busybox/networking/ntpd.c
<<
>>
Prefs
   1/*
   2 * NTP client/server, based on OpenNTPD 3.9p1
   3 *
   4 * Busybox port author: Adam Tkac (C) 2009 <vonsch@gmail.com>
   5 *
   6 * OpenNTPd 3.9p1 copyright holders:
   7 *   Copyright (c) 2003, 2004 Henning Brauer <henning@openbsd.org>
   8 *   Copyright (c) 2004 Alexander Guy <alexander.guy@andern.org>
   9 *
  10 * OpenNTPd code is licensed under ISC-style licence:
  11 *
  12 * Permission to use, copy, modify, and distribute this software for any
  13 * purpose with or without fee is hereby granted, provided that the above
  14 * copyright notice and this permission notice appear in all copies.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  17 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  18 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  19 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  20 * WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER
  21 * IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
  22 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  23 ***********************************************************************
  24 *
  25 * Parts of OpenNTPD clock syncronization code is replaced by
  26 * code which is based on ntp-4.2.6, which carries the following
  27 * copyright notice:
  28 *
  29 * Copyright (c) University of Delaware 1992-2009
  30 *
  31 * Permission to use, copy, modify, and distribute this software and
  32 * its documentation for any purpose with or without fee is hereby
  33 * granted, provided that the above copyright notice appears in all
  34 * copies and that both the copyright notice and this permission
  35 * notice appear in supporting documentation, and that the name
  36 * University of Delaware not be used in advertising or publicity
  37 * pertaining to distribution of the software without specific,
  38 * written prior permission. The University of Delaware makes no
  39 * representations about the suitability this software for any
  40 * purpose. It is provided "as is" without express or implied warranty.
  41 ***********************************************************************
  42 */
  43//config:config NTPD
  44//config:       bool "ntpd (17 kb)"
  45//config:       default y
  46//config:       select PLATFORM_LINUX
  47//config:       help
  48//config:       The NTP client/server daemon.
  49//config:
  50//config:config FEATURE_NTPD_SERVER
  51//config:       bool "Make ntpd usable as a NTP server"
  52//config:       default y
  53//config:       depends on NTPD
  54//config:       help
  55//config:       Make ntpd usable as a NTP server. If you disable this option
  56//config:       ntpd will be usable only as a NTP client.
  57//config:
  58//config:config FEATURE_NTPD_CONF
  59//config:       bool "Make ntpd understand /etc/ntp.conf"
  60//config:       default y
  61//config:       depends on NTPD
  62//config:       help
  63//config:       Make ntpd look in /etc/ntp.conf for peers. Only "server address"
  64//config:       is supported.
  65
  66//applet:IF_NTPD(APPLET(ntpd, BB_DIR_USR_SBIN, BB_SUID_DROP))
  67
  68//kbuild:lib-$(CONFIG_NTPD) += ntpd.o
  69
  70//usage:#define ntpd_trivial_usage
  71//usage:        "[-dnqNw"IF_FEATURE_NTPD_SERVER("l -I IFACE")"] [-S PROG] [-p PEER]..."
  72//usage:#define ntpd_full_usage "\n\n"
  73//usage:       "NTP client/server\n"
  74//usage:     "\n        -d      Verbose (may be repeated)"
  75//usage:     "\n        -n      Do not daemonize"
  76//usage:     "\n        -q      Quit after clock is set"
  77//usage:     "\n        -N      Run at high priority"
  78//usage:     "\n        -w      Do not set time (only query peers), implies -n"
  79//usage:     "\n        -S PROG Run PROG after stepping time, stratum change, and every 11 mins"
  80//usage:     "\n        -p PEER Obtain time from PEER (may be repeated)"
  81//usage:        IF_FEATURE_NTPD_CONF(
  82//usage:     "\n                If -p is not given, 'server HOST' lines"
  83//usage:     "\n                from /etc/ntp.conf are used"
  84//usage:        )
  85//usage:        IF_FEATURE_NTPD_SERVER(
  86//usage:     "\n        -l      Also run as server on port 123"
  87//usage:     "\n        -I IFACE Bind server to IFACE, implies -l"
  88//usage:        )
  89
  90// -l and -p options are not compatible with "standard" ntpd:
  91// it has them as "-l logfile" and "-p pidfile".
  92// -S and -w are not compat either, "standard" ntpd has no such opts.
  93
  94#include "libbb.h"
  95#include <math.h>
  96#include <netinet/ip.h> /* For IPTOS_DSCP_AF21 definition */
  97#include <sys/timex.h>
  98#ifndef IPTOS_DSCP_AF21
  99# define IPTOS_DSCP_AF21 0x48
 100#endif
 101
 102
 103/* Verbosity control (max level of -dddd options accepted).
 104 * max 6 is very talkative (and bloated). 3 is non-bloated,
 105 * production level setting.
 106 */
 107#define MAX_VERBOSE     3
 108
 109
 110/* High-level description of the algorithm:
 111 *
 112 * We start running with very small poll_exp, BURSTPOLL,
 113 * in order to quickly accumulate INITIAL_SAMPLES datapoints
 114 * for each peer. Then, time is stepped if the offset is larger
 115 * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
 116 * poll_exp to MINPOLL and enter frequency measurement step:
 117 * we collect new datapoints but ignore them for WATCH_THRESHOLD
 118 * seconds. After WATCH_THRESHOLD seconds we look at accumulated
 119 * offset and estimate frequency drift.
 120 *
 121 * (frequency measurement step seems to not be strictly needed,
 122 * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
 123 * define set to 0)
 124 *
 125 * After this, we enter "steady state": we collect a datapoint,
 126 * we select the best peer, if this datapoint is not a new one
 127 * (IOW: if this datapoint isn't for selected peer), sleep
 128 * and collect another one; otherwise, use its offset to update
 129 * frequency drift, if offset is somewhat large, reduce poll_exp,
 130 * otherwise increase poll_exp.
 131 *
 132 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
 133 * happen, we assume that something "bad" happened (computer
 134 * was hibernated, someone set totally wrong date, etc),
 135 * then the time is stepped, all datapoints are discarded,
 136 * and we go back to steady state.
 137 *
 138 * Made some changes to speed up re-syncing after our clock goes bad
 139 * (tested with suspending my laptop):
 140 * - if largish offset (>= STEP_THRESHOLD == 1 sec) is seen
 141 *   from a peer, schedule next query for this peer soon
 142 *   without drastically lowering poll interval for everybody.
 143 *   This makes us collect enough data for step much faster:
 144 *   e.g. at poll = 10 (1024 secs), step was done within 5 minutes
 145 *   after first reply which indicated that our clock is 14 seconds off.
 146 * - on step, do not discard d_dispersion data of the existing datapoints,
 147 *   do not clear reachable_bits. This prevents discarding first ~8
 148 *   datapoints after the step.
 149 */
 150
 151#define INITIAL_SAMPLES    4    /* how many samples do we want for init */
 152#define BAD_DELAY_GROWTH   4    /* drop packet if its delay grew by more than this */
 153
 154#define RETRY_INTERVAL    32    /* on send/recv error, retry in N secs (need to be power of 2) */
 155#define NOREPLY_INTERVAL 512    /* sent, but got no reply: cap next query by this many seconds */
 156#define RESPONSE_INTERVAL 16    /* wait for reply up to N secs */
 157#define HOSTNAME_INTERVAL  4    /* hostname lookup failed. Wait N * peer->dns_errors secs for next try */
 158#define DNS_ERRORS_CAP  0x3f    /* peer->dns_errors is in [0..63] */
 159
 160/* Step threshold (sec). std ntpd uses 0.128.
 161 */
 162#define STEP_THRESHOLD     1
 163/* Slew threshold (sec): adjtimex() won't accept offsets larger than this.
 164 * Using exact power of 2 (1/8) results in smaller code
 165 */
 166#define SLEW_THRESHOLD 0.125
 167//^^^^^^^^^^^^^^^^^^^^^^^^^^ TODO: man adjtimex about tmx.offset:
 168// "Since Linux 2.6.26, the supplied value is clamped to the range (-0.5s, +0.5s)"
 169// - can use this larger value instead?
 170
 171/* Stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
 172//UNUSED: #define WATCH_THRESHOLD  128
 173/* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
 174//UNUSED: #define PANIC_THRESHOLD 1000    /* panic threshold (sec) */
 175
 176/*
 177 * If we got |offset| > BIGOFF from a peer, cap next query interval
 178 * for this peer by this many seconds:
 179 */
 180#define BIGOFF          STEP_THRESHOLD
 181#define BIGOFF_INTERVAL (1 << 7) /* 128 s */
 182
 183#define FREQ_TOLERANCE  0.000015 /* frequency tolerance (15 PPM) */
 184#define BURSTPOLL       0       /* initial poll */
 185#define MINPOLL         5       /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
 186/*
 187 * If offset > discipline_jitter * POLLADJ_GATE, and poll interval is > 2^BIGPOLL,
 188 * then it is decreased _at once_. (If <= 2^BIGPOLL, it will be decreased _eventually_).
 189 */
 190#define BIGPOLL         9       /* 2^9 sec ~= 8.5 min */
 191#define MAXPOLL         12      /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
 192/*
 193 * Actively lower poll when we see such big offsets.
 194 * With SLEW_THRESHOLD = 0.125, it means we try to sync more aggressively
 195 * if offset increases over ~0.04 sec
 196 */
 197//#define POLLDOWN_OFFSET (SLEW_THRESHOLD / 3)
 198#define MINDISP         0.01    /* minimum dispersion (sec) */
 199#define MAXDISP         16      /* maximum dispersion (sec) */
 200#define MAXSTRAT        16      /* maximum stratum (infinity metric) */
 201#define MAXDIST         1       /* distance threshold (sec) */
 202#define MIN_SELECTED    1       /* minimum intersection survivors */
 203#define MIN_CLUSTERED   3       /* minimum cluster survivors */
 204
 205#define MAXDRIFT        0.000500 /* frequency drift we can correct (500 PPM) */
 206
 207/* Poll-adjust threshold.
 208 * When we see that offset is small enough compared to discipline jitter,
 209 * we grow a counter: += MINPOLL. When counter goes over POLLADJ_LIMIT,
 210 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
 211 * and when it goes below -POLLADJ_LIMIT, we poll_exp--.
 212 * (Bumped from 30 to 40 since otherwise I often see poll_exp going *2* steps down)
 213 */
 214#define POLLADJ_LIMIT   40
 215/* If offset < discipline_jitter * POLLADJ_GATE, then we decide to increase
 216 * poll interval (we think we can't improve timekeeping
 217 * by staying at smaller poll).
