busybox/archival/gzip.c
<<
>>
Prefs
   1/* vi: set sw=4 ts=4: */
   2/*
   3 * Gzip implementation for busybox
   4 *
   5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
   6 *
   7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
   8 * "this is a stripped down version of gzip I put into busybox, it does
   9 * only standard in to standard out with -9 compression.  It also requires
  10 * the zcat module for some important functions."
  11 *
  12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
  13 * files as well as stdin/stdout, and to generally behave itself wrt
  14 * command line handling.
  15 *
  16 * Licensed under GPLv2 or later, see file LICENSE in this source tree.
  17 */
  18/* TODO: full support for -v for DESKTOP
  19 * "/usr/bin/gzip -v a bogus aa" should say:
  20a:       85.1% -- replaced with a.gz
  21gzip: bogus: No such file or directory
  22aa:      85.1% -- replaced with aa.gz
  23*/
  24//config:config GZIP
  25//config:       bool "gzip (17 kb)"
  26//config:       default y
  27//config:       help
  28//config:       gzip is used to compress files.
  29//config:       It's probably the most widely used UNIX compression program.
  30//config:
  31//config:config FEATURE_GZIP_LONG_OPTIONS
  32//config:       bool "Enable long options"
  33//config:       default y
  34//config:       depends on GZIP && LONG_OPTS
  35//config:
  36//config:config GZIP_FAST
  37//config:       int "Trade memory for speed (0:small,slow - 2:fast,big)"
  38//config:       default 0
  39//config:       range 0 2
  40//config:       depends on GZIP
  41//config:       help
  42//config:       Enable big memory options for gzip.
  43//config:       0: small buffers, small hash-tables
  44//config:       1: larger buffers, larger hash-tables
  45//config:       2: larger buffers, largest hash-tables
  46//config:       Larger models may give slightly better compression
  47//config:
  48//config:config FEATURE_GZIP_LEVELS
  49//config:       bool "Enable compression levels"
  50//config:       default n
  51//config:       depends on GZIP
  52//config:       help
  53//config:       Enable support for compression levels 4-9. The default level
  54//config:       is 6. If levels 1-3 are specified, 4 is used.
  55//config:       If this option is not selected, -N options are ignored and -9
  56//config:       is used.
  57//config:
  58//config:config FEATURE_GZIP_DECOMPRESS
  59//config:       bool "Enable decompression"
  60//config:       default y
  61//config:       depends on GZIP || GUNZIP || ZCAT
  62//config:       help
  63//config:       Enable -d (--decompress) and -t (--test) options for gzip.
  64//config:       This will be automatically selected if gunzip or zcat is
  65//config:       enabled.
  66
  67//applet:IF_GZIP(APPLET(gzip, BB_DIR_BIN, BB_SUID_DROP))
  68
  69//kbuild:lib-$(CONFIG_GZIP) += gzip.o
  70
  71//usage:#define gzip_trivial_usage
  72//usage:       "[-cfk" IF_FEATURE_GZIP_DECOMPRESS("dt") IF_FEATURE_GZIP_LEVELS("123456789") "] [FILE]..."
  73//usage:#define gzip_full_usage "\n\n"
  74//usage:       "Compress FILEs (or stdin)\n"
  75//usage:        IF_FEATURE_GZIP_LEVELS(
  76//usage:     "\n        -1..9   Compression level"
  77//usage:        )
  78//usage:        IF_FEATURE_GZIP_DECOMPRESS(
  79//usage:     "\n        -d      Decompress"
  80//usage:     "\n        -t      Test file integrity"
  81//usage:        )
  82//usage:     "\n        -c      Write to stdout"
  83//usage:     "\n        -f      Force"
  84//usage:     "\n        -k      Keep input files"
  85//usage:
  86//usage:#define gzip_example_usage
  87//usage:       "$ ls -la /tmp/busybox*\n"
  88//usage:       "-rw-rw-r--    1 andersen andersen  1761280 Apr 14 17:47 /tmp/busybox.tar\n"
  89//usage:       "$ gzip /tmp/busybox.tar\n"
  90//usage:       "$ ls -la /tmp/busybox*\n"
  91//usage:       "-rw-rw-r--    1 andersen andersen   554058 Apr 14 17:49 /tmp/busybox.tar.gz\n"
  92
  93#include "libbb.h"
  94#include "bb_archive.h"
  95
  96/* ===========================================================================
  97 */
  98//#define DEBUG 1
  99/* Diagnostic functions */
 100#ifdef DEBUG
 101static int verbose;
 102#  define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
 103#  define Trace(x) fprintf x
 104#  define Tracev(x) {if (verbose) fprintf x; }
 105#  define Tracevv(x) {if (verbose > 1) fprintf x; }
 106#  define Tracec(c,x) {if (verbose && (c)) fprintf x; }
 107#  define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
 108#else
 109#  define Assert(cond,msg)
 110#  define Trace(x)
 111#  define Tracev(x)
 112#  define Tracevv(x)
 113#  define Tracec(c,x)
 114#  define Tracecv(c,x)
 115#endif
 116
 117/* ===========================================================================
 118 */
 119#if   CONFIG_GZIP_FAST == 0
 120# define SMALL_MEM
 121#elif CONFIG_GZIP_FAST == 1
 122# define MEDIUM_MEM
 123#elif CONFIG_GZIP_FAST == 2
 124# define BIG_MEM
 125#else
 126# error "Invalid CONFIG_GZIP_FAST value"
 127#endif
 128
 129#ifndef INBUFSIZ
 130#  ifdef SMALL_MEM
 131#    define INBUFSIZ  0x2000    /* input buffer size */
 132#  else
 133#    define INBUFSIZ  0x8000    /* input buffer size */
 134#  endif
 135#endif
 136
 137#ifndef OUTBUFSIZ
 138#  ifdef SMALL_MEM
 139#    define OUTBUFSIZ   8192    /* output buffer size */
 140#  else
 141#    define OUTBUFSIZ  16384    /* output buffer size */
 142#  endif
 143#endif
 144
 145#ifndef DIST_BUFSIZE
 146#  ifdef SMALL_MEM
 147#    define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
 148#  else
 149#    define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
 150#  endif
 151#endif
 152
 153/* gzip flag byte */
 154#define ASCII_FLAG   0x01       /* bit 0 set: file probably ascii text */
 155#define CONTINUATION 0x02       /* bit 1 set: continuation of multi-part gzip file */
 156#define EXTRA_FIELD  0x04       /* bit 2 set: extra field present */
 157#define ORIG_NAME    0x08       /* bit 3 set: original file name present */
 158#define COMMENT      0x10       /* bit 4 set: file comment present */
 159#define RESERVED     0xC0       /* bit 6,7:   reserved */
 160
 161/* internal file attribute */
 162#define UNKNOWN 0xffff
 163#define BINARY  0
 164#define ASCII   1
 165
 166#ifndef WSIZE
 167#  define WSIZE 0x8000  /* window size--must be a power of two, and */
 168#endif                  /*  at least 32K for zip's deflate method */
 169
 170#define MIN_MATCH  3
 171#define MAX_MATCH  258
 172/* The minimum and maximum match lengths */
 173
 174#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
 175/* Minimum amount of lookahead, except at the end of the input file.
 176 * See deflate.c for comments about the MIN_MATCH+1.
 177 */
 178
 179#define MAX_DIST  (WSIZE-MIN_LOOKAHEAD)
 180/* In order to simplify the code, particularly on 16 bit machines, match
 181 * distances are limited to MAX_DIST instead of WSIZE.
 182 */
 183
 184#ifndef MAX_PATH_LEN
 185#  define MAX_PATH_LEN   1024   /* max pathname length */
 186#endif
 187
 188#define seekable()    0 /* force sequential output */
 189#define translate_eol 0 /* no option -a yet */
 190
 191#ifndef BITS
 192#  define BITS 16
 193#endif
 194#define INIT_BITS 9             /* Initial number of bits per code */
 195
 196#define BIT_MASK    0x1f        /* Mask for 'number of compression bits' */
 197/* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
 198 * It's a pity that old uncompress does not check bit 0x20. That makes
 199 * extension of the format actually undesirable because old compress
 200 * would just crash on the new format instead of giving a meaningful
 201 * error message. It does check the number of bits, but it's more
 202 * helpful to say "unsupported format, get a new version" than
 203 * "can only handle 16 bits".
 204 */
 205
 206#ifdef MAX_EXT_CHARS
 207#  define MAX_SUFFIX  MAX_EXT_CHARS
 208#else
 209#  define MAX_SUFFIX  30
 210#endif
 211
 212/* ===========================================================================
 213 * Compile with MEDIUM_MEM to reduce the memory requirements or
 214 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
 215 * entire input file can be held in memory (not possible on 16 bit systems).
 216 * Warning: defining these symbols affects HASH_BITS (see below) and thus
 217 * affects the compression ratio. The compressed output
 218 * is still correct, and might even be smaller in some cases.
 219 */
 220#ifdef SMALL_MEM
 221#  define HASH_BITS  13 /* Number of bits used to hash strings */
 222#endif
 223#ifdef MEDIUM_MEM
 224#  define HASH_BITS  14
 225#endif
 226#ifndef HASH_BITS
 227#  define HASH_BITS  15
 228   /* For portability to 16 bit machines, do not use values above 15. */
 229#endif
 230
 231#define HASH_SIZE (unsigned)(1<<HASH_BITS)
 232#define HASH_MASK (HASH_SIZE-1)
 233#define WMASK     (WSIZE-1)
 234/* HASH_SIZE and WSIZE must be powers of two */
 235#ifndef TOO_FAR
 236#  define TOO_FAR 4096
 237#endif
 238/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
 239
 240/* ===========================================================================
 241 * These types are not really 'char', 'short' and 'long'
 242 */
 243typedef uint8_t uch;
 244typedef uint16_t ush;
 245typedef uint32_t ulg;
 246typedef int32_t lng;
 247
 248typedef ush Pos;
 249typedef unsigned IPos;
 250/* A Pos is an index in the character window. We use short instead of int to
 251 * save space in the various tables. IPos is used only for parameter passing.
 252 */
 253
 254enum {
 255        WINDOW_SIZE = 2 * WSIZE,
 256/* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
 257 * input file length plus MIN_LOOKAHEAD.
 258 */
 259
 260#if !ENABLE_FEATURE_GZIP_LEVELS
 261
 262        max_chain_length = 4096,
 263/* To speed up deflation, hash chains are never searched beyond this length.
 264 * A higher limit improves compression ratio but degrades the speed.
 265 */
 266
 267        max_lazy_match = 258,
 268/* Attempt to find a better match only when the current match is strictly
 269 * smaller than this value. This mechanism is used only for compression
 270 * levels >= 4.
