busybox/networking/ntpd.c
<<
>>
Prefs
   1/*
   2 * NTP client/server, based on OpenNTPD 3.9p1
   3 *
   4 * Busybox port author: Adam Tkac (C) 2009 <vonsch@gmail.com>
   5 *
   6 * OpenNTPd 3.9p1 copyright holders:
   7 *   Copyright (c) 2003, 2004 Henning Brauer <henning@openbsd.org>
   8 *   Copyright (c) 2004 Alexander Guy <alexander.guy@andern.org>
   9 *
  10 * OpenNTPd code is licensed under ISC-style licence:
  11 *
  12 * Permission to use, copy, modify, and distribute this software for any
  13 * purpose with or without fee is hereby granted, provided that the above
  14 * copyright notice and this permission notice appear in all copies.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  17 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  18 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  19 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  20 * WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER
  21 * IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
  22 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  23 ***********************************************************************
  24 *
  25 * Parts of OpenNTPD clock syncronization code is replaced by
  26 * code which is based on ntp-4.2.6, which carries the following
  27 * copyright notice:
  28 *
  29 * Copyright (c) University of Delaware 1992-2009
  30 *
  31 * Permission to use, copy, modify, and distribute this software and
  32 * its documentation for any purpose with or without fee is hereby
  33 * granted, provided that the above copyright notice appears in all
  34 * copies and that both the copyright notice and this permission
  35 * notice appear in supporting documentation, and that the name
  36 * University of Delaware not be used in advertising or publicity
  37 * pertaining to distribution of the software without specific,
  38 * written prior permission. The University of Delaware makes no
  39 * representations about the suitability this software for any
  40 * purpose. It is provided "as is" without express or implied warranty.
  41 ***********************************************************************
  42 */
  43//config:config NTPD
  44//config:       bool "ntpd (22 kb)"
  45//config:       default y
  46//config:       select PLATFORM_LINUX
  47//config:       help
  48//config:       The NTP client/server daemon.
  49//config:
  50//config:config FEATURE_NTPD_SERVER
  51//config:       bool "Make ntpd usable as a NTP server"
  52//config:       default y
  53//config:       depends on NTPD
  54//config:       help
  55//config:       Make ntpd usable as a NTP server. If you disable this option
  56//config:       ntpd will be usable only as a NTP client.
  57//config:
  58//config:config FEATURE_NTPD_CONF
  59//config:       bool "Make ntpd understand /etc/ntp.conf"
  60//config:       default y
  61//config:       depends on NTPD
  62//config:       help
  63//config:       Make ntpd look in /etc/ntp.conf for peers. Only "server address"
  64//config:       is supported.
  65//config:
  66//config:config FEATURE_NTP_AUTH
  67//config:       bool "Support md5/sha1 message authentication codes"
  68//config:       default y
  69//config:       depends on NTPD
  70
  71//applet:IF_NTPD(APPLET(ntpd, BB_DIR_USR_SBIN, BB_SUID_DROP))
  72
  73//kbuild:lib-$(CONFIG_NTPD) += ntpd.o
  74
  75//usage:#define ntpd_trivial_usage
  76//usage:        "[-dnqNw"IF_FEATURE_NTPD_SERVER("l] [-I IFACE")"] [-S PROG]"
  77//usage:        IF_NOT_FEATURE_NTP_AUTH(" [-p PEER]...")
  78//usage:        IF_FEATURE_NTP_AUTH(" [-k KEYFILE] [-p [keyno:N:]PEER]...")
  79//usage:#define ntpd_full_usage "\n\n"
  80//usage:       "NTP client/server\n"
  81//usage:     "\n        -d      Verbose (may be repeated)"
  82//usage:     "\n        -n      Do not daemonize"
  83//usage:     "\n        -q      Quit after clock is set"
  84//usage:     "\n        -N      Run at high priority"
  85//usage:     "\n        -w      Do not set time (only query peers), implies -n"
  86//usage:     "\n        -S PROG Run PROG after stepping time, stratum change, and every 11 min"
  87//usage:        IF_NOT_FEATURE_NTP_AUTH(
  88//usage:     "\n        -p PEER Obtain time from PEER (may be repeated)"
  89//usage:        )
  90//usage:        IF_FEATURE_NTP_AUTH(
  91//usage:     "\n        -k FILE Key file (ntp.keys compatible)"
  92//usage:     "\n        -p [keyno:NUM:]PEER"
  93//usage:     "\n                Obtain time from PEER (may be repeated)"
  94//usage:     "\n                Use key NUM for authentication"
  95//usage:        )
  96//usage:        IF_FEATURE_NTPD_CONF(
  97//usage:     "\n                If -p is not given, 'server HOST' lines"
  98//usage:     "\n                from /etc/ntp.conf are used"
  99//usage:        )
 100//usage:        IF_FEATURE_NTPD_SERVER(
 101//usage:     "\n        -l      Also run as server on port 123"
 102//usage:     "\n        -I IFACE Bind server to IFACE, implies -l"
 103//usage:        )
 104
 105// -l and -p options are not compatible with "standard" ntpd:
 106// it has them as "-l logfile" and "-p pidfile".