 218 */
 219#define POLLADJ_GATE    4
 220#define TIMECONST_HACK_GATE 2
 221/* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
 222#define ALLAN           512
 223/* PLL loop gain */
 224#define PLL             65536
 225/* FLL loop gain [why it depends on MAXPOLL??] */
 226#define FLL             (MAXPOLL + 1)
 227/* Parameter averaging constant */
 228#define AVG             4
 229
 230
 231enum {
 232        NTP_VERSION     = 4,
 233        NTP_MAXSTRATUM  = 15,
 234
 235        NTP_DIGESTSIZE     = 16,
 236        NTP_MSGSIZE_NOAUTH = 48,
 237        NTP_MSGSIZE        = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),
 238
 239        /* Status Masks */
 240        MODE_MASK       = (7 << 0),
 241        VERSION_MASK    = (7 << 3),
 242        VERSION_SHIFT   = 3,
 243        LI_MASK         = (3 << 6),
 244
 245        /* Leap Second Codes (high order two bits of m_status) */
 246        LI_NOWARNING    = (0 << 6),    /* no warning */
 247        LI_PLUSSEC      = (1 << 6),    /* add a second (61 seconds) */
 248        LI_MINUSSEC     = (2 << 6),    /* minus a second (59 seconds) */
 249        LI_ALARM        = (3 << 6),    /* alarm condition */
 250
 251        /* Mode values */
 252        MODE_RES0       = 0,    /* reserved */
 253        MODE_SYM_ACT    = 1,    /* symmetric active */
 254        MODE_SYM_PAS    = 2,    /* symmetric passive */
 255        MODE_CLIENT     = 3,    /* client */
 256        MODE_SERVER     = 4,    /* server */
 257        MODE_BROADCAST  = 5,    /* broadcast */
 258        MODE_RES1       = 6,    /* reserved for NTP control message */
 259        MODE_RES2       = 7,    /* reserved for private use */
 260};
 261
 262//TODO: better base selection
 263#define OFFSET_1900_1970 2208988800UL  /* 1970 - 1900 in seconds */
 264
 265#define NUM_DATAPOINTS  8
 266
 267typedef struct {
 268        uint32_t int_partl;
 269        uint32_t fractionl;
 270} l_fixedpt_t;
 271
 272typedef struct {
 273        uint16_t int_parts;
 274        uint16_t fractions;
 275} s_fixedpt_t;
 276
 277typedef struct {
 278        uint8_t     m_status;     /* status of local clock and leap info */
 279        uint8_t     m_stratum;
 280        uint8_t     m_ppoll;      /* poll value */
 281        int8_t      m_precision_exp;
 282        s_fixedpt_t m_rootdelay;
 283        s_fixedpt_t m_rootdisp;
 284        uint32_t    m_refid;
 285        l_fixedpt_t m_reftime;
 286        l_fixedpt_t m_orgtime;
 287        l_fixedpt_t m_rectime;
 288        l_fixedpt_t m_xmttime;
 289        uint32_t    m_keyid;
 290        uint8_t     m_digest[NTP_DIGESTSIZE];
 291} msg_t;
 292
 293typedef struct {
 294        double d_offset;
 295        double d_recv_time;
 296        double d_dispersion;
 297} datapoint_t;
 298
 299typedef struct {
 300        len_and_sockaddr *p_lsa;
 301        char             *p_dotted;
 302        int              p_fd;
 303        int              datapoint_idx;
 304        uint32_t         lastpkt_refid;
 305        uint8_t          lastpkt_status;
 306        uint8_t          lastpkt_stratum;
 307        uint8_t          reachable_bits;
 308        uint8_t          dns_errors;
 309        /* when to send new query (if p_fd == -1)
 310         * or when receive times out (if p_fd >= 0): */
 311        double           next_action_time;
 312        double           p_xmttime;
 313        double           p_raw_delay;
 314        /* p_raw_delay is set even by "high delay" packets */
 315        /* lastpkt_delay isn't */
 316        double           lastpkt_recv_time;
 317        double           lastpkt_delay;
 318        double           lastpkt_rootdelay;
 319        double           lastpkt_rootdisp;
 320        /* produced by filter algorithm: */
 321        double           filter_offset;
 322        double           filter_dispersion;
 323        double           filter_jitter;
 324        datapoint_t      filter_datapoint[NUM_DATAPOINTS];
 325        /* last sent packet: */
 326        msg_t            p_xmt_msg;
 327        char             p_hostname[1];
 328} peer_t;
 329
 330
 331#define USING_KERNEL_PLL_LOOP          1
 332#define USING_INITIAL_FREQ_ESTIMATION  0
 333
 334enum {
 335        OPT_n = (1 << 0),
 336        OPT_q = (1 << 1),
 337        OPT_N = (1 << 2),
 338        OPT_x = (1 << 3),
 339        /* Insert new options above this line. */
 340        /* Non-compat options: */
 341        OPT_w = (1 << 4),
 342        OPT_p = (1 << 5),
 343        OPT_S = (1 << 6),
 344        OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER,
 345        OPT_I = (1 << 8) * ENABLE_FEATURE_NTPD_SERVER,
 346        /* We hijack some bits for other purposes */
 347        OPT_qq = (1 << 31),
 348};
 349
 350struct globals {
 351        double   cur_time;
 352        /* total round trip delay to currently selected reference clock */
 353        double   rootdelay;
 354        /* reference timestamp: time when the system clock was last set or corrected */
 355        double   reftime;
 356        /* total dispersion to currently selected reference clock */
 357        double   rootdisp;
 358
 359        double   last_script_run;
 360        char     *script_name;
 361        llist_t  *ntp_peers;
 362#if ENABLE_FEATURE_NTPD_SERVER
 363        int      listen_fd;
 364        char     *if_name;
 365# define G_listen_fd (G.listen_fd)
 366#else
 367# define G_listen_fd (-1)
 368#endif
 369        unsigned verbose;
 370        unsigned peer_cnt;
 371        /* refid: 32-bit code identifying the particular server or reference clock
 372         * in stratum 0 packets this is a four-character ASCII string,
 373         * called the kiss code, used for debugging and monitoring
 374         * in stratum 1 packets this is a four-character ASCII string
 375         * assigned to the reference clock by IANA. Example: "GPS "
 376         * in stratum 2+ packets, it's IPv4 address or 4 first bytes
 377         * of MD5 hash of IPv6
 378         */
 379        uint32_t refid;
 380        uint8_t  ntp_status;
 381        /* precision is defined as the larger of the resolution and time to
 382         * read the clock, in log2 units.  For instance, the precision of a
 383         * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
 384         * system clock hardware representation is to the nanosecond.
 385         *
 386         * Delays, jitters of various kinds are clamped down to precision.
 387         *
 388         * If precision_sec is too large, discipline_jitter gets clamped to it
 389         * and if offset is smaller than discipline_jitter * POLLADJ_GATE, poll
 390         * interval grows even though we really can benefit from staying at
 391         * smaller one, collecting non-lagged datapoits and correcting offset.
 392         * (Lagged datapoits exist when poll_exp is large but we still have
 393         * systematic offset error - the time distance between datapoints
 394         * is significant and older datapoints have smaller offsets.
 395         * This makes our offset estimation a bit smaller than reality)
 396         * Due to this effect, setting G_precision_sec close to
 397         * STEP_THRESHOLD isn't such a good idea - offsets may grow
 398         * too big and we will step. I observed it with -6.
 399         *
 400         * OTOH, setting precision_sec far too small would result in futile
 401         * attempts to synchronize to an unachievable precision.
 402         *
 403         * -6 is 1/64 sec, -7 is 1/128 sec and so on.
 404         * -8 is 1/256 ~= 0.003906 (worked well for me --vda)
 405         * -9 is 1/512 ~= 0.001953 (let's try this for some time)
 406         */
 407#define G_precision_exp  -9
 408        /*
 409         * G_precision_exp is used only for construction outgoing packets.
 410         * It's ok to set G_precision_sec to a slightly different value
 411         * (One which is "nicer looking" in logs).
 412         * Exact value would be (1.0 / (1 << (- G_precision_exp))):
 413         */
 414#define G_precision_sec  0.002
 415        uint8_t  stratum;
 416
 417#define STATE_NSET      0       /* initial state, "nothing is set" */
 418//#define STATE_FSET    1       /* frequency set from file */
 419//#define STATE_SPIK    2       /* spike detected */
 420//#define STATE_FREQ    3       /* initial frequency */
 421#define STATE_SYNC      4       /* clock synchronized (normal operation) */
 422        uint8_t  discipline_state;      // doc calls it c.state
 423        uint8_t  poll_exp;              // s.poll
 424        int      polladj_count;         // c.count
 425        int      FREQHOLD_cnt;
 426        long     kernel_freq_drift;
 427        peer_t   *last_update_peer;
 428        double   last_update_offset;    // c.last
 429        double   last_update_recv_time; // s.t
 430        double   discipline_jitter;     // c.jitter
 431        /* Since we only compare it with ints, can simplify code
 432         * by not making this variable floating point:
 433         */
 434        unsigned offset_to_jitter_ratio;
 435        //double   cluster_offset;        // s.offset
 436        //double   cluster_jitter;        // s.jitter
 437#if !USING_KERNEL_PLL_LOOP
 438        double   discipline_freq_drift; // c.freq
 439        /* Maybe conditionally calculate wander? it's used only for logging */
 440        double   discipline_wander;     // c.wander
 441#endif
 442};
 443#define G (*ptr_to_globals)
 444
 445
 446#define VERB1 if (MAX_VERBOSE && G.verbose)
 447#define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
 448#define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
 449#define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
 450#define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
 451#define VERB6 if (MAX_VERBOSE >= 6 && G.verbose >= 6)
 452
 453
 454static double LOG2D(int a)
 455{
 456        if (a < 0)
 457                return 1.0 / (1UL << -a);
 458        return 1UL << a;
 459}
 460static ALWAYS_INLINE double SQUARE(double x)
 461{
 462        return x * x;
 463}
 464static ALWAYS_INLINE double MAXD(double a, double b)
 465{
 466        if (a > b)
 467                return a;
 468        return b;
 469}
 470static ALWAYS_INLINE double MIND(double a, double b)
 471{
 472        if (a < b)
 473                return a;
 474        return b;
 475}
 476static NOINLINE double my_SQRT(double X)
 477{
 478        union {
 479                float   f;
 480                int32_t i;
 481        } v;
 482        double invsqrt;
 483        double Xhalf = X * 0.5;
 484
 485        /* Fast and good approximation to 1/sqrt(X), black magic */
 486        v.f = X;
 487        /*v.i = 0x5f3759df - (v.i >> 1);*/
 488        v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
 489        invsqrt = v.f; /* better than 0.2% accuracy */
 490
 491        /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
 492         * f(x) = 1/(x*x) - X  (f==0 when x = 1/sqrt(X))
 493         * f'(x) = -2/(x*x*x)
 494         * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
 495         * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
 496         */
 497        invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
 498        /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
 499        /* With 4 iterations, more than half results will be exact,
 500         * at 6th iterations result stabilizes with about 72% results exact.
 501         * We are well satisfied with 0.05% accuracy.
 502         */
 503
 504        return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
 505}
 506static ALWAYS_INLINE double SQRT(double X)
 507{
 508        /* If this arch doesn't use IEEE 754 floats, fall back to using libm */
 509        if (sizeof(float) != 4)
 510                return sqrt(X);
 511
 512        /* This avoids needing libm, saves about 0.5k on x86-32 */
 513        return my_SQRT(X);
 514}
 515
 516static double
 517gettime1900d(void)
 518{
 519        struct timeval tv;
 520        gettimeofday(&tv, NULL); /* never fails */
 521        G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
 522        return G.cur_time;
 523}
 524
 525static void
 526d_to_tv(double d, struct timeval *tv)
 527{
 528        tv->tv_sec = (long)d;
 529        tv->tv_usec = (d - tv->tv_sec) * 1000000;
 530}
 531
 532static double
 533lfp_to_d(l_fixedpt_t lfp)
 534{
 535        double ret;
 536        lfp.int_partl = ntohl(lfp.int_partl);
 537        lfp.fractionl = ntohl(lfp.fractionl);
 538        ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
 539        return ret;
 540}
 541static double
 542sfp_to_d(s_fixedpt_t sfp)
 543{
 544        double ret;
 545        sfp.int_parts = ntohs(sfp.int_parts);
 546        sfp.fractions = ntohs(sfp.fractions);
 547        ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
 548        return ret;
 549}
 550#if ENABLE_FEATURE_NTPD_SERVER
 551static l_fixedpt_t
 552d_to_lfp(double d)
 553{
 554        l_fixedpt_t lfp;
 555        lfp.int_partl = (uint32_t)d;
 556        lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
 557        lfp.int_partl = htonl(lfp.int_partl);
 558        lfp.fractionl = htonl(lfp.fractionl);
 559        return lfp;
 560}
 561static s_fixedpt_t
 562d_to_sfp(double d)
 563{
 564        s_fixedpt_t sfp;
 565        sfp.int_parts = (uint16_t)d;
 566        sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
 567        sfp.int_parts = htons(sfp.int_parts);
 568        sfp.fractions = htons(sfp.fractions);
 569        return sfp;
 570}
 571#endif
 572
 573static double
 574dispersion(const datapoint_t *dp)
 575{
 576        return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
 577}
 578
 579static double
 580root_distance(peer_t *p)
 581{
 582        /* The root synchronization distance is the maximum error due to
 583         * all causes of the local clock relative to the primary server.
 584         * It is defined as half the total delay plus total dispersion
 585         * plus peer jitter.
 586         */
 587        return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
 588                + p->lastpkt_rootdisp
 589                + p->filter_dispersion
 590                + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
 591                + p->filter_jitter;
 592}
 593
 594static void
 595set_next(peer_t *p, unsigned t)
 596{
 597        p->next_action_time = G.cur_time + t;
 598}
 599
 600/*
 601 * Peer clock filter and its helpers
 602 */
 603static void
 604filter_datapoints(peer_t *p)
 605{
 606        int i, idx;
 607        double sum, wavg;
 608        datapoint_t *fdp;
 609
 610#if 0
 611/* Simulations have shown that use of *averaged* offset for p->filter_offset
 612 * is in fact worse than simply using last received one: with large poll intervals
 613 * (>= 2048) averaging code uses offset values which are outdated by hours,
 614 * and time/frequency correction goes totally wrong when fed essentially bogus offsets.
 615 */
 616        int got_newest;
 617        double minoff, maxoff, w;
 618        double x = x; /* for compiler */
 619        double oldest_off = oldest_off;
 620        double oldest_age = oldest_age;
 621        double newest_off = newest_off;
 622        double newest_age = newest_age;
 623
 624        fdp = p->filter_datapoint;
 625
 626        minoff = maxoff = fdp[0].d_offset;
 627        for (i = 1; i < NUM_DATAPOINTS; i++) {
 628                if (minoff > fdp[i].d_offset)
 629                        minoff = fdp[i].d_offset;
 630                if (maxoff < fdp[i].d_offset)
 631                        maxoff = fdp[i].d_offset;
 632        }
 633
 634        idx = p->datapoint_idx; /* most recent datapoint's index */
 635        /* Average offset:
 636         * Drop two outliers and take weighted average of the rest:
 637         * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
 638         * we use older6/32, not older6/64 since sum of weights should be 1:
 639         * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
 640         */
 641        wavg = 0;
 642        w = 0.5;
 643        /*                     n-1
 644         *                     ---    dispersion(i)
 645         * filter_dispersion =  \     -------------
 646         *                      /       (i+1)
 647         *                     ---     2
 648         *                     i=0
 649         */
 650        got_newest = 0;
 651        sum = 0;
 652        for (i = 0; i < NUM_DATAPOINTS; i++) {
 653                VERB5 {
 654                        bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
 655                                i,
 656                                fdp[idx].d_offset,
 657                                fdp[idx].d_dispersion, dispersion(&fdp[idx]),
 658                                G.cur_time - fdp[idx].d_recv_time,
 659                                (minoff == fdp[idx].d_offset || maxoff == fdp[idx].d_offset)
 660                                        ? " (outlier by offset)" : ""
 661                        );
 662                }
 663
 664                sum += dispersion(&fdp[idx]) / (2 << i);
 665
 666                if (minoff == fdp[idx].d_offset) {
 667                        minoff -= 1; /* so that we don't match it ever again */
 668                } else
 669                if (maxoff == fdp[idx].d_offset) {
 670                        maxoff += 1;
 671                } else {
 672                        oldest_off = fdp[idx].d_offset;
 673                        oldest_age = G.cur_time - fdp[idx].d_recv_time;
 674                        if (!got_newest) {
 675                                got_newest = 1;
 676                                newest_off = oldest_off;
 677                                newest_age = oldest_age;
 678                        }
 679                        x = oldest_off * w;
 680                        wavg += x;
 681                        w /= 2;
 682                }
 683
 684                idx = (idx - 1) & (NUM_DATAPOINTS - 1);
 685        }
 686        p->filter_dispersion = sum;
 687        wavg += x; /* add another older6/64 to form older6/32 */
 688        /* Fix systematic underestimation with large poll intervals.