 271 */
 272
 273        max_insert_length = max_lazy_match,
 274/* Insert new strings in the hash table only if the match length
 275 * is not greater than this length. This saves time but degrades compression.
 276 * max_insert_length is used only for compression levels <= 3.
 277 */
 278
 279        good_match = 32,
 280/* Use a faster search when the previous match is longer than this */
 281
 282/* Values for max_lazy_match, good_match and max_chain_length, depending on
 283 * the desired pack level (0..9). The values given below have been tuned to
 284 * exclude worst case performance for pathological files. Better values may be
 285 * found for specific files.
 286 */
 287
 288        nice_match = 258,       /* Stop searching when current match exceeds this */
 289/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
 290 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
 291 * meaning.
 292 */
 293#endif /* ENABLE_FEATURE_GZIP_LEVELS */
 294};
 295
 296struct globals {
 297/* =========================================================================== */
 298/* global buffers, allocated once */
 299
 300#define DECLARE(type, array, size) \
 301        type * array
 302#define ALLOC(type, array, size) \
 303        array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type))
 304#define FREE(array) \
 305        do { free(array); array = NULL; } while (0)
 306
 307        /* buffer for literals or lengths */
 308        /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
 309        DECLARE(uch, l_buf, INBUFSIZ);
 310
 311        DECLARE(ush, d_buf, DIST_BUFSIZE);
 312        DECLARE(uch, outbuf, OUTBUFSIZ);
 313
 314/* Sliding window. Input bytes are read into the second half of the window,
 315 * and move to the first half later to keep a dictionary of at least WSIZE
 316 * bytes. With this organization, matches are limited to a distance of
 317 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
 318 * performed with a length multiple of the block size. Also, it limits
 319 * the window size to 64K, which is quite useful on MSDOS.
 320 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
 321 * be less efficient).
 322 */
 323        DECLARE(uch, window, 2L * WSIZE);
 324
 325/* Link to older string with same hash index. To limit the size of this
 326 * array to 64K, this link is maintained only for the last 32K strings.
 327 * An index in this array is thus a window index modulo 32K.
 328 */
 329        /* DECLARE(Pos, prev, WSIZE); */
 330        DECLARE(ush, prev, 1L << BITS);
 331
 332/* Heads of the hash chains or 0. */
 333        /* DECLARE(Pos, head, 1<<HASH_BITS); */
 334#define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
 335
 336#if ENABLE_FEATURE_GZIP_LEVELS
 337        unsigned max_chain_length;
 338        unsigned max_lazy_match;
 339        unsigned good_match;
 340        unsigned nice_match;
 341#define max_chain_length (G1.max_chain_length)
 342#define max_lazy_match   (G1.max_lazy_match)
 343#define good_match       (G1.good_match)
 344#define nice_match       (G1.nice_match)
 345#endif
 346
 347/* =========================================================================== */
 348/* all members below are zeroed out in pack_gzip() for each next file */
 349
 350        uint32_t crc;   /* shift register contents */
 351        /*uint32_t *crc_32_tab;*/
 352
 353/* window position at the beginning of the current output block. Gets
 354 * negative when the window is moved backwards.
 355 */
 356        lng block_start;
 357
 358        unsigned ins_h; /* hash index of string to be inserted */
 359
 360/* Number of bits by which ins_h and del_h must be shifted at each
 361 * input step. It must be such that after MIN_MATCH steps, the oldest
 362 * byte no longer takes part in the hash key, that is:
 363 * H_SHIFT * MIN_MATCH >= HASH_BITS
 364 */
 365#define H_SHIFT  ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
 366
 367/* Length of the best match at previous step. Matches not greater than this
 368 * are discarded. This is used in the lazy match evaluation.
 369 */
 370        unsigned prev_length;
 371
 372        unsigned strstart;      /* start of string to insert */
 373        unsigned match_start;   /* start of matching string */
 374        unsigned lookahead;     /* number of valid bytes ahead in window */
 375
 376/* number of input bytes */
 377        ulg isize;              /* only 32 bits stored in .gz file */
 378
 379/* bbox always use stdin/stdout */
 380#define ifd STDIN_FILENO        /* input file descriptor */
 381#define ofd STDOUT_FILENO       /* output file descriptor */
 382
 383#ifdef DEBUG
 384        unsigned insize;        /* valid bytes in l_buf */
 385#endif
 386        unsigned outcnt;        /* bytes in output buffer */
 387        smallint eofile;        /* flag set at end of input file */
 388
 389/* ===========================================================================
 390 * Local data used by the "bit string" routines.
 391 */
 392
 393/* Output buffer. bits are inserted starting at the bottom (least significant
 394 * bits).
 395 */
 396        unsigned bi_buf;        /* was unsigned short */
 397
 398#undef BUF_SIZE
 399#define BUF_SIZE (int)(8 * sizeof(G1.bi_buf))
 400
 401/* Number of bits used within bi_buf. (bi_buf might be implemented on
 402 * more than 16 bits on some systems.)
 403 */
 404        unsigned bi_valid;
 405
 406#ifdef DEBUG
 407        ulg bits_sent;  /* bit length of the compressed data */
 408# define DEBUG_bits_sent(v) (void)(G1.bits_sent v)
 409#else
 410# define DEBUG_bits_sent(v) ((void)0)
 411#endif
 412};
 413
 414#define G1 (*(ptr_to_globals - 1))
 415
 416/* ===========================================================================
 417 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
 418 * (used for the compressed data only)
 419 */
 420static void flush_outbuf(void)
 421{
 422        if (G1.outcnt == 0)
 423                return;
 424
 425        xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
 426        G1.outcnt = 0;
 427}
 428
 429/* ===========================================================================
 430 */
 431/* put_8bit is used for the compressed output */
 432#define put_8bit(c) \
 433do { \
 434        G1.outbuf[G1.outcnt++] = (c); \
 435        if (G1.outcnt == OUTBUFSIZ) \
 436                flush_outbuf(); \
 437} while (0)
 438
 439/* Output a 16 bit value, lsb first */
 440static void put_16bit(ush w)
 441{
 442        /* GCC 4.2.1 won't optimize out redundant loads of G1.outcnt
 443         * (probably because of fear of aliasing with G1.outbuf[]
 444         * stores), do it explicitly:
 445         */
 446        unsigned outcnt = G1.outcnt;
 447        uch *dst = &G1.outbuf[outcnt];
 448
 449#if BB_UNALIGNED_MEMACCESS_OK && BB_LITTLE_ENDIAN
 450        if (outcnt < OUTBUFSIZ-2) {
 451                /* Common case */
 452                ush *dst16 = (void*) dst;
 453                *dst16 = w; /* unaligned LSB 16-bit store */
 454                G1.outcnt = outcnt + 2;
 455                return;
 456        }
 457        *dst = (uch)w;
 458        w >>= 8;
 459        G1.outcnt = ++outcnt;
 460#else
 461        *dst = (uch)w;
 462        w >>= 8;
 463        if (outcnt < OUTBUFSIZ-2) {
 464                /* Common case */
 465                dst[1] = w;
 466                G1.outcnt = outcnt + 2;
 467                return;
 468        }
 469        G1.outcnt = ++outcnt;
 470#endif
 471
 472        /* Slowpath: we will need to do flush_outbuf() */
 473        if (outcnt == OUTBUFSIZ)
 474                flush_outbuf(); /* here */
 475        put_8bit(w); /* or here */
 476}
 477
 478#define OPTIMIZED_PUT_32BIT (CONFIG_GZIP_FAST > 0 && BB_UNALIGNED_MEMACCESS_OK && BB_LITTLE_ENDIAN)
 479static void put_32bit(ulg n)
 480{
 481        if (OPTIMIZED_PUT_32BIT) {
 482                unsigned outcnt = G1.outcnt;
 483                if (outcnt < OUTBUFSIZ-4) {
 484                        /* Common case */
 485                        ulg *dst32 = (void*) &G1.outbuf[outcnt];
 486                        *dst32 = n; /* unaligned LSB 32-bit store */
 487                        //bb_error_msg("%p", dst32); // store alignment debugging
 488                        G1.outcnt = outcnt + 4;
 489                        return;
 490                }
 491        }
 492        put_16bit(n);
 493        put_16bit(n >> 16);
 494}
 495static ALWAYS_INLINE void flush_outbuf_if_32bit_optimized(void)
 496{
 497        /* If put_32bit() performs 32bit stores && it is used in send_bits() */
 498        if (OPTIMIZED_PUT_32BIT && BUF_SIZE > 16)
 499                flush_outbuf();
 500}
 501
 502/* ===========================================================================
 503 * Run a set of bytes through the crc shift register.  If s is a NULL
 504 * pointer, then initialize the crc shift register contents instead.
 505 * Return the current crc in either case.
 506 */
 507static void updcrc(uch * s, unsigned n)
 508{
 509        G1.crc = crc32_block_endian0(G1.crc, s, n, global_crc32_table /*G1.crc_32_tab*/);
 510}
 511
 512/* ===========================================================================
 513 * Read a new buffer from the current input file, perform end-of-line
 514 * translation, and update the crc and input file size.
 515 * IN assertion: size >= 2 (for end-of-line translation)
 516 */
 517static unsigned file_read(void *buf, unsigned size)
 518{
 519        unsigned len;
 520
 521        Assert(G1.insize == 0, "l_buf not empty");
 522
 523        len = safe_read(ifd, buf, size);
 524        if (len == (unsigned)(-1) || len == 0)
 525                return len;
 526
 527        updcrc(buf, len);
 528        G1.isize += len;
 529        return len;
 530}
 531
 532/* ===========================================================================
 533 * Send a value on a given number of bits.
 534 * IN assertion: length <= 16 and value fits in length bits.
 535 */
 536static void send_bits(unsigned value, unsigned length)
 537{
 538        unsigned new_buf;
 539
 540#ifdef DEBUG
 541        Tracev((stderr, " l %2d v %4x ", length, value));
 542        Assert(length > 0 && length <= 15, "invalid length");
 543        DEBUG_bits_sent(+= length);
 544#endif
 545        BUILD_BUG_ON(BUF_SIZE != 32 && BUF_SIZE != 16);
 546
 547        new_buf = G1.bi_buf | (value << G1.bi_valid);
 548        /* NB: the above may sometimes do "<< 32" shift (undefined)
 549         * if check below is changed to "length > BUF_SIZE" instead of >= */
 550        length += G1.bi_valid;
 551
 552        /* If bi_buf is full */
 553        if (length >= BUF_SIZE) {
 554                /* ...use (valid) bits from bi_buf and
 555                 * (BUF_SIZE - bi_valid) bits from value,
 556                 *  leaving (width - (BUF_SIZE-bi_valid)) unused bits in value.