 107// -S and -w are not compat either, "standard" ntpd has no such opts.
 108
 109#include "libbb.h"
 110#include <math.h>
 111#include <netinet/ip.h> /* For IPTOS_DSCP_AF21 definition */
 112#include <sys/timex.h>
 113#ifndef IPTOS_DSCP_AF21
 114# define IPTOS_DSCP_AF21 0x48
 115#endif
 116
 117
 118/* Verbosity control (max level of -dddd options accepted).
 119 * max 6 is very talkative (and bloated). 3 is non-bloated,
 120 * production level setting.
 121 */
 122#define MAX_VERBOSE     3
 123
 124
 125/* High-level description of the algorithm:
 126 *
 127 * We start running with very small poll_exp, BURSTPOLL,
 128 * in order to quickly accumulate INITIAL_SAMPLES datapoints
 129 * for each peer. Then, time is stepped if the offset is larger
 130 * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
 131 * poll_exp to MINPOLL and enter frequency measurement step:
 132 * we collect new datapoints but ignore them for WATCH_THRESHOLD
 133 * seconds. After WATCH_THRESHOLD seconds we look at accumulated
 134 * offset and estimate frequency drift.
 135 *
 136 * (frequency measurement step seems to not be strictly needed,
 137 * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
 138 * define set to 0)
 139 *
 140 * After this, we enter "steady state": we collect a datapoint,
 141 * we select the best peer, if this datapoint is not a new one
 142 * (IOW: if this datapoint isn't for selected peer), sleep
 143 * and collect another one; otherwise, use its offset to update
 144 * frequency drift, if offset is somewhat large, reduce poll_exp,
 145 * otherwise increase poll_exp.
 146 *
 147 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
 148 * happen, we assume that something "bad" happened (computer
 149 * was hibernated, someone set totally wrong date, etc),
 150 * then the time is stepped, all datapoints are discarded,
 151 * and we go back to steady state.
 152 *
 153 * Made some changes to speed up re-syncing after our clock goes bad
 154 * (tested with suspending my laptop):
 155 * - if largish offset (>= STEP_THRESHOLD == 1 sec) is seen
 156 *   from a peer, schedule next query for this peer soon
 157 *   without drastically lowering poll interval for everybody.
 158 *   This makes us collect enough data for step much faster:
 159 *   e.g. at poll = 10 (1024 secs), step was done within 5 minutes
 160 *   after first reply which indicated that our clock is 14 seconds off.
 161 * - on step, do not discard d_dispersion data of the existing datapoints,
 162 *   do not clear reachable_bits. This prevents discarding first ~8
 163 *   datapoints after the step.
 164 */
 165
 166#define INITIAL_SAMPLES    4    /* how many samples do we want for init */
 167#define MIN_FREQHOLD      12    /* adjust offset, but not freq in this many first adjustments */
 168#define BAD_DELAY_GROWTH   4    /* drop packet if its delay grew by more than this factor */
 169
 170#define RETRY_INTERVAL    32    /* on send/recv error, retry in N secs (need to be power of 2) */
 171#define NOREPLY_INTERVAL 512    /* sent, but got no reply: cap next query by this many seconds */
 172#define RESPONSE_INTERVAL 16    /* wait for reply up to N secs */
 173#define HOSTNAME_INTERVAL  4    /* hostname lookup failed. Wait N * peer->dns_errors secs for next try */
 174#define DNS_ERRORS_CAP  0x3f    /* peer->dns_errors is in [0..63] */
 175
 176/* Step threshold (sec). std ntpd uses 0.128.