 689         * Imagine that we still have a bit of uncorrected drift,
 690         * and poll interval is big (say, 100 sec). Offsets form a progression:
 691         * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
 692         * The algorithm above drops 0.0 and 0.7 as outliers,
 693         * and then we have this estimation, ~25% off from 0.7:
 694         * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
 695         */
 696        x = oldest_age - newest_age;
 697        if (x != 0) {
 698                x = newest_age / x; /* in above example, 100 / (600 - 100) */
 699                if (x < 1) { /* paranoia check */
 700                        x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
 701                        wavg += x;
 702                }
 703        }
 704        p->filter_offset = wavg;
 705
 706#else
 707
 708        fdp = p->filter_datapoint;
 709        idx = p->datapoint_idx; /* most recent datapoint's index */
 710
 711        /* filter_offset: simply use the most recent value */
 712        p->filter_offset = fdp[idx].d_offset;
 713
 714        /*                     n-1
 715         *                     ---    dispersion(i)
 716         * filter_dispersion =  \     -------------
 717         *                      /       (i+1)
 718         *                     ---     2
 719         *                     i=0
 720         */
 721        wavg = 0;
 722        sum = 0;
 723        for (i = 0; i < NUM_DATAPOINTS; i++) {
 724                sum += dispersion(&fdp[idx]) / (2 << i);
 725                wavg += fdp[idx].d_offset;
 726                idx = (idx - 1) & (NUM_DATAPOINTS - 1);
 727        }
 728        wavg /= NUM_DATAPOINTS;
 729        p->filter_dispersion = sum;
 730#endif
 731
 732        /*                  +-----                 -----+ ^ 1/2
 733         *                  |       n-1                 |
 734         *                  |       ---                 |
 735         *                  |  1    \                2  |
 736         * filter_jitter =  | --- * /  (avg-offset_j)   |
 737         *                  |  n    ---                 |
 738         *                  |       j=0                 |
 739         *                  +-----                 -----+
 740         * where n is the number of valid datapoints in the filter (n > 1);
 741         * if filter_jitter < precision then filter_jitter = precision
 742         */
 743        sum = 0;
 744        for (i = 0; i < NUM_DATAPOINTS; i++) {
 745                sum += SQUARE(wavg - fdp[i].d_offset);
 746        }
 747        sum = SQRT(sum / NUM_DATAPOINTS);
 748        p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
 749
 750        VERB4 bb_error_msg("filter offset:%+f disp:%f jitter:%f",
 751                        p->filter_offset,
 752                        p->filter_dispersion,
 753                        p->filter_jitter);
 754}
 755
 756static void
 757reset_peer_stats(peer_t *p, double offset)
 758{
 759        int i;
 760        bool small_ofs = fabs(offset) < STEP_THRESHOLD;
 761
 762        /* Used to set p->filter_datapoint[i].d_dispersion = MAXDISP
 763         * and clear reachable bits, but this proved to be too aggressive:
 764         * after step (tested with suspending laptop for ~30 secs),
 765         * this caused all previous data to be considered invalid,
 766         * making us needing to collect full ~8 datapoints per peer
 767         * after step in order to start trusting them.
 768         * In turn, this was making poll interval decrease even after
 769         * step was done. (Poll interval decreases already before step
 770         * in this scenario, because we see large offsets and end up with
 771         * no good peer to select).
 772         */
 773
 774        for (i = 0; i < NUM_DATAPOINTS; i++) {
 775                if (small_ofs) {
 776                        p->filter_datapoint[i].d_recv_time += offset;
 777                        if (p->filter_datapoint[i].d_offset != 0) {
 778                                p->filter_datapoint[i].d_offset -= offset;
 779                                //bb_error_msg("p->filter_datapoint[%d].d_offset %f -> %f",
 780                                //      i,
 781                                //      p->filter_datapoint[i].d_offset + offset,
 782                                //      p->filter_datapoint[i].d_offset);
 783                        }
 784                } else {
 785                        p->filter_datapoint[i].d_recv_time  = G.cur_time;
 786                        p->filter_datapoint[i].d_offset     = 0;
 787                        /*p->filter_datapoint[i].d_dispersion = MAXDISP;*/
 788                }
 789        }
 790        if (small_ofs) {
 791                p->lastpkt_recv_time += offset;
 792        } else {
 793                /*p->reachable_bits = 0;*/
 794                p->lastpkt_recv_time = G.cur_time;
 795        }
 796        filter_datapoints(p); /* recalc p->filter_xxx */
 797        VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
 798}
 799
 800static len_and_sockaddr*
 801resolve_peer_hostname(peer_t *p)
 802{
 803        len_and_sockaddr *lsa = host2sockaddr(p->p_hostname, 123);
 804        if (lsa) {
 805                free(p->p_lsa);
 806                free(p->p_dotted);
 807                p->p_lsa = lsa;
 808                p->p_dotted = xmalloc_sockaddr2dotted_noport(&lsa->u.sa);
 809                VERB1 if (strcmp(p->p_hostname, p->p_dotted) != 0)
 810                        bb_error_msg("'%s' is %s", p->p_hostname, p->p_dotted);
 811                p->dns_errors = 0;
 812                return lsa;
 813        }
 814        p->dns_errors = ((p->dns_errors << 1) | 1) & DNS_ERRORS_CAP;
 815        return lsa;
 816}
 817
 818static void
 819add_peers(const char *s)
 820{
 821        llist_t *item;
 822        peer_t *p;
 823
 824        p = xzalloc(sizeof(*p) + strlen(s));
 825        strcpy(p->p_hostname, s);
 826        p->p_fd = -1;
 827        p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
 828        p->next_action_time = G.cur_time; /* = set_next(p, 0); */
 829        reset_peer_stats(p, STEP_THRESHOLD);
 830
 831        /* Names like N.<country2chars>.pool.ntp.org are randomly resolved
 832         * to a pool of machines. Sometimes different N's resolve to the same IP.
 833         * It is not useful to have two peers with same IP. We skip duplicates.
 834         */
 835        if (resolve_peer_hostname(p)) {
 836                for (item = G.ntp_peers; item != NULL; item = item->link) {
 837                        peer_t *pp = (peer_t *) item->data;
 838                        if (pp->p_dotted && strcmp(p->p_dotted, pp->p_dotted) == 0) {
 839                                bb_error_msg("duplicate peer %s (%s)", s, p->p_dotted);
 840                                free(p->p_lsa);
 841                                free(p->p_dotted);
 842                                free(p);
 843                                return;
 844                        }
 845                }
 846        }
 847
 848        llist_add_to(&G.ntp_peers, p);
 849        G.peer_cnt++;
 850}
 851
 852static int
 853do_sendto(int fd,
 854                const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
 855                msg_t *msg, ssize_t len)
 856{
 857        ssize_t ret;
 858
 859        errno = 0;
 860        if (!from) {
 861                ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
 862        } else {
 863                ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
 864        }
 865        if (ret != len) {
 866                bb_perror_msg("send failed");
 867                return -1;
 868        }
 869        return 0;
 870}
 871
 872static void
 873send_query_to_peer(peer_t *p)
 874{
 875        if (!p->p_lsa)
 876                return;
 877
 878        /* Why do we need to bind()?
 879         * See what happens when we don't bind:
 880         *
 881         * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
 882         * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
 883         * gettimeofday({1259071266, 327885}, NULL) = 0
 884         * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
 885         * ^^^ we sent it from some source port picked by kernel.
 886         * time(NULL)              = 1259071266
 887         * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
 888         * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
 889         * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
 890         * ^^^ this recv will receive packets to any local port!
 891         *
 892         * Uncomment this and use strace to see it in action:
 893         */
 894#define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
 895
 896        if (p->p_fd == -1) {
 897                int fd, family;
 898                len_and_sockaddr *local_lsa;
 899
 900                family = p->p_lsa->u.sa.sa_family;
 901                p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
 902                /* local_lsa has "null" address and port 0 now.
 903                 * bind() ensures we have a *particular port* selected by kernel
 904                 * and remembered in p->p_fd, thus later recv(p->p_fd)
 905                 * receives only packets sent to this port.
 906                 */
 907                PROBE_LOCAL_ADDR
 908                xbind(fd, &local_lsa->u.sa, local_lsa->len);
 909                PROBE_LOCAL_ADDR
 910#if ENABLE_FEATURE_IPV6
 911                if (family == AF_INET)
 912#endif
 913                        setsockopt_int(fd, IPPROTO_IP, IP_TOS, IPTOS_DSCP_AF21);
 914                free(local_lsa);
 915        }
 916
 917        /* Emit message _before_ attempted send. Think of a very short
 918         * roundtrip networks: we need to go back to recv loop ASAP,
 919         * to reduce delay. Printing messages after send works against that.
 920         */
 921        VERB1 bb_error_msg("sending query to %s", p->p_dotted);
 922
 923        /*
 924         * Send out a random 64-bit number as our transmit time.  The NTP
 925         * server will copy said number into the originate field on the
 926         * response that it sends us.  This is totally legal per the SNTP spec.
 927         *
 928         * The impact of this is two fold: we no longer send out the current
 929         * system time for the world to see (which may aid an attacker), and
 930         * it gives us a (not very secure) way of knowing that we're not
 931         * getting spoofed by an attacker that can't capture our traffic
 932         * but can spoof packets from the NTP server we're communicating with.
 933         *
 934         * Save the real transmit timestamp locally.
 935         */
 936        p->p_xmt_msg.m_xmttime.int_partl = rand();
 937        p->p_xmt_msg.m_xmttime.fractionl = rand();
 938        p->p_xmttime = gettime1900d();
 939
 940        /* Were doing it only if sendto worked, but
 941         * loss of sync detection needs reachable_bits updated
 942         * even if sending fails *locally*:
 943         * "network is unreachable" because cable was pulled?
 944         * We still need to declare "unsync" if this condition persists.
 945         */
 946        p->reachable_bits <<= 1;
 947
 948        if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
 949                        &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
 950        ) {
 951                close(p->p_fd);
 952                p->p_fd = -1;
 953                /*
 954                 * We know that we sent nothing.
 955                 * We can retry *soon* without fearing
 956                 * that we are flooding the peer.
 957                 */
 958                set_next(p, RETRY_INTERVAL);
 959                return;
 960        }
 961
 962        set_next(p, RESPONSE_INTERVAL);
 963}
 964
 965
 966/* Note that there is no provision to prevent several run_scripts
 967 * to be started in quick succession. In fact, it happens rather often
 968 * if initial syncronization results in a step.
 969 * You will see "step" and then "stratum" script runs, sometimes
 970 * as close as only 0.002 seconds apart.
 971 * Script should be ready to deal with this.
 972 */
 973static void run_script(const char *action, double offset)
 974{
 975        char *argv[3];
 976        char *env1, *env2, *env3, *env4;
 977
 978        G.last_script_run = G.cur_time;
 979
 980        if (!G.script_name)
 981                return;
 982
 983        argv[0] = (char*) G.script_name;
 984        argv[1] = (char*) action;
 985        argv[2] = NULL;
 986
 987        VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
 988
 989        env1 = xasprintf("%s=%u", "stratum", G.stratum);
 990        putenv(env1);
 991        env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
 992        putenv(env2);
 993        env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
 994        putenv(env3);
 995        env4 = xasprintf("%s=%f", "offset", offset);
 996        putenv(env4);
 997        /* Other items of potential interest: selected peer,
 998         * rootdelay, reftime, rootdisp, refid, ntp_status,
 999         * last_update_offset, last_update_recv_time, discipline_jitter,
1000         * how many peers have reachable_bits = 0?
1001         */
1002
1003        /* Don't want to wait: it may run hwclock --systohc, and that
1004         * may take some time (seconds): */
1005        /*spawn_and_wait(argv);*/
1006        spawn(argv);
1007
1008        unsetenv("stratum");
1009        unsetenv("freq_drift_ppm");
1010        unsetenv("poll_interval");
1011        unsetenv("offset");
1012        free(env1);
1013        free(env2);
1014        free(env3);
1015        free(env4);
1016}
1017
1018static NOINLINE void
1019step_time(double offset)
1020{
1021        llist_t *item;
1022        double dtime;
1023        struct timeval tvc, tvn;
1024        char buf[sizeof("yyyy-mm-dd hh:mm:ss") + /*paranoia:*/ 4];
1025        time_t tval;
1026
1027        gettimeofday(&tvc, NULL); /* never fails */
1028        dtime = tvc.tv_sec + (1.0e-6 * tvc.tv_usec) + offset;
1029        d_to_tv(dtime, &tvn);
1030        if (settimeofday(&tvn, NULL) == -1)
1031                bb_perror_msg_and_die("settimeofday");
1032
1033        VERB2 {
1034                tval = tvc.tv_sec;
1035                strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
1036                bb_error_msg("current time is %s.%06u", buf, (unsigned)tvc.tv_usec);
1037        }
1038        tval = tvn.tv_sec;
1039        strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
1040        bb_error_msg("setting time to %s.%06u (offset %+fs)", buf, (unsigned)tvn.tv_usec, offset);
1041        //maybe? G.FREQHOLD_cnt = 0;
1042
1043        /* Correct various fields which contain time-relative values: */
1044
1045        /* Globals: */
1046        G.cur_time += offset;
1047        G.last_update_recv_time += offset;
1048        G.last_script_run += offset;
1049
1050        /* p->lastpkt_recv_time, p->next_action_time and such: */
1051        for (item = G.ntp_peers; item != NULL; item = item->link) {
1052                peer_t *pp = (peer_t *) item->data;
1053                reset_peer_stats(pp, offset);
1054                //bb_error_msg("offset:%+f pp->next_action_time:%f -> %f",
1055                //      offset, pp->next_action_time, pp->next_action_time + offset);
1056                pp->next_action_time += offset;
1057                if (pp->p_fd >= 0) {
1058                        /* We wait for reply from this peer too.
