busybox/networking/ntpd.c
<<
>>
Prefs
   1/*
   2 * NTP client/server, based on OpenNTPD 3.9p1
   3 *
   4 * Busybox port author: Adam Tkac (C) 2009 <vonsch@gmail.com>
   5 *
   6 * OpenNTPd 3.9p1 copyright holders:
   7 *   Copyright (c) 2003, 2004 Henning Brauer <henning@openbsd.org>
   8 *   Copyright (c) 2004 Alexander Guy <alexander.guy@andern.org>
   9 *
  10 * OpenNTPd code is licensed under ISC-style licence:
  11 *
  12 * Permission to use, copy, modify, and distribute this software for any
  13 * purpose with or without fee is hereby granted, provided that the above
  14 * copyright notice and this permission notice appear in all copies.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  17 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  18 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  19 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  20 * WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER
  21 * IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
  22 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  23 ***********************************************************************
  24 *
  25 * Parts of OpenNTPD clock syncronization code is replaced by
  26 * code which is based on ntp-4.2.6, which carries the following
  27 * copyright notice:
  28 *
  29 * Copyright (c) University of Delaware 1992-2009
  30 *
  31 * Permission to use, copy, modify, and distribute this software and
  32 * its documentation for any purpose with or without fee is hereby
  33 * granted, provided that the above copyright notice appears in all
  34 * copies and that both the copyright notice and this permission
  35 * notice appear in supporting documentation, and that the name
  36 * University of Delaware not be used in advertising or publicity
  37 * pertaining to distribution of the software without specific,
  38 * written prior permission. The University of Delaware makes no
  39 * representations about the suitability this software for any
  40 * purpose. It is provided "as is" without express or implied warranty.
  41 ***********************************************************************
  42 */
  43//config:config NTPD
  44//config:       bool "ntpd"
  45//config:       default y
  46//config:       select PLATFORM_LINUX
  47//config:       help
  48//config:         The NTP client/server daemon.
  49//config:
  50//config:config FEATURE_NTPD_SERVER
  51//config:       bool "Make ntpd usable as a NTP server"
  52//config:       default y
  53//config:       depends on NTPD
  54//config:       help
  55//config:         Make ntpd usable as a NTP server. If you disable this option
  56//config:         ntpd will be usable only as a NTP client.
  57//config:
  58//config:config FEATURE_NTPD_CONF
  59//config:       bool "Make ntpd understand /etc/ntp.conf"
  60//config:       default y
  61//config:       depends on NTPD
  62//config:       help
  63//config:         Make ntpd look in /etc/ntp.conf for peers. Only "server address"
  64//config:         is supported.
  65
  66//applet:IF_NTPD(APPLET(ntpd, BB_DIR_USR_SBIN, BB_SUID_DROP))
  67
  68//kbuild:lib-$(CONFIG_NTPD) += ntpd.o
  69
  70//usage:#define ntpd_trivial_usage
  71//usage:        "[-dnqNw"IF_FEATURE_NTPD_SERVER("l -I IFACE")"] [-S PROG] [-p PEER]..."
  72//usage:#define ntpd_full_usage "\n\n"
  73//usage:       "NTP client/server\n"
  74//usage:     "\n        -d      Verbose"
  75//usage:     "\n        -n      Do not daemonize"
  76//usage:     "\n        -q      Quit after clock is set"
  77//usage:     "\n        -N      Run at high priority"
  78//usage:     "\n        -w      Do not set time (only query peers), implies -n"
  79//usage:     "\n        -S PROG Run PROG after stepping time, stratum change, and every 11 mins"
  80//usage:     "\n        -p PEER Obtain time from PEER (may be repeated)"
  81//usage:        IF_FEATURE_NTPD_CONF(
  82//usage:     "\n                If -p is not given, 'server HOST' lines"
  83//usage:     "\n                from /etc/ntp.conf are used"
  84//usage:        )
  85//usage:        IF_FEATURE_NTPD_SERVER(
  86//usage:     "\n        -l      Also run as server on port 123"
  87//usage:     "\n        -I IFACE Bind server to IFACE, implies -l"
  88//usage:        )
  89
  90// -l and -p options are not compatible with "standard" ntpd:
  91// it has them as "-l logfile" and "-p pidfile".
  92// -S and -w are not compat either, "standard" ntpd has no such opts.
  93
  94#include "libbb.h"
  95#include <math.h>
  96#include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */
  97#include <sys/resource.h> /* setpriority */
  98#include <sys/timex.h>
  99#ifndef IPTOS_LOWDELAY
 100# define IPTOS_LOWDELAY 0x10
 101#endif
 102
 103
 104/* Verbosity control (max level of -dddd options accepted).
 105 * max 6 is very talkative (and bloated). 3 is non-bloated,
 106 * production level setting.
 107 */
 108#define MAX_VERBOSE     3
 109
 110
 111/* High-level description of the algorithm:
 112 *
 113 * We start running with very small poll_exp, BURSTPOLL,
 114 * in order to quickly accumulate INITIAL_SAMPLES datapoints
 115 * for each peer. Then, time is stepped if the offset is larger
 116 * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
 117 * poll_exp to MINPOLL and enter frequency measurement step:
 118 * we collect new datapoints but ignore them for WATCH_THRESHOLD
 119 * seconds. After WATCH_THRESHOLD seconds we look at accumulated
 120 * offset and estimate frequency drift.
 121 *
 122 * (frequency measurement step seems to not be strictly needed,
 123 * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
 124 * define set to 0)
 125 *
 126 * After this, we enter "steady state": we collect a datapoint,
 127 * we select the best peer, if this datapoint is not a new one
 128 * (IOW: if this datapoint isn't for selected peer), sleep
 129 * and collect another one; otherwise, use its offset to update
 130 * frequency drift, if offset is somewhat large, reduce poll_exp,
 131 * otherwise increase poll_exp.
 132 *
 133 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
 134 * happen, we assume that something "bad" happened (computer
 135 * was hibernated, someone set totally wrong date, etc),
 136 * then the time is stepped, all datapoints are discarded,
 137 * and we go back to steady state.
 138 *
 139 * Made some changes to speed up re-syncing after our clock goes bad
 140 * (tested with suspending my laptop):
 141 * - if largish offset (>= STEP_THRESHOLD == 1 sec) is seen
 142 *   from a peer, schedule next query for this peer soon
 143 *   without drastically lowering poll interval for everybody.
 144 *   This makes us collect enough data for step much faster:
 145 *   e.g. at poll = 10 (1024 secs), step was done within 5 minutes
 146 *   after first reply which indicated that our clock is 14 seconds off.
 147 * - on step, do not discard d_dispersion data of the existing datapoints,
 148 *   do not clear reachable_bits. This prevents discarding first ~8
 149 *   datapoints after the step.
 150 */
 151
 152#define INITIAL_SAMPLES    4    /* how many samples do we want for init */
 153#define BAD_DELAY_GROWTH   4    /* drop packet if its delay grew by more than this */
 154
 155#define RETRY_INTERVAL    32    /* on send/recv error, retry in N secs (need to be power of 2) */
 156#define NOREPLY_INTERVAL 512    /* sent, but got no reply: cap next query by this many seconds */
 157#define RESPONSE_INTERVAL 16    /* wait for reply up to N secs */
 158
 159/* Step threshold (sec). std ntpd uses 0.128.
 160 */
 161#define STEP_THRESHOLD     1
 162/* Slew threshold (sec): adjtimex() won't accept offsets larger than this.
 163 * Using exact power of 2 (1/8) results in smaller code
 164 */
 165#define SLEW_THRESHOLD 0.125
 166/* Stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
 167#define WATCH_THRESHOLD  128
 168/* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
 169//UNUSED: #define PANIC_THRESHOLD 1000    /* panic threshold (sec) */
 170
 171/*
 172 * If we got |offset| > BIGOFF from a peer, cap next query interval
 173 * for this peer by this many seconds:
 174 */
 175#define BIGOFF          STEP_THRESHOLD
 176#define BIGOFF_INTERVAL (1 << 7) /* 128 s */
 177
 178#define FREQ_TOLERANCE  0.000015 /* frequency tolerance (15 PPM) */
 179#define BURSTPOLL       0       /* initial poll */
 180#define MINPOLL         5       /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
 181/*
 182 * If offset > discipline_jitter * POLLADJ_GATE, and poll interval is > 2^BIGPOLL,
 183 * then it is decreased _at once_. (If <= 2^BIGPOLL, it will be decreased _eventually_).
 184 */
 185#define BIGPOLL         9       /* 2^9 sec ~= 8.5 min */
 186#define MAXPOLL         12      /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
 187/*
 188 * Actively lower poll when we see such big offsets.
 189 * With SLEW_THRESHOLD = 0.125, it means we try to sync more aggressively
 190 * if offset increases over ~0.04 sec
 191 */
 192//#define POLLDOWN_OFFSET (SLEW_THRESHOLD / 3)
 193#define MINDISP         0.01    /* minimum dispersion (sec) */
 194#define MAXDISP         16      /* maximum dispersion (sec) */
 195#define MAXSTRAT        16      /* maximum stratum (infinity metric) */
 196#define MAXDIST         1       /* distance threshold (sec) */
 197#define MIN_SELECTED    1       /* minimum intersection survivors */
 198#define MIN_CLUSTERED   3       /* minimum cluster survivors */
 199
 200#define MAXDRIFT        0.000500 /* frequency drift we can correct (500 PPM) */
 201
 202/* Poll-adjust threshold.
 203 * When we see that offset is small enough compared to discipline jitter,
 204 * we grow a counter: += MINPOLL. When counter goes over POLLADJ_LIMIT,
 205 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
 206 * and when it goes below -POLLADJ_LIMIT, we poll_exp--.
 207 * (Bumped from 30 to 40 since otherwise I often see poll_exp going *2* steps down)
 208 */
 209#define POLLADJ_LIMIT   40
 210/* If offset < discipline_jitter * POLLADJ_GATE, then we decide to increase
 211 * poll interval (we think we can't improve timekeeping
 212 * by staying at smaller poll).