 557                 */
 558                value >>= (BUF_SIZE - G1.bi_valid);
 559                if (BUF_SIZE == 32) {
 560                        put_32bit(new_buf);
 561                } else { /* 16 */
 562                        put_16bit(new_buf);
 563                }
 564                new_buf = value;
 565                length -= BUF_SIZE;
 566        }
 567        G1.bi_buf = new_buf;
 568        G1.bi_valid = length;
 569}
 570
 571/* ===========================================================================
 572 * Reverse the first len bits of a code, using straightforward code (a faster
 573 * method would use a table)
 574 * IN assertion: 1 <= len <= 15
 575 */
 576static unsigned bi_reverse(unsigned code, int len)
 577{
 578        unsigned res = 0;
 579
 580        while (1) {
 581                res |= code & 1;
 582                if (--len <= 0) return res;
 583                code >>= 1;
 584                res <<= 1;
 585        }
 586}
 587
 588/* ===========================================================================
 589 * Write out any remaining bits in an incomplete byte.
 590 */
 591static void bi_windup(void)
 592{
 593        unsigned bits = G1.bi_buf;
 594        int cnt = G1.bi_valid;
 595
 596        while (cnt > 0) {
 597                put_8bit(bits);
 598                bits >>= 8;
 599                cnt -= 8;
 600        }
 601        G1.bi_buf = 0;
 602        G1.bi_valid = 0;
 603        DEBUG_bits_sent(= (G1.bits_sent + 7) & ~7);
 604}
 605
 606/* ===========================================================================
 607 * Copy a stored block to the zip file, storing first the length and its
 608 * one's complement if requested.
 609 */
 610static void copy_block(char *buf, unsigned len, int header)
 611{
 612        bi_windup();            /* align on byte boundary */
 613
 614        if (header) {
 615                unsigned v = ((uint16_t)len) | ((~len) << 16);
 616                put_32bit(v);
 617                DEBUG_bits_sent(+= 2 * 16);
 618        }
 619        DEBUG_bits_sent(+= (ulg) len << 3);
 620        while (len--) {
 621                put_8bit(*buf++);
 622        }
 623        /* The above can 32-bit misalign outbuf */
 624        if (G1.outcnt & 3) /* syscalls are expensive, is it really misaligned? */
 625                flush_outbuf_if_32bit_optimized();
 626}
 627
 628/* ===========================================================================
 629 * Fill the window when the lookahead becomes insufficient.
 630 * Updates strstart and lookahead, and sets eofile if end of input file.
 631 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
 632 * OUT assertions: at least one byte has been read, or eofile is set;
 633 *    file reads are performed for at least two bytes (required for the
 634 *    translate_eol option).
 635 */
 636static void fill_window(void)
 637{
 638        unsigned n, m;
 639        unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
 640        /* Amount of free space at the end of the window. */
 641
 642        /* If the window is almost full and there is insufficient lookahead,
 643         * move the upper half to the lower one to make room in the upper half.
 644         */
 645        if (more == (unsigned) -1) {
 646                /* Very unlikely, but possible on 16 bit machine if strstart == 0
 647                 * and lookahead == 1 (input done one byte at time)
 648                 */
 649                more--;
 650        } else if (G1.strstart >= WSIZE + MAX_DIST) {
 651                /* By the IN assertion, the window is not empty so we can't confuse
 652                 * more == 0 with more == 64K on a 16 bit machine.
 653                 */
 654                Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
 655
 656                memcpy(G1.window, G1.window + WSIZE, WSIZE);
 657                G1.match_start -= WSIZE;
 658                G1.strstart -= WSIZE;   /* we now have strstart >= MAX_DIST: */
 659
 660                G1.block_start -= WSIZE;
 661
 662                for (n = 0; n < HASH_SIZE; n++) {
 663                        m = head[n];
 664                        head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
 665                }
 666                for (n = 0; n < WSIZE; n++) {
 667                        m = G1.prev[n];
 668                        G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
 669                        /* If n is not on any hash chain, prev[n] is garbage but
 670                         * its value will never be used.
 671                         */
 672                }
 673                more += WSIZE;
 674        }
 675        /* At this point, more >= 2 */
 676        if (!G1.eofile) {
 677                n = file_read(G1.window + G1.strstart + G1.lookahead, more);
 678                if (n == 0 || n == (unsigned) -1) {
 679                        G1.eofile = 1;
 680                } else {
 681                        G1.lookahead += n;
 682                }
 683        }
 684}
 685/* Both users fill window with the same loop: */
 686static void fill_window_if_needed(void)
 687{
 688        while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
 689                fill_window();
 690}
 691
 692/* ===========================================================================
 693 * Set match_start to the longest match starting at the given string and
 694 * return its length. Matches shorter or equal to prev_length are discarded,
 695 * in which case the result is equal to prev_length and match_start is
 696 * garbage.
 697 * IN assertions: cur_match is the head of the hash chain for the current
 698 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 699 */
 700
 701/* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
 702 * match.s. The code is functionally equivalent, so you can use the C version
 703 * if desired.
 704 */
 705static int longest_match(IPos cur_match)
 706{
 707        unsigned chain_length = max_chain_length;       /* max hash chain length */
 708        uch *scan = G1.window + G1.strstart;    /* current string */
 709        uch *match;     /* matched string */
 710        int len;        /* length of current match */
 711        int best_len = G1.prev_length;  /* best match length so far */
 712        IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
 713        /* Stop when cur_match becomes <= limit. To simplify the code,
 714         * we prevent matches with the string of window index 0.
 715         */
 716
 717/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 718 * It is easy to get rid of this optimization if necessary.
 719 */
 720#if HASH_BITS < 8 || MAX_MATCH != 258
 721#  error Code too clever
 722#endif
 723        uch *strend = G1.window + G1.strstart + MAX_MATCH;
 724        uch scan_end1 = scan[best_len - 1];
 725        uch scan_end = scan[best_len];
 726
 727        /* Do not waste too much time if we already have a good match: */
 728        if (G1.prev_length >= good_match) {
 729                chain_length >>= 2;
 730        }
 731        Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
 732
 733        do {
 734                Assert(cur_match < G1.strstart, "no future");
 735                match = G1.window + cur_match;
 736
 737                /* Skip to next match if the match length cannot increase
 738                 * or if the match length is less than 2:
 739                 */
 740                if (match[best_len] != scan_end
 741                 || match[best_len - 1] != scan_end1
 742                 || *match != *scan || *++match != scan[1]
 743                ) {
 744                        continue;
 745                }
 746
 747                /* The check at best_len-1 can be removed because it will be made
 748                 * again later. (This heuristic is not always a win.)
 749                 * It is not necessary to compare scan[2] and match[2] since they
 750                 * are always equal when the other bytes match, given that
 751                 * the hash keys are equal and that HASH_BITS >= 8.
 752                 */
 753                scan += 2, match++;
 754
 755                /* We check for insufficient lookahead only every 8th comparison;
 756                 * the 256th check will be made at strstart+258.
 757                 */
 758                do {
 759                } while (*++scan == *++match && *++scan == *++match &&
 760                                 *++scan == *++match && *++scan == *++match &&
 761                                 *++scan == *++match && *++scan == *++match &&
 762                                 *++scan == *++match && *++scan == *++match && scan < strend);
 763
 764                len = MAX_MATCH - (int) (strend - scan);
 765                scan = strend - MAX_MATCH;
 766
 767                if (len > best_len) {
 768                        G1.match_start = cur_match;
 769                        best_len = len;
 770                        if (len >= nice_match)
 771                                break;
 772                        scan_end1 = scan[best_len - 1];
 773                        scan_end = scan[best_len];
 774                }
 775        } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
 776                         && --chain_length != 0);
 777
 778        return best_len;
 779}
 780
 781#ifdef DEBUG
 782/* ===========================================================================
 783 * Check that the match at match_start is indeed a match.
 784 */
 785static void check_match(IPos start, IPos match, int length)
 786{
 787        /* check that the match is indeed a match */
 788        if (memcmp(G1.window + match, G1.window + start, length) != 0) {
 789                bb_error_msg(" start %d, match %d, length %d", start, match, length);
 790                bb_error_msg("invalid match");
 791        }
 792        if (verbose > 1) {
 793                bb_error_msg("\\[%d,%d]", start - match, length);
 794                do {
 795                        bb_putchar_stderr(G1.window[start++]);
 796                } while (--length != 0);
 797        }
 798}
 799#else
 800#  define check_match(start, match, length) ((void)0)
 801#endif
 802
 803
 804/* trees.c -- output deflated data using Huffman coding
 805 * Copyright (C) 1992-1993 Jean-loup Gailly
 806 * This is free software; you can redistribute it and/or modify it under the
 807 * terms of the GNU General Public License, see the file COPYING.
 808 */
 809
 810/*  PURPOSE
 811 *      Encode various sets of source values using variable-length
 812 *      binary code trees.
 813 *
 814 *  DISCUSSION
 815 *      The PKZIP "deflation" process uses several Huffman trees. The more
 816 *      common source values are represented by shorter bit sequences.
 817 *
 818 *      Each code tree is stored in the ZIP file in a compressed form
 819 *      which is itself a Huffman encoding of the lengths of
 820 *      all the code strings (in ascending order by source values).
 821 *      The actual code strings are reconstructed from the lengths in
 822 *      the UNZIP process, as described in the "application note"
 823 *      (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
 824 *
 825 *  REFERENCES
 826 *      Lynch, Thomas J.
 827 *          Data Compression:  Techniques and Applications, pp. 53-55.
 828 *          Lifetime Learning Publications, 1985.  ISBN 0-534-03418-7.
 829 *
 830 *      Storer, James A.
 831 *          Data Compression:  Methods and Theory, pp. 49-50.
 832 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
 833 *
 834 *      Sedgewick, R.
 835 *          Algorithms, p290.
 836 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
 837 *
 838 *  INTERFACE
 839 *      void ct_init()
 840 *          Allocate the match buffer, initialize the various tables [and save
 841 *          the location of the internal file attribute (ascii/binary) and
 842 *          method (DEFLATE/STORE) -- deleted in bbox]
 843 *
 844 *      void ct_tally(int dist, int lc);
 845 *          Save the match info and tally the frequency counts.
 846 *
 847 *      ulg flush_block(char *buf, ulg stored_len, int eof)
 848 *          Determine the best encoding for the current block: dynamic trees,
 849 *          static trees or store, and output the encoded block to the zip
 850 *          file. Returns the total compressed length for the file so far.