 177 */
 178#define STEP_THRESHOLD     1
 179/* Slew threshold (sec): adjtimex() won't accept offsets larger than this.
 180 * Using exact power of 2 (1/8, 1/2 etc) results in smaller code
 181 */
 182#define SLEW_THRESHOLD   0.5
 183// ^^^^ used to be 0.125.
 184// Since Linux 2.6.26 (circa 2006), kernel accepts (-0.5s, +0.5s) range
 185
 186/* Stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
 187//UNUSED: #define WATCH_THRESHOLD  128
 188/* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
 189//UNUSED: #define PANIC_THRESHOLD 1000    /* panic threshold (sec) */
 190
 191/*
 192 * If we got |offset| > BIGOFF from a peer, cap next query interval
 193 * for this peer by this many seconds:
 194 */
 195#define BIGOFF          STEP_THRESHOLD
 196#define BIGOFF_INTERVAL (1 << 7) /* 128 s */
 197
 198#define FREQ_TOLERANCE  0.000015 /* frequency tolerance (15 PPM) */
 199#define BURSTPOLL       0       /* initial poll */
 200#define MINPOLL         5       /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
 201/*
 202 * If offset > discipline_jitter * POLLADJ_GATE, and poll interval is > 2^BIGPOLL,
 203 * then it is decreased _at once_. (If <= 2^BIGPOLL, it will be decreased _eventually_).
 204 */
 205#define BIGPOLL         9       /* 2^9 sec ~= 8.5 min */
 206#define MAXPOLL         12      /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
 207/*
 208 * Actively lower poll when we see such big offsets.
 209 * With SLEW_THRESHOLD = 0.125, it means we try to sync more aggressively
 210 * if offset increases over ~0.04 sec
 211 */
 212//#define POLLDOWN_OFFSET (SLEW_THRESHOLD / 3)
 213#define MINDISP         0.01    /* minimum dispersion (sec) */
 214#define MAXDISP         16      /* maximum dispersion (sec) */
 215#define MAXSTRAT        16      /* maximum stratum (infinity metric) */
 216#define MAXDIST         1       /* distance threshold (sec) */
 217#define MIN_SELECTED    1       /* minimum intersection survivors */
 218#define MIN_CLUSTERED   3       /* minimum cluster survivors */
 219
 220#define MAXDRIFT        0.000500 /* frequency drift we can correct (500 PPM) */
 221
 222/* Poll-adjust threshold.
 223 * When we see that offset is small enough compared to discipline jitter,
 224 * we grow a counter: += MINPOLL. When counter goes over POLLADJ_LIMIT,
 225 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
 226 * and when it goes below -POLLADJ_LIMIT, we poll_exp--.
 227 * (Bumped from 30 to 40 since otherwise I often see poll_exp going *2* steps down)
 228 */
 229#define POLLADJ_LIMIT   40
 230/* If offset < discipline_jitter * POLLADJ_GATE, then we decide to increase
 231 * poll interval (we think we can't improve timekeeping
 232 * by staying at smaller poll).
 233 */
 234#define POLLADJ_GATE    4
 235#define TIMECONST_HACK_GATE 2
 236/* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
 237#define ALLAN           512
 238/* PLL loop gain */
 239#define PLL             65536
 240/* FLL loop gain [why it depends on MAXPOLL??] */
 241#define FLL             (MAXPOLL + 1)
 242/* Parameter averaging constant */
 243#define AVG             4
 244
 245#define MAX_KEY_NUMBER  65535
 246#define KEYID_SIZE      sizeof(uint32_t)
 247
 248enum {
 249        NTP_VERSION     = 4,
 250        NTP_MAXSTRATUM  = 15,
 251
 252        NTP_MD5_DIGESTSIZE    = 16,
 253        NTP_MSGSIZE_NOAUTH    = 48,
 254        NTP_MSGSIZE_MD5_AUTH  = NTP_MSGSIZE_NOAUTH + KEYID_SIZE + NTP_MD5_DIGESTSIZE,
 255        NTP_SHA1_DIGESTSIZE   = 20,
 256        NTP_MSGSIZE_SHA1_AUTH = NTP_MSGSIZE_NOAUTH + KEYID_SIZE + NTP_SHA1_DIGESTSIZE,
 257
 258        /* Status Masks */
 259        MODE_MASK       = (7 << 0),
 260        VERSION_MASK    = (7 << 3),
 261        VERSION_SHIFT   = 3,
 262        LI_MASK         = (3 << 6),
 263
 264        /* Leap Second Codes (high order two bits of m_status) */
 265        LI_NOWARNING    = (0 << 6),    /* no warning */