1059                         * But due to step we are doing, reply's data is no longer
1060                         * useful (in fact, it'll be bogus). Stop waiting for it.
1061                         */
1062                        close(pp->p_fd);
1063                        pp->p_fd = -1;
1064                        set_next(pp, RETRY_INTERVAL);
1065                }
1066        }
1067}
1068
1069static void clamp_pollexp_and_set_MAXSTRAT(void)
1070{
1071        if (G.poll_exp < MINPOLL)
1072                G.poll_exp = MINPOLL;
1073        if (G.poll_exp > BIGPOLL)
1074                G.poll_exp = BIGPOLL;
1075        G.polladj_count = 0;
1076        G.stratum = MAXSTRAT;
1077}
1078
1079
1080/*
1081 * Selection and clustering, and their helpers
1082 */
1083typedef struct {
1084        peer_t *p;
1085        int    type;
1086        double edge;
1087        double opt_rd; /* optimization */
1088} point_t;
1089static int
1090compare_point_edge(const void *aa, const void *bb)
1091{
1092        const point_t *a = aa;
1093        const point_t *b = bb;
1094        if (a->edge < b->edge) {
1095                return -1;
1096        }
1097        return (a->edge > b->edge);
1098}
1099typedef struct {
1100        peer_t *p;
1101        double metric;
1102} survivor_t;
1103static int
1104compare_survivor_metric(const void *aa, const void *bb)
1105{
1106        const survivor_t *a = aa;
1107        const survivor_t *b = bb;
1108        if (a->metric < b->metric) {
1109                return -1;
1110        }
1111        return (a->metric > b->metric);
1112}
1113static int
1114fit(peer_t *p, double rd)
1115{
1116        if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
1117                /* One or zero bits in reachable_bits */
1118                VERB4 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
1119                return 0;
1120        }
1121#if 0 /* we filter out such packets earlier */
1122        if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
1123         || p->lastpkt_stratum >= MAXSTRAT
1124        ) {
1125                VERB4 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
1126                return 0;
1127        }
1128#endif
1129        /* rd is root_distance(p) */
1130        if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
1131                VERB4 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
1132                return 0;
1133        }
1134//TODO
1135//      /* Do we have a loop? */
1136//      if (p->refid == p->dstaddr || p->refid == s.refid)
1137//              return 0;
1138        return 1;
1139}
1140static peer_t*
1141select_and_cluster(void)
1142{
1143        peer_t     *p;
1144        llist_t    *item;
1145        int        i, j;
1146        int        size = 3 * G.peer_cnt;
1147        /* for selection algorithm */
1148        point_t    point[size];
1149        unsigned   num_points, num_candidates;
1150        double     low, high;
1151        unsigned   num_falsetickers;
1152        /* for cluster algorithm */
1153        survivor_t survivor[size];
1154        unsigned   num_survivors;
1155
1156        /* Selection */
1157
1158        num_points = 0;
1159        item = G.ntp_peers;
1160        while (item != NULL) {
1161                double rd, offset;
1162
1163                p = (peer_t *) item->data;
1164                rd = root_distance(p);
1165                offset = p->filter_offset;
1166                if (!fit(p, rd)) {
1167                        item = item->link;
1168                        continue;
1169                }
1170
1171                VERB5 bb_error_msg("interval: [%f %f %f] %s",
1172                                offset - rd,
1173                                offset,
1174                                offset + rd,
1175                                p->p_dotted
1176                );
1177                point[num_points].p = p;
1178                point[num_points].type = -1;
1179                point[num_points].edge = offset - rd;
1180                point[num_points].opt_rd = rd;
1181                num_points++;
1182                point[num_points].p = p;
1183                point[num_points].type = 0;
1184                point[num_points].edge = offset;
1185                point[num_points].opt_rd = rd;
1186                num_points++;
1187                point[num_points].p = p;
1188                point[num_points].type = 1;
1189                point[num_points].edge = offset + rd;
1190                point[num_points].opt_rd = rd;
1191                num_points++;
1192                item = item->link;
1193        }
1194        num_candidates = num_points / 3;
1195        if (num_candidates == 0) {
1196                VERB3 bb_error_msg("no valid datapoints%s", ", no peer selected");
1197                return NULL;
1198        }
1199//TODO: sorting does not seem to be done in reference code
1200        qsort(point, num_points, sizeof(point[0]), compare_point_edge);
1201
1202        /* Start with the assumption that there are no falsetickers.
1203         * Attempt to find a nonempty intersection interval containing
1204         * the midpoints of all truechimers.
1205         * If a nonempty interval cannot be found, increase the number
1206         * of assumed falsetickers by one and try again.
1207         * If a nonempty interval is found and the number of falsetickers
1208         * is less than the number of truechimers, a majority has been found
1209         * and the midpoint of each truechimer represents
1210         * the candidates available to the cluster algorithm.
1211         */
1212        num_falsetickers = 0;
1213        while (1) {
1214                int c;
1215                unsigned num_midpoints = 0;
1216
1217                low = 1 << 9;
1218                high = - (1 << 9);
1219                c = 0;
1220                for (i = 0; i < num_points; i++) {
1221                        /* We want to do:
1222                         * if (point[i].type == -1) c++;
1223                         * if (point[i].type == 1) c--;
1224                         * and it's simpler to do it this way:
1225                         */
1226                        c -= point[i].type;
1227                        if (c >= num_candidates - num_falsetickers) {
1228                                /* If it was c++ and it got big enough... */
1229                                low = point[i].edge;
1230                                break;
1231                        }
1232                        if (point[i].type == 0)
1233                                num_midpoints++;
1234                }
1235                c = 0;
1236                for (i = num_points-1; i >= 0; i--) {
1237                        c += point[i].type;
1238                        if (c >= num_candidates - num_falsetickers) {
1239                                high = point[i].edge;
1240                                break;
1241                        }
1242                        if (point[i].type == 0)
1243                                num_midpoints++;
1244                }
1245                /* If the number of midpoints is greater than the number
1246                 * of allowed falsetickers, the intersection contains at
1247                 * least one truechimer with no midpoint - bad.
1248                 * Also, interval should be nonempty.
1249                 */
1250                if (num_midpoints <= num_falsetickers && low < high)
1251                        break;
1252                num_falsetickers++;
1253                if (num_falsetickers * 2 >= num_candidates) {
1254                        VERB3 bb_error_msg("falsetickers:%d, candidates:%d%s",
1255                                        num_falsetickers, num_candidates,
1256                                        ", no peer selected");
1257                        return NULL;
1258                }
1259        }
1260        VERB4 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1261                        low, high, num_candidates, num_falsetickers);
1262
1263        /* Clustering */
1264
1265        /* Construct a list of survivors (p, metric)
1266         * from the chime list, where metric is dominated
1267         * first by stratum and then by root distance.
1268         * All other things being equal, this is the order of preference.
1269         */
1270        num_survivors = 0;
1271        for (i = 0; i < num_points; i++) {
1272                if (point[i].edge < low || point[i].edge > high)
1273                        continue;
1274                p = point[i].p;
1275                survivor[num_survivors].p = p;
1276                /* x.opt_rd == root_distance(p); */
1277                survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
1278                VERB5 bb_error_msg("survivor[%d] metric:%f peer:%s",
1279                        num_survivors, survivor[num_survivors].metric, p->p_dotted);
1280                num_survivors++;
1281        }
1282        /* There must be at least MIN_SELECTED survivors to satisfy the
1283         * correctness assertions. Ordinarily, the Byzantine criteria
1284         * require four survivors, but for the demonstration here, one
1285         * is acceptable.
1286         */
1287        if (num_survivors < MIN_SELECTED) {
1288                VERB3 bb_error_msg("survivors:%d%s",
1289                                num_survivors,
1290                                ", no peer selected");
1291                return NULL;
1292        }
1293
1294//looks like this is ONLY used by the fact that later we pick survivor[0].
1295//we can avoid sorting then, just find the minimum once!
1296        qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1297
1298        /* For each association p in turn, calculate the selection
1299         * jitter p->sjitter as the square root of the sum of squares
1300         * (p->offset - q->offset) over all q associations. The idea is
1301         * to repeatedly discard the survivor with maximum selection
1302         * jitter until a termination condition is met.
1303         */
1304        while (1) {
1305                unsigned max_idx = max_idx;
1306                double max_selection_jitter = max_selection_jitter;
1307                double min_jitter = min_jitter;
1308
1309                if (num_survivors <= MIN_CLUSTERED) {
1310                        VERB4 bb_error_msg("num_survivors %d <= %d, not discarding more",
1311                                        num_survivors, MIN_CLUSTERED);
1312                        break;
1313                }
1314
1315                /* To make sure a few survivors are left
1316                 * for the clustering algorithm to chew on,
1317                 * we stop if the number of survivors
1318                 * is less than or equal to MIN_CLUSTERED (3).
1319                 */
1320                for (i = 0; i < num_survivors; i++) {
1321                        double selection_jitter_sq;
1322
1323                        p = survivor[i].p;
1324                        if (i == 0 || p->filter_jitter < min_jitter)
1325                                min_jitter = p->filter_jitter;
1326
1327                        selection_jitter_sq = 0;
1328                        for (j = 0; j < num_survivors; j++) {
1329                                peer_t *q = survivor[j].p;
1330                                selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1331                        }
1332                        if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1333                                max_selection_jitter = selection_jitter_sq;
1334                                max_idx = i;
1335                        }
1336                        VERB6 bb_error_msg("survivor %d selection_jitter^2:%f",
1337                                        i, selection_jitter_sq);
1338                }
1339                max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
1340                VERB5 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1341                                max_idx, max_selection_jitter, min_jitter);
1342
1343                /* If the maximum selection jitter is less than the
1344                 * minimum peer jitter, then tossing out more survivors
1345                 * will not lower the minimum peer jitter, so we might
1346                 * as well stop.
1347                 */
1348                if (max_selection_jitter < min_jitter) {
1349                        VERB4 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1350                                        max_selection_jitter, min_jitter, num_survivors);
1351                        break;
1352                }
1353
1354                /* Delete survivor[max_idx] from the list
1355                 * and go around again.
1356                 */
1357                VERB6 bb_error_msg("dropping survivor %d", max_idx);
1358                num_survivors--;
1359                while (max_idx < num_survivors) {
1360                        survivor[max_idx] = survivor[max_idx + 1];
1361                        max_idx++;
1362                }
1363        }
1364
1365        if (0) {
1366                /* Combine the offsets of the clustering algorithm survivors
1367                 * using a weighted average with weight determined by the root
1368                 * distance. Compute the selection jitter as the weighted RMS
1369                 * difference between the first survivor and the remaining
1370                 * survivors. In some cases the inherent clock jitter can be
1371                 * reduced by not using this algorithm, especially when frequent
1372                 * clockhopping is involved. bbox: thus we don't do it.
1373                 */
1374                double x, y, z, w;
1375                y = z = w = 0;
1376                for (i = 0; i < num_survivors; i++) {
1377                        p = survivor[i].p;
1378                        x = root_distance(p);
1379                        y += 1 / x;
1380                        z += p->filter_offset / x;
1381                        w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1382                }
1383                //G.cluster_offset = z / y;
1384                //G.cluster_jitter = SQRT(w / y);
1385        }
1386
1387        /* Pick the best clock. If the old system peer is on the list
1388         * and at the same stratum as the first survivor on the list,
1389         * then don't do a clock hop. Otherwise, select the first
1390         * survivor on the list as the new system peer.
1391         */
1392        p = survivor[0].p;
1393        if (G.last_update_peer
1394         && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1395        ) {
1396                /* Starting from 1 is ok here */
1397                for (i = 1; i < num_survivors; i++) {
1398                        if (G.last_update_peer == survivor[i].p) {
1399                                VERB5 bb_error_msg("keeping old synced peer");
1400                                p = G.last_update_peer;
1401                                goto keep_old;
1402                        }
1403                }
1404        }
1405        G.last_update_peer = p;
1406 keep_old:
1407        VERB4 bb_error_msg("selected peer %s filter_offset:%+f age:%f",
1408                        p->p_dotted,
1409                        p->filter_offset,
1410                        G.cur_time - p->lastpkt_recv_time
1411        );
1412        return p;
1413}
1414
1415
1416/*
1417 * Local clock discipline and its helpers
1418 */
1419static void
1420set_new_values(int disc_state, double offset, double recv_time)
1421{
1422        /* Enter new state and set state variables. Note we use the time
1423         * of the last clock filter sample, which must be earlier than
1424         * the current time.
1425         */
1426        VERB4 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
1427                        disc_state, offset, recv_time);
1428        G.discipline_state = disc_state;
1429        G.last_update_offset = offset;
1430        G.last_update_recv_time = recv_time;
1431}
1432/* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
1433static NOINLINE int
1434update_local_clock(peer_t *p)
1435{
1436        int rc;
1437        struct timex tmx;
1438        /* Note: can use G.cluster_offset instead: */
1439        double offset = p->filter_offset;
1440        double recv_time = p->lastpkt_recv_time;
1441        double abs_offset;
1442#if !USING_KERNEL_PLL_LOOP
1443        double freq_drift;
1444#endif
1445#if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
1446        double since_last_update;
1447#endif
1448        double etemp, dtemp;
1449
1450        abs_offset = fabs(offset);
1451
1452#if 0
1453        /* If needed, -S script can do it by looking at $offset
1454         * env var and killing parent */
1455        /* If the offset is too large, give up and go home */
1456        if (abs_offset > PANIC_THRESHOLD) {
1457                bb_error_msg_and_die("offset %f far too big, exiting", offset);
1458        }
1459#endif
1460
1461        /* If this is an old update, for instance as the result
1462         * of a system peer change, avoid it. We never use
1463         * an old sample or the same sample twice.