 851 */
 852
 853#define MAX_BITS 15
 854/* All codes must not exceed MAX_BITS bits */
 855
 856#define MAX_BL_BITS 7
 857/* Bit length codes must not exceed MAX_BL_BITS bits */
 858
 859#define LENGTH_CODES 29
 860/* number of length codes, not counting the special END_BLOCK code */
 861
 862#define LITERALS  256
 863/* number of literal bytes 0..255 */
 864
 865#define END_BLOCK 256
 866/* end of block literal code */
 867
 868#define L_CODES (LITERALS+1+LENGTH_CODES)
 869/* number of Literal or Length codes, including the END_BLOCK code */
 870
 871#define D_CODES   30
 872/* number of distance codes */
 873
 874#define BL_CODES  19
 875/* number of codes used to transfer the bit lengths */
 876
 877/* extra bits for each length code */
 878static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
 879        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
 880        4, 4, 5, 5, 5, 5, 0
 881};
 882
 883/* extra bits for each distance code */
 884static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
 885        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
 886        10, 10, 11, 11, 12, 12, 13, 13
 887};
 888
 889/* extra bits for each bit length code */
 890static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
 891        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
 892
 893/* number of codes at each bit length for an optimal tree */
 894static const uint8_t bl_order[BL_CODES] ALIGN1 = {
 895        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
 896
 897#define STORED_BLOCK 0
 898#define STATIC_TREES 1
 899#define DYN_TREES    2
 900/* The three kinds of block type */
 901
 902#ifndef LIT_BUFSIZE
 903#  ifdef SMALL_MEM
 904#    define LIT_BUFSIZE  0x2000
 905#  else
 906#  ifdef MEDIUM_MEM
 907#    define LIT_BUFSIZE  0x4000
 908#  else
 909#    define LIT_BUFSIZE  0x8000
 910#  endif
 911#  endif
 912#endif
 913#ifndef DIST_BUFSIZE
 914#  define DIST_BUFSIZE  LIT_BUFSIZE
 915#endif
 916/* Sizes of match buffers for literals/lengths and distances.  There are
 917 * 4 reasons for limiting LIT_BUFSIZE to 64K:
 918 *   - frequencies can be kept in 16 bit counters
 919 *   - if compression is not successful for the first block, all input data is
 920 *     still in the window so we can still emit a stored block even when input
 921 *     comes from standard input.  (This can also be done for all blocks if
 922 *     LIT_BUFSIZE is not greater than 32K.)
 923 *   - if compression is not successful for a file smaller than 64K, we can
 924 *     even emit a stored file instead of a stored block (saving 5 bytes).
 925 *   - creating new Huffman trees less frequently may not provide fast
 926 *     adaptation to changes in the input data statistics. (Take for
 927 *     example a binary file with poorly compressible code followed by
 928 *     a highly compressible string table.) Smaller buffer sizes give
 929 *     fast adaptation but have of course the overhead of transmitting trees
 930 *     more frequently.
 931 *   - I can't count above 4
 932 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
 933 * memory at the expense of compression). Some optimizations would be possible
 934 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
 935 */
 936#define REP_3_6      16
 937/* repeat previous bit length 3-6 times (2 bits of repeat count) */
 938#define REPZ_3_10    17
 939/* repeat a zero length 3-10 times  (3 bits of repeat count) */
 940#define REPZ_11_138  18
 941/* repeat a zero length 11-138 times  (7 bits of repeat count) */
 942
 943/* ===========================================================================
 944*/
 945/* Data structure describing a single value and its code string. */
 946typedef struct ct_data {
 947        union {
 948                ush freq;               /* frequency count */
 949                ush code;               /* bit string */
 950        } fc;
 951        union {
 952                ush dad;                /* father node in Huffman tree */
 953                ush len;                /* length of bit string */
 954        } dl;
 955} ct_data;
 956
 957#define Freq fc.freq
 958#define Code fc.code
 959#define Dad  dl.dad
 960#define Len  dl.len
 961
 962#define HEAP_SIZE (2*L_CODES + 1)
 963/* maximum heap size */
 964
 965typedef struct tree_desc {
 966        ct_data *dyn_tree;      /* the dynamic tree */
 967        ct_data *static_tree;   /* corresponding static tree or NULL */
 968        const uint8_t *extra_bits;      /* extra bits for each code or NULL */
 969        int extra_base;         /* base index for extra_bits */
 970        int elems;                      /* max number of elements in the tree */
 971        int max_length;         /* max bit length for the codes */
 972        int max_code;           /* largest code with non zero frequency */
 973} tree_desc;
 974
 975struct globals2 {
 976
 977        ush heap[HEAP_SIZE];     /* heap used to build the Huffman trees */
 978        int heap_len;            /* number of elements in the heap */
 979        int heap_max;            /* element of largest frequency */
 980
 981/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
 982 * The same heap array is used to build all trees.
 983 */
 984
 985        ct_data dyn_ltree[HEAP_SIZE];   /* literal and length tree */
 986        ct_data dyn_dtree[2 * D_CODES + 1];     /* distance tree */
 987
 988        ct_data static_ltree[L_CODES + 2];
 989
 990/* The static literal tree. Since the bit lengths are imposed, there is no
 991 * need for the L_CODES extra codes used during heap construction. However
 992 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
 993 * below).
 994 */
 995
 996        ct_data static_dtree[D_CODES];
 997
 998/* The static distance tree. (Actually a trivial tree since all codes use
 999 * 5 bits.)
1000 */
1001
1002        ct_data bl_tree[2 * BL_CODES + 1];
1003
1004/* Huffman tree for the bit lengths */
1005
1006        tree_desc l_desc;
1007        tree_desc d_desc;
1008        tree_desc bl_desc;
1009
1010        ush bl_count[MAX_BITS + 1];
1011
1012/* The lengths of the bit length codes are sent in order of decreasing
1013 * probability, to avoid transmitting the lengths for unused bit length codes.
1014 */
1015
1016        uch depth[2 * L_CODES + 1];
1017
1018/* Depth of each subtree used as tie breaker for trees of equal frequency */
1019
1020        uch length_code[MAX_MATCH - MIN_MATCH + 1];
1021
1022/* length code for each normalized match length (0 == MIN_MATCH) */
1023
1024        uch dist_code[512];
1025
1026/* distance codes. The first 256 values correspond to the distances
1027 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1028 * the 15 bit distances.
1029 */
1030
1031        int base_length[LENGTH_CODES];
1032
1033/* First normalized length for each code (0 = MIN_MATCH) */
1034
1035        int base_dist[D_CODES];
1036
1037/* First normalized distance for each code (0 = distance of 1) */
1038
1039        uch flag_buf[LIT_BUFSIZE / 8];
1040
1041/* flag_buf is a bit array distinguishing literals from lengths in
1042 * l_buf, thus indicating the presence or absence of a distance.
1043 */
1044
1045        unsigned last_lit;       /* running index in l_buf */
1046        unsigned last_dist;      /* running index in d_buf */
1047        unsigned last_flags;     /* running index in flag_buf */
1048        uch flags;               /* current flags not yet saved in flag_buf */
1049        uch flag_bit;            /* current bit used in flags */
1050
1051/* bits are filled in flags starting at bit 0 (least significant).
1052 * Note: these flags are overkill in the current code since we don't
1053 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
1054 */
1055
1056        ulg opt_len;             /* bit length of current block with optimal trees */
1057        ulg static_len;          /* bit length of current block with static trees */
1058
1059//      ulg compressed_len;      /* total bit length of compressed file */
1060};
1061
1062#define G2ptr ((struct globals2*)(ptr_to_globals))
1063#define G2 (*G2ptr)
1064
1065/* ===========================================================================
1066 */
1067#ifndef DEBUG
1068/* Send a code of the given tree. c and tree must not have side effects */
1069#  define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
1070#else
1071#  define SEND_CODE(c, tree) \
1072{ \
1073        if (verbose > 1) bb_error_msg("\ncd %3d ", (c)); \
1074        send_bits(tree[c].Code, tree[c].Len); \
1075}
1076#endif
1077
1078#define D_CODE(dist) \
1079        ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
1080/* Mapping from a distance to a distance code. dist is the distance - 1 and
1081 * must not have side effects. dist_code[256] and dist_code[257] are never
1082 * used.
1083 * The arguments must not have side effects.
1084 */
1085
1086/* ===========================================================================
1087 * Initialize a new block.
1088 */
1089static void init_block(void)
1090{
1091        int n; /* iterates over tree elements */
1092
1093        /* Initialize the trees. */
1094        for (n = 0; n < L_CODES; n++)
1095                G2.dyn_ltree[n].Freq = 0;
1096        for (n = 0; n < D_CODES; n++)
1097                G2.dyn_dtree[n].Freq = 0;
1098        for (n = 0; n < BL_CODES; n++)
1099                G2.bl_tree[n].Freq = 0;
1100
1101        G2.dyn_ltree[END_BLOCK].Freq = 1;
1102        G2.opt_len = G2.static_len = 0;
1103        G2.last_lit = G2.last_dist = G2.last_flags = 0;
1104        G2.flags = 0;
1105        G2.flag_bit = 1;
1106}
1107
1108/* ===========================================================================
1109 * Restore the heap property by moving down the tree starting at node k,
1110 * exchanging a node with the smallest of its two sons if necessary, stopping
1111 * when the heap property is re-established (each father smaller than its
1112 * two sons).
1113 */
1114
1115/* Compares to subtrees, using the tree depth as tie breaker when
1116 * the subtrees have equal frequency. This minimizes the worst case length. */
1117#define SMALLER(tree, n, m) \
1118        (tree[n].Freq < tree[m].Freq \
1119        || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1120
1121static void pqdownheap(ct_data * tree, int k)
1122{
1123        int v = G2.heap[k];
1124        int j = k << 1;         /* left son of k */
1125
1126        while (j <= G2.heap_len) {
1127                /* Set j to the smallest of the two sons: */
1128                if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
1129                        j++;
1130
1131                /* Exit if v is smaller than both sons */
1132                if (SMALLER(tree, v, G2.heap[j]))
1133                        break;
1134
1135                /* Exchange v with the smallest son */
1136                G2.heap[k] = G2.heap[j];
1137                k = j;
1138
1139                /* And continue down the tree, setting j to the left son of k */
1140                j <<= 1;
1141        }
1142        G2.heap[k] = v;
1143}
1144
1145/* ===========================================================================
1146 * Compute the optimal bit lengths for a tree and update the total bit length
1147 * for the current block.
1148 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1149 *    above are the tree nodes sorted by increasing frequency.
1150 * OUT assertions: the field len is set to the optimal bit length, the
1151 *     array bl_count contains the frequencies for each bit length.
1152 *     The length opt_len is updated; static_len is also updated if stree is
1153 *     not null.