 266        LI_PLUSSEC      = (1 << 6),    /* add a second (61 seconds) */
 267        LI_MINUSSEC     = (2 << 6),    /* minus a second (59 seconds) */
 268        LI_ALARM        = (3 << 6),    /* alarm condition */
 269
 270        /* Mode values */
 271        MODE_RES0       = 0,    /* reserved */
 272        MODE_SYM_ACT    = 1,    /* symmetric active */
 273        MODE_SYM_PAS    = 2,    /* symmetric passive */
 274        MODE_CLIENT     = 3,    /* client */
 275        MODE_SERVER     = 4,    /* server */
 276        MODE_BROADCAST  = 5,    /* broadcast */
 277        MODE_RES1       = 6,    /* reserved for NTP control message */
 278        MODE_RES2       = 7,    /* reserved for private use */
 279};
 280
 281//TODO: better base selection
 282#define OFFSET_1900_1970 2208988800UL  /* 1970 - 1900 in seconds */
 283
 284#define NUM_DATAPOINTS  8
 285
 286typedef struct {
 287        uint32_t int_partl;
 288        uint32_t fractionl;
 289} l_fixedpt_t;
 290
 291typedef struct {
 292        uint16_t int_parts;
 293        uint16_t fractions;
 294} s_fixedpt_t;
 295
 296typedef struct {
 297        uint8_t     m_status;     /* status of local clock and leap info */
 298        uint8_t     m_stratum;
 299        uint8_t     m_ppoll;      /* poll value */
 300        int8_t      m_precision_exp;
 301        s_fixedpt_t m_rootdelay;
 302        s_fixedpt_t m_rootdisp;
 303        uint32_t    m_refid;
 304        l_fixedpt_t m_reftime;
 305        l_fixedpt_t m_orgtime;
 306        l_fixedpt_t m_rectime;
 307        l_fixedpt_t m_xmttime;
 308        uint32_t    m_keyid;
 309        uint8_t     m_digest[ENABLE_FEATURE_NTP_AUTH ? NTP_SHA1_DIGESTSIZE : NTP_MD5_DIGESTSIZE];
 310} msg_t;
 311
 312typedef struct {
 313        double d_offset;
 314        double d_recv_time;
 315        double d_dispersion;
 316} datapoint_t;
 317
 318#if ENABLE_FEATURE_NTP_AUTH
 319enum {
 320        HASH_MD5,
 321        HASH_SHA1,
 322};
 323typedef struct {
 324        unsigned id; //try uint16_t?
 325        smalluint type;
 326        smalluint msg_size;
 327        smalluint key_length;
 328        char key[0];
 329} key_entry_t;
 330#endif
 331
 332typedef struct {
 333        len_and_sockaddr *p_lsa;
 334        char             *p_dotted;
 335#if ENABLE_FEATURE_NTP_AUTH
 336        key_entry_t      *key_entry;
 337#endif
 338        int              p_fd;
 339        int              datapoint_idx;
 340        uint32_t         lastpkt_refid;
 341        uint8_t          lastpkt_status;
 342        uint8_t          lastpkt_stratum;
 343        uint8_t          reachable_bits;
 344        uint8_t          dns_errors;
 345        /* when to send new query (if p_fd == -1)
 346         * or when receive times out (if p_fd >= 0): */
 347        double           next_action_time;
 348        double           p_xmttime;
 349        double           p_raw_delay;
 350        /* p_raw_delay is set even by "high delay" packets */
 351        /* lastpkt_delay isn't */
 352        double           lastpkt_recv_time;
 353        double           lastpkt_delay;
 354        double           lastpkt_rootdelay;
 355        double           lastpkt_rootdisp;
 356        /* produced by filter algorithm: */
 357        double           filter_offset;
 358        double           filter_dispersion;
 359        double           filter_jitter;
 360        datapoint_t      filter_datapoint[NUM_DATAPOINTS];
 361        /* last sent packet: */
 362        msg_t            p_xmt_msg;
 363        char             p_hostname[1];
 364} peer_t;
 365
 366
 367#define USING_KERNEL_PLL_LOOP          1
 368#define USING_INITIAL_FREQ_ESTIMATION  0
 369
 370enum {
 371        OPT_n = (1 << 0),
 372        OPT_q = (1 << 1),
 373        OPT_N = (1 << 2),
 374        OPT_x = (1 << 3),
 375        OPT_k = (1 << 4) * ENABLE_FEATURE_NTP_AUTH,
 376        /* Insert new options above this line. */