 213 */
 214#define POLLADJ_GATE    4
 215#define TIMECONST_HACK_GATE 2
 216/* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
 217#define ALLAN           512
 218/* PLL loop gain */
 219#define PLL             65536
 220/* FLL loop gain [why it depends on MAXPOLL??] */
 221#define FLL             (MAXPOLL + 1)
 222/* Parameter averaging constant */
 223#define AVG             4
 224
 225
 226enum {
 227        NTP_VERSION     = 4,
 228        NTP_MAXSTRATUM  = 15,
 229
 230        NTP_DIGESTSIZE     = 16,
 231        NTP_MSGSIZE_NOAUTH = 48,
 232        NTP_MSGSIZE        = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),
 233
 234        /* Status Masks */
 235        MODE_MASK       = (7 << 0),
 236        VERSION_MASK    = (7 << 3),
 237        VERSION_SHIFT   = 3,
 238        LI_MASK         = (3 << 6),
 239
 240        /* Leap Second Codes (high order two bits of m_status) */
 241        LI_NOWARNING    = (0 << 6),    /* no warning */
 242        LI_PLUSSEC      = (1 << 6),    /* add a second (61 seconds) */
 243        LI_MINUSSEC     = (2 << 6),    /* minus a second (59 seconds) */
 244        LI_ALARM        = (3 << 6),    /* alarm condition */
 245
 246        /* Mode values */
 247        MODE_RES0       = 0,    /* reserved */
 248        MODE_SYM_ACT    = 1,    /* symmetric active */
 249        MODE_SYM_PAS    = 2,    /* symmetric passive */
 250        MODE_CLIENT     = 3,    /* client */
 251        MODE_SERVER     = 4,    /* server */
 252        MODE_BROADCAST  = 5,    /* broadcast */
 253        MODE_RES1       = 6,    /* reserved for NTP control message */
 254        MODE_RES2       = 7,    /* reserved for private use */
 255};
 256
 257//TODO: better base selection
 258#define OFFSET_1900_1970 2208988800UL  /* 1970 - 1900 in seconds */
 259
 260#define NUM_DATAPOINTS  8
 261
 262typedef struct {
 263        uint32_t int_partl;
 264        uint32_t fractionl;
 265} l_fixedpt_t;
 266
 267typedef struct {
 268        uint16_t int_parts;
 269        uint16_t fractions;
 270} s_fixedpt_t;
 271
 272typedef struct {
 273        uint8_t     m_status;     /* status of local clock and leap info */
 274        uint8_t     m_stratum;
 275        uint8_t     m_ppoll;      /* poll value */
 276        int8_t      m_precision_exp;
 277        s_fixedpt_t m_rootdelay;
 278        s_fixedpt_t m_rootdisp;
 279        uint32_t    m_refid;
 280        l_fixedpt_t m_reftime;
 281        l_fixedpt_t m_orgtime;
 282        l_fixedpt_t m_rectime;
 283        l_fixedpt_t m_xmttime;
 284        uint32_t    m_keyid;
 285        uint8_t     m_digest[NTP_DIGESTSIZE];
 286} msg_t;
 287
 288typedef struct {
 289        double d_offset;
 290        double d_recv_time;
 291        double d_dispersion;
 292} datapoint_t;
 293
 294typedef struct {
 295        len_and_sockaddr *p_lsa;
 296        char             *p_dotted;
 297        int              p_fd;
 298        int              datapoint_idx;
 299        uint32_t         lastpkt_refid;
 300        uint8_t          lastpkt_status;
 301        uint8_t          lastpkt_stratum;
 302        uint8_t          reachable_bits;
 303        /* when to send new query (if p_fd == -1)
 304         * or when receive times out (if p_fd >= 0): */
 305        double           next_action_time;
 306        double           p_xmttime;
 307        double           p_raw_delay;
 308        /* p_raw_delay is set even by "high delay" packets */
 309        /* lastpkt_delay isn't */
 310        double           lastpkt_recv_time;
 311        double           lastpkt_delay;
 312        double           lastpkt_rootdelay;
 313        double           lastpkt_rootdisp;
 314        /* produced by filter algorithm: */
 315        double           filter_offset;
 316        double           filter_dispersion;
 317        double           filter_jitter;
 318        datapoint_t      filter_datapoint[NUM_DATAPOINTS];
 319        /* last sent packet: */
 320        msg_t            p_xmt_msg;
 321        char             p_hostname[1];
 322} peer_t;
 323
 324
 325#define USING_KERNEL_PLL_LOOP          1
 326#define USING_INITIAL_FREQ_ESTIMATION  0
 327
 328enum {
 329        OPT_n = (1 << 0),
 330        OPT_q = (1 << 1),
 331        OPT_N = (1 << 2),
 332        OPT_x = (1 << 3),
 333        /* Insert new options above this line. */
 334        /* Non-compat options: */
 335        OPT_w = (1 << 4),
 336        OPT_p = (1 << 5),
 337        OPT_S = (1 << 6),
 338        OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER,
 339        OPT_I = (1 << 8) * ENABLE_FEATURE_NTPD_SERVER,
 340        /* We hijack some bits for other purposes */
 341        OPT_qq = (1 << 31),
 342};
 343
 344struct globals {
 345        double   cur_time;
 346        /* total round trip delay to currently selected reference clock */
 347        double   rootdelay;
 348        /* reference timestamp: time when the system clock was last set or corrected */
 349        double   reftime;
 350        /* total dispersion to currently selected reference clock */
 351        double   rootdisp;
 352
 353        double   last_script_run;
 354        char     *script_name;
 355        llist_t  *ntp_peers;
 356#if ENABLE_FEATURE_NTPD_SERVER
 357        int      listen_fd;
 358        char     *if_name;
 359# define G_listen_fd (G.listen_fd)
 360#else
 361# define G_listen_fd (-1)
 362#endif
 363        unsigned verbose;
 364        unsigned peer_cnt;
 365        /* refid: 32-bit code identifying the particular server or reference clock
 366         * in stratum 0 packets this is a four-character ASCII string,
 367         * called the kiss code, used for debugging and monitoring
 368         * in stratum 1 packets this is a four-character ASCII string
 369         * assigned to the reference clock by IANA. Example: "GPS "
 370         * in stratum 2+ packets, it's IPv4 address or 4 first bytes
 371         * of MD5 hash of IPv6
 372         */
 373        uint32_t refid;
 374        uint8_t  ntp_status;
 375        /* precision is defined as the larger of the resolution and time to
 376         * read the clock, in log2 units.  For instance, the precision of a
 377         * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
 378         * system clock hardware representation is to the nanosecond.
 379         *
 380         * Delays, jitters of various kinds are clamped down to precision.
 381         *
 382         * If precision_sec is too large, discipline_jitter gets clamped to it
 383         * and if offset is smaller than discipline_jitter * POLLADJ_GATE, poll
 384         * interval grows even though we really can benefit from staying at
 385         * smaller one, collecting non-lagged datapoits and correcting offset.
 386         * (Lagged datapoits exist when poll_exp is large but we still have
 387         * systematic offset error - the time distance between datapoints
 388         * is significant and older datapoints have smaller offsets.
 389         * This makes our offset estimation a bit smaller than reality)
 390         * Due to this effect, setting G_precision_sec close to
 391         * STEP_THRESHOLD isn't such a good idea - offsets may grow
 392         * too big and we will step. I observed it with -6.
 393         *
 394         * OTOH, setting precision_sec far too small would result in futile
 395         * attempts to syncronize to an unachievable precision.
 396         *
 397         * -6 is 1/64 sec, -7 is 1/128 sec and so on.
 398         * -8 is 1/256 ~= 0.003906 (worked well for me --vda)
 399         * -9 is 1/512 ~= 0.001953 (let's try this for some time)
 400         */
 401#define G_precision_exp  -9
 402        /*
 403         * G_precision_exp is used only for construction outgoing packets.
 404         * It's ok to set G_precision_sec to a slightly different value
 405         * (One which is "nicer looking" in logs).
 406         * Exact value would be (1.0 / (1 << (- G_precision_exp))):
 407         */
 408#define G_precision_sec  0.002
 409        uint8_t  stratum;
 410
 411#define STATE_NSET      0       /* initial state, "nothing is set" */
 412//#define STATE_FSET    1       /* frequency set from file */
 413//#define STATE_SPIK    2       /* spike detected */
 414//#define STATE_FREQ    3       /* initial frequency */
 415#define STATE_SYNC      4       /* clock synchronized (normal operation) */
 416        uint8_t  discipline_state;      // doc calls it c.state
 417        uint8_t  poll_exp;              // s.poll
 418        int      polladj_count;         // c.count
 419        long     kernel_freq_drift;
 420        peer_t   *last_update_peer;
 421        double   last_update_offset;    // c.last
 422        double   last_update_recv_time; // s.t
 423        double   discipline_jitter;     // c.jitter
 424        /* Since we only compare it with ints, can simplify code
 425         * by not making this variable floating point:
 426         */
 427        unsigned offset_to_jitter_ratio;
 428        //double   cluster_offset;        // s.offset
 429        //double   cluster_jitter;        // s.jitter
 430#if !USING_KERNEL_PLL_LOOP
 431        double   discipline_freq_drift; // c.freq
 432        /* Maybe conditionally calculate wander? it's used only for logging */
 433        double   discipline_wander;     // c.wander
 434#endif
 435};
 436#define G (*ptr_to_globals)
 437
 438
 439#define VERB1 if (MAX_VERBOSE && G.verbose)
 440#define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
 441#define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
 442#define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
 443#define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
 444#define VERB6 if (MAX_VERBOSE >= 6 && G.verbose >= 6)
 445
 446
 447static double LOG2D(int a)
 448{
 449        if (a < 0)
 450                return 1.0 / (1UL << -a);
 451        return 1UL << a;
 452}
 453static ALWAYS_INLINE double SQUARE(double x)
 454{
 455        return x * x;
 456}
 457static ALWAYS_INLINE double MAXD(double a, double b)
 458{
 459        if (a > b)
 460                return a;
 461        return b;
 462}
 463static ALWAYS_INLINE double MIND(double a, double b)
 464{
 465        if (a < b)
 466                return a;
 467        return b;
 468}
 469static NOINLINE double my_SQRT(double X)
 470{
 471        union {
 472                float   f;
 473                int32_t i;
 474        } v;
 475        double invsqrt;
 476        double Xhalf = X * 0.5;
 477
 478        /* Fast and good approximation to 1/sqrt(X), black magic */
 479        v.f = X;
 480        /*v.i = 0x5f3759df - (v.i >> 1);*/
 481        v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
 482        invsqrt = v.f; /* better than 0.2% accuracy */
 483
 484        /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
 485         * f(x) = 1/(x*x) - X  (f==0 when x = 1/sqrt(X))
 486         * f'(x) = -2/(x*x*x)
 487         * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
 488         * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
 489         */
 490        invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
 491        /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
 492        /* With 4 iterations, more than half results will be exact,
 493         * at 6th iterations result stabilizes with about 72% results exact.
 494         * We are well satisfied with 0.05% accuracy.
 495         */
 496
 497        return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
 498}
 499static ALWAYS_INLINE double SQRT(double X)
 500{
 501        /* If this arch doesn't use IEEE 754 floats, fall back to using libm */
 502        if (sizeof(float) != 4)
 503                return sqrt(X);
 504
 505        /* This avoids needing libm, saves about 0.5k on x86-32 */
 506        return my_SQRT(X);
 507}
 508
 509static double
 510gettime1900d(void)
 511{
 512        struct timeval tv;
 513        gettimeofday(&tv, NULL); /* never fails */
 514        G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
 515        return G.cur_time;
 516}
 517
 518static void
 519d_to_tv(double d, struct timeval *tv)
 520{
 521        tv->tv_sec = (long)d;
 522        tv->tv_usec = (d - tv->tv_sec) * 1000000;
 523}
 524
 525static double
 526lfp_to_d(l_fixedpt_t lfp)
 527{
 528        double ret;
 529        lfp.int_partl = ntohl(lfp.int_partl);
 530        lfp.fractionl = ntohl(lfp.fractionl);
 531        ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
 532        return ret;
 533}
 534static double
 535sfp_to_d(s_fixedpt_t sfp)
 536{
 537        double ret;
 538        sfp.int_parts = ntohs(sfp.int_parts);
 539        sfp.fractions = ntohs(sfp.fractions);
 540        ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
 541        return ret;
 542}
 543#if ENABLE_FEATURE_NTPD_SERVER
 544static l_fixedpt_t
 545d_to_lfp(double d)
 546{
 547        l_fixedpt_t lfp;
 548        lfp.int_partl = (uint32_t)d;
 549        lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
 550        lfp.int_partl = htonl(lfp.int_partl);
 551        lfp.fractionl = htonl(lfp.fractionl);
 552        return lfp;
 553}
 554static s_fixedpt_t
 555d_to_sfp(double d)
 556{
 557        s_fixedpt_t sfp;
 558        sfp.int_parts = (uint16_t)d;
 559        sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
 560        sfp.int_parts = htons(sfp.int_parts);
 561        sfp.fractions = htons(sfp.fractions);
 562        return sfp;
 563}
 564#endif
 565
 566static double
 567dispersion(const datapoint_t *dp)
 568{
 569        return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
 570}
 571
 572static double
 573root_distance(peer_t *p)
 574{
 575        /* The root synchronization distance is the maximum error due to
 576         * all causes of the local clock relative to the primary server.
 577         * It is defined as half the total delay plus total dispersion
 578         * plus peer jitter.
 579         */
 580        return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
 581                + p->lastpkt_rootdisp
 582                + p->filter_dispersion
 583                + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
 584                + p->filter_jitter;
 585}
 586
 587static void
 588set_next(peer_t *p, unsigned t)
 589{
 590        p->next_action_time = G.cur_time + t;
 591}
 592
 593/*
 594 * Peer clock filter and its helpers
 595 */
 596static void
 597filter_datapoints(peer_t *p)
 598{
 599        int i, idx;
 600        double sum, wavg;
 601        datapoint_t *fdp;
 602
 603#if 0
 604/* Simulations have shown that use of *averaged* offset for p->filter_offset
 605 * is in fact worse than simply using last received one: with large poll intervals
 606 * (>= 2048) averaging code uses offset values which are outdated by hours,
 607 * and time/frequency correction goes totally wrong when fed essentially bogus offsets.