1154 */
1155static void gen_bitlen(tree_desc * desc)
1156{
1157        ct_data *tree = desc->dyn_tree;
1158        const uint8_t *extra = desc->extra_bits;
1159        int base = desc->extra_base;
1160        int max_code = desc->max_code;
1161        int max_length = desc->max_length;
1162        ct_data *stree = desc->static_tree;
1163        int h;                          /* heap index */
1164        int n, m;                       /* iterate over the tree elements */
1165        int bits;                       /* bit length */
1166        int xbits;                      /* extra bits */
1167        ush f;                          /* frequency */
1168        int overflow = 0;       /* number of elements with bit length too large */
1169
1170        for (bits = 0; bits <= MAX_BITS; bits++)
1171                G2.bl_count[bits] = 0;
1172
1173        /* In a first pass, compute the optimal bit lengths (which may
1174         * overflow in the case of the bit length tree).
1175         */
1176        tree[G2.heap[G2.heap_max]].Len = 0;     /* root of the heap */
1177
1178        for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1179                n = G2.heap[h];
1180                bits = tree[tree[n].Dad].Len + 1;
1181                if (bits > max_length) {
1182                        bits = max_length;
1183                        overflow++;
1184                }
1185                tree[n].Len = (ush) bits;
1186                /* We overwrite tree[n].Dad which is no longer needed */
1187
1188                if (n > max_code)
1189                        continue;       /* not a leaf node */
1190
1191                G2.bl_count[bits]++;
1192                xbits = 0;
1193                if (n >= base)
1194                        xbits = extra[n - base];
1195                f = tree[n].Freq;
1196                G2.opt_len += (ulg) f *(bits + xbits);
1197
1198                if (stree)
1199                        G2.static_len += (ulg) f * (stree[n].Len + xbits);
1200        }
1201        if (overflow == 0)
1202                return;
1203
1204        Trace((stderr, "\nbit length overflow\n"));
1205        /* This happens for example on obj2 and pic of the Calgary corpus */
1206
1207        /* Find the first bit length which could increase: */
1208        do {
1209                bits = max_length - 1;
1210                while (G2.bl_count[bits] == 0)
1211                        bits--;
1212                G2.bl_count[bits]--;    /* move one leaf down the tree */
1213                G2.bl_count[bits + 1] += 2;     /* move one overflow item as its brother */
1214                G2.bl_count[max_length]--;
1215                /* The brother of the overflow item also moves one step up,
1216                 * but this does not affect bl_count[max_length]
1217                 */
1218                overflow -= 2;
1219        } while (overflow > 0);
1220
1221        /* Now recompute all bit lengths, scanning in increasing frequency.
1222         * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1223         * lengths instead of fixing only the wrong ones. This idea is taken
1224         * from 'ar' written by Haruhiko Okumura.)
1225         */
1226        for (bits = max_length; bits != 0; bits--) {
1227                n = G2.bl_count[bits];
1228                while (n != 0) {
1229                        m = G2.heap[--h];
1230                        if (m > max_code)
1231                                continue;
1232                        if (tree[m].Len != (unsigned) bits) {
1233                                Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1234                                G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1235                                tree[m].Len = bits;
1236                        }
1237                        n--;
1238                }
1239        }
1240}
1241
1242/* ===========================================================================
1243 * Generate the codes for a given tree and bit counts (which need not be
1244 * optimal).
1245 * IN assertion: the array bl_count contains the bit length statistics for
1246 * the given tree and the field len is set for all tree elements.
1247 * OUT assertion: the field code is set for all tree elements of non
1248 *     zero code length.
1249 */
1250static void gen_codes(ct_data * tree, int max_code)
1251{
1252        ush next_code[MAX_BITS + 1];    /* next code value for each bit length */
1253        ush code = 0;           /* running code value */
1254        int bits;                       /* bit index */
1255        int n;                          /* code index */
1256
1257        /* The distribution counts are first used to generate the code values
1258         * without bit reversal.
1259         */
1260        for (bits = 1; bits <= MAX_BITS; bits++) {
1261                next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
1262        }
1263        /* Check that the bit counts in bl_count are consistent. The last code
1264         * must be all ones.
1265         */
1266        Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
1267                        "inconsistent bit counts");
1268        Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1269
1270        for (n = 0; n <= max_code; n++) {
1271                int len = tree[n].Len;
1272
1273                if (len == 0)
1274                        continue;
1275                /* Now reverse the bits */
1276                tree[n].Code = bi_reverse(next_code[len]++, len);
1277
1278                Tracec(tree != G2.static_ltree,
1279                           (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
1280                                (n > ' ' ? n : ' '), len, tree[n].Code,
1281                                next_code[len] - 1));
1282        }
1283}
1284
1285/* ===========================================================================
1286 * Construct one Huffman tree and assigns the code bit strings and lengths.
1287 * Update the total bit length for the current block.
1288 * IN assertion: the field freq is set for all tree elements.
1289 * OUT assertions: the fields len and code are set to the optimal bit length
1290 *     and corresponding code. The length opt_len is updated; static_len is
1291 *     also updated if stree is not null. The field max_code is set.
1292 */
1293
1294/* Remove the smallest element from the heap and recreate the heap with
1295 * one less element. Updates heap and heap_len. */
1296
1297#define SMALLEST 1
1298/* Index within the heap array of least frequent node in the Huffman tree */
1299
1300#define PQREMOVE(tree, top) \
1301do { \
1302        top = G2.heap[SMALLEST]; \
1303        G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1304        pqdownheap(tree, SMALLEST); \
1305} while (0)
1306
1307static void build_tree(tree_desc * desc)
1308{
1309        ct_data *tree = desc->dyn_tree;
1310        ct_data *stree = desc->static_tree;
1311        int elems = desc->elems;
1312        int n, m;                       /* iterate over heap elements */
1313        int max_code = -1;      /* largest code with non zero frequency */
1314        int node = elems;       /* next internal node of the tree */
1315
1316        /* Construct the initial heap, with least frequent element in
1317         * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1318         * heap[0] is not used.
1319         */
1320        G2.heap_len = 0;
1321        G2.heap_max = HEAP_SIZE;
1322
1323        for (n = 0; n < elems; n++) {
1324                if (tree[n].Freq != 0) {
1325                        G2.heap[++G2.heap_len] = max_code = n;
1326                        G2.depth[n] = 0;
1327                } else {
1328                        tree[n].Len = 0;
1329                }
1330        }
1331
1332        /* The pkzip format requires that at least one distance code exists,
1333         * and that at least one bit should be sent even if there is only one
1334         * possible code. So to avoid special checks later on we force at least
1335         * two codes of non zero frequency.
1336         */
1337        while (G2.heap_len < 2) {
1338                int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
1339
1340                tree[new].Freq = 1;
1341                G2.depth[new] = 0;
1342                G2.opt_len--;
1343                if (stree)
1344                        G2.static_len -= stree[new].Len;
1345                /* new is 0 or 1 so it does not have extra bits */
1346        }
1347        desc->max_code = max_code;
1348
1349        /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1350         * establish sub-heaps of increasing lengths:
1351         */
1352        for (n = G2.heap_len / 2; n >= 1; n--)
1353                pqdownheap(tree, n);
1354
1355        /* Construct the Huffman tree by repeatedly combining the least two
1356         * frequent nodes.
1357         */
1358        do {
1359                PQREMOVE(tree, n);      /* n = node of least frequency */
1360                m = G2.heap[SMALLEST];  /* m = node of next least frequency */
1361
1362                G2.heap[--G2.heap_max] = n;     /* keep the nodes sorted by frequency */
1363                G2.heap[--G2.heap_max] = m;
1364
1365                /* Create a new node father of n and m */
1366                tree[node].Freq = tree[n].Freq + tree[m].Freq;
1367                G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
1368                tree[n].Dad = tree[m].Dad = (ush) node;
1369#ifdef DUMP_BL_TREE
1370                if (tree == G2.bl_tree) {
1371                        bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1372                                        node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1373                }
1374#endif
1375                /* and insert the new node in the heap */
1376                G2.heap[SMALLEST] = node++;
1377                pqdownheap(tree, SMALLEST);
1378        } while (G2.heap_len >= 2);
1379
1380        G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
1381
1382        /* At this point, the fields freq and dad are set. We can now
1383         * generate the bit lengths.
1384         */
1385        gen_bitlen((tree_desc *) desc);
1386
1387        /* The field len is now set, we can generate the bit codes */
1388        gen_codes((ct_data *) tree, max_code);
1389}
1390
1391/* ===========================================================================
1392 * Scan a literal or distance tree to determine the frequencies of the codes
1393 * in the bit length tree. Updates opt_len to take into account the repeat
1394 * counts. (The contribution of the bit length codes will be added later
1395 * during the construction of bl_tree.)
1396 */
1397static void scan_tree(ct_data * tree, int max_code)
1398{
1399        int n;                          /* iterates over all tree elements */
1400        int prevlen = -1;       /* last emitted length */
1401        int curlen;                     /* length of current code */
1402        int nextlen = tree[0].Len;      /* length of next code */
1403        int count = 0;          /* repeat count of the current code */
1404        int max_count = 7;      /* max repeat count */
1405        int min_count = 4;      /* min repeat count */
1406
1407        if (nextlen == 0) {
1408                max_count = 138;
1409                min_count = 3;
1410        }
1411        tree[max_code + 1].Len = 0xffff; /* guard */
1412
1413        for (n = 0; n <= max_code; n++) {
1414                curlen = nextlen;
1415                nextlen = tree[n + 1].Len;
1416                if (++count < max_count && curlen == nextlen)
1417                        continue;
1418
1419                if (count < min_count) {
1420                        G2.bl_tree[curlen].Freq += count;
1421                } else if (curlen != 0) {
1422                        if (curlen != prevlen)
1423                                G2.bl_tree[curlen].Freq++;
1424                        G2.bl_tree[REP_3_6].Freq++;
1425                } else if (count <= 10) {
1426                        G2.bl_tree[REPZ_3_10].Freq++;
1427                } else {
1428                        G2.bl_tree[REPZ_11_138].Freq++;
1429                }
1430                count = 0;
1431                prevlen = curlen;
1432
1433                max_count = 7;
1434                min_count = 4;
1435                if (nextlen == 0) {
1436                        max_count = 138;
1437                        min_count = 3;
1438                } else if (curlen == nextlen) {
1439                        max_count = 6;
1440                        min_count = 3;
1441                }
1442        }
1443}
1444
1445/* ===========================================================================
1446 * Send a literal or distance tree in compressed form, using the codes in
1447 * bl_tree.