1464         */
1465        if (recv_time <= G.last_update_recv_time) {
1466                VERB3 bb_error_msg("update from %s: same or older datapoint, not using it",
1467                        p->p_dotted);
1468                return 0; /* "leave poll interval as is" */
1469        }
1470
1471        /* Clock state machine transition function. This is where the
1472         * action is and defines how the system reacts to large time
1473         * and frequency errors.
1474         */
1475#if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
1476        since_last_update = recv_time - G.reftime;
1477#endif
1478#if !USING_KERNEL_PLL_LOOP
1479        freq_drift = 0;
1480#endif
1481#if USING_INITIAL_FREQ_ESTIMATION
1482        if (G.discipline_state == STATE_FREQ) {
1483                /* Ignore updates until the stepout threshold */
1484                if (since_last_update < WATCH_THRESHOLD) {
1485                        VERB4 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1486                                        WATCH_THRESHOLD - since_last_update);
1487                        return 0; /* "leave poll interval as is" */
1488                }
1489# if !USING_KERNEL_PLL_LOOP
1490                freq_drift = (offset - G.last_update_offset) / since_last_update;
1491# endif
1492        }
1493#endif
1494
1495        /* There are two main regimes: when the
1496         * offset exceeds the step threshold and when it does not.
1497         */
1498        if (abs_offset > STEP_THRESHOLD) {
1499#if 0
1500                double remains;
1501
1502// This "spike state" seems to be useless, peer selection already drops
1503// occassional "bad" datapoints. If we are here, there were _many_
1504// large offsets. When a few first large offsets are seen,
1505// we end up in "no valid datapoints, no peer selected" state.
1506// Only when enough of them are seen (which means it's not a fluke),
1507// we end up here. Looks like _our_ clock is off.
1508                switch (G.discipline_state) {
1509                case STATE_SYNC:
1510                        /* The first outlyer: ignore it, switch to SPIK state */
1511                        VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
1512                                p->p_dotted, offset,
1513                                "");
1514                        G.discipline_state = STATE_SPIK;
1515                        return -1; /* "decrease poll interval" */
1516
1517                case STATE_SPIK:
1518                        /* Ignore succeeding outlyers until either an inlyer
1519                         * is found or the stepout threshold is exceeded.
1520                         */
1521                        remains = WATCH_THRESHOLD - since_last_update;
1522                        if (remains > 0) {
1523                                VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
1524                                        p->p_dotted, offset,
1525                                        ", datapoint ignored");
1526                                return -1; /* "decrease poll interval" */
1527                        }
1528                        /* fall through: we need to step */
1529                } /* switch */
1530#endif
1531
1532                /* Step the time and clamp down the poll interval.
1533                 *
1534                 * In NSET state an initial frequency correction is
1535                 * not available, usually because the frequency file has
1536                 * not yet been written. Since the time is outside the
1537                 * capture range, the clock is stepped. The frequency
1538                 * will be set directly following the stepout interval.
1539                 *
1540                 * In FSET state the initial frequency has been set
1541                 * from the frequency file. Since the time is outside
1542                 * the capture range, the clock is stepped immediately,
1543                 * rather than after the stepout interval. Guys get
1544                 * nervous if it takes 17 minutes to set the clock for
1545                 * the first time.
1546                 *
1547                 * In SPIK state the stepout threshold has expired and
1548                 * the phase is still above the step threshold. Note
1549                 * that a single spike greater than the step threshold
1550                 * is always suppressed, even at the longer poll
1551                 * intervals.
1552                 */
1553                VERB4 bb_error_msg("stepping time by %+f; poll_exp=MINPOLL", offset);
1554                step_time(offset);
1555                if (option_mask32 & OPT_q) {
1556                        /* We were only asked to set time once. Done. */
1557                        exit(0);
1558                }
1559
1560                clamp_pollexp_and_set_MAXSTRAT();
1561
1562                run_script("step", offset);
1563
1564                recv_time += offset;
1565
1566#if USING_INITIAL_FREQ_ESTIMATION
1567                if (G.discipline_state == STATE_NSET) {
1568                        set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1569                        return 1; /* "ok to increase poll interval" */
1570                }
1571#endif
1572                abs_offset = offset = 0;
1573                set_new_values(STATE_SYNC, offset, recv_time);
1574        } else { /* abs_offset <= STEP_THRESHOLD */
1575
1576                /* The ratio is calculated before jitter is updated to make
1577                 * poll adjust code more sensitive to large offsets.
1578                 */
1579                G.offset_to_jitter_ratio = abs_offset / G.discipline_jitter;
1580
1581                /* Compute the clock jitter as the RMS of exponentially
1582                 * weighted offset differences. Used by the poll adjust code.
1583                 */
1584                etemp = SQUARE(G.discipline_jitter);
1585                dtemp = SQUARE(offset - G.last_update_offset);
1586                G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1587                if (G.discipline_jitter < G_precision_sec)
1588                        G.discipline_jitter = G_precision_sec;
1589
1590                switch (G.discipline_state) {
1591                case STATE_NSET:
1592                        if (option_mask32 & OPT_q) {
1593                                /* We were only asked to set time once.
1594                                 * The clock is precise enough, no need to step.
1595                                 */
1596                                exit(0);
1597                        }
1598#if USING_INITIAL_FREQ_ESTIMATION
1599                        /* This is the first update received and the frequency
1600                         * has not been initialized. The first thing to do
1601                         * is directly measure the oscillator frequency.
1602                         */
1603                        set_new_values(STATE_FREQ, offset, recv_time);
1604#else
1605                        set_new_values(STATE_SYNC, offset, recv_time);
1606#endif
1607                        VERB4 bb_error_msg("transitioning to FREQ, datapoint ignored");
1608                        return 0; /* "leave poll interval as is" */
1609
1610#if 0 /* this is dead code for now */
1611                case STATE_FSET:
1612                        /* This is the first update and the frequency
1613                         * has been initialized. Adjust the phase, but
1614                         * don't adjust the frequency until the next update.
1615                         */
1616                        set_new_values(STATE_SYNC, offset, recv_time);
1617                        /* freq_drift remains 0 */
1618                        break;
1619#endif
1620
1621#if USING_INITIAL_FREQ_ESTIMATION
1622                case STATE_FREQ:
1623                        /* since_last_update >= WATCH_THRESHOLD, we waited enough.
1624                         * Correct the phase and frequency and switch to SYNC state.
1625                         * freq_drift was already estimated (see code above)
1626                         */
1627                        set_new_values(STATE_SYNC, offset, recv_time);
1628                        break;
1629#endif
1630
1631                default:
1632#if !USING_KERNEL_PLL_LOOP
1633                        /* Compute freq_drift due to PLL and FLL contributions.
1634                         *
1635                         * The FLL and PLL frequency gain constants
1636                         * depend on the poll interval and Allan
1637                         * intercept. The FLL is not used below one-half
1638                         * the Allan intercept. Above that the loop gain
1639                         * increases in steps to 1 / AVG.
1640                         */
1641                        if ((1 << G.poll_exp) > ALLAN / 2) {
1642                                etemp = FLL - G.poll_exp;
1643                                if (etemp < AVG)
1644                                        etemp = AVG;
1645                                freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1646                        }
1647                        /* For the PLL the integration interval
1648                         * (numerator) is the minimum of the update
1649                         * interval and poll interval. This allows
1650                         * oversampling, but not undersampling.
1651                         */
1652                        etemp = MIND(since_last_update, (1 << G.poll_exp));
1653                        dtemp = (4 * PLL) << G.poll_exp;
1654                        freq_drift += offset * etemp / SQUARE(dtemp);
1655#endif
1656                        set_new_values(STATE_SYNC, offset, recv_time);
1657                        break;
1658                }
1659                if (G.stratum != p->lastpkt_stratum + 1) {
1660                        G.stratum = p->lastpkt_stratum + 1;
1661                        run_script("stratum", offset);
1662                }
1663        }
1664
1665        G.reftime = G.cur_time;
1666        G.ntp_status = p->lastpkt_status;
1667        G.refid = p->lastpkt_refid;
1668        G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
1669        dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
1670        dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
1671        G.rootdisp = p->lastpkt_rootdisp + dtemp;
1672        VERB4 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1673
1674        /* We are in STATE_SYNC now, but did not do adjtimex yet.
1675         * (Any other state does not reach this, they all return earlier)
1676         * By this time, freq_drift and offset are set
1677         * to values suitable for adjtimex.
1678         */
1679#if !USING_KERNEL_PLL_LOOP
1680        /* Calculate the new frequency drift and frequency stability (wander).
1681         * Compute the clock wander as the RMS of exponentially weighted
1682         * frequency differences. This is not used directly, but can,
1683         * along with the jitter, be a highly useful monitoring and
1684         * debugging tool.
1685         */
1686        dtemp = G.discipline_freq_drift + freq_drift;
1687        G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
1688        etemp = SQUARE(G.discipline_wander);
1689        dtemp = SQUARE(dtemp);
1690        G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1691
1692        VERB4 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1693                        G.discipline_freq_drift,
1694                        (long)(G.discipline_freq_drift * 65536e6),
1695                        freq_drift,
1696                        G.discipline_wander);
1697#endif
1698        VERB4 {
1699                memset(&tmx, 0, sizeof(tmx));
1700                if (adjtimex(&tmx) < 0)
1701                        bb_perror_msg_and_die("adjtimex");
1702                bb_error_msg("p adjtimex freq:%ld offset:%+ld status:0x%x tc:%ld",
1703                                tmx.freq, tmx.offset, tmx.status, tmx.constant);
1704        }
1705
1706        memset(&tmx, 0, sizeof(tmx));
1707#if 0
1708//doesn't work, offset remains 0 (!) in kernel:
1709//ntpd:  set adjtimex freq:1786097 tmx.offset:77487
1710//ntpd: prev adjtimex freq:1786097 tmx.offset:0
1711//ntpd:  cur adjtimex freq:1786097 tmx.offset:0
1712        tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1713        /* 65536 is one ppm */
1714        tmx.freq = G.discipline_freq_drift * 65536e6;
1715#endif
1716        tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
1717
1718        tmx.offset = (long)(offset * 1000000); /* usec */
1719        if (SLEW_THRESHOLD < STEP_THRESHOLD) {
1720                if (tmx.offset > (long)(SLEW_THRESHOLD * 1000000)) {
1721                        tmx.offset = (long)(SLEW_THRESHOLD * 1000000);
1722                }
1723                if (tmx.offset < -(long)(SLEW_THRESHOLD * 1000000)) {
1724                        tmx.offset = -(long)(SLEW_THRESHOLD * 1000000);
1725                }
1726        }
1727
1728        tmx.status = STA_PLL;
1729        if (G.FREQHOLD_cnt != 0) {
1730                /* man adjtimex on STA_FREQHOLD:
1731                 * "Normally adjustments made via ADJ_OFFSET result in dampened
1732                 * frequency adjustments also being made.
1733                 * This flag prevents the small frequency adjustment from being
1734                 * made when correcting for an ADJ_OFFSET value."
1735                 *
1736                 * Use this flag for a few first adjustments at the beginning
1737                 * of ntpd execution, otherwise even relatively small initial
1738                 * offset tend to cause largish changes to in-kernel tmx.freq.
1739                 * If ntpd was restarted due to e.g. switch to another network,
1740                 * this destroys already well-established tmx.freq value.
1741                 */
1742                if (G.FREQHOLD_cnt < 0) {
1743                        /* Initialize it */
1744// Example: a laptop whose clock runs slower when hibernated,
1745// after wake up it still has good tmx.freq, but accumulated ~0.5 sec offset:
1746// Run with code where initial G.FREQHOLD_cnt was always 8:
1747//15:17:52.947 no valid datapoints, no peer selected
1748//15:17:56.515 update from:<IP> offset:+0.485133 delay:0.157762 jitter:0.209310 clock drift:-1.393ppm tc:4
1749//15:17:57.719 update from:<IP> offset:+0.483825 delay:0.158070 jitter:0.181159 clock drift:-1.393ppm tc:4
1750//15:17:59.925 update from:<IP> offset:+0.479504 delay:0.158147 jitter:0.156657 clock drift:-1.393ppm tc:4
1751//15:18:33.322 update from:<IP> offset:+0.428119 delay:0.158317 jitter:0.138071 clock drift:-1.393ppm tc:4
1752//15:19:06.718 update from:<IP> offset:+0.376932 delay:0.158276 jitter:0.122075 clock drift:-1.393ppm tc:4
1753//15:19:39.114 update from:<IP> offset:+0.327022 delay:0.158384 jitter:0.108538 clock drift:-1.393ppm tc:4
1754//15:20:12.715 update from:<IP> offset:+0.275596 delay:0.158297 jitter:0.097292 clock drift:-1.393ppm tc:4
1755//15:20:45.111 update from:<IP> offset:+0.225715 delay:0.158271 jitter:0.087841 clock drift:-1.393ppm tc:4
1756// If allwed to continue, it would start increasing tmx.freq now.