 608 */
 609        int got_newest;
 610        double minoff, maxoff, w;
 611        double x = x; /* for compiler */
 612        double oldest_off = oldest_off;
 613        double oldest_age = oldest_age;
 614        double newest_off = newest_off;
 615        double newest_age = newest_age;
 616
 617        fdp = p->filter_datapoint;
 618
 619        minoff = maxoff = fdp[0].d_offset;
 620        for (i = 1; i < NUM_DATAPOINTS; i++) {
 621                if (minoff > fdp[i].d_offset)
 622                        minoff = fdp[i].d_offset;
 623                if (maxoff < fdp[i].d_offset)
 624                        maxoff = fdp[i].d_offset;
 625        }
 626
 627        idx = p->datapoint_idx; /* most recent datapoint's index */
 628        /* Average offset:
 629         * Drop two outliers and take weighted average of the rest:
 630         * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
 631         * we use older6/32, not older6/64 since sum of weights should be 1:
 632         * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
 633         */
 634        wavg = 0;
 635        w = 0.5;
 636        /*                     n-1
 637         *                     ---    dispersion(i)
 638         * filter_dispersion =  \     -------------
 639         *                      /       (i+1)
 640         *                     ---     2
 641         *                     i=0
 642         */
 643        got_newest = 0;
 644        sum = 0;
 645        for (i = 0; i < NUM_DATAPOINTS; i++) {
 646                VERB5 {
 647                        bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
 648                                i,
 649                                fdp[idx].d_offset,
 650                                fdp[idx].d_dispersion, dispersion(&fdp[idx]),
 651                                G.cur_time - fdp[idx].d_recv_time,
 652                                (minoff == fdp[idx].d_offset || maxoff == fdp[idx].d_offset)
 653                                        ? " (outlier by offset)" : ""
 654                        );
 655                }
 656
 657                sum += dispersion(&fdp[idx]) / (2 << i);
 658
 659                if (minoff == fdp[idx].d_offset) {
 660                        minoff -= 1; /* so that we don't match it ever again */
 661                } else
 662                if (maxoff == fdp[idx].d_offset) {
 663                        maxoff += 1;
 664                } else {
 665                        oldest_off = fdp[idx].d_offset;
 666                        oldest_age = G.cur_time - fdp[idx].d_recv_time;
 667                        if (!got_newest) {
 668                                got_newest = 1;
 669                                newest_off = oldest_off;
 670                                newest_age = oldest_age;
 671                        }
 672                        x = oldest_off * w;
 673                        wavg += x;
 674                        w /= 2;
 675                }
 676
 677                idx = (idx - 1) & (NUM_DATAPOINTS - 1);
 678        }
 679        p->filter_dispersion = sum;
 680        wavg += x; /* add another older6/64 to form older6/32 */
 681        /* Fix systematic underestimation with large poll intervals.
 682         * Imagine that we still have a bit of uncorrected drift,
 683         * and poll interval is big (say, 100 sec). Offsets form a progression:
 684         * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
 685         * The algorithm above drops 0.0 and 0.7 as outliers,
 686         * and then we have this estimation, ~25% off from 0.7:
 687         * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
 688         */
 689        x = oldest_age - newest_age;
 690        if (x != 0) {
 691                x = newest_age / x; /* in above example, 100 / (600 - 100) */
 692                if (x < 1) { /* paranoia check */
 693                        x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
 694                        wavg += x;
 695                }
 696        }
 697        p->filter_offset = wavg;
 698
 699#else
 700
 701        fdp = p->filter_datapoint;
 702        idx = p->datapoint_idx; /* most recent datapoint's index */
 703
 704        /* filter_offset: simply use the most recent value */
 705        p->filter_offset = fdp[idx].d_offset;
 706
 707        /*                     n-1
 708         *                     ---    dispersion(i)
 709         * filter_dispersion =  \     -------------
 710         *                      /       (i+1)
 711         *                     ---     2
 712         *                     i=0
 713         */
 714        wavg = 0;
 715        sum = 0;
 716        for (i = 0; i < NUM_DATAPOINTS; i++) {
 717                sum += dispersion(&fdp[idx]) / (2 << i);
 718                wavg += fdp[idx].d_offset;
 719                idx = (idx - 1) & (NUM_DATAPOINTS - 1);
 720        }
 721        wavg /= NUM_DATAPOINTS;
 722        p->filter_dispersion = sum;
 723#endif
 724
 725        /*                  +-----                 -----+ ^ 1/2
 726         *                  |       n-1                 |
 727         *                  |       ---                 |
 728         *                  |  1    \                2  |
 729         * filter_jitter =  | --- * /  (avg-offset_j)   |
 730         *                  |  n    ---                 |
 731         *                  |       j=0                 |
 732         *                  +-----                 -----+
 733         * where n is the number of valid datapoints in the filter (n > 1);
 734         * if filter_jitter < precision then filter_jitter = precision
 735         */
 736        sum = 0;
 737        for (i = 0; i < NUM_DATAPOINTS; i++) {
 738                sum += SQUARE(wavg - fdp[i].d_offset);
 739        }
 740        sum = SQRT(sum / NUM_DATAPOINTS);
 741        p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
 742
 743        VERB4 bb_error_msg("filter offset:%+f disp:%f jitter:%f",
 744                        p->filter_offset,
 745                        p->filter_dispersion,
 746                        p->filter_jitter);
 747}
 748
 749static void
 750reset_peer_stats(peer_t *p, double offset)
 751{
 752        int i;
 753        bool small_ofs = fabs(offset) < STEP_THRESHOLD;
 754
 755        /* Used to set p->filter_datapoint[i].d_dispersion = MAXDISP
 756         * and clear reachable bits, but this proved to be too agressive:
 757         * after step (tested with suspending laptop for ~30 secs),
 758         * this caused all previous data to be considered invalid,
 759         * making us needing to collect full ~8 datapoins per peer
 760         * after step in order to start trusting them.
 761         * In turn, this was making poll interval decrease even after
 762         * step was done. (Poll interval decreases already before step
 763         * in this scenario, because we see large offsets and end up with
 764         * no good peer to select).
 765         */
 766
 767        for (i = 0; i < NUM_DATAPOINTS; i++) {
 768                if (small_ofs) {
 769                        p->filter_datapoint[i].d_recv_time += offset;
 770                        if (p->filter_datapoint[i].d_offset != 0) {
 771                                p->filter_datapoint[i].d_offset -= offset;
 772                                //bb_error_msg("p->filter_datapoint[%d].d_offset %f -> %f",
 773                                //      i,
 774                                //      p->filter_datapoint[i].d_offset + offset,
 775                                //      p->filter_datapoint[i].d_offset);
 776                        }
 777                } else {
 778                        p->filter_datapoint[i].d_recv_time  = G.cur_time;
 779                        p->filter_datapoint[i].d_offset     = 0;
 780                        /*p->filter_datapoint[i].d_dispersion = MAXDISP;*/
 781                }
 782        }
 783        if (small_ofs) {
 784                p->lastpkt_recv_time += offset;
 785        } else {
 786                /*p->reachable_bits = 0;*/
 787                p->lastpkt_recv_time = G.cur_time;
 788        }
 789        filter_datapoints(p); /* recalc p->filter_xxx */
 790        VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
 791}
 792
 793static void
 794resolve_peer_hostname(peer_t *p, int loop_on_fail)
 795{
 796        len_and_sockaddr *lsa;
 797
 798 again:
 799        lsa = host2sockaddr(p->p_hostname, 123);
 800        if (!lsa) {
 801                /* error message already emitted by host2sockaddr() */
 802                if (!loop_on_fail)
 803                        return;
 804//FIXME: do this to avoid infinite looping on typo in a hostname?
 805//well... in which case, what is a good value for loop_on_fail?
 806                //if (--loop_on_fail == 0)
 807                //      xfunc_die();
 808                sleep(5);
 809                goto again;
 810        }
 811        free(p->p_lsa);
 812        free(p->p_dotted);
 813        p->p_lsa = lsa;
 814        p->p_dotted = xmalloc_sockaddr2dotted_noport(&lsa->u.sa);
 815}
 816
 817static void
 818add_peers(const char *s)
 819{
 820        llist_t *item;
 821        peer_t *p;
 822
 823        p = xzalloc(sizeof(*p) + strlen(s));
 824        strcpy(p->p_hostname, s);
 825        resolve_peer_hostname(p, /*loop_on_fail=*/ 1);
 826
 827        /* Names like N.<country2chars>.pool.ntp.org are randomly resolved
 828         * to a pool of machines. Sometimes different N's resolve to the same IP.
 829         * It is not useful to have two peers with same IP. We skip duplicates.
 830         */
 831        for (item = G.ntp_peers; item != NULL; item = item->link) {
 832                peer_t *pp = (peer_t *) item->data;
 833                if (strcmp(p->p_dotted, pp->p_dotted) == 0) {
 834                        bb_error_msg("duplicate peer %s (%s)", s, p->p_dotted);
 835                        free(p->p_lsa);
 836                        free(p->p_dotted);
 837                        free(p);
 838                        return;
 839                }
 840        }
 841
 842        p->p_fd = -1;
 843        p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
 844        p->next_action_time = G.cur_time; /* = set_next(p, 0); */
 845        reset_peer_stats(p, STEP_THRESHOLD);
 846
 847        llist_add_to(&G.ntp_peers, p);
 848        G.peer_cnt++;
 849}
 850
 851static int
 852do_sendto(int fd,
 853                const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
 854                msg_t *msg, ssize_t len)
 855{
 856        ssize_t ret;
 857
 858        errno = 0;
 859        if (!from) {
 860                ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
 861        } else {
 862                ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
 863        }
 864        if (ret != len) {
 865                bb_perror_msg("send failed");
 866                return -1;
 867        }
 868        return 0;
 869}
 870
 871static void
 872send_query_to_peer(peer_t *p)
 873{
 874        /* Why do we need to bind()?
 875         * See what happens when we don't bind:
 876         *
 877         * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
 878         * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
 879         * gettimeofday({1259071266, 327885}, NULL) = 0
 880         * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
 881         * ^^^ we sent it from some source port picked by kernel.
 882         * time(NULL)              = 1259071266
 883         * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
 884         * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
 885         * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
 886         * ^^^ this recv will receive packets to any local port!
 887         *
 888         * Uncomment this and use strace to see it in action:
 889         */
 890#define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
 891
 892        if (p->p_fd == -1) {
 893                int fd, family;
 894                len_and_sockaddr *local_lsa;
 895
 896                family = p->p_lsa->u.sa.sa_family;
 897                p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
 898                /* local_lsa has "null" address and port 0 now.
 899                 * bind() ensures we have a *particular port* selected by kernel
 900                 * and remembered in p->p_fd, thus later recv(p->p_fd)
 901                 * receives only packets sent to this port.
 902                 */
 903                PROBE_LOCAL_ADDR
 904                xbind(fd, &local_lsa->u.sa, local_lsa->len);
 905                PROBE_LOCAL_ADDR
 906#if ENABLE_FEATURE_IPV6
 907                if (family == AF_INET)
 908#endif
 909                        setsockopt_int(fd, IPPROTO_IP, IP_TOS, IPTOS_LOWDELAY);
 910                free(local_lsa);
 911        }
 912
 913        /* Emit message _before_ attempted send. Think of a very short
 914         * roundtrip networks: we need to go back to recv loop ASAP,
 915         * to reduce delay. Printing messages after send works against that.
 916         */
 917        VERB1 bb_error_msg("sending query to %s", p->p_dotted);
 918
 919        /*
 920         * Send out a random 64-bit number as our transmit time.  The NTP
 921         * server will copy said number into the originate field on the
 922         * response that it sends us.  This is totally legal per the SNTP spec.
 923         *
 924         * The impact of this is two fold: we no longer send out the current
 925         * system time for the world to see (which may aid an attacker), and
 926         * it gives us a (not very secure) way of knowing that we're not
 927         * getting spoofed by an attacker that can't capture our traffic
 928         * but can spoof packets from the NTP server we're communicating with.
 929         *
 930         * Save the real transmit timestamp locally.
 931         */
 932        p->p_xmt_msg.m_xmttime.int_partl = rand();
 933        p->p_xmt_msg.m_xmttime.fractionl = rand();
 934        p->p_xmttime = gettime1900d();
 935
 936        /* Were doing it only if sendto worked, but
 937         * loss of sync detection needs reachable_bits updated
 938         * even if sending fails *locally*:
 939         * "network is unreachable" because cable was pulled?
 940         * We still need to declare "unsync" if this condition persists.
 941         */
 942        p->reachable_bits <<= 1;
 943
 944        if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
 945                        &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
 946        ) {
 947                close(p->p_fd);
 948                p->p_fd = -1;
 949                /*
 950                 * We know that we sent nothing.
 951                 * We can retry *soon* without fearing
 952                 * that we are flooding the peer.
 953                 */
 954                set_next(p, RETRY_INTERVAL);
 955                return;
 956        }
 957
 958        set_next(p, RESPONSE_INTERVAL);
 959}
 960
 961
 962/* Note that there is no provision to prevent several run_scripts
 963 * to be started in quick succession. In fact, it happens rather often
 964 * if initial syncronization results in a step.
 965 * You will see "step" and then "stratum" script runs, sometimes
 966 * as close as only 0.002 seconds apart.
 967 * Script should be ready to deal with this.
 968 */
 969static void run_script(const char *action, double offset)
 970{
 971        char *argv[3];
 972        char *env1, *env2, *env3, *env4;
 973
 974        G.last_script_run = G.cur_time;
 975
 976        if (!G.script_name)
 977                return;
 978
 979        argv[0] = (char*) G.script_name;
 980        argv[1] = (char*) action;
 981        argv[2] = NULL;
 982
 983        VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
 984
 985        env1 = xasprintf("%s=%u", "stratum", G.stratum);
 986        putenv(env1);
 987        env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
 988        putenv(env2);
 989        env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
 990        putenv(env3);
 991        env4 = xasprintf("%s=%f", "offset", offset);
 992        putenv(env4);
 993        /* Other items of potential interest: selected peer,
 994         * rootdelay, reftime, rootdisp, refid, ntp_status,
 995         * last_update_offset, last_update_recv_time, discipline_jitter,
 996         * how many peers have reachable_bits = 0?