1448 */
1449static void send_tree(ct_data * tree, int max_code)
1450{
1451        int n;                          /* iterates over all tree elements */
1452        int prevlen = -1;       /* last emitted length */
1453        int curlen;                     /* length of current code */
1454        int nextlen = tree[0].Len;      /* length of next code */
1455        int count = 0;          /* repeat count of the current code */
1456        int max_count = 7;      /* max repeat count */
1457        int min_count = 4;      /* min repeat count */
1458
1459/* tree[max_code+1].Len = -1; *//* guard already set */
1460        if (nextlen == 0)
1461                max_count = 138, min_count = 3;
1462
1463        for (n = 0; n <= max_code; n++) {
1464                curlen = nextlen;
1465                nextlen = tree[n + 1].Len;
1466                if (++count < max_count && curlen == nextlen) {
1467                        continue;
1468                } else if (count < min_count) {
1469                        do {
1470                                SEND_CODE(curlen, G2.bl_tree);
1471                        } while (--count);
1472                } else if (curlen != 0) {
1473                        if (curlen != prevlen) {
1474                                SEND_CODE(curlen, G2.bl_tree);
1475                                count--;
1476                        }
1477                        Assert(count >= 3 && count <= 6, " 3_6?");
1478                        SEND_CODE(REP_3_6, G2.bl_tree);
1479                        send_bits(count - 3, 2);
1480                } else if (count <= 10) {
1481                        SEND_CODE(REPZ_3_10, G2.bl_tree);
1482                        send_bits(count - 3, 3);
1483                } else {
1484                        SEND_CODE(REPZ_11_138, G2.bl_tree);
1485                        send_bits(count - 11, 7);
1486                }
1487                count = 0;
1488                prevlen = curlen;
1489                if (nextlen == 0) {
1490                        max_count = 138;
1491                        min_count = 3;
1492                } else if (curlen == nextlen) {
1493                        max_count = 6;
1494                        min_count = 3;
1495                } else {
1496                        max_count = 7;
1497                        min_count = 4;
1498                }
1499        }
1500}
1501
1502/* ===========================================================================
1503 * Construct the Huffman tree for the bit lengths and return the index in
1504 * bl_order of the last bit length code to send.
1505 */
1506static int build_bl_tree(void)
1507{
1508        int max_blindex;        /* index of last bit length code of non zero freq */
1509
1510        /* Determine the bit length frequencies for literal and distance trees */
1511        scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1512        scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
1513
1514        /* Build the bit length tree: */
1515        build_tree(&G2.bl_desc);
1516        /* opt_len now includes the length of the tree representations, except
1517         * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1518         */
1519
1520        /* Determine the number of bit length codes to send. The pkzip format
1521         * requires that at least 4 bit length codes be sent. (appnote.txt says
1522         * 3 but the actual value used is 4.)
1523         */
1524        for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
1525                if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
1526                        break;
1527        }
1528        /* Update opt_len to include the bit length tree and counts */
1529        G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1530        Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", (long)G2.opt_len, (long)G2.static_len));
1531
1532        return max_blindex;
1533}
1534
1535/* ===========================================================================
1536 * Send the header for a block using dynamic Huffman trees: the counts, the
1537 * lengths of the bit length codes, the literal tree and the distance tree.
1538 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1539 */
1540static void send_all_trees(int lcodes, int dcodes, int blcodes)
1541{
1542        int rank;                       /* index in bl_order */
1543
1544        Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1545        Assert(lcodes <= L_CODES && dcodes <= D_CODES
1546                   && blcodes <= BL_CODES, "too many codes");
1547        Tracev((stderr, "\nbl counts: "));
1548        send_bits(lcodes - 257, 5);     /* not +255 as stated in appnote.txt */
1549        send_bits(dcodes - 1, 5);
1550        send_bits(blcodes - 4, 4);      /* not -3 as stated in appnote.txt */
1551        for (rank = 0; rank < blcodes; rank++) {
1552                Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1553                send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
1554        }
1555        Tracev((stderr, "\nbl tree: sent %ld", (long)G1.bits_sent));
1556
1557        send_tree((ct_data *) G2.dyn_ltree, lcodes - 1);        /* send the literal tree */
1558        Tracev((stderr, "\nlit tree: sent %ld", (long)G1.bits_sent));
1559
1560        send_tree((ct_data *) G2.dyn_dtree, dcodes - 1);        /* send the distance tree */
1561        Tracev((stderr, "\ndist tree: sent %ld", (long)G1.bits_sent));
1562}
1563
1564/* ===========================================================================
1565 * Save the match info and tally the frequency counts. Return true if
1566 * the current block must be flushed.
1567 */
1568static int ct_tally(int dist, int lc)
1569{
1570        G1.l_buf[G2.last_lit++] = lc;
1571        if (dist == 0) {
1572                /* lc is the unmatched char */
1573                G2.dyn_ltree[lc].Freq++;
1574        } else {
1575                /* Here, lc is the match length - MIN_MATCH */
1576                dist--;                 /* dist = match distance - 1 */
1577                Assert((ush) dist < (ush) MAX_DIST
1578                 && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1579                 && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1580                );
1581
1582                G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1583                G2.dyn_dtree[D_CODE(dist)].Freq++;
1584
1585                G1.d_buf[G2.last_dist++] = dist;
1586                G2.flags |= G2.flag_bit;
1587        }
1588        G2.flag_bit <<= 1;
1589
1590        /* Output the flags if they fill a byte: */
1591        if ((G2.last_lit & 7) == 0) {
1592                G2.flag_buf[G2.last_flags++] = G2.flags;
1593                G2.flags = 0;
1594                G2.flag_bit = 1;
1595        }
1596        /* Try to guess if it is profitable to stop the current block here */
1597        if ((G2.last_lit & 0xfff) == 0) {
1598                /* Compute an upper bound for the compressed length */
1599                ulg out_length = G2.last_lit * 8L;
1600                ulg in_length = (ulg) G1.strstart - G1.block_start;
1601                int dcode;
1602
1603                for (dcode = 0; dcode < D_CODES; dcode++) {
1604                        out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1605                }
1606                out_length >>= 3;
1607                Trace((stderr,
1608                                "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1609                                G2.last_lit, G2.last_dist,
1610                                (long)in_length, (long)out_length,
1611                                100L - out_length * 100L / in_length));
1612                if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1613                        return 1;
1614        }
1615        return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1616        /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1617         * on 16 bit machines and because stored blocks are restricted to
1618         * 64K-1 bytes.
1619         */
1620}
1621
1622/* ===========================================================================
1623 * Send the block data compressed using the given Huffman trees
1624 */
1625static void compress_block(ct_data * ltree, ct_data * dtree)
1626{
1627        unsigned dist;          /* distance of matched string */
1628        int lc;                 /* match length or unmatched char (if dist == 0) */
1629        unsigned lx = 0;        /* running index in l_buf */
1630        unsigned dx = 0;        /* running index in d_buf */
1631        unsigned fx = 0;        /* running index in flag_buf */
1632        uch flag = 0;           /* current flags */
1633        unsigned code;          /* the code to send */
1634        int extra;              /* number of extra bits to send */
1635
1636        if (G2.last_lit != 0) do {
1637                if ((lx & 7) == 0)
1638                        flag = G2.flag_buf[fx++];
1639                lc = G1.l_buf[lx++];
1640                if ((flag & 1) == 0) {
1641                        SEND_CODE(lc, ltree);   /* send a literal byte */
1642                        Tracecv(lc > ' ', (stderr, " '%c' ", lc));
1643                } else {
1644                        /* Here, lc is the match length - MIN_MATCH */
1645                        code = G2.length_code[lc];
1646                        SEND_CODE(code + LITERALS + 1, ltree);  /* send the length code */
1647                        extra = extra_lbits[code];
1648                        if (extra != 0) {
1649                                lc -= G2.base_length[code];
1650                                send_bits(lc, extra);   /* send the extra length bits */
1651                        }
1652                        dist = G1.d_buf[dx++];
1653                        /* Here, dist is the match distance - 1 */
1654                        code = D_CODE(dist);
1655                        Assert(code < D_CODES, "bad d_code");
1656
1657                        SEND_CODE(code, dtree); /* send the distance code */
1658                        extra = extra_dbits[code];
1659                        if (extra != 0) {
1660                                dist -= G2.base_dist[code];
1661                                send_bits(dist, extra); /* send the extra distance bits */
1662                        }
1663                }                       /* literal or match pair ? */
1664                flag >>= 1;
1665        } while (lx < G2.last_lit);
1666
1667        SEND_CODE(END_BLOCK, ltree);
1668}
1669
1670/* ===========================================================================
1671 * Determine the best encoding for the current block: dynamic trees, static
1672 * trees or store, and output the encoded block to the zip file. This function
1673 * returns the total compressed length for the file so far.
1674 */
1675static void flush_block(char *buf, ulg stored_len, int eof)
1676{
1677        ulg opt_lenb, static_lenb;      /* opt_len and static_len in bytes */
1678        int max_blindex;                /* index of last bit length code of non zero freq */
1679
1680        G2.flag_buf[G2.last_flags] = G2.flags;   /* Save the flags for the last 8 items */
1681
1682        /* Construct the literal and distance trees */
1683        build_tree(&G2.l_desc);
1684        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", (long)G2.opt_len, (long)G2.static_len));
1685
1686        build_tree(&G2.d_desc);
1687        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", (long)G2.opt_len, (long)G2.static_len));
1688        /* At this point, opt_len and static_len are the total bit lengths of
1689         * the compressed block data, excluding the tree representations.
1690         */
1691
1692        /* Build the bit length tree for the above two trees, and get the index
1693         * in bl_order of the last bit length code to send.
1694         */
1695        max_blindex = build_bl_tree();
1696
1697        /* Determine the best encoding. Compute first the block length in bytes */
1698        opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1699        static_lenb = (G2.static_len + 3 + 7) >> 3;
1700
1701        Trace((stderr,
1702                        "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1703                        (unsigned long)opt_lenb, (unsigned long)G2.opt_len,
1704                        (unsigned long)static_lenb, (unsigned long)G2.static_len,
1705                        (unsigned long)stored_len,
1706                        G2.last_lit, G2.last_dist));
1707
1708        if (static_lenb <= opt_lenb)
1709                opt_lenb = static_lenb;
1710
1711        /* If compression failed and this is the first and last block,
1712         * and if the zip file can be seeked (to rewrite the local header),
1713         * the whole file is transformed into a stored file:
1714         */
1715// seekable() is constant FALSE in busybox, and G2.compressed_len is disabled
1716// (this was the only user)
1717//      if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
1718//              /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1719//              if (buf == NULL)
1720//                      bb_error_msg("block vanished");
1721//
1722//              G2.compressed_len = stored_len << 3;
1723//              copy_block(buf, (unsigned) stored_len, 0);      /* without header */
1724//      } else
1725        if (stored_len + 4 <= opt_lenb && buf != NULL) {
1726                /* 4: two words for the lengths */
1727                /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1728                 * Otherwise we can't have processed more than WSIZE input bytes since
1729                 * the last block flush, because compression would have been
1730                 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1731                 * transform a block into a stored block.