1757// Instead, it was ^Ced, and started anew:
1758//15:21:15.043 no valid datapoints, no peer selected
1759//15:21:17.408 update from:<IP> offset:+0.175910 delay:0.158314 jitter:0.076683 clock drift:-1.393ppm tc:4
1760//15:21:19.774 update from:<IP> offset:+0.171784 delay:0.158401 jitter:0.066436 clock drift:-1.393ppm tc:4
1761//15:21:22.140 update from:<IP> offset:+0.171660 delay:0.158592 jitter:0.057536 clock drift:-1.393ppm tc:4
1762//15:21:22.140 update from:<IP> offset:+0.167126 delay:0.158507 jitter:0.049792 clock drift:-1.393ppm tc:4
1763//15:21:55.696 update from:<IP> offset:+0.115223 delay:0.158277 jitter:0.050240 clock drift:-1.393ppm tc:4
1764//15:22:29.093 update from:<IP> offset:+0.068051 delay:0.158243 jitter:0.049405 clock drift:-1.393ppm tc:5
1765//15:23:02.490 update from:<IP> offset:+0.051632 delay:0.158215 jitter:0.043545 clock drift:-1.393ppm tc:5
1766//15:23:34.726 update from:<IP> offset:+0.039984 delay:0.158157 jitter:0.038106 clock drift:-1.393ppm tc:5
1767// STA_FREQHOLD no longer set, started increasing tmx.freq now:
1768//15:24:06.961 update from:<IP> offset:+0.030968 delay:0.158190 jitter:0.033306 clock drift:+2.387ppm tc:5
1769//15:24:40.357 update from:<IP> offset:+0.023648 delay:0.158211 jitter:0.029072 clock drift:+5.454ppm tc:5
1770//15:25:13.774 update from:<IP> offset:+0.018068 delay:0.157660 jitter:0.025288 clock drift:+7.728ppm tc:5
1771//15:26:19.173 update from:<IP> offset:+0.010057 delay:0.157969 jitter:0.022255 clock drift:+8.361ppm tc:6
1772//15:27:26.602 update from:<IP> offset:+0.006737 delay:0.158103 jitter:0.019316 clock drift:+8.792ppm tc:6
1773//15:28:33.030 update from:<IP> offset:+0.004513 delay:0.158294 jitter:0.016765 clock drift:+9.080ppm tc:6
1774//15:29:40.617 update from:<IP> offset:+0.002787 delay:0.157745 jitter:0.014543 clock drift:+9.258ppm tc:6
1775//15:30:47.045 update from:<IP> offset:+0.001324 delay:0.157709 jitter:0.012594 clock drift:+9.342ppm tc:6
1776//15:31:53.473 update from:<IP> offset:+0.000007 delay:0.158142 jitter:0.010922 clock drift:+9.343ppm tc:6
1777//15:32:58.902 update from:<IP> offset:-0.000728 delay:0.158222 jitter:0.009454 clock drift:+9.298ppm tc:6
1778                        /*
1779                         * This expression would choose 15 in the above example.
1780                         */
1781                        G.FREQHOLD_cnt = 8 + ((unsigned)(abs(tmx.offset)) >> 16);
1782                }
1783                G.FREQHOLD_cnt--;
1784                tmx.status |= STA_FREQHOLD;
1785        }
1786        if (G.ntp_status & LI_PLUSSEC)
1787                tmx.status |= STA_INS;
1788        if (G.ntp_status & LI_MINUSSEC)
1789                tmx.status |= STA_DEL;
1790
1791        tmx.constant = (int)G.poll_exp - 4;
1792        /* EXPERIMENTAL.
1793         * The below if statement should be unnecessary, but...
1794         * It looks like Linux kernel's PLL is far too gentle in changing
1795         * tmx.freq in response to clock offset. Offset keeps growing
1796         * and eventually we fall back to smaller poll intervals.
1797         * We can make correction more aggressive (about x2) by supplying
1798         * PLL time constant which is one less than the real one.
1799         * To be on a safe side, let's do it only if offset is significantly
1800         * larger than jitter.
1801         */
1802        if (G.offset_to_jitter_ratio >= TIMECONST_HACK_GATE)
1803                tmx.constant--;
1804        if (tmx.constant < 0)
1805                tmx.constant = 0;
1806
1807        //tmx.esterror = (uint32_t)(clock_jitter * 1e6);
1808        //tmx.maxerror = (uint32_t)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
1809        rc = adjtimex(&tmx);
1810        if (rc < 0)
1811                bb_perror_msg_and_die("adjtimex");
1812        /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1813         * Not sure why. Perhaps it is normal.
1814         */
1815        VERB4 bb_error_msg("adjtimex:%d freq:%ld offset:%+ld status:0x%x",
1816                                rc, tmx.freq, tmx.offset, tmx.status);
1817        G.kernel_freq_drift = tmx.freq / 65536;
1818        VERB2 bb_error_msg("update from:%s offset:%+f delay:%f jitter:%f clock drift:%+.3fppm tc:%d",
1819                        p->p_dotted,
1820                        offset,
1821                        p->lastpkt_delay,
1822                        G.discipline_jitter,
1823                        (double)tmx.freq / 65536,
1824                        (int)tmx.constant
1825        );
1826
1827        return 1; /* "ok to increase poll interval" */
1828}
1829
1830
1831/*
1832 * We've got a new reply packet from a peer, process it
1833 * (helpers first)
1834 */
1835static unsigned
1836poll_interval(int upper_bound)
1837{
1838        unsigned interval, r, mask;
1839        interval = 1 << G.poll_exp;
1840        if (interval > upper_bound)
1841                interval = upper_bound;
1842        mask = ((interval-1) >> 4) | 1;
1843        r = rand();
1844        interval += r & mask; /* ~ random(0..1) * interval/16 */
1845        VERB4 bb_error_msg("chose poll interval:%u (poll_exp:%d)", interval, G.poll_exp);
1846        return interval;
1847}
1848static void
1849adjust_poll(int count)
1850{
1851        G.polladj_count += count;
1852        if (G.polladj_count > POLLADJ_LIMIT) {
1853                G.polladj_count = 0;
1854                if (G.poll_exp < MAXPOLL) {
1855                        G.poll_exp++;
1856                        VERB4 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1857                                        G.discipline_jitter, G.poll_exp);
1858                }
1859        } else if (G.polladj_count < -POLLADJ_LIMIT || (count < 0 && G.poll_exp > BIGPOLL)) {
1860                G.polladj_count = 0;
1861                if (G.poll_exp > MINPOLL) {
1862                        llist_t *item;
1863
1864                        G.poll_exp--;
1865                        /* Correct p->next_action_time in each peer
1866                         * which waits for sending, so that they send earlier.
1867                         * Old pp->next_action_time are on the order
1868                         * of t + (1 << old_poll_exp) + small_random,
1869                         * we simply need to subtract ~half of that.
1870                         */
1871                        for (item = G.ntp_peers; item != NULL; item = item->link) {
1872                                peer_t *pp = (peer_t *) item->data;
1873                                if (pp->p_fd < 0)
1874                                        pp->next_action_time -= (1 << G.poll_exp);
1875                        }
1876                        VERB4 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1877                                        G.discipline_jitter, G.poll_exp);
1878                }
1879        } else {
1880                VERB4 bb_error_msg("polladj: count:%d", G.polladj_count);
1881        }
1882}
1883static NOINLINE void
1884recv_and_process_peer_pkt(peer_t *p)
1885{
1886        int         rc;
1887        ssize_t     size;
1888        msg_t       msg;
1889        double      T1, T2, T3, T4;
1890        double      offset;
1891        double      prev_delay, delay;
1892        unsigned    interval;
1893        datapoint_t *datapoint;
1894        peer_t      *q;
1895
1896        offset = 0;
1897
1898        /* We can recvfrom here and check from.IP, but some multihomed
1899         * ntp servers reply from their *other IP*.
1900         * TODO: maybe we should check at least what we can: from.port == 123?
1901         */
1902 recv_again:
1903        size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1904        if (size < 0) {
1905                if (errno == EINTR)
1906                        /* Signal caught */
1907                        goto recv_again;
1908                if (errno == EAGAIN)
1909                        /* There was no packet after all
1910                         * (poll() returning POLLIN for a fd
1911                         * is not a ironclad guarantee that data is there)
1912                         */
1913                        return;
1914                /*
1915                 * If you need a different handling for a specific
1916                 * errno, always explain it in comment.
1917                 */
1918                bb_perror_msg_and_die("recv(%s) error", p->p_dotted);
1919        }
1920
1921        if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1922                bb_error_msg("malformed packet received from %s", p->p_dotted);
1923                return;
1924        }
1925
1926        if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1927         || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1928        ) {
1929                /* Somebody else's packet */
1930                return;
1931        }
1932
1933        /* We do not expect any more packets from this peer for now.
1934         * Closing the socket informs kernel about it.
1935         * We open a new socket when we send a new query.
1936         */
1937        close(p->p_fd);
1938        p->p_fd = -1;
1939
1940        if ((msg.m_status & LI_ALARM) == LI_ALARM
1941         || msg.m_stratum == 0
1942         || msg.m_stratum > NTP_MAXSTRATUM
1943        ) {
1944                bb_error_msg("reply from %s: peer is unsynced", p->p_dotted);
1945                /*
1946                 * Stratum 0 responses may have commands in 32-bit m_refid field:
1947                 * "DENY", "RSTR" - peer does not like us at all,
1948                 * "RATE" - peer is overloaded, reduce polling freq.
1949                 * If poll interval is small, increase it.
1950                 */
1951                if (G.poll_exp < BIGPOLL)
1952                        goto increase_interval;
1953                goto pick_normal_interval;
1954        }
1955
1956//      /* Verify valid root distance */
1957//      if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1958//              return;                 /* invalid header values */
1959
1960        /*
1961         * From RFC 2030 (with a correction to the delay math):
1962         *
1963         * Timestamp Name          ID   When Generated
1964         * ------------------------------------------------------------
1965         * Originate Timestamp     T1   time request sent by client
1966         * Receive Timestamp       T2   time request received by server
1967         * Transmit Timestamp      T3   time reply sent by server
1968         * Destination Timestamp   T4   time reply received by client
1969         *
1970         * The roundtrip delay and local clock offset are defined as
1971         *
1972         * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1973         */
1974        T1 = p->p_xmttime;
1975        T2 = lfp_to_d(msg.m_rectime);
1976        T3 = lfp_to_d(msg.m_xmttime);
1977        T4 = G.cur_time;
1978
1979        /* The delay calculation is a special case. In cases where the
1980         * server and client clocks are running at different rates and
1981         * with very fast networks, the delay can appear negative. In
1982         * order to avoid violating the Principle of Least Astonishment,
1983         * the delay is clamped not less than the system precision.
1984         */
1985        delay = (T4 - T1) - (T3 - T2);
1986        if (delay < G_precision_sec)
1987                delay = G_precision_sec;
1988        /*
1989         * If this packet's delay is much bigger than the last one,
1990         * it's better to just ignore it than use its much less precise value.
1991         */
1992        prev_delay = p->p_raw_delay;
1993        p->p_raw_delay = delay;
1994        if (p->reachable_bits && delay > prev_delay * BAD_DELAY_GROWTH) {
1995                bb_error_msg("reply from %s: delay %f is too high, ignoring", p->p_dotted, delay);
1996                goto pick_normal_interval;
1997        }
1998
1999        p->lastpkt_delay = delay;
2000        p->lastpkt_recv_time = T4;
2001        VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
2002        p->lastpkt_status = msg.m_status;
2003        p->lastpkt_stratum = msg.m_stratum;
2004        p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
2005        p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
2006        p->lastpkt_refid = msg.m_refid;
2007
2008        p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
2009        datapoint = &p->filter_datapoint[p->datapoint_idx];
2010        datapoint->d_recv_time = T4;
2011        datapoint->d_offset    = offset = ((T2 - T1) + (T3 - T4)) / 2;
2012        datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
2013        if (!p->reachable_bits) {
2014                /* 1st datapoint ever - replicate offset in every element */
2015                int i;
2016                for (i = 0; i < NUM_DATAPOINTS; i++) {
2017                        p->filter_datapoint[i].d_offset = offset;
2018                }
2019        }
2020
2021        p->reachable_bits |= 1;
2022        if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
2023                bb_error_msg("reply from %s: offset:%+f delay:%f status:0x%02x strat:%d refid:0x%08x rootdelay:%f reach:0x%02x",
2024                        p->p_dotted,
2025                        offset,
2026                        p->lastpkt_delay,
2027                        p->lastpkt_status,
2028                        p->lastpkt_stratum,
2029                        p->lastpkt_refid,
2030                        p->lastpkt_rootdelay,
2031                        p->reachable_bits
2032                        /* not shown: m_ppoll, m_precision_exp, m_rootdisp,
2033                         * m_reftime, m_orgtime, m_rectime, m_xmttime
2034                         */
2035                );
2036        }
2037
2038        /* Muck with statictics and update the clock */
2039        filter_datapoints(p);
2040        q = select_and_cluster();
2041        rc = 0;
2042        if (q) {
2043                if (!(option_mask32 & OPT_w)) {
2044                        rc = update_local_clock(q);
2045#if 0
2046//Disabled this because there is a case where largish offsets
2047//are unavoidable: if network round-trip delay is, say, ~0.6s,
2048//error in offset estimation would be ~delay/2 ~= 0.3s.
2049//Thus, offsets will be usually in -0.3...0.3s range.
2050//In this case, this code would keep poll interval small,
2051//but it won't be helping.
2052//BIGOFF check below deals with a case of seeing multi-second offsets.
2053
2054                        /* If drift is dangerously large, immediately
2055                         * drop poll interval one step down.