 997         */
 998
 999        /* Don't want to wait: it may run hwclock --systohc, and that
1000         * may take some time (seconds): */
1001        /*spawn_and_wait(argv);*/
1002        spawn(argv);
1003
1004        unsetenv("stratum");
1005        unsetenv("freq_drift_ppm");
1006        unsetenv("poll_interval");
1007        unsetenv("offset");
1008        free(env1);
1009        free(env2);
1010        free(env3);
1011        free(env4);
1012}
1013
1014static NOINLINE void
1015step_time(double offset)
1016{
1017        llist_t *item;
1018        double dtime;
1019        struct timeval tvc, tvn;
1020        char buf[sizeof("yyyy-mm-dd hh:mm:ss") + /*paranoia:*/ 4];
1021        time_t tval;
1022
1023        gettimeofday(&tvc, NULL); /* never fails */
1024        dtime = tvc.tv_sec + (1.0e-6 * tvc.tv_usec) + offset;
1025        d_to_tv(dtime, &tvn);
1026        if (settimeofday(&tvn, NULL) == -1)
1027                bb_perror_msg_and_die("settimeofday");
1028
1029        VERB2 {
1030                tval = tvc.tv_sec;
1031                strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
1032                bb_error_msg("current time is %s.%06u", buf, (unsigned)tvc.tv_usec);
1033        }
1034        tval = tvn.tv_sec;
1035        strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
1036        bb_error_msg("setting time to %s.%06u (offset %+fs)", buf, (unsigned)tvn.tv_usec, offset);
1037
1038        /* Correct various fields which contain time-relative values: */
1039
1040        /* Globals: */
1041        G.cur_time += offset;
1042        G.last_update_recv_time += offset;
1043        G.last_script_run += offset;
1044
1045        /* p->lastpkt_recv_time, p->next_action_time and such: */
1046        for (item = G.ntp_peers; item != NULL; item = item->link) {
1047                peer_t *pp = (peer_t *) item->data;
1048                reset_peer_stats(pp, offset);
1049                //bb_error_msg("offset:%+f pp->next_action_time:%f -> %f",
1050                //      offset, pp->next_action_time, pp->next_action_time + offset);
1051                pp->next_action_time += offset;
1052                if (pp->p_fd >= 0) {
1053                        /* We wait for reply from this peer too.
1054                         * But due to step we are doing, reply's data is no longer
1055                         * useful (in fact, it'll be bogus). Stop waiting for it.
1056                         */
1057                        close(pp->p_fd);
1058                        pp->p_fd = -1;
1059                        set_next(pp, RETRY_INTERVAL);
1060                }
1061        }
1062}
1063
1064static void clamp_pollexp_and_set_MAXSTRAT(void)
1065{
1066        if (G.poll_exp < MINPOLL)
1067                G.poll_exp = MINPOLL;
1068        if (G.poll_exp > BIGPOLL)
1069                G.poll_exp = BIGPOLL;
1070        G.polladj_count = 0;
1071        G.stratum = MAXSTRAT;
1072}
1073
1074
1075/*
1076 * Selection and clustering, and their helpers
1077 */
1078typedef struct {
1079        peer_t *p;
1080        int    type;
1081        double edge;
1082        double opt_rd; /* optimization */
1083} point_t;
1084static int
1085compare_point_edge(const void *aa, const void *bb)
1086{
1087        const point_t *a = aa;
1088        const point_t *b = bb;
1089        if (a->edge < b->edge) {
1090                return -1;
1091        }
1092        return (a->edge > b->edge);
1093}
1094typedef struct {
1095        peer_t *p;
1096        double metric;
1097} survivor_t;
1098static int
1099compare_survivor_metric(const void *aa, const void *bb)
1100{
1101        const survivor_t *a = aa;
1102        const survivor_t *b = bb;
1103        if (a->metric < b->metric) {
1104                return -1;
1105        }
1106        return (a->metric > b->metric);
1107}
1108static int
1109fit(peer_t *p, double rd)
1110{
1111        if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
1112                /* One or zero bits in reachable_bits */
1113                VERB4 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
1114                return 0;
1115        }
1116#if 0 /* we filter out such packets earlier */
1117        if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
1118         || p->lastpkt_stratum >= MAXSTRAT
1119        ) {
1120                VERB4 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
1121                return 0;
1122        }
1123#endif
1124        /* rd is root_distance(p) */
1125        if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
1126                VERB4 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
1127                return 0;
1128        }
1129//TODO
1130//      /* Do we have a loop? */
1131//      if (p->refid == p->dstaddr || p->refid == s.refid)
1132//              return 0;
1133        return 1;
1134}
1135static peer_t*
1136select_and_cluster(void)
1137{
1138        peer_t     *p;
1139        llist_t    *item;
1140        int        i, j;
1141        int        size = 3 * G.peer_cnt;
1142        /* for selection algorithm */
1143        point_t    point[size];
1144        unsigned   num_points, num_candidates;
1145        double     low, high;
1146        unsigned   num_falsetickers;
1147        /* for cluster algorithm */
1148        survivor_t survivor[size];
1149        unsigned   num_survivors;
1150
1151        /* Selection */
1152
1153        num_points = 0;
1154        item = G.ntp_peers;
1155        while (item != NULL) {
1156                double rd, offset;
1157
1158                p = (peer_t *) item->data;
1159                rd = root_distance(p);
1160                offset = p->filter_offset;
1161                if (!fit(p, rd)) {
1162                        item = item->link;
1163                        continue;
1164                }
1165
1166                VERB5 bb_error_msg("interval: [%f %f %f] %s",
1167                                offset - rd,
1168                                offset,
1169                                offset + rd,
1170                                p->p_dotted
1171                );
1172                point[num_points].p = p;
1173                point[num_points].type = -1;
1174                point[num_points].edge = offset - rd;
1175                point[num_points].opt_rd = rd;
1176                num_points++;
1177                point[num_points].p = p;
1178                point[num_points].type = 0;
1179                point[num_points].edge = offset;
1180                point[num_points].opt_rd = rd;
1181                num_points++;
1182                point[num_points].p = p;
1183                point[num_points].type = 1;
1184                point[num_points].edge = offset + rd;
1185                point[num_points].opt_rd = rd;
1186                num_points++;
1187                item = item->link;
1188        }
1189        num_candidates = num_points / 3;
1190        if (num_candidates == 0) {
1191                VERB3 bb_error_msg("no valid datapoints%s", ", no peer selected");
1192                return NULL;
1193        }
1194//TODO: sorting does not seem to be done in reference code
1195        qsort(point, num_points, sizeof(point[0]), compare_point_edge);
1196
1197        /* Start with the assumption that there are no falsetickers.
1198         * Attempt to find a nonempty intersection interval containing
1199         * the midpoints of all truechimers.
1200         * If a nonempty interval cannot be found, increase the number
1201         * of assumed falsetickers by one and try again.
1202         * If a nonempty interval is found and the number of falsetickers
1203         * is less than the number of truechimers, a majority has been found
1204         * and the midpoint of each truechimer represents
1205         * the candidates available to the cluster algorithm.
1206         */
1207        num_falsetickers = 0;
1208        while (1) {
1209                int c;
1210                unsigned num_midpoints = 0;
1211
1212                low = 1 << 9;
1213                high = - (1 << 9);
1214                c = 0;
1215                for (i = 0; i < num_points; i++) {
1216                        /* We want to do:
1217                         * if (point[i].type == -1) c++;
1218                         * if (point[i].type == 1) c--;
1219                         * and it's simpler to do it this way:
1220                         */
1221                        c -= point[i].type;
1222                        if (c >= num_candidates - num_falsetickers) {
1223                                /* If it was c++ and it got big enough... */
1224                                low = point[i].edge;
1225                                break;
1226                        }
1227                        if (point[i].type == 0)
1228                                num_midpoints++;
1229                }
1230                c = 0;
1231                for (i = num_points-1; i >= 0; i--) {
1232                        c += point[i].type;
1233                        if (c >= num_candidates - num_falsetickers) {
1234                                high = point[i].edge;
1235                                break;
1236                        }
1237                        if (point[i].type == 0)
1238                                num_midpoints++;
1239                }
1240                /* If the number of midpoints is greater than the number
1241                 * of allowed falsetickers, the intersection contains at
1242                 * least one truechimer with no midpoint - bad.
1243                 * Also, interval should be nonempty.
1244                 */
1245                if (num_midpoints <= num_falsetickers && low < high)
1246                        break;
1247                num_falsetickers++;
1248                if (num_falsetickers * 2 >= num_candidates) {
1249                        VERB3 bb_error_msg("falsetickers:%d, candidates:%d%s",
1250                                        num_falsetickers, num_candidates,
1251                                        ", no peer selected");
1252                        return NULL;
1253                }
1254        }
1255        VERB4 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1256                        low, high, num_candidates, num_falsetickers);
1257
1258        /* Clustering */
1259
1260        /* Construct a list of survivors (p, metric)
1261         * from the chime list, where metric is dominated
1262         * first by stratum and then by root distance.
1263         * All other things being equal, this is the order of preference.
1264         */
1265        num_survivors = 0;
1266        for (i = 0; i < num_points; i++) {
1267                if (point[i].edge < low || point[i].edge > high)
1268                        continue;
1269                p = point[i].p;
1270                survivor[num_survivors].p = p;
1271                /* x.opt_rd == root_distance(p); */
1272                survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
1273                VERB5 bb_error_msg("survivor[%d] metric:%f peer:%s",
1274                        num_survivors, survivor[num_survivors].metric, p->p_dotted);
1275                num_survivors++;
1276        }
1277        /* There must be at least MIN_SELECTED survivors to satisfy the
1278         * correctness assertions. Ordinarily, the Byzantine criteria
1279         * require four survivors, but for the demonstration here, one
1280         * is acceptable.
1281         */
1282        if (num_survivors < MIN_SELECTED) {
1283                VERB3 bb_error_msg("survivors:%d%s",
1284                                num_survivors,
1285                                ", no peer selected");
1286                return NULL;
1287        }
1288
1289//looks like this is ONLY used by the fact that later we pick survivor[0].
1290//we can avoid sorting then, just find the minimum once!
1291        qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1292
1293        /* For each association p in turn, calculate the selection
1294         * jitter p->sjitter as the square root of the sum of squares
1295         * (p->offset - q->offset) over all q associations. The idea is
1296         * to repeatedly discard the survivor with maximum selection
1297         * jitter until a termination condition is met.
1298         */
1299        while (1) {
1300                unsigned max_idx = max_idx;
1301                double max_selection_jitter = max_selection_jitter;
1302                double min_jitter = min_jitter;
1303
1304                if (num_survivors <= MIN_CLUSTERED) {
1305                        VERB4 bb_error_msg("num_survivors %d <= %d, not discarding more",
1306                                        num_survivors, MIN_CLUSTERED);
1307                        break;
1308                }
1309
1310                /* To make sure a few survivors are left
1311                 * for the clustering algorithm to chew on,
1312                 * we stop if the number of survivors
1313                 * is less than or equal to MIN_CLUSTERED (3).
1314                 */
1315                for (i = 0; i < num_survivors; i++) {
1316                        double selection_jitter_sq;
1317
1318                        p = survivor[i].p;
1319                        if (i == 0 || p->filter_jitter < min_jitter)
1320                                min_jitter = p->filter_jitter;
1321
1322                        selection_jitter_sq = 0;
1323                        for (j = 0; j < num_survivors; j++) {
1324                                peer_t *q = survivor[j].p;
1325                                selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1326                        }
1327                        if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1328                                max_selection_jitter = selection_jitter_sq;
1329                                max_idx = i;
1330                        }
1331                        VERB6 bb_error_msg("survivor %d selection_jitter^2:%f",
1332                                        i, selection_jitter_sq);
1333                }
1334                max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
1335                VERB5 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1336                                max_idx, max_selection_jitter, min_jitter);
1337
1338                /* If the maximum selection jitter is less than the
1339                 * minimum peer jitter, then tossing out more survivors
1340                 * will not lower the minimum peer jitter, so we might
1341                 * as well stop.
1342                 */
1343                if (max_selection_jitter < min_jitter) {
1344                        VERB4 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1345                                        max_selection_jitter, min_jitter, num_survivors);
1346                        break;
1347                }
1348
1349                /* Delete survivor[max_idx] from the list
1350                 * and go around again.