1732                 */
1733                send_bits((STORED_BLOCK << 1) + eof, 3);        /* send block type */
1734//              G2.compressed_len = ((G2.compressed_len + 3 + 7) & ~7L)
1735//                              + ((stored_len + 4) << 3);
1736                copy_block(buf, (unsigned) stored_len, 1);      /* with header */
1737        } else
1738        if (static_lenb == opt_lenb) {
1739                send_bits((STATIC_TREES << 1) + eof, 3);
1740                compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1741//              G2.compressed_len += 3 + G2.static_len;
1742        } else {
1743                send_bits((DYN_TREES << 1) + eof, 3);
1744                send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
1745                                        max_blindex + 1);
1746                compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1747//              G2.compressed_len += 3 + G2.opt_len;
1748        }
1749//      Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
1750        init_block();
1751
1752        if (eof) {
1753                bi_windup();
1754//              G2.compressed_len += 7; /* align on byte boundary */
1755        }
1756//      Tracev((stderr, "\ncomprlen %lu(%lu) ",
1757//                      (unsigned long)G2.compressed_len >> 3,
1758//                      (unsigned long)G2.compressed_len - 7 * eof));
1759
1760        return; /* was "return G2.compressed_len >> 3;" */
1761}
1762
1763/* ===========================================================================
1764 * Update a hash value with the given input byte
1765 * IN  assertion: all calls to UPDATE_HASH are made with consecutive
1766 *    input characters, so that a running hash key can be computed from the
1767 *    previous key instead of complete recalculation each time.
1768 */
1769#define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1770
1771/* ===========================================================================
1772 * Same as above, but achieves better compression. We use a lazy
1773 * evaluation for matches: a match is finally adopted only if there is
1774 * no better match at the next window position.
1775 *
1776 * Processes a new input file and return its compressed length. Sets
1777 * the compressed length, crc, deflate flags and internal file
1778 * attributes.
1779 */
1780
1781/* Flush the current block, with given end-of-file flag.
1782 * IN assertion: strstart is set to the end of the current match. */
1783#define FLUSH_BLOCK(eof) \
1784        flush_block( \
1785                G1.block_start >= 0L \
1786                        ? (char*)&G1.window[(unsigned)G1.block_start] \
1787                        : (char*)NULL, \
1788                (ulg)G1.strstart - G1.block_start, \
1789                (eof) \
1790        )
1791
1792/* Insert string s in the dictionary and set match_head to the previous head
1793 * of the hash chain (the most recent string with same hash key). Return
1794 * the previous length of the hash chain.
1795 * IN  assertion: all calls to INSERT_STRING are made with consecutive
1796 *    input characters and the first MIN_MATCH bytes of s are valid
1797 *    (except for the last MIN_MATCH-1 bytes of the input file). */
1798#define INSERT_STRING(s, match_head) \
1799do { \
1800        UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1801        G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1802        head[G1.ins_h] = (s); \
1803} while (0)
1804
1805static NOINLINE void deflate(void)
1806{
1807        IPos hash_head;         /* head of hash chain */
1808        IPos prev_match;        /* previous match */
1809        int flush;                      /* set if current block must be flushed */
1810        int match_available = 0;        /* set if previous match exists */
1811        unsigned match_length = MIN_MATCH - 1;  /* length of best match */
1812
1813        /* Process the input block. */
1814        while (G1.lookahead != 0) {
1815                /* Insert the string window[strstart .. strstart+2] in the
1816                 * dictionary, and set hash_head to the head of the hash chain:
1817                 */
1818                INSERT_STRING(G1.strstart, hash_head);
1819
1820                /* Find the longest match, discarding those <= prev_length.
1821                 */
1822                G1.prev_length = match_length;
1823                prev_match = G1.match_start;
1824                match_length = MIN_MATCH - 1;
1825
1826                if (hash_head != 0 && G1.prev_length < max_lazy_match
1827                 && G1.strstart - hash_head <= MAX_DIST
1828                ) {
1829                        /* To simplify the code, we prevent matches with the string
1830                         * of window index 0 (in particular we have to avoid a match
1831                         * of the string with itself at the start of the input file).
1832                         */
1833                        match_length = longest_match(hash_head);
1834                        /* longest_match() sets match_start */
1835                        if (match_length > G1.lookahead)
1836                                match_length = G1.lookahead;
1837
1838                        /* Ignore a length 3 match if it is too distant: */
1839                        if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1840                                /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1841                                 * but we will ignore the current match anyway.
1842                                 */
1843                                match_length--;
1844                        }
1845                }
1846                /* If there was a match at the previous step and the current
1847                 * match is not better, output the previous match:
1848                 */
1849                if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1850                        check_match(G1.strstart - 1, prev_match, G1.prev_length);
1851                        flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1852
1853                        /* Insert in hash table all strings up to the end of the match.
1854                         * strstart-1 and strstart are already inserted.
1855                         */
1856                        G1.lookahead -= G1.prev_length - 1;
1857                        G1.prev_length -= 2;
1858                        do {
1859                                G1.strstart++;
1860                                INSERT_STRING(G1.strstart, hash_head);
1861                                /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1862                                 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1863                                 * these bytes are garbage, but it does not matter since the
1864                                 * next lookahead bytes will always be emitted as literals.
1865                                 */
1866                        } while (--G1.prev_length != 0);
1867                        match_available = 0;
1868                        match_length = MIN_MATCH - 1;
1869                        G1.strstart++;
1870                        if (flush) {
1871                                FLUSH_BLOCK(0);
1872                                G1.block_start = G1.strstart;
1873                        }
1874                } else if (match_available) {
1875                        /* If there was no match at the previous position, output a
1876                         * single literal. If there was a match but the current match
1877                         * is longer, truncate the previous match to a single literal.
1878                         */
1879                        Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1880                        if (ct_tally(0, G1.window[G1.strstart - 1])) {
1881                                FLUSH_BLOCK(0);
1882                                G1.block_start = G1.strstart;
1883                        }
1884                        G1.strstart++;
1885                        G1.lookahead--;
1886                } else {
1887                        /* There is no previous match to compare with, wait for
1888                         * the next step to decide.
1889                         */
1890                        match_available = 1;
1891                        G1.strstart++;
1892                        G1.lookahead--;
1893                }
1894                Assert(G1.strstart <= G1.isize && G1.lookahead <= G1.isize, "a bit too far");
1895
1896                /* Make sure that we always have enough lookahead, except
1897                 * at the end of the input file. We need MAX_MATCH bytes
1898                 * for the next match, plus MIN_MATCH bytes to insert the
1899                 * string following the next match.
1900                 */
1901                fill_window_if_needed();
1902        }
1903        if (match_available)
1904                ct_tally(0, G1.window[G1.strstart - 1]);
1905
1906        FLUSH_BLOCK(1); /* eof */
1907}
1908
1909/* ===========================================================================
1910 * Initialize the bit string routines.
1911 */
1912static void bi_init(void)
1913{
1914        //G1.bi_buf = 0; // globals are zeroed in pack_gzip()
1915        //G1.bi_valid = 0; // globals are zeroed in pack_gzip()
1916        //DEBUG_bits_sent(= 0L); // globals are zeroed in pack_gzip()
1917}
1918
1919/* ===========================================================================
1920 * Initialize the "longest match" routines for a new file
1921 */
1922static void lm_init(unsigned *flags16p)
1923{
1924        unsigned j;
1925
1926        /* Initialize the hash table. */
1927        memset(head, 0, HASH_SIZE * sizeof(*head));
1928        /* prev will be initialized on the fly */
1929
1930        /* speed options for the general purpose bit flag */
1931        *flags16p |= 2; /* FAST 4, SLOW 2 */
1932        /* ??? reduce max_chain_length for binary files */
1933
1934        //G1.strstart = 0; // globals are zeroed in pack_gzip()
1935        //G1.block_start = 0L; // globals are zeroed in pack_gzip()
1936
1937        G1.lookahead = file_read(G1.window,
1938                        sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1939
1940        if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1941                G1.eofile = 1;
1942                G1.lookahead = 0;
1943                return;
1944        }
1945        //G1.eofile = 0; // globals are zeroed in pack_gzip()
1946
1947        /* Make sure that we always have enough lookahead. This is important
1948         * if input comes from a device such as a tty.
1949         */
1950        fill_window_if_needed();
1951
1952        //G1.ins_h = 0; // globals are zeroed in pack_gzip()
1953        for (j = 0; j < MIN_MATCH - 1; j++)
1954                UPDATE_HASH(G1.ins_h, G1.window[j]);
1955        /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1956         * not important since only literal bytes will be emitted.
1957         */
1958}
1959
1960/* ===========================================================================
1961 * Allocate the match buffer, initialize the various tables and save the
1962 * location of the internal file attribute (ascii/binary) and method
1963 * (DEFLATE/STORE).