2056                         */
2057                        if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
2058                                VERB4 bb_error_msg("offset:%+f > POLLDOWN_OFFSET", q->filter_offset);
2059                                adjust_poll(-POLLADJ_LIMIT * 3);
2060                                rc = 0;
2061                        }
2062#endif
2063                }
2064        } else {
2065                /* No peer selected.
2066                 * If poll interval is small, increase it.
2067                 */
2068                if (G.poll_exp < BIGPOLL)
2069                        goto increase_interval;
2070        }
2071
2072        if (rc != 0) {
2073                /* Adjust the poll interval by comparing the current offset
2074                 * with the clock jitter. If the offset is less than
2075                 * the clock jitter times a constant, then the averaging interval
2076                 * is increased, otherwise it is decreased. A bit of hysteresis
2077                 * helps calm the dance. Works best using burst mode.
2078                 */
2079                if (rc > 0 && G.offset_to_jitter_ratio <= POLLADJ_GATE) {
2080                        /* was += G.poll_exp but it is a bit
2081                         * too optimistic for my taste at high poll_exp's */
2082 increase_interval:
2083                        adjust_poll(MINPOLL);
2084                } else {
2085                        VERB3 if (rc > 0)
2086                                bb_error_msg("want smaller interval: offset/jitter = %u",
2087                                        G.offset_to_jitter_ratio);
2088                        adjust_poll(-G.poll_exp * 2);
2089                }
2090        }
2091
2092        /* Decide when to send new query for this peer */
2093 pick_normal_interval:
2094        interval = poll_interval(INT_MAX);
2095        if (fabs(offset) >= BIGOFF && interval > BIGOFF_INTERVAL) {
2096                /* If we are synced, offsets are less than SLEW_THRESHOLD,
2097                 * or at the very least not much larger than it.
2098                 * Now we see a largish one.
2099                 * Either this peer is feeling bad, or packet got corrupted,
2100                 * or _our_ clock is wrong now and _all_ peers will show similar
2101                 * largish offsets too.
2102                 * I observed this with laptop suspend stopping clock.
2103                 * In any case, it makes sense to make next request soonish:
2104                 * cases 1 and 2: get a better datapoint,
2105                 * case 3: allows to resync faster.
2106                 */
2107                interval = BIGOFF_INTERVAL;
2108        }
2109
2110        set_next(p, interval);
2111}
2112
2113#if ENABLE_FEATURE_NTPD_SERVER
2114static NOINLINE void
2115recv_and_process_client_pkt(void /*int fd*/)
2116{
2117        ssize_t          size;
2118        //uint8_t          version;
2119        len_and_sockaddr *to;
2120        struct sockaddr  *from;
2121        msg_t            msg;
2122        uint8_t          query_status;
2123        l_fixedpt_t      query_xmttime;
2124
2125        to = get_sock_lsa(G_listen_fd);
2126        from = xzalloc(to->len);
2127
2128        size = recv_from_to(G_listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
2129        if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
2130                char *addr;
2131                if (size < 0) {
2132                        if (errno == EAGAIN)
2133                                goto bail;
2134                        bb_perror_msg_and_die("recv");
2135                }
2136                addr = xmalloc_sockaddr2dotted_noport(from);
2137                bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
2138                free(addr);
2139                goto bail;
2140        }
2141
2142        /* Respond only to client and symmetric active packets */
2143        if ((msg.m_status & MODE_MASK) != MODE_CLIENT
2144         && (msg.m_status & MODE_MASK) != MODE_SYM_ACT
2145        ) {
2146                goto bail;
2147        }
2148
2149        query_status = msg.m_status;
2150        query_xmttime = msg.m_xmttime;
2151
2152        /* Build a reply packet */
2153        memset(&msg, 0, sizeof(msg));
2154        msg.m_status = G.stratum < MAXSTRAT ? (G.ntp_status & LI_MASK) : LI_ALARM;
2155        msg.m_status |= (query_status & VERSION_MASK);
2156        msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
2157                        MODE_SERVER : MODE_SYM_PAS;
2158        msg.m_stratum = G.stratum;
2159        msg.m_ppoll = G.poll_exp;
2160        msg.m_precision_exp = G_precision_exp;
2161        /* this time was obtained between poll() and recv() */
2162        msg.m_rectime = d_to_lfp(G.cur_time);
2163        msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
2164        if (G.peer_cnt == 0) {
2165                /* we have no peers: "stratum 1 server" mode. reftime = our own time */
2166                G.reftime = G.cur_time;
2167        }
2168        msg.m_reftime = d_to_lfp(G.reftime);
2169        msg.m_orgtime = query_xmttime;
2170        msg.m_rootdelay = d_to_sfp(G.rootdelay);
2171//simple code does not do this, fix simple code!
2172        msg.m_rootdisp = d_to_sfp(G.rootdisp);
2173        //version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
2174        msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
2175
2176        /* We reply from the local address packet was sent to,
2177         * this makes to/from look swapped here: */
2178        do_sendto(G_listen_fd,
2179                /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
2180                &msg, size);
2181
2182 bail:
2183        free(to);
2184        free(from);
2185}
2186#endif
2187
2188/* Upstream ntpd's options:
2189 *
2190 * -4   Force DNS resolution of host names to the IPv4 namespace.
2191 * -6   Force DNS resolution of host names to the IPv6 namespace.
2192 * -a   Require cryptographic authentication for broadcast client,
2193 *      multicast client and symmetric passive associations.
2194 *      This is the default.
2195 * -A   Do not require cryptographic authentication for broadcast client,
2196 *      multicast client and symmetric passive associations.
2197 *      This is almost never a good idea.
2198 * -b   Enable the client to synchronize to broadcast servers.
2199 * -c conffile
2200 *      Specify the name and path of the configuration file,
2201 *      default /etc/ntp.conf
2202 * -d   Specify debugging mode. This option may occur more than once,
2203 *      with each occurrence indicating greater detail of display.
2204 * -D level
2205 *      Specify debugging level directly.
2206 * -f driftfile
2207 *      Specify the name and path of the frequency file.
2208 *      This is the same operation as the "driftfile FILE"
2209 *      configuration command.
2210 * -g   Normally, ntpd exits with a message to the system log
2211 *      if the offset exceeds the panic threshold, which is 1000 s
2212 *      by default. This option allows the time to be set to any value
2213 *      without restriction; however, this can happen only once.
2214 *      If the threshold is exceeded after that, ntpd will exit
2215 *      with a message to the system log. This option can be used
2216 *      with the -q and -x options. See the tinker command for other options.
2217 * -i jaildir
2218 *      Chroot the server to the directory jaildir. This option also implies
2219 *      that the server attempts to drop root privileges at startup
2220 *      (otherwise, chroot gives very little additional security).
2221 *      You may need to also specify a -u option.
2222 * -k keyfile
2223 *      Specify the name and path of the symmetric key file,
2224 *      default /etc/ntp/keys. This is the same operation
2225 *      as the "keys FILE" configuration command.
2226 * -l logfile
2227 *      Specify the name and path of the log file. The default
2228 *      is the system log file. This is the same operation as
2229 *      the "logfile FILE" configuration command.
2230 * -L   Do not listen to virtual IPs. The default is to listen.
2231 * -n   Don't fork.
2232 * -N   To the extent permitted by the operating system,
2233 *      run the ntpd at the highest priority.
2234 * -p pidfile
2235 *      Specify the name and path of the file used to record the ntpd
2236 *      process ID. This is the same operation as the "pidfile FILE"
2237 *      configuration command.
2238 * -P priority
2239 *      To the extent permitted by the operating system,
2240 *      run the ntpd at the specified priority.
2241 * -q   Exit the ntpd just after the first time the clock is set.
2242 *      This behavior mimics that of the ntpdate program, which is
2243 *      to be retired. The -g and -x options can be used with this option.
2244 *      Note: The kernel time discipline is disabled with this option.
2245 * -r broadcastdelay
2246 *      Specify the default propagation delay from the broadcast/multicast
2247 *      server to this client. This is necessary only if the delay
2248 *      cannot be computed automatically by the protocol.
2249 * -s statsdir
2250 *      Specify the directory path for files created by the statistics
2251 *      facility. This is the same operation as the "statsdir DIR"
2252 *      configuration command.
2253 * -t key
2254 *      Add a key number to the trusted key list. This option can occur
2255 *      more than once.
2256 * -u user[:group]
2257 *      Specify a user, and optionally a group, to switch to.
2258 * -v variable
2259 * -V variable
2260 *      Add a system variable listed by default.
2261 * -x   Normally, the time is slewed if the offset is less than the step
2262 *      threshold, which is 128 ms by default, and stepped if above
2263 *      the threshold. This option sets the threshold to 600 s, which is
2264 *      well within the accuracy window to set the clock manually.
2265 *      Note: since the slew rate of typical Unix kernels is limited
2266 *      to 0.5 ms/s, each second of adjustment requires an amortization
2267 *      interval of 2000 s. Thus, an adjustment as much as 600 s
2268 *      will take almost 14 days to complete. This option can be used
2269 *      with the -g and -q options. See the tinker command for other options.
2270 *      Note: The kernel time discipline is disabled with this option.
2271 */
2272
2273/* By doing init in a separate function we decrease stack usage
2274 * in main loop.
2275 */
2276static NOINLINE void ntp_init(char **argv)
2277{
2278        unsigned opts;
2279        llist_t *peers;
2280
2281        srand(getpid());
2282
2283        if (getuid())
2284                bb_error_msg_and_die(bb_msg_you_must_be_root);
2285
2286        /* Set some globals */
2287        G.discipline_jitter = G_precision_sec;
2288        G.stratum = MAXSTRAT;
2289        if (BURSTPOLL != 0)
2290                G.poll_exp = BURSTPOLL; /* speeds up initial sync */
2291        G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
2292        G.FREQHOLD_cnt = -1;
2293
2294        /* Parse options */
2295        peers = NULL;
2296        opts = getopt32(argv, "^"
2297                        "nqNx" /* compat */
2298                        "wp:*S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
2299                        IF_FEATURE_NTPD_SERVER("I:") /* compat */
2300                        "d" /* compat */
2301                        "46aAbgL" /* compat, ignored */
2302                                "\0"
2303                                "dd:wn"  /* -d: counter; -p: list; -w implies -n */
2304                                IF_FEATURE_NTPD_SERVER(":Il") /* -I implies -l */
2305                        , &peers, &G.script_name,
2306#if ENABLE_FEATURE_NTPD_SERVER
2307                        &G.if_name,
2308#endif
2309                        &G.verbose);
2310
2311//      if (opts & OPT_x) /* disable stepping, only slew is allowed */
2312//              G.time_was_stepped = 1;
2313
2314#if ENABLE_FEATURE_NTPD_SERVER
2315        G_listen_fd = -1;
2316        if (opts & OPT_l) {
2317                G_listen_fd = create_and_bind_dgram_or_die(NULL, 123);
2318                if (G.if_name) {
2319                        if (setsockopt_bindtodevice(G_listen_fd, G.if_name))
2320                                xfunc_die();
2321                }
2322                socket_want_pktinfo(G_listen_fd);
2323                setsockopt_int(G_listen_fd, IPPROTO_IP, IP_TOS, IPTOS_DSCP_AF21);
2324        }
2325#endif
2326        /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
2327        if (opts & OPT_N)
2328                setpriority(PRIO_PROCESS, 0, -15);
2329
2330        if (!(opts & OPT_n)) {
2331                bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
2332                logmode = LOGMODE_NONE;
2333        }
2334
2335        if (peers) {
2336                while (peers)
2337                        add_peers(llist_pop(&peers));
2338        }
2339#if ENABLE_FEATURE_NTPD_CONF
2340        else {
2341                parser_t *parser;
2342                char *token[3];
2343
2344                parser = config_open("/etc/ntp.conf");
2345                while (config_read(parser, token, 3, 1, "# \t", PARSE_NORMAL)) {
2346                        if (strcmp(token[0], "server") == 0 && token[1]) {
2347                                add_peers(token[1]);
2348                                continue;
2349                        }
2350                        bb_error_msg("skipping %s:%u: unimplemented command '%s'",
2351                                "/etc/ntp.conf", parser->lineno, token[0]
2352                        );
2353                }
2354                config_close(parser);
2355        }
2356#endif
2357        if (G.peer_cnt == 0) {
2358                if (!(opts & OPT_l))
2359                        bb_show_usage();
2360                /* -l but no peers: "stratum 1 server" mode */
2361                G.stratum = 1;
2362        }
2363        /* If network is up, syncronization occurs in ~10 seconds.
2364         * We give "ntpd -q" 10 seconds to get first reply,
2365         * then another 50 seconds to finish syncing.
2366         *
2367         * I tested ntpd 4.2.6p1 and apparently it never exits
2368         * (will try forever), but it does not feel right.
2369         * The goal of -q is to act like ntpdate: set time
2370         * after a reasonably small period of polling, or fail.
2371         */
2372        if (opts & OPT_q) {
2373                option_mask32 |= OPT_qq;
2374                alarm(10);
2375        }
2376
2377        bb_signals(0
2378                | (1 << SIGTERM)
2379                | (1 << SIGINT)
2380                | (1 << SIGALRM)
2381                , record_signo
2382        );
2383        bb_signals(0
2384                | (1 << SIGPIPE)
2385                | (1 << SIGCHLD)
2386                , SIG_IGN
2387        );
2388}
2389
2390int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
2391int ntpd_main(int argc UNUSED_PARAM, char **argv)
2392{
2393#undef G
2394        struct globals G;
2395        struct pollfd *pfd;
2396        peer_t **idx2peer;
2397        unsigned cnt;
2398
2399        memset(&G, 0, sizeof(G));
2400        SET_PTR_TO_GLOBALS(&G);
2401
2402        ntp_init(argv);
2403
2404        /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
2405        cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
2406        idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
2407        pfd = xzalloc(sizeof(pfd[0]) * cnt);
2408
2409        /* Countdown: we never sync before we sent INITIAL_SAMPLES+1
2410         * packets to each peer.