1351                 */
1352                VERB6 bb_error_msg("dropping survivor %d", max_idx);
1353                num_survivors--;
1354                while (max_idx < num_survivors) {
1355                        survivor[max_idx] = survivor[max_idx + 1];
1356                        max_idx++;
1357                }
1358        }
1359
1360        if (0) {
1361                /* Combine the offsets of the clustering algorithm survivors
1362                 * using a weighted average with weight determined by the root
1363                 * distance. Compute the selection jitter as the weighted RMS
1364                 * difference between the first survivor and the remaining
1365                 * survivors. In some cases the inherent clock jitter can be
1366                 * reduced by not using this algorithm, especially when frequent
1367                 * clockhopping is involved. bbox: thus we don't do it.
1368                 */
1369                double x, y, z, w;
1370                y = z = w = 0;
1371                for (i = 0; i < num_survivors; i++) {
1372                        p = survivor[i].p;
1373                        x = root_distance(p);
1374                        y += 1 / x;
1375                        z += p->filter_offset / x;
1376                        w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1377                }
1378                //G.cluster_offset = z / y;
1379                //G.cluster_jitter = SQRT(w / y);
1380        }
1381
1382        /* Pick the best clock. If the old system peer is on the list
1383         * and at the same stratum as the first survivor on the list,
1384         * then don't do a clock hop. Otherwise, select the first
1385         * survivor on the list as the new system peer.
1386         */
1387        p = survivor[0].p;
1388        if (G.last_update_peer
1389         && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1390        ) {
1391                /* Starting from 1 is ok here */
1392                for (i = 1; i < num_survivors; i++) {
1393                        if (G.last_update_peer == survivor[i].p) {
1394                                VERB5 bb_error_msg("keeping old synced peer");
1395                                p = G.last_update_peer;
1396                                goto keep_old;
1397                        }
1398                }
1399        }
1400        G.last_update_peer = p;
1401 keep_old:
1402        VERB4 bb_error_msg("selected peer %s filter_offset:%+f age:%f",
1403                        p->p_dotted,
1404                        p->filter_offset,
1405                        G.cur_time - p->lastpkt_recv_time
1406        );
1407        return p;
1408}
1409
1410
1411/*
1412 * Local clock discipline and its helpers
1413 */
1414static void
1415set_new_values(int disc_state, double offset, double recv_time)
1416{
1417        /* Enter new state and set state variables. Note we use the time
1418         * of the last clock filter sample, which must be earlier than
1419         * the current time.
1420         */
1421        VERB4 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
1422                        disc_state, offset, recv_time);
1423        G.discipline_state = disc_state;
1424        G.last_update_offset = offset;
1425        G.last_update_recv_time = recv_time;
1426}
1427/* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
1428static NOINLINE int
1429update_local_clock(peer_t *p)
1430{
1431        int rc;
1432        struct timex tmx;
1433        /* Note: can use G.cluster_offset instead: */
1434        double offset = p->filter_offset;
1435        double recv_time = p->lastpkt_recv_time;
1436        double abs_offset;
1437#if !USING_KERNEL_PLL_LOOP
1438        double freq_drift;
1439#endif
1440#if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
1441        double since_last_update;
1442#endif
1443        double etemp, dtemp;
1444
1445        abs_offset = fabs(offset);
1446
1447#if 0
1448        /* If needed, -S script can do it by looking at $offset
1449         * env var and killing parent */
1450        /* If the offset is too large, give up and go home */
1451        if (abs_offset > PANIC_THRESHOLD) {
1452                bb_error_msg_and_die("offset %f far too big, exiting", offset);
1453        }
1454#endif
1455
1456        /* If this is an old update, for instance as the result
1457         * of a system peer change, avoid it. We never use
1458         * an old sample or the same sample twice.
1459         */
1460        if (recv_time <= G.last_update_recv_time) {
1461                VERB3 bb_error_msg("update from %s: same or older datapoint, not using it",
1462                        p->p_dotted);
1463                return 0; /* "leave poll interval as is" */
1464        }
1465
1466        /* Clock state machine transition function. This is where the
1467         * action is and defines how the system reacts to large time
1468         * and frequency errors.
1469         */
1470#if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
1471        since_last_update = recv_time - G.reftime;
1472#endif
1473#if !USING_KERNEL_PLL_LOOP
1474        freq_drift = 0;
1475#endif
1476#if USING_INITIAL_FREQ_ESTIMATION
1477        if (G.discipline_state == STATE_FREQ) {
1478                /* Ignore updates until the stepout threshold */
1479                if (since_last_update < WATCH_THRESHOLD) {
1480                        VERB4 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1481                                        WATCH_THRESHOLD - since_last_update);
1482                        return 0; /* "leave poll interval as is" */
1483                }
1484# if !USING_KERNEL_PLL_LOOP
1485                freq_drift = (offset - G.last_update_offset) / since_last_update;
1486# endif
1487        }
1488#endif
1489
1490        /* There are two main regimes: when the
1491         * offset exceeds the step threshold and when it does not.
1492         */
1493        if (abs_offset > STEP_THRESHOLD) {
1494#if 0
1495                double remains;
1496
1497// This "spike state" seems to be useless, peer selection already drops
1498// occassional "bad" datapoints. If we are here, there were _many_
1499// large offsets. When a few first large offsets are seen,
1500// we end up in "no valid datapoints, no peer selected" state.
1501// Only when enough of them are seen (which means it's not a fluke),
1502// we end up here. Looks like _our_ clock is off.
1503                switch (G.discipline_state) {
1504                case STATE_SYNC:
1505                        /* The first outlyer: ignore it, switch to SPIK state */
1506                        VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
1507                                p->p_dotted, offset,
1508                                "");
1509                        G.discipline_state = STATE_SPIK;
1510                        return -1; /* "decrease poll interval" */
1511
1512                case STATE_SPIK:
1513                        /* Ignore succeeding outlyers until either an inlyer
1514                         * is found or the stepout threshold is exceeded.
1515                         */
1516                        remains = WATCH_THRESHOLD - since_last_update;
1517                        if (remains > 0) {
1518                                VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
1519                                        p->p_dotted, offset,
1520                                        ", datapoint ignored");
1521                                return -1; /* "decrease poll interval" */
1522                        }
1523                        /* fall through: we need to step */
1524                } /* switch */
1525#endif
1526
1527                /* Step the time and clamp down the poll interval.
1528                 *
1529                 * In NSET state an initial frequency correction is
1530                 * not available, usually because the frequency file has
1531                 * not yet been written. Since the time is outside the
1532                 * capture range, the clock is stepped. The frequency
1533                 * will be set directly following the stepout interval.
1534                 *
1535                 * In FSET state the initial frequency has been set
1536                 * from the frequency file. Since the time is outside
1537                 * the capture range, the clock is stepped immediately,
1538                 * rather than after the stepout interval. Guys get
1539                 * nervous if it takes 17 minutes to set the clock for
1540                 * the first time.
1541                 *
1542                 * In SPIK state the stepout threshold has expired and
1543                 * the phase is still above the step threshold. Note
1544                 * that a single spike greater than the step threshold
1545                 * is always suppressed, even at the longer poll
1546                 * intervals.
1547                 */
1548                VERB4 bb_error_msg("stepping time by %+f; poll_exp=MINPOLL", offset);
1549                step_time(offset);
1550                if (option_mask32 & OPT_q) {
1551                        /* We were only asked to set time once. Done. */
1552                        exit(0);
1553                }
1554
1555                clamp_pollexp_and_set_MAXSTRAT();
1556
1557                run_script("step", offset);
1558
1559                recv_time += offset;
1560
1561#if USING_INITIAL_FREQ_ESTIMATION
1562                if (G.discipline_state == STATE_NSET) {
1563                        set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1564                        return 1; /* "ok to increase poll interval" */
1565                }
1566#endif
1567                abs_offset = offset = 0;
1568                set_new_values(STATE_SYNC, offset, recv_time);
1569        } else { /* abs_offset <= STEP_THRESHOLD */
1570
1571                /* The ratio is calculated before jitter is updated to make
1572                 * poll adjust code more sensitive to large offsets.
1573                 */
1574                G.offset_to_jitter_ratio = abs_offset / G.discipline_jitter;
1575
1576                /* Compute the clock jitter as the RMS of exponentially
1577                 * weighted offset differences. Used by the poll adjust code.
1578                 */
1579                etemp = SQUARE(G.discipline_jitter);
1580                dtemp = SQUARE(offset - G.last_update_offset);
1581                G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1582                if (G.discipline_jitter < G_precision_sec)
1583                        G.discipline_jitter = G_precision_sec;
1584
1585                switch (G.discipline_state) {
1586                case STATE_NSET:
1587                        if (option_mask32 & OPT_q) {
1588                                /* We were only asked to set time once.
1589                                 * The clock is precise enough, no need to step.
1590                                 */
1591                                exit(0);
1592                        }
1593#if USING_INITIAL_FREQ_ESTIMATION
1594                        /* This is the first update received and the frequency
1595                         * has not been initialized. The first thing to do
1596                         * is directly measure the oscillator frequency.
1597                         */
1598                        set_new_values(STATE_FREQ, offset, recv_time);
1599#else
1600                        set_new_values(STATE_SYNC, offset, recv_time);
1601#endif
1602                        VERB4 bb_error_msg("transitioning to FREQ, datapoint ignored");
1603                        return 0; /* "leave poll interval as is" */
1604
1605#if 0 /* this is dead code for now */
1606                case STATE_FSET:
1607                        /* This is the first update and the frequency
1608                         * has been initialized. Adjust the phase, but
1609                         * don't adjust the frequency until the next update.
1610                         */
1611                        set_new_values(STATE_SYNC, offset, recv_time);
1612                        /* freq_drift remains 0 */
1613                        break;
1614#endif
1615
1616#if USING_INITIAL_FREQ_ESTIMATION
1617                case STATE_FREQ:
1618                        /* since_last_update >= WATCH_THRESHOLD, we waited enough.
1619                         * Correct the phase and frequency and switch to SYNC state.
1620                         * freq_drift was already estimated (see code above)
1621                         */
1622                        set_new_values(STATE_SYNC, offset, recv_time);
1623                        break;
1624#endif
1625
1626                default:
1627#if !USING_KERNEL_PLL_LOOP
1628                        /* Compute freq_drift due to PLL and FLL contributions.
1629                         *
1630                         * The FLL and PLL frequency gain constants
1631                         * depend on the poll interval and Allan
1632                         * intercept. The FLL is not used below one-half
1633                         * the Allan intercept. Above that the loop gain
1634                         * increases in steps to 1 / AVG.
1635                         */
1636                        if ((1 << G.poll_exp) > ALLAN / 2) {
1637                                etemp = FLL - G.poll_exp;
1638                                if (etemp < AVG)
1639                                        etemp = AVG;
1640                                freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1641                        }
1642                        /* For the PLL the integration interval
1643                         * (numerator) is the minimum of the update
1644                         * interval and poll interval. This allows
1645                         * oversampling, but not undersampling.
1646                         */
1647                        etemp = MIND(since_last_update, (1 << G.poll_exp));
1648                        dtemp = (4 * PLL) << G.poll_exp;
1649                        freq_drift += offset * etemp / SQUARE(dtemp);
1650#endif
1651                        set_new_values(STATE_SYNC, offset, recv_time);
1652                        break;
1653                }
1654                if (G.stratum != p->lastpkt_stratum + 1) {
1655                        G.stratum = p->lastpkt_stratum + 1;
1656                        run_script("stratum", offset);
1657                }
1658        }
1659
1660        G.reftime = G.cur_time;
1661        G.ntp_status = p->lastpkt_status;
1662        G.refid = p->lastpkt_refid;
1663        G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
1664        dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
1665        dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
1666        G.rootdisp = p->lastpkt_rootdisp + dtemp;
1667        VERB4 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1668
1669        /* We are in STATE_SYNC now, but did not do adjtimex yet.
1670         * (Any other state does not reach this, they all return earlier)
1671         * By this time, freq_drift and offset are set
1672         * to values suitable for adjtimex.
1673         */
1674#if !USING_KERNEL_PLL_LOOP
1675        /* Calculate the new frequency drift and frequency stability (wander).
1676         * Compute the clock wander as the RMS of exponentially weighted
1677         * frequency differences. This is not used directly, but can,
1678         * along with the jitter, be a highly useful monitoring and
1679         * debugging tool.