1964 * One callsite in zip()
1965 */
1966static void ct_init(void)
1967{
1968        int n;                          /* iterates over tree elements */
1969        int length;                     /* length value */
1970        int code;                       /* code value */
1971        int dist;                       /* distance index */
1972
1973//      //G2.compressed_len = 0L; // globals are zeroed in pack_gzip()
1974
1975#ifdef NOT_NEEDED
1976        if (G2.static_dtree[0].Len != 0)
1977                return;                 /* ct_init already called */
1978#endif
1979
1980        /* Initialize the mapping length (0..255) -> length code (0..28) */
1981        length = 0;
1982        for (code = 0; code < LENGTH_CODES - 1; code++) {
1983                G2.base_length[code] = length;
1984                for (n = 0; n < (1 << extra_lbits[code]); n++) {
1985                        G2.length_code[length++] = code;
1986                }
1987        }
1988        Assert(length == 256, "ct_init: length != 256");
1989        /* Note that the length 255 (match length 258) can be represented
1990         * in two different ways: code 284 + 5 bits or code 285, so we
1991         * overwrite length_code[255] to use the best encoding:
1992         */
1993        G2.length_code[length - 1] = code;
1994
1995        /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1996        dist = 0;
1997        for (code = 0; code < 16; code++) {
1998                G2.base_dist[code] = dist;
1999                for (n = 0; n < (1 << extra_dbits[code]); n++) {
2000                        G2.dist_code[dist++] = code;
2001                }
2002        }
2003        Assert(dist == 256, "ct_init: dist != 256");
2004        dist >>= 7;                     /* from now on, all distances are divided by 128 */
2005        for (; code < D_CODES; code++) {
2006                G2.base_dist[code] = dist << 7;
2007                for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
2008                        G2.dist_code[256 + dist++] = code;
2009                }
2010        }
2011        Assert(dist == 256, "ct_init: 256+dist != 512");
2012
2013        /* Construct the codes of the static literal tree */
2014        //for (n = 0; n <= MAX_BITS; n++) // globals are zeroed in pack_gzip()
2015        //      G2.bl_count[n] = 0;
2016
2017        n = 0;
2018        while (n <= 143) {
2019                G2.static_ltree[n++].Len = 8;
2020                //G2.bl_count[8]++;
2021        }
2022        //G2.bl_count[8] = 143 + 1;
2023        while (n <= 255) {
2024                G2.static_ltree[n++].Len = 9;
2025                //G2.bl_count[9]++;
2026        }
2027        //G2.bl_count[9] = 255 - 143;
2028        while (n <= 279) {
2029                G2.static_ltree[n++].Len = 7;
2030                //G2.bl_count[7]++;
2031        }
2032        //G2.bl_count[7] = 279 - 255;
2033        while (n <= 287) {
2034                G2.static_ltree[n++].Len = 8;
2035                //G2.bl_count[8]++;
2036        }
2037        //G2.bl_count[8] += 287 - 279;
2038        G2.bl_count[7] = 279 - 255;
2039        G2.bl_count[8] = (143 + 1) + (287 - 279);
2040        G2.bl_count[9] = 255 - 143;
2041        /* Codes 286 and 287 do not exist, but we must include them in the
2042         * tree construction to get a canonical Huffman tree (longest code
2043         * all ones)
2044         */
2045        gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
2046
2047        /* The static distance tree is trivial: */
2048        for (n = 0; n < D_CODES; n++) {
2049                G2.static_dtree[n].Len = 5;
2050                G2.static_dtree[n].Code = bi_reverse(n, 5);
2051        }
2052
2053        /* Initialize the first block of the first file: */
2054        init_block();
2055}
2056
2057/* ===========================================================================
2058 * Deflate in to out.
2059 * IN assertions: the input and output buffers are cleared.
2060 */
2061static void zip(void)
2062{
2063        unsigned deflate_flags;
2064
2065        //G1.outcnt = 0; // globals are zeroed in pack_gzip()
2066
2067        /* Write the header to the gzip file. See algorithm.doc for the format */
2068        /* magic header for gzip files: 1F 8B */
2069        /* compression method: 8 (DEFLATED) */
2070        /* general flags: 0 */
2071        put_32bit(0x00088b1f);
2072        put_32bit(0);           /* Unix timestamp */
2073
2074        /* Write deflated file to zip file */
2075        G1.crc = ~0;
2076
2077        bi_init();
2078        ct_init();
2079        deflate_flags = 0;  /* pkzip -es, -en or -ex equivalent */
2080        lm_init(&deflate_flags);
2081
2082        put_16bit(deflate_flags | 0x300); /* extra flags. OS id = 3 (Unix) */
2083
2084        /* The above 32-bit misaligns outbuf (10 bytes are stored), flush it */
2085        flush_outbuf_if_32bit_optimized();
2086
2087        deflate();
2088
2089        /* Write the crc and uncompressed size */
2090        put_32bit(~G1.crc);
2091        put_32bit(G1.isize);
2092
2093        flush_outbuf();
2094}
2095
2096/* ======================================================================== */
2097static
2098IF_DESKTOP(long long) int FAST_FUNC pack_gzip(transformer_state_t *xstate UNUSED_PARAM)
2099{
2100        /* Reinit G1.xxx except pointers to allocated buffers, and entire G2 */
2101        memset(&G1.crc, 0, (sizeof(G1) - offsetof(struct globals, crc)) + sizeof(G2));
2102
2103        /* Clear input and output buffers */
2104        //G1.outcnt = 0;
2105#ifdef DEBUG
2106        //G1.insize = 0;
2107#endif
2108        //G1.isize = 0;
2109
2110        /* Reinit G2.xxx */
2111        G2.l_desc.dyn_tree     = G2.dyn_ltree;
2112        G2.l_desc.static_tree  = G2.static_ltree;
2113        G2.l_desc.extra_bits   = extra_lbits;
2114        G2.l_desc.extra_base   = LITERALS + 1;
2115        G2.l_desc.elems        = L_CODES;
2116        G2.l_desc.max_length   = MAX_BITS;
2117        //G2.l_desc.max_code     = 0;
2118        G2.d_desc.dyn_tree     = G2.dyn_dtree;
2119        G2.d_desc.static_tree  = G2.static_dtree;
2120        G2.d_desc.extra_bits   = extra_dbits;
2121        //G2.d_desc.extra_base   = 0;
2122        G2.d_desc.elems        = D_CODES;
2123        G2.d_desc.max_length   = MAX_BITS;
2124        //G2.d_desc.max_code     = 0;
2125        G2.bl_desc.dyn_tree    = G2.bl_tree;
2126        //G2.bl_desc.static_tree = NULL;
2127        G2.bl_desc.extra_bits  = extra_blbits,
2128        //G2.bl_desc.extra_base  = 0;
2129        G2.bl_desc.elems       = BL_CODES;
2130        G2.bl_desc.max_length  = MAX_BL_BITS;
2131        //G2.bl_desc.max_code    = 0;
2132
2133#if 0
2134        /* Saving of timestamp is disabled. Why?
2135         * - it is not Y2038-safe.
2136         * - some people want deterministic results
2137         *   (normally they'd use -n, but our -n is a nop).
2138         * - it's bloat.
2139         * Per RFC 1952, gzfile.time=0 is "no timestamp".
2140         * If users will demand this to be reinstated,
2141         * implement -n "don't save timestamp".
2142         */
2143        struct stat s;
2144        s.st_ctime = 0;
2145        fstat(STDIN_FILENO, &s);
2146        zip(s.st_ctime);
2147#else
2148        zip();
2149#endif
2150        return 0;
2151}
2152
2153#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2154static const char gzip_longopts[] ALIGN1 =
2155        "stdout\0"              No_argument       "c"
2156        "to-stdout\0"           No_argument       "c"
2157        "force\0"               No_argument       "f"
2158        "verbose\0"             No_argument       "v"
2159#if ENABLE_FEATURE_GZIP_DECOMPRESS
2160        "decompress\0"          No_argument       "d"
2161        "uncompress\0"          No_argument       "d"
2162        "test\0"                No_argument       "t"
2163#endif
2164        "quiet\0"               No_argument       "q"
2165        "fast\0"                No_argument       "1"
2166        "best\0"                No_argument       "9"
2167        "no-name\0"             No_argument       "n"
2168        ;
2169#endif
2170
2171/*
2172 * Linux kernel build uses gzip -d -n. We accept and ignore -n.
2173 * Man page says:
2174 * -n --no-name
2175 * gzip: do not save the original file name and time stamp.
2176 * (The original name is always saved if the name had to be truncated.)
2177 * gunzip: do not restore the original file name/time even if present
2178 * (remove only the gzip suffix from the compressed file name).
2179 * This option is the default when decompressing.
2180 * -N --name
2181 * gzip: always save the original file name and time stamp (this is the default)
2182 * gunzip: restore the original file name and time stamp if present.
2183 */
2184
2185int gzip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
2186#if ENABLE_FEATURE_GZIP_DECOMPRESS
2187int gzip_main(int argc, char **argv)
2188#else
2189int gzip_main(int argc UNUSED_PARAM, char **argv)
2190#endif
2191{
2192        unsigned opt;
2193#if ENABLE_FEATURE_GZIP_LEVELS
2194        static const struct {
2195                uint8_t good;
2196                uint8_t chain_shift;
2197                uint8_t lazy2;
2198                uint8_t nice2;
2199        } gzip_level_config[6] = {
2200                {4,   4,   4/2,  16/2}, /* Level 4 */
2201                {8,   5,  16/2,  32/2}, /* Level 5 */
2202                {8,   7,  16/2, 128/2}, /* Level 6 */
2203                {8,   8,  32/2, 128/2}, /* Level 7 */
2204                {32, 10, 128/2, 258/2}, /* Level 8 */
2205                {32, 12, 258/2, 258/2}, /* Level 9 */
2206        };
2207#endif
2208
2209        SET_PTR_TO_GLOBALS((char *)xzalloc(sizeof(struct globals)+sizeof(struct globals2))
2210                        + sizeof(struct globals));
2211
2212        /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
2213#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2214        opt = getopt32long(argv, BBUNPK_OPTSTR IF_FEATURE_GZIP_DECOMPRESS("dt") "n123456789", gzip_longopts);
2215#else
2216        opt = getopt32(argv, BBUNPK_OPTSTR IF_FEATURE_GZIP_DECOMPRESS("dt") "n123456789");
2217#endif
2218#if ENABLE_FEATURE_GZIP_DECOMPRESS /* gunzip_main may not be visible... */
2219        if (opt & (BBUNPK_OPT_DECOMPRESS|BBUNPK_OPT_TEST)) /* -d and/or -t */
2220                return gunzip_main(argc, argv);
2221#endif
2222#if ENABLE_FEATURE_GZIP_LEVELS
2223        opt >>= (BBUNPK_OPTSTRLEN IF_FEATURE_GZIP_DECOMPRESS(+ 2) + 1); /* drop cfkvq[dt]n bits */
2224        if (opt == 0)
2225                opt = 1 << 6; /* default: 6 */
2226        opt = ffs(opt >> 4); /* Maps -1..-4 to [0], -5 to [1] ... -9 to [5] */
2227        max_chain_length = 1 << gzip_level_config[opt].chain_shift;
2228        good_match       = gzip_level_config[opt].good;
2229        max_lazy_match   = gzip_level_config[opt].lazy2 * 2;
2230        nice_match       = gzip_level_config[opt].nice2 * 2;
2231#endif
2232        option_mask32 &= BBUNPK_OPTSTRMASK; /* retain only -cfkvq */
2233
2234        /* Allocate all global buffers (for DYN_ALLOC option) */
2235        ALLOC(uch, G1.l_buf, INBUFSIZ);
2236        ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2237        ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2238        ALLOC(uch, G1.window, 2L * WSIZE);
2239        ALLOC(ush, G1.prev, 1L << BITS);
2240
2241        /* Initialize the CRC32 table */
2242        global_crc32_new_table_le();
2243
2244        argv += optind;
2245        return bbunpack(argv, pack_gzip, append_ext, "gz");
2246}
2247