
 722        return RETVAL_OK;
 723}
 724
 725void FAST_FUNC dealloc_bunzip(bunzip_data *bd)
 726{
 727        free(bd->dbuf);
 728        free(bd);
 729}
 730
 731
 732/* Decompress src_fd to dst_fd.  Stops at end of bzip data, not end of file. */
 733IF_DESKTOP(long long) int FAST_FUNC
 734unpack_bz2_stream(transformer_state_t *xstate)
 735{
 736        IF_DESKTOP(long long total_written = 0;)
 737        bunzip_data *bd;
 738        char *outbuf;
 739        int i;
 740        unsigned len;
 741
 742        if (check_signature16(xstate, BZIP2_MAGIC))
 743                return -1;
 744
 745        outbuf = xmalloc(IOBUF_SIZE);
 746        len = 0;
 747        while (1) { /* "Process one BZ... stream" loop */
 748
 749                i = start_bunzip(&bd, xstate->src_fd, outbuf + 2, len);
 750
 751                if (i == 0) {
 752                        while (1) { /* "Produce some output bytes" loop */
 753                                i = read_bunzip(bd, outbuf, IOBUF_SIZE);
 754                                if (i < 0) /* error? */
 755                                        break;
 756                                i = IOBUF_SIZE - i; /* number of bytes produced */
 757                                if (i == 0) /* EOF? */
 758                                        break;
 759                                if (i != transformer_write(xstate, outbuf, i)) {
 760                                        i = RETVAL_SHORT_WRITE;
 761                                        goto release_mem;
 762                                }
 763                                IF_DESKTOP(total_written += i;)
 764                        }
 765                }
 766
 767                if (i != RETVAL_LAST_BLOCK
 768                /* Observed case when i == RETVAL_OK:
 769                 * "bzcat z.bz2", where "z.bz2" is a bzipped zero-length file
 770                 * (to be exact, z.bz2 is exactly these 14 bytes:
 771                 * 42 5a 68 39 17 72 45 38  50 90 00 00 00 00).
 772                 */
 773                 && i != RETVAL_OK
 774                ) {
 775                        bb_error_msg("bunzip error %d", i);
 776                        break;
 777                }
 778                if (bd->headerCRC != bd->totalCRC) {
 779                        bb_error_msg("CRC error");
 780                        break;
 781                }
 782
 783                /* Successfully unpacked one BZ stream */
 784                i = RETVAL_OK;
 785
 786                /* Do we have "BZ..." after last processed byte?
 787                 * pbzip2 (parallelized bzip2) produces such files.
 788                 */
 789                len = bd->inbufCount - bd->inbufPos;
 790                memcpy(outbuf, &bd->inbuf[bd->inbufPos], len);
 791                if (len < 2) {
 792                        if (safe_read(xstate->src_fd, outbuf + len, 2 - len) != 2 - len)
 793                                break;
 794                        len = 2;
 795                }
 796                if (*(uint16_t*)outbuf != BZIP2_MAGIC) /* "BZ"? */
 797                        break;
 798                dealloc_bunzip(bd);
 799                len -= 2;
 800        }
 801
 802 release_mem:
 803        dealloc_bunzip(bd);
 804        free(outbuf);
 805
 806        return i ? i : IF_DESKTOP(total_written) + 0;
 807}
 808
 809#ifdef TESTING
 810
 811static char *const bunzip_errors[] = {
 812        NULL, "Bad file checksum", "Not bzip data",
 813        "Unexpected input EOF", "Unexpected output EOF", "Data error",
 814        "Out of memory", "Obsolete (pre 0.9.5) bzip format not supported"
 815};
 816
 817/* Dumb little test thing, decompress stdin to stdout */
 818int main(int argc, char **argv)
 819{
 820        char c;
 821
 822        int i = unpack_bz2_stream(0, 1);
 823        if (i < 0)
 824                fprintf(stderr, "%s\n", bunzip_errors[-i]);
 825        else if (read(STDIN_FILENO, &c, 1))
 826                fprintf(stderr, "Trailing garbage ignored\n");
 827        return -i;
 828}
 829#endif
 830