1680         */
1681        dtemp = G.discipline_freq_drift + freq_drift;
1682        G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
1683        etemp = SQUARE(G.discipline_wander);
1684        dtemp = SQUARE(dtemp);
1685        G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1686
1687        VERB4 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1688                        G.discipline_freq_drift,
1689                        (long)(G.discipline_freq_drift * 65536e6),
1690                        freq_drift,
1691                        G.discipline_wander);
1692#endif
1693        VERB4 {
1694                memset(&tmx, 0, sizeof(tmx));
1695                if (adjtimex(&tmx) < 0)
1696                        bb_perror_msg_and_die("adjtimex");
1697                bb_error_msg("p adjtimex freq:%ld offset:%+ld status:0x%x tc:%ld",
1698                                tmx.freq, tmx.offset, tmx.status, tmx.constant);
1699        }
1700
1701        memset(&tmx, 0, sizeof(tmx));
1702#if 0
1703//doesn't work, offset remains 0 (!) in kernel:
1704//ntpd:  set adjtimex freq:1786097 tmx.offset:77487
1705//ntpd: prev adjtimex freq:1786097 tmx.offset:0
1706//ntpd:  cur adjtimex freq:1786097 tmx.offset:0
1707        tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1708        /* 65536 is one ppm */
1709        tmx.freq = G.discipline_freq_drift * 65536e6;
1710#endif
1711        tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
1712        tmx.constant = (int)G.poll_exp - 4;
1713        /* EXPERIMENTAL.
1714         * The below if statement should be unnecessary, but...
1715         * It looks like Linux kernel's PLL is far too gentle in changing
1716         * tmx.freq in response to clock offset. Offset keeps growing
1717         * and eventually we fall back to smaller poll intervals.
1718         * We can make correction more agressive (about x2) by supplying
1719         * PLL time constant which is one less than the real one.
1720         * To be on a safe side, let's do it only if offset is significantly
1721         * larger than jitter.
1722         */
1723        if (G.offset_to_jitter_ratio >= TIMECONST_HACK_GATE)
1724                tmx.constant--;
1725        tmx.offset = (long)(offset * 1000000); /* usec */
1726        if (SLEW_THRESHOLD < STEP_THRESHOLD) {
1727                if (tmx.offset > (long)(SLEW_THRESHOLD * 1000000)) {
1728                        tmx.offset = (long)(SLEW_THRESHOLD * 1000000);
1729                        tmx.constant--;
1730                }
1731                if (tmx.offset < -(long)(SLEW_THRESHOLD * 1000000)) {
1732                        tmx.offset = -(long)(SLEW_THRESHOLD * 1000000);
1733                        tmx.constant--;
1734                }
1735        }
1736        if (tmx.constant < 0)
1737                tmx.constant = 0;
1738
1739        tmx.status = STA_PLL;
1740        if (G.ntp_status & LI_PLUSSEC)
1741                tmx.status |= STA_INS;
1742        if (G.ntp_status & LI_MINUSSEC)
1743                tmx.status |= STA_DEL;
1744
1745        //tmx.esterror = (uint32_t)(clock_jitter * 1e6);
1746        //tmx.maxerror = (uint32_t)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
1747        rc = adjtimex(&tmx);
1748        if (rc < 0)
1749                bb_perror_msg_and_die("adjtimex");
1750        /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1751         * Not sure why. Perhaps it is normal.
1752         */
1753        VERB4 bb_error_msg("adjtimex:%d freq:%ld offset:%+ld status:0x%x",
1754                                rc, tmx.freq, tmx.offset, tmx.status);
1755        G.kernel_freq_drift = tmx.freq / 65536;
1756        VERB2 bb_error_msg("update from:%s offset:%+f delay:%f jitter:%f clock drift:%+.3fppm tc:%d",
1757                        p->p_dotted,
1758                        offset,
1759                        p->lastpkt_delay,
1760                        G.discipline_jitter,
1761                        (double)tmx.freq / 65536,
1762                        (int)tmx.constant
1763        );
1764
1765        return 1; /* "ok to increase poll interval" */
1766}
1767
1768
1769/*
1770 * We've got a new reply packet from a peer, process it
1771 * (helpers first)
1772 */
1773static unsigned
1774poll_interval(int upper_bound)
1775{
1776        unsigned interval, r, mask;
1777        interval = 1 << G.poll_exp;
1778        if (interval > upper_bound)
1779                interval = upper_bound;
1780        mask = ((interval-1) >> 4) | 1;
1781        r = rand();
1782        interval += r & mask; /* ~ random(0..1) * interval/16 */
1783        VERB4 bb_error_msg("chose poll interval:%u (poll_exp:%d)", interval, G.poll_exp);
1784        return interval;
1785}
1786static void
1787adjust_poll(int count)
1788{
1789        G.polladj_count += count;
1790        if (G.polladj_count > POLLADJ_LIMIT) {
1791                G.polladj_count = 0;
1792                if (G.poll_exp < MAXPOLL) {
1793                        G.poll_exp++;
1794                        VERB4 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1795                                        G.discipline_jitter, G.poll_exp);
1796                }
1797        } else if (G.polladj_count < -POLLADJ_LIMIT || (count < 0 && G.poll_exp > BIGPOLL)) {
1798                G.polladj_count = 0;
1799                if (G.poll_exp > MINPOLL) {
1800                        llist_t *item;
1801
1802                        G.poll_exp--;
1803                        /* Correct p->next_action_time in each peer
1804                         * which waits for sending, so that they send earlier.
1805                         * Old pp->next_action_time are on the order
1806                         * of t + (1 << old_poll_exp) + small_random,
1807                         * we simply need to subtract ~half of that.
1808                         */
1809                        for (item = G.ntp_peers; item != NULL; item = item->link) {
1810                                peer_t *pp = (peer_t *) item->data;
1811                                if (pp->p_fd < 0)
1812                                        pp->next_action_time -= (1 << G.poll_exp);
1813                        }
1814                        VERB4 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1815                                        G.discipline_jitter, G.poll_exp);
1816                }
1817        } else {
1818                VERB4 bb_error_msg("polladj: count:%d", G.polladj_count);
1819        }
1820}
1821static NOINLINE void
1822recv_and_process_peer_pkt(peer_t *p)
1823{
1824        int         rc;
1825        ssize_t     size;
1826        msg_t       msg;
1827        double      T1, T2, T3, T4;
1828        double      offset;
1829        double      prev_delay, delay;
1830        unsigned    interval;
1831        datapoint_t *datapoint;
1832        peer_t      *q;
1833
1834        offset = 0;
1835
1836        /* We can recvfrom here and check from.IP, but some multihomed
1837         * ntp servers reply from their *other IP*.
1838         * TODO: maybe we should check at least what we can: from.port == 123?
1839         */
1840 recv_again:
1841        size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1842        if (size < 0) {
1843                if (errno == EINTR)
1844                        /* Signal caught */
1845                        goto recv_again;
1846                if (errno == EAGAIN)
1847                        /* There was no packet after all
1848                         * (poll() returning POLLIN for a fd
1849                         * is not a ironclad guarantee that data is there)
1850                         */
1851                        return;
1852                /*
1853                 * If you need a different handling for a specific
1854                 * errno, always explain it in comment.
1855                 */
1856                bb_perror_msg_and_die("recv(%s) error", p->p_dotted);
1857        }
1858
1859        if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1860                bb_error_msg("malformed packet received from %s", p->p_dotted);
1861                return;
1862        }
1863
1864        if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1865         || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1866        ) {
1867                /* Somebody else's packet */
1868                return;
1869        }
1870
1871        /* We do not expect any more packets from this peer for now.
1872         * Closing the socket informs kernel about it.
1873         * We open a new socket when we send a new query.
1874         */
1875        close(p->p_fd);
1876        p->p_fd = -1;
1877
1878        if ((msg.m_status & LI_ALARM) == LI_ALARM
1879         || msg.m_stratum == 0
1880         || msg.m_stratum > NTP_MAXSTRATUM
1881        ) {
1882                bb_error_msg("reply from %s: peer is unsynced", p->p_dotted);
1883                /*
1884                 * Stratum 0 responses may have commands in 32-bit m_refid field:
1885                 * "DENY", "RSTR" - peer does not like us at all,
1886                 * "RATE" - peer is overloaded, reduce polling freq.
1887                 * If poll interval is small, increase it.
1888                 */
1889                if (G.poll_exp < BIGPOLL)
1890                        goto increase_interval;
1891                goto pick_normal_interval;
1892        }
1893
1894//      /* Verify valid root distance */
1895//      if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1896//              return;                 /* invalid header values */
1897
1898        /*
1899         * From RFC 2030 (with a correction to the delay math):
1900         *
1901         * Timestamp Name          ID   When Generated
1902         * ------------------------------------------------------------
1903         * Originate Timestamp     T1   time request sent by client
1904         * Receive Timestamp       T2   time request received by server
1905         * Transmit Timestamp      T3   time reply sent by server
1906         * Destination Timestamp   T4   time reply received by client
1907         *
1908         * The roundtrip delay and local clock offset are defined as
1909         *
1910         * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1911         */
1912        T1 = p->p_xmttime;
1913        T2 = lfp_to_d(msg.m_rectime);
1914        T3 = lfp_to_d(msg.m_xmttime);
1915        T4 = G.cur_time;
1916
1917        /* The delay calculation is a special case. In cases where the
1918         * server and client clocks are running at different rates and
1919         * with very fast networks, the delay can appear negative. In
1920         * order to avoid violating the Principle of Least Astonishment,
1921         * the delay is clamped not less than the system precision.
1922         */
1923        delay = (T4 - T1) - (T3 - T2);
1924        if (delay < G_precision_sec)
1925                delay = G_precision_sec;
1926        /*
1927         * If this packet's delay is much bigger than the last one,
1928         * it's better to just ignore it than use its much less precise value.
1929         */
1930        prev_delay = p->p_raw_delay;
1931        p->p_raw_delay = delay;
1932        if (p->reachable_bits && delay > prev_delay * BAD_DELAY_GROWTH) {
1933                bb_error_msg("reply from %s: delay %f is too high, ignoring", p->p_dotted, delay);
1934                goto pick_normal_interval;
1935        }
1936
1937        p->lastpkt_delay = delay;
1938        p->lastpkt_recv_time = T4;
1939        VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
1940        p->lastpkt_status = msg.m_status;
1941        p->lastpkt_stratum = msg.m_stratum;
1942        p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
1943        p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
1944        p->lastpkt_refid = msg.m_refid;
1945
1946        p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
1947        datapoint = &p->filter_datapoint[p->datapoint_idx];
1948        datapoint->d_recv_time = T4;
1949        datapoint->d_offset    = offset = ((T2 - T1) + (T3 - T4)) / 2;
1950        datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
1951        if (!p->reachable_bits) {
1952                /* 1st datapoint ever - replicate offset in every element */
1953                int i;
1954                for (i = 0; i < NUM_DATAPOINTS; i++) {
1955                        p->filter_datapoint[i].d_offset = offset;
1956                }
1957        }
1958
1959        p->reachable_bits |= 1;
1960        if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
1961                bb_error_msg("reply from %s: offset:%+f delay:%f status:0x%02x strat:%d refid:0x%08x rootdelay:%f reach:0x%02x",
1962                        p->p_dotted,
1963                        offset,
1964                        p->lastpkt_delay,
1965                        p->lastpkt_status,
1966                        p->lastpkt_stratum,
1967                        p->lastpkt_refid,
1968                        p->lastpkt_rootdelay,
1969                        p->reachable_bits
1970                        /* not shown: m_ppoll, m_precision_exp, m_rootdisp,
1971                         * m_reftime, m_orgtime, m_rectime, m_xmttime
1972                         */
1973                );
1974        }
1975
1976        /* Muck with statictics and update the clock */
1977        filter_datapoints(p);
1978        q = select_and_cluster();
1979        rc = 0;
1980        if (q) {
1981                if (!(option_mask32 & OPT_w)) {
1982                        rc = update_local_clock(q);
1983#if 0
1984//Disabled this because there is a case where largish offsets
1985//are unavoidable: if network round-trip delay is, say, ~0.6s,
1986//error in offset estimation would be ~delay/2 ~= 0.3s.
1987//Thus, offsets will be usually in -0.3...0.3s range.
1988//In this case, this code would keep poll interval small,
1989//but it won't be helping.
1990//BIGOFF check below deals with a case of seeing multi-second offsets.
1991
1992                        /* If drift is dangerously large, immediately
1993                         * drop poll interval one step down.
1994                         */
1995                        if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
1996                                VERB4 bb_error_msg("offset:%+f > POLLDOWN_OFFSET", q->filter_offset);
1997                                adjust_poll(-POLLADJ_LIMIT * 3);
1998                                rc = 0;
1999                        }
2000#endif
2001                }
2002        } else {
2003                /* No peer selected.
2004                 * If poll interval is small, increase it.
2005                 */
2006                if (G.poll_exp < BIGPOLL)
2007                        goto increase_interval;
2008        }
2009
2010        if (rc != 0) {
2011                /* Adjust the poll interval by comparing the current offset
2012                 * with the clock jitter. If the offset is less than
2013                 * the clock jitter times a constant, then the averaging interval
2014                 * is increased, otherwise it is decreased. A bit of hysteresis
2015                 * helps calm the dance. Works best using burst mode.