2411         * NB: if some peer is not responding, we may end up sending
2412         * fewer packets to it and more to other peers.
2413         * NB2: sync usually happens using INITIAL_SAMPLES packets,
2414         * since last reply does not come back instantaneously.
2415         */
2416        cnt = G.peer_cnt * (INITIAL_SAMPLES + 1);
2417
2418        write_pidfile(CONFIG_PID_FILE_PATH "/ntpd.pid");
2419
2420        while (!bb_got_signal) {
2421                llist_t *item;
2422                unsigned i, j;
2423                int nfds, timeout;
2424                double nextaction;
2425
2426                /* Nothing between here and poll() blocks for any significant time */
2427
2428                nextaction = G.last_script_run + (11*60);
2429                if (nextaction < G.cur_time + 1)
2430                        nextaction = G.cur_time + 1;
2431
2432                i = 0;
2433#if ENABLE_FEATURE_NTPD_SERVER
2434                if (G_listen_fd != -1) {
2435                        pfd[0].fd = G_listen_fd;
2436                        pfd[0].events = POLLIN;
2437                        i++;
2438                }
2439#endif
2440                /* Pass over peer list, send requests, time out on receives */
2441                for (item = G.ntp_peers; item != NULL; item = item->link) {
2442                        peer_t *p = (peer_t *) item->data;
2443
2444                        if (p->next_action_time <= G.cur_time) {
2445                                if (p->p_fd == -1) {
2446                                        /* Time to send new req */
2447                                        if (--cnt == 0) {
2448                                                VERB4 bb_error_msg("disabling burst mode");
2449                                                G.polladj_count = 0;
2450                                                G.poll_exp = MINPOLL;
2451                                        }
2452                                        send_query_to_peer(p);
2453                                } else {
2454                                        /* Timed out waiting for reply */
2455                                        close(p->p_fd);
2456                                        p->p_fd = -1;
2457                                        /* If poll interval is small, increase it */
2458                                        if (G.poll_exp < BIGPOLL)
2459                                                adjust_poll(MINPOLL);
2460                                        timeout = poll_interval(NOREPLY_INTERVAL);
2461                                        bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
2462                                                        p->p_dotted, p->reachable_bits, timeout);
2463
2464                                        /* What if don't see it because it changed its IP? */
2465                                        if (p->reachable_bits == 0)
2466                                                resolve_peer_hostname(p);
2467
2468                                        set_next(p, timeout);
2469                                }
2470                        }
2471
2472                        if (p->next_action_time < nextaction)
2473                                nextaction = p->next_action_time;
2474
2475                        if (p->p_fd >= 0) {
2476                                /* Wait for reply from this peer */
2477                                pfd[i].fd = p->p_fd;
2478                                pfd[i].events = POLLIN;
2479                                idx2peer[i] = p;
2480                                i++;
2481                        }
2482                }
2483
2484                timeout = nextaction - G.cur_time;
2485                if (timeout < 0)
2486                        timeout = 0;
2487                timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
2488
2489                /* Here we may block */
2490                VERB2 {
2491                        if (i > (ENABLE_FEATURE_NTPD_SERVER && G_listen_fd != -1)) {
2492                                /* We wait for at least one reply.
2493                                 * Poll for it, without wasting time for message.
2494                                 * Since replies often come under 1 second, this also
2495                                 * reduces clutter in logs.
2496                                 */
2497                                nfds = poll(pfd, i, 1000);
2498                                if (nfds != 0)
2499                                        goto did_poll;
2500                                if (--timeout <= 0)
2501                                        goto did_poll;
2502                        }
2503                        bb_error_msg("poll:%us sockets:%u interval:%us", timeout, i, 1 << G.poll_exp);
2504                }
2505                nfds = poll(pfd, i, timeout * 1000);
2506 did_poll:
2507                gettime1900d(); /* sets G.cur_time */
2508                if (nfds <= 0) {
2509                        double ct;
2510                        int dns_error;
2511
2512                        if (bb_got_signal)
2513                                break; /* poll was interrupted by a signal */
2514
2515                        if (G.cur_time - G.last_script_run > 11*60) {
2516                                /* Useful for updating battery-backed RTC and such */
2517                                run_script("periodic", G.last_update_offset);
2518                                gettime1900d(); /* sets G.cur_time */
2519                        }
2520
2521                        /* Resolve peer names to IPs, if not resolved yet.
2522                         * We do it only when poll timed out:
2523                         * this way, we almost never overlap DNS resolution with
2524                         * "request-reply" packet round trip.
2525                         */
2526                        dns_error = 0;
2527                        ct = G.cur_time;
2528                        for (item = G.ntp_peers; item != NULL; item = item->link) {
2529                                peer_t *p = (peer_t *) item->data;
2530                                if (p->next_action_time <= ct && !p->p_lsa) {
2531                                        /* This can take up to ~10 sec per each DNS query */
2532                                        dns_error |= (!resolve_peer_hostname(p));
2533                                }
2534                        }
2535                        if (!dns_error)
2536                                goto check_unsync;
2537                        /* Set next time for those which are still not resolved */
2538                        gettime1900d(); /* sets G.cur_time (needed for set_next()) */
2539                        for (item = G.ntp_peers; item != NULL; item = item->link) {
2540                                peer_t *p = (peer_t *) item->data;
2541                                if (p->next_action_time <= ct && !p->p_lsa) {
2542                                        set_next(p, HOSTNAME_INTERVAL * p->dns_errors);
2543                                }
2544                        }
2545                        goto check_unsync;
2546                }
2547
2548                /* Process any received packets */
2549                j = 0;
2550#if ENABLE_FEATURE_NTPD_SERVER
2551                if (G.listen_fd != -1) {
2552                        if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2553                                nfds--;
2554                                recv_and_process_client_pkt(/*G.listen_fd*/);
2555                                gettime1900d(); /* sets G.cur_time */
2556                        }
2557                        j = 1;
2558                }
2559#endif
2560                for (; nfds != 0 && j < i; j++) {
2561                        if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
2562                                /*
2563                                 * At init, alarm was set to 10 sec.
2564                                 * Now we did get a reply.
2565                                 * Increase timeout to 50 seconds to finish syncing.
2566                                 */
2567                                if (option_mask32 & OPT_qq) {
2568                                        option_mask32 &= ~OPT_qq;
2569                                        alarm(50);
2570                                }
2571                                nfds--;
2572                                recv_and_process_peer_pkt(idx2peer[j]);
2573                                gettime1900d(); /* sets G.cur_time */
2574                        }
2575                }
2576
2577 check_unsync:
2578                if (G.ntp_peers && G.stratum != MAXSTRAT) {
2579                        for (item = G.ntp_peers; item != NULL; item = item->link) {
2580                                peer_t *p = (peer_t *) item->data;
2581                                if (p->reachable_bits)
2582                                        goto have_reachable_peer;
2583                        }
2584                        /* No peer responded for last 8 packets, panic */
2585                        clamp_pollexp_and_set_MAXSTRAT();
2586                        run_script("unsync", 0.0);
2587 have_reachable_peer: ;
2588                }
2589        } /* while (!bb_got_signal) */
2590
2591        remove_pidfile(CONFIG_PID_FILE_PATH "/ntpd.pid");
2592        kill_myself_with_sig(bb_got_signal);
2593}
2594
2595
2596
2597
2598
2599
2600/*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2601
2602/*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2603
2604#if 0
2605static double
2606direct_freq(double fp_offset)
2607{
2608#ifdef KERNEL_PLL
2609        /*
2610         * If the kernel is enabled, we need the residual offset to
2611         * calculate the frequency correction.
2612         */
2613        if (pll_control && kern_enable) {
2614                memset(&ntv, 0, sizeof(ntv));
2615                ntp_adjtime(&ntv);
2616#ifdef STA_NANO
2617                clock_offset = ntv.offset / 1e9;
2618#else /* STA_NANO */
2619                clock_offset = ntv.offset / 1e6;
2620#endif /* STA_NANO */
2621                drift_comp = FREQTOD(ntv.freq);
2622        }
2623#endif /* KERNEL_PLL */
2624        set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2625        wander_resid = 0;
2626        return drift_comp;
2627}
2628
2629static void
2630set_freq(double freq) /* frequency update */
2631{
2632        char tbuf[80];
2633
2634        drift_comp = freq;
2635
2636#ifdef KERNEL_PLL
2637        /*
2638         * If the kernel is enabled, update the kernel frequency.
2639         */
2640        if (pll_control && kern_enable) {
2641                memset(&ntv, 0, sizeof(ntv));
2642                ntv.modes = MOD_FREQUENCY;
2643                ntv.freq = DTOFREQ(drift_comp);
2644                ntp_adjtime(&ntv);
2645                snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2646                report_event(EVNT_FSET, NULL, tbuf);
2647        } else {
2648                snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2649                report_event(EVNT_FSET, NULL, tbuf);
2650        }
2651#else /* KERNEL_PLL */
2652        snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2653        report_event(EVNT_FSET, NULL, tbuf);
2654#endif /* KERNEL_PLL */
2655}
2656
2657...
2658...
2659...
2660
2661#ifdef KERNEL_PLL
2662        /*
2663         * This code segment works when clock adjustments are made using
2664         * precision time kernel support and the ntp_adjtime() system
2665         * call. This support is available in Solaris 2.6 and later,
2666         * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2667         * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2668         * DECstation 5000/240 and Alpha AXP, additional kernel
2669         * modifications provide a true microsecond clock and nanosecond
2670         * clock, respectively.
2671         *
2672         * Important note: The kernel discipline is used only if the
2673         * step threshold is less than 0.5 s, as anything higher can
2674         * lead to overflow problems. This might occur if some misguided
2675         * lad set the step threshold to something ridiculous.
2676         */
2677        if (pll_control && kern_enable) {
2678
2679#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2680
2681                /*
2682                 * We initialize the structure for the ntp_adjtime()
2683                 * system call. We have to convert everything to
2684                 * microseconds or nanoseconds first. Do not update the
2685                 * system variables if the ext_enable flag is set. In
2686                 * this case, the external clock driver will update the
2687                 * variables, which will be read later by the local
2688                 * clock driver. Afterwards, remember the time and
2689                 * frequency offsets for jitter and stability values and
2690                 * to update the frequency file.
2691                 */
2692                memset(&ntv,  0, sizeof(ntv));
2693                if (ext_enable) {
2694                        ntv.modes = MOD_STATUS;
2695                } else {
2696#ifdef STA_NANO
2697                        ntv.modes = MOD_BITS | MOD_NANO;
2698#else /* STA_NANO */
2699                        ntv.modes = MOD_BITS;
2700#endif /* STA_NANO */
2701                        if (clock_offset < 0)
2702                                dtemp = -.5;
2703                        else
2704                                dtemp = .5;
2705#ifdef STA_NANO
2706                        ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2707                        ntv.constant = sys_poll;
2708#else /* STA_NANO */
2709                        ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2710                        ntv.constant = sys_poll - 4;
2711#endif /* STA_NANO */
2712                        ntv.esterror = (u_int32)(clock_jitter * 1e6);
2713                        ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2714                        ntv.status = STA_PLL;
2715
2716                        /*
2717                         * Enable/disable the PPS if requested.
2718                         */
2719                        if (pps_enable) {
2720                                if (!(pll_status & STA_PPSTIME))
2721                                        report_event(EVNT_KERN,
2722                                                NULL, "PPS enabled");
2723                                ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2724                        } else {
2725                                if (pll_status & STA_PPSTIME)
2726                                        report_event(EVNT_KERN,
2727                                                NULL, "PPS disabled");
2728                                ntv.status &= ~(STA_PPSTIME | STA_PPSFREQ);
2729                        }
2730                        if (sys_leap == LEAP_ADDSECOND)
2731                                ntv.status |= STA_INS;
2732                        else if (sys_leap == LEAP_DELSECOND)
2733                                ntv.status |= STA_DEL;
2734                }
2735
2736                /*
2737                 * Pass the stuff to the kernel. If it squeals, turn off
2738                 * the pps. In any case, fetch the kernel offset,
2739                 * frequency and jitter.
2740                 */
2741                if (ntp_adjtime(&ntv) == TIME_ERROR) {
2742                        if (!(ntv.status & STA_PPSSIGNAL))
2743                                report_event(EVNT_KERN, NULL,
2744                                                "PPS no signal");
2745                }
2746                pll_status = ntv.status;
2747#ifdef STA_NANO
2748                clock_offset = ntv.offset / 1e9;
2749#else /* STA_NANO */
2750                clock_offset = ntv.offset / 1e6;
2751#endif /* STA_NANO */
2752                clock_frequency = FREQTOD(ntv.freq);
2753
2754                /*
2755                 * If the kernel PPS is lit, monitor its performance.
2756                 */
2757                if (ntv.status & STA_PPSTIME) {
2758#ifdef STA_NANO
2759                        clock_jitter = ntv.jitter / 1e9;
2760#else /* STA_NANO */
2761                        clock_jitter = ntv.jitter / 1e6;
2762#endif /* STA_NANO */
2763                }
2764
2765#if defined(STA_NANO) && NTP_API == 4
2766                /*
2767                 * If the TAI changes, update the kernel TAI.
2768                 */
2769                if (loop_tai != sys_tai) {
2770                        loop_tai = sys_tai;
2771                        ntv.modes = MOD_TAI;
2772                        ntv.constant = sys_tai;
2773                        ntp_adjtime(&ntv);
2774                }
2775#endif /* STA_NANO */
2776        }
2777#endif /* KERNEL_PLL */
2778#endif
2779