2016                 */
2017                if (rc > 0 && G.offset_to_jitter_ratio <= POLLADJ_GATE) {
2018                        /* was += G.poll_exp but it is a bit
2019                         * too optimistic for my taste at high poll_exp's */
2020 increase_interval:
2021                        adjust_poll(MINPOLL);
2022                } else {
2023                        VERB3 if (rc > 0)
2024                                bb_error_msg("want smaller interval: offset/jitter = %u",
2025                                        G.offset_to_jitter_ratio);
2026                        adjust_poll(-G.poll_exp * 2);
2027                }
2028        }
2029
2030        /* Decide when to send new query for this peer */
2031 pick_normal_interval:
2032        interval = poll_interval(INT_MAX);
2033        if (fabs(offset) >= BIGOFF && interval > BIGOFF_INTERVAL) {
2034                /* If we are synced, offsets are less than SLEW_THRESHOLD,
2035                 * or at the very least not much larger than it.
2036                 * Now we see a largish one.
2037                 * Either this peer is feeling bad, or packet got corrupted,
2038                 * or _our_ clock is wrong now and _all_ peers will show similar
2039                 * largish offsets too.
2040                 * I observed this with laptop suspend stopping clock.
2041                 * In any case, it makes sense to make next request soonish:
2042                 * cases 1 and 2: get a better datapoint,
2043                 * case 3: allows to resync faster.
2044                 */
2045                interval = BIGOFF_INTERVAL;
2046        }
2047
2048        set_next(p, interval);
2049}
2050
2051#if ENABLE_FEATURE_NTPD_SERVER
2052static NOINLINE void
2053recv_and_process_client_pkt(void /*int fd*/)
2054{
2055        ssize_t          size;
2056        //uint8_t          version;
2057        len_and_sockaddr *to;
2058        struct sockaddr  *from;
2059        msg_t            msg;
2060        uint8_t          query_status;
2061        l_fixedpt_t      query_xmttime;
2062
2063        to = get_sock_lsa(G_listen_fd);
2064        from = xzalloc(to->len);
2065
2066        size = recv_from_to(G_listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
2067        if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
2068                char *addr;
2069                if (size < 0) {
2070                        if (errno == EAGAIN)
2071                                goto bail;
2072                        bb_perror_msg_and_die("recv");
2073                }
2074                addr = xmalloc_sockaddr2dotted_noport(from);
2075                bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
2076                free(addr);
2077                goto bail;
2078        }
2079
2080        /* Respond only to client and symmetric active packets */
2081        if ((msg.m_status & MODE_MASK) != MODE_CLIENT
2082         && (msg.m_status & MODE_MASK) != MODE_SYM_ACT
2083        ) {
2084                goto bail;
2085        }
2086
2087        query_status = msg.m_status;
2088        query_xmttime = msg.m_xmttime;
2089
2090        /* Build a reply packet */
2091        memset(&msg, 0, sizeof(msg));
2092        msg.m_status = G.stratum < MAXSTRAT ? (G.ntp_status & LI_MASK) : LI_ALARM;
2093        msg.m_status |= (query_status & VERSION_MASK);
2094        msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
2095                        MODE_SERVER : MODE_SYM_PAS;
2096        msg.m_stratum = G.stratum;
2097        msg.m_ppoll = G.poll_exp;
2098        msg.m_precision_exp = G_precision_exp;
2099        /* this time was obtained between poll() and recv() */
2100        msg.m_rectime = d_to_lfp(G.cur_time);
2101        msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
2102        if (G.peer_cnt == 0) {
2103                /* we have no peers: "stratum 1 server" mode. reftime = our own time */
2104                G.reftime = G.cur_time;
2105        }
2106        msg.m_reftime = d_to_lfp(G.reftime);
2107        msg.m_orgtime = query_xmttime;
2108        msg.m_rootdelay = d_to_sfp(G.rootdelay);
2109//simple code does not do this, fix simple code!
2110        msg.m_rootdisp = d_to_sfp(G.rootdisp);
2111        //version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
2112        msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
2113
2114        /* We reply from the local address packet was sent to,
2115         * this makes to/from look swapped here: */
2116        do_sendto(G_listen_fd,
2117                /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
2118                &msg, size);
2119
2120 bail:
2121        free(to);
2122        free(from);
2123}
2124#endif
2125
2126/* Upstream ntpd's options:
2127 *
2128 * -4   Force DNS resolution of host names to the IPv4 namespace.
2129 * -6   Force DNS resolution of host names to the IPv6 namespace.
2130 * -a   Require cryptographic authentication for broadcast client,
2131 *      multicast client and symmetric passive associations.
2132 *      This is the default.
2133 * -A   Do not require cryptographic authentication for broadcast client,
2134 *      multicast client and symmetric passive associations.
2135 *      This is almost never a good idea.
2136 * -b   Enable the client to synchronize to broadcast servers.
2137 * -c conffile
2138 *      Specify the name and path of the configuration file,
2139 *      default /etc/ntp.conf
2140 * -d   Specify debugging mode. This option may occur more than once,
2141 *      with each occurrence indicating greater detail of display.
2142 * -D level
2143 *      Specify debugging level directly.
2144 * -f driftfile
2145 *      Specify the name and path of the frequency file.
2146 *      This is the same operation as the "driftfile FILE"
2147 *      configuration command.
2148 * -g   Normally, ntpd exits with a message to the system log
2149 *      if the offset exceeds the panic threshold, which is 1000 s
2150 *      by default. This option allows the time to be set to any value
2151 *      without restriction; however, this can happen only once.
2152 *      If the threshold is exceeded after that, ntpd will exit
2153 *      with a message to the system log. This option can be used
2154 *      with the -q and -x options. See the tinker command for other options.
2155 * -i jaildir
2156 *      Chroot the server to the directory jaildir. This option also implies
2157 *      that the server attempts to drop root privileges at startup
2158 *      (otherwise, chroot gives very little additional security).
2159 *      You may need to also specify a -u option.
2160 * -k keyfile
2161 *      Specify the name and path of the symmetric key file,
2162 *      default /etc/ntp/keys. This is the same operation
2163 *      as the "keys FILE" configuration command.
2164 * -l logfile
2165 *      Specify the name and path of the log file. The default
2166 *      is the system log file. This is the same operation as
2167 *      the "logfile FILE" configuration command.
2168 * -L   Do not listen to virtual IPs. The default is to listen.
2169 * -n   Don't fork.
2170 * -N   To the extent permitted by the operating system,
2171 *      run the ntpd at the highest priority.
2172 * -p pidfile
2173 *      Specify the name and path of the file used to record the ntpd
2174 *      process ID. This is the same operation as the "pidfile FILE"
2175 *      configuration command.
2176 * -P priority
2177 *      To the extent permitted by the operating system,
2178 *      run the ntpd at the specified priority.
2179 * -q   Exit the ntpd just after the first time the clock is set.
2180 *      This behavior mimics that of the ntpdate program, which is
2181 *      to be retired. The -g and -x options can be used with this option.
2182 *      Note: The kernel time discipline is disabled with this option.
2183 * -r broadcastdelay
2184 *      Specify the default propagation delay from the broadcast/multicast
2185 *      server to this client. This is necessary only if the delay
2186 *      cannot be computed automatically by the protocol.
2187 * -s statsdir
2188 *      Specify the directory path for files created by the statistics
2189 *      facility. This is the same operation as the "statsdir DIR"
2190 *      configuration command.
2191 * -t key
2192 *      Add a key number to the trusted key list. This option can occur
2193 *      more than once.
2194 * -u user[:group]
2195 *      Specify a user, and optionally a group, to switch to.
2196 * -v variable
2197 * -V variable
2198 *      Add a system variable listed by default.
2199 * -x   Normally, the time is slewed if the offset is less than the step
2200 *      threshold, which is 128 ms by default, and stepped if above
2201 *      the threshold. This option sets the threshold to 600 s, which is
2202 *      well within the accuracy window to set the clock manually.
2203 *      Note: since the slew rate of typical Unix kernels is limited
2204 *      to 0.5 ms/s, each second of adjustment requires an amortization
2205 *      interval of 2000 s. Thus, an adjustment as much as 600 s
2206 *      will take almost 14 days to complete. This option can be used
2207 *      with the -g and -q options. See the tinker command for other options.
2208 *      Note: The kernel time discipline is disabled with this option.
2209 */
2210
2211/* By doing init in a separate function we decrease stack usage
2212 * in main loop.
2213 */
2214static NOINLINE void ntp_init(char **argv)
2215{
2216        unsigned opts;
2217        llist_t *peers;
2218
2219        srand(getpid());
2220
2221        if (getuid())
2222                bb_error_msg_and_die(bb_msg_you_must_be_root);
2223
2224        /* Set some globals */
2225        G.discipline_jitter = G_precision_sec;
2226        G.stratum = MAXSTRAT;
2227        if (BURSTPOLL != 0)
2228                G.poll_exp = BURSTPOLL; /* speeds up initial sync */
2229        G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
2230
2231        /* Parse options */
2232        peers = NULL;
2233        opt_complementary = "dd:wn"  /* -d: counter; -p: list; -w implies -n */
2234                IF_FEATURE_NTPD_SERVER(":Il"); /* -I implies -l */
2235        opts = getopt32(argv,
2236                        "nqNx" /* compat */
2237                        "wp:*S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
2238                        IF_FEATURE_NTPD_SERVER("I:") /* compat */
2239                        "d" /* compat */
2240                        "46aAbgL", /* compat, ignored */
2241                        &peers,&G.script_name,
2242#if ENABLE_FEATURE_NTPD_SERVER
2243                        &G.if_name,
2244#endif
2245                        &G.verbose);
2246
2247//      if (opts & OPT_x) /* disable stepping, only slew is allowed */
2248//              G.time_was_stepped = 1;
2249
2250#if ENABLE_FEATURE_NTPD_SERVER
2251        G_listen_fd = -1;
2252        if (opts & OPT_l) {
2253                G_listen_fd = create_and_bind_dgram_or_die(NULL, 123);
2254                if (G.if_name) {
2255                        if (setsockopt_bindtodevice(G_listen_fd, G.if_name))
2256                                xfunc_die();
2257                }
2258                socket_want_pktinfo(G_listen_fd);
2259                setsockopt_int(G_listen_fd, IPPROTO_IP, IP_TOS, IPTOS_LOWDELAY);
2260        }
2261#endif
2262        /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
2263        if (opts & OPT_N)
2264                setpriority(PRIO_PROCESS, 0, -15);
2265
2266        /* add_peers() calls can retry DNS resolution (possibly forever).
2267         * Daemonize before them, or else boot can stall forever.
2268         */
2269        if (!(opts & OPT_n)) {
2270                bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
2271                logmode = LOGMODE_NONE;
2272        }
2273
2274        if (peers) {
2275                while (peers)
2276                        add_peers(llist_pop(&peers));
2277        }
2278#if ENABLE_FEATURE_NTPD_CONF
2279        else {
2280                parser_t *parser;
2281                char *token[3];
2282
2283                parser = config_open("/etc/ntp.conf");
2284                while (config_read(parser, token, 3, 1, "# \t", PARSE_NORMAL)) {
2285                        if (strcmp(token[0], "server") == 0 && token[1]) {
2286                                add_peers(token[1]);
2287                                continue;
2288                        }
2289                        bb_error_msg("skipping %s:%u: unimplemented command '%s'",
2290                                "/etc/ntp.conf", parser->lineno, token[0]
2291                        );
2292                }
2293                config_close(parser);
2294        }
2295#endif
2296        if (G.peer_cnt == 0) {
2297                if (!(opts & OPT_l))
2298                        bb_show_usage();
2299                /* -l but no peers: "stratum 1 server" mode */
2300                G.stratum = 1;
2301        }
2302        /* If network is up, syncronization occurs in ~10 seconds.
2303         * We give "ntpd -q" 10 seconds to get first reply,
2304         * then another 50 seconds to finish syncing.
2305         *
2306         * I tested ntpd 4.2.6p1 and apparently it never exits
2307         * (will try forever), but it does not feel right.
2308         * The goal of -q is to act like ntpdate: set time
2309         * after a reasonably small period of polling, or fail.
2310         */
2311        if (opts & OPT_q) {
2312                option_mask32 |= OPT_qq;
2313                alarm(10);
2314        }
2315
2316        bb_signals(0
2317                | (1 << SIGTERM)
2318                | (1 << SIGINT)
2319                | (1 << SIGALRM)
2320                , record_signo
2321        );
2322        bb_signals(0
2323                | (1 << SIGPIPE)
2324                | (1 << SIGCHLD)
2325                , SIG_IGN
2326        );
2327}
2328
2329int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
2330int ntpd_main(int argc UNUSED_PARAM, char **argv)
2331{
2332#undef G
2333        struct globals G;
2334        struct pollfd *pfd;
2335        peer_t **idx2peer;
2336        unsigned cnt;
2337
2338        memset(&G, 0, sizeof(G));
2339        SET_PTR_TO_GLOBALS(&G);
2340
2341        ntp_init(argv);
2342
2343        /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
2344        cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
2345        idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
2346        pfd = xzalloc(sizeof(pfd[0]) * cnt);
2347
2348        /* Countdown: we never sync before we sent INITIAL_SAMPLES+1
2349         * packets to each peer.
2350         * NB: if some peer is not responding, we may end up sending
2351         * fewer packets to it and more to other peers.
2352         * NB2: sync usually happens using INITIAL_SAMPLES packets,
2353         * since last reply does not come back instantaneously.
2354         */
2355        cnt = G.peer_cnt * (INITIAL_SAMPLES + 1);
2356
2357        write_pidfile(CONFIG_PID_FILE_PATH "/ntpd.pid");
2358
2359        while (!bb_got_signal) {
2360                llist_t *item;
2361                unsigned i, j;
2362                int nfds, timeout;
2363                double nextaction;
2364
2365                /* Nothing between here and poll() blocks for any significant time */
2366
2367                nextaction = G.cur_time + 3600;
2368
2369                i = 0;
2370#if ENABLE_FEATURE_NTPD_SERVER
2371                if (G_listen_fd != -1) {
2372                        pfd[0].fd = G_listen_fd;
2373                        pfd[0].events = POLLIN;
2374                        i++;
2375                }
2376#endif
2377                /* Pass over peer list, send requests, time out on receives */
2378                for (item = G.ntp_peers; item != NULL; item = item->link) {
2379                        peer_t *p = (peer_t *) item->data;
2380
2381                        if (p->next_action_time <= G.cur_time) {
2382                                if (p->p_fd == -1) {
2383                                        /* Time to send new req */
2384                                        if (--cnt == 0) {
2385                                                VERB4 bb_error_msg("disabling burst mode");
2386                                                G.polladj_count = 0;
2387                                                G.poll_exp = MINPOLL;
2388                                        }
2389                                        send_query_to_peer(p);
2390                                } else {
2391                                        /* Timed out waiting for reply */
2392                                        close(p->p_fd);
2393                                        p->p_fd = -1;
2394                                        /* If poll interval is small, increase it */
2395                                        if (G.poll_exp < BIGPOLL)
2396                                                adjust_poll(MINPOLL);
2397                                        timeout = poll_interval(NOREPLY_INTERVAL);
2398                                        bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
2399                                                        p->p_dotted, p->reachable_bits, timeout);
2400
2401                                        /* What if don't see it because it changed its IP? */
2402                                        if (p->reachable_bits == 0)
2403                                                resolve_peer_hostname(p, /*loop_on_fail=*/ 0);
2404
2405                                        set_next(p, timeout);
2406                                }
2407                        }
2408
2409                        if (p->next_action_time < nextaction)
2410                                nextaction = p->next_action_time;
2411
2412                        if (p->p_fd >= 0) {
2413                                /* Wait for reply from this peer */
2414                                pfd[i].fd = p->p_fd;
2415                                pfd[i].events = POLLIN;
2416                                idx2peer[i] = p;
2417                                i++;
2418                        }
2419                }
2420
2421                timeout = nextaction - G.cur_time;
2422                if (timeout < 0)
2423                        timeout = 0;
2424                timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
2425
2426                /* Here we may block */
2427                VERB2 {
2428                        if (i > (ENABLE_FEATURE_NTPD_SERVER && G_listen_fd != -1)) {
2429                                /* We wait for at least one reply.
2430                                 * Poll for it, without wasting time for message.
2431                                 * Since replies often come under 1 second, this also
2432                                 * reduces clutter in logs.
2433                                 */
2434                                nfds = poll(pfd, i, 1000);
2435                                if (nfds != 0)
2436                                        goto did_poll;
2437                                if (--timeout <= 0)
2438                                        goto did_poll;
2439                        }
2440                        bb_error_msg("poll:%us sockets:%u interval:%us", timeout, i, 1 << G.poll_exp);
2441                }
2442                nfds = poll(pfd, i, timeout * 1000);
2443 did_poll:
2444                gettime1900d(); /* sets G.cur_time */
2445                if (nfds <= 0) {
2446                        if (!bb_got_signal /* poll wasn't interrupted by a signal */
2447                         && G.cur_time - G.last_script_run > 11*60
2448                        ) {
2449                                /* Useful for updating battery-backed RTC and such */
2450                                run_script("periodic", G.last_update_offset);
2451                                gettime1900d(); /* sets G.cur_time */
2452                        }
2453                        goto check_unsync;
2454                }
2455
2456                /* Process any received packets */
2457                j = 0;
2458#if ENABLE_FEATURE_NTPD_SERVER
2459                if (G.listen_fd != -1) {
2460                        if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2461                                nfds--;
2462                                recv_and_process_client_pkt(/*G.listen_fd*/);
2463                                gettime1900d(); /* sets G.cur_time */
2464                        }
2465                        j = 1;
2466                }
2467#endif
2468                for (; nfds != 0 && j < i; j++) {
2469                        if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
2470                                /*
2471                                 * At init, alarm was set to 10 sec.
2472                                 * Now we did get a reply.
2473                                 * Increase timeout to 50 seconds to finish syncing.
2474                                 */
2475                                if (option_mask32 & OPT_qq) {
2476                                        option_mask32 &= ~OPT_qq;
2477                                        alarm(50);
2478                                }
2479                                nfds--;
2480                                recv_and_process_peer_pkt(idx2peer[j]);
2481                                gettime1900d(); /* sets G.cur_time */
2482                        }
2483                }
2484
2485 check_unsync:
2486                if (G.ntp_peers && G.stratum != MAXSTRAT) {
2487                        for (item = G.ntp_peers; item != NULL; item = item->link) {
2488                                peer_t *p = (peer_t *) item->data;
2489                                if (p->reachable_bits)
2490                                        goto have_reachable_peer;
2491                        }
2492                        /* No peer responded for last 8 packets, panic */
2493                        clamp_pollexp_and_set_MAXSTRAT();
2494                        run_script("unsync", 0.0);
2495 have_reachable_peer: ;
2496                }
2497        } /* while (!bb_got_signal) */
2498
2499        remove_pidfile(CONFIG_PID_FILE_PATH "/ntpd.pid");
2500        kill_myself_with_sig(bb_got_signal);
2501}
2502
2503
2504
2505
2506
2507
2508/*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2509
2510/*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2511
2512#if 0
2513static double
2514direct_freq(double fp_offset)
2515{
2516#ifdef KERNEL_PLL
2517        /*
2518         * If the kernel is enabled, we need the residual offset to
2519         * calculate the frequency correction.
2520         */
2521        if (pll_control && kern_enable) {
2522                memset(&ntv, 0, sizeof(ntv));
2523                ntp_adjtime(&ntv);
2524#ifdef STA_NANO
2525                clock_offset = ntv.offset / 1e9;
2526#else /* STA_NANO */
2527                clock_offset = ntv.offset / 1e6;
2528#endif /* STA_NANO */
2529                drift_comp = FREQTOD(ntv.freq);
2530        }
2531#endif /* KERNEL_PLL */
2532        set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2533        wander_resid = 0;
2534        return drift_comp;
2535}
2536
2537static void
2538set_freq(double freq) /* frequency update */
2539{
2540        char tbuf[80];
2541
2542        drift_comp = freq;
2543
2544#ifdef KERNEL_PLL
2545        /*
2546         * If the kernel is enabled, update the kernel frequency.
2547         */
2548        if (pll_control && kern_enable) {
2549                memset(&ntv, 0, sizeof(ntv));
2550                ntv.modes = MOD_FREQUENCY;
2551                ntv.freq = DTOFREQ(drift_comp);
2552                ntp_adjtime(&ntv);
2553                snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2554                report_event(EVNT_FSET, NULL, tbuf);
2555        } else {
2556                snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2557                report_event(EVNT_FSET, NULL, tbuf);
2558        }
2559#else /* KERNEL_PLL */
2560        snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2561        report_event(EVNT_FSET, NULL, tbuf);
2562#endif /* KERNEL_PLL */
2563}
2564
2565...
2566...
2567...
2568
2569#ifdef KERNEL_PLL
2570        /*
2571         * This code segment works when clock adjustments are made using
2572         * precision time kernel support and the ntp_adjtime() system
2573         * call. This support is available in Solaris 2.6 and later,
2574         * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2575         * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2576         * DECstation 5000/240 and Alpha AXP, additional kernel
2577         * modifications provide a true microsecond clock and nanosecond
2578         * clock, respectively.
2579         *
2580         * Important note: The kernel discipline is used only if the
2581         * step threshold is less than 0.5 s, as anything higher can
2582         * lead to overflow problems. This might occur if some misguided
2583         * lad set the step threshold to something ridiculous.
2584         */
2585        if (pll_control && kern_enable) {
2586
2587#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2588
2589                /*
2590                 * We initialize the structure for the ntp_adjtime()
2591                 * system call. We have to convert everything to
2592                 * microseconds or nanoseconds first. Do not update the
2593                 * system variables if the ext_enable flag is set. In
2594                 * this case, the external clock driver will update the
2595                 * variables, which will be read later by the local
2596                 * clock driver. Afterwards, remember the time and
2597                 * frequency offsets for jitter and stability values and
2598                 * to update the frequency file.
2599                 */
2600                memset(&ntv,  0, sizeof(ntv));
2601                if (ext_enable) {
2602                        ntv.modes = MOD_STATUS;
2603                } else {
2604#ifdef STA_NANO
2605                        ntv.modes = MOD_BITS | MOD_NANO;
2606#else /* STA_NANO */
2607                        ntv.modes = MOD_BITS;
2608#endif /* STA_NANO */
2609                        if (clock_offset < 0)
2610                                dtemp = -.5;
2611                        else
2612                                dtemp = .5;
2613#ifdef STA_NANO
2614                        ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2615                        ntv.constant = sys_poll;
2616#else /* STA_NANO */
2617                        ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2618                        ntv.constant = sys_poll - 4;
2619#endif /* STA_NANO */
2620                        ntv.esterror = (u_int32)(clock_jitter * 1e6);
2621                        ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2622                        ntv.status = STA_PLL;
2623
2624                        /*
2625                         * Enable/disable the PPS if requested.
2626                         */
2627                        if (pps_enable) {
2628                                if (!(pll_status & STA_PPSTIME))
2629                                        report_event(EVNT_KERN,
2630                                                NULL, "PPS enabled");
2631                                ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2632                        } else {
2633                                if (pll_status & STA_PPSTIME)
2634                                        report_event(EVNT_KERN,
2635                                                NULL, "PPS disabled");
2636                                ntv.status &= ~(STA_PPSTIME | STA_PPSFREQ);
2637                        }
2638                        if (sys_leap == LEAP_ADDSECOND)
2639                                ntv.status |= STA_INS;
2640                        else if (sys_leap == LEAP_DELSECOND)
2641                                ntv.status |= STA_DEL;
2642                }
2643
2644                /*
2645                 * Pass the stuff to the kernel. If it squeals, turn off
2646                 * the pps. In any case, fetch the kernel offset,
2647                 * frequency and jitter.
2648                 */
2649                if (ntp_adjtime(&ntv) == TIME_ERROR) {
2650                        if (!(ntv.status & STA_PPSSIGNAL))
2651                                report_event(EVNT_KERN, NULL,
2652                                                "PPS no signal");
2653                }
2654                pll_status = ntv.status;
2655#ifdef STA_NANO
2656                clock_offset = ntv.offset / 1e9;
2657#else /* STA_NANO */
2658                clock_offset = ntv.offset / 1e6;
2659#endif /* STA_NANO */
2660                clock_frequency = FREQTOD(ntv.freq);
2661
2662                /*
2663                 * If the kernel PPS is lit, monitor its performance.
2664                 */
2665                if (ntv.status & STA_PPSTIME) {
2666#ifdef STA_NANO
2667                        clock_jitter = ntv.jitter / 1e9;
2668#else /* STA_NANO */
2669                        clock_jitter = ntv.jitter / 1e6;
2670#endif /* STA_NANO */
2671                }
2672
2673#if defined(STA_NANO) && NTP_API == 4
2674                /*
2675                 * If the TAI changes, update the kernel TAI.
2676                 */
2677                if (loop_tai != sys_tai) {
2678                        loop_tai = sys_tai;
2679                        ntv.modes = MOD_TAI;
2680                        ntv.constant = sys_tai;
2681                        ntp_adjtime(&ntv);
2682                }
2683#endif /* STA_NANO */
2684        }
2685#endif /* KERNEL_PLL */
2686#endif
2687