 377        /* Non-compat options: */
 378        OPT_w = (1 << (4+ENABLE_FEATURE_NTP_AUTH)),
 379        OPT_p = (1 << (5+ENABLE_FEATURE_NTP_AUTH)),
 380        OPT_S = (1 << (6+ENABLE_FEATURE_NTP_AUTH)),
 381        OPT_l = (1 << (7+ENABLE_FEATURE_NTP_AUTH)) * ENABLE_FEATURE_NTPD_SERVER,
 382        OPT_I = (1 << (8+ENABLE_FEATURE_NTP_AUTH)) * ENABLE_FEATURE_NTPD_SERVER,
 383        /* We hijack some bits for other purposes */
 384        OPT_qq = (1 << 31),
 385};
 386
 387struct globals {
 388        double   cur_time;
 389        /* total round trip delay to currently selected reference clock */
 390        double   rootdelay;
 391        /* reference timestamp: time when the system clock was last set or corrected */
 392        double   reftime;
 393        /* total dispersion to currently selected reference clock */
 394        double   rootdisp;
 395
 396        double   last_script_run;
 397        char     *script_name;
 398        llist_t  *ntp_peers;
 399#if ENABLE_FEATURE_NTPD_SERVER
 400        int      listen_fd;
 401        char     *if_name;
 402# define G_listen_fd (G.listen_fd)
 403#else
 404# define G_listen_fd (-1)
 405#endif
 406        unsigned verbose;
 407        unsigned peer_cnt;
 408        /* refid: 32-bit code identifying the particular server or reference clock
 409         * in stratum 0 packets this is a four-character ASCII string,
 410         * called the kiss code, used for debugging and monitoring
 411         * in stratum 1 packets this is a four-character ASCII string
 412         * assigned to the reference clock by IANA. Example: "GPS "
 413         * in stratum 2+ packets, it's IPv4 address or 4 first bytes
 414         * of MD5 hash of IPv6
 415         */
 416        uint32_t refid;
 417        uint8_t  ntp_status;
 418        /* precision is defined as the larger of the resolution and time to
 419         * read the clock, in log2 units.  For instance, the precision of a
 420         * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
 421         * system clock hardware representation is to the nanosecond.
 422         *
 423         * Delays, jitters of various kinds are clamped down to precision.
 424         *
 425         * If precision_sec is too large, discipline_jitter gets clamped to it
 426         * and if offset is smaller than discipline_jitter * POLLADJ_GATE, poll
 427         * interval grows even though we really can benefit from staying at
 428         * smaller one, collecting non-lagged datapoits and correcting offset.
 429         * (Lagged datapoits exist when poll_exp is large but we still have
 430         * systematic offset error - the time distance between datapoints
 431         * is significant and older datapoints have smaller offsets.
 432         * This makes our offset estimation a bit smaller than reality)
 433         * Due to this effect, setting G_precision_sec close to
 434         * STEP_THRESHOLD isn't such a good idea - offsets may grow
 435         * too big and we will step. I observed it with -6.
 436         *
 437         * OTOH, setting precision_sec far too small would result in futile
 438         * attempts to synchronize to an unachievable precision.
 439         *
 440         * -6 is 1/64 sec, -7 is 1/128 sec and so on.
 441         * -8 is 1/256 ~= 0.003906 (worked well for me --vda)
 442         * -9 is 1/512 ~= 0.001953 (let's try this for some time)
 443         */
 444#define G_precision_exp  -9
 445        /*
 446         * G_precision_exp is used only for construction outgoing packets.
 447         * It's ok to set G_precision_sec to a slightly different value
 448         * (One which is "nicer looking" in logs).
 449         * Exact value would be (1.0 / (1 << (- G_precision_exp))):
 450         */
 451#define G_precision_sec  0.002
 452        uint8_t  stratum;
 453
 454#define STATE_NSET      0       /* initial state, "nothing is set" */
 455//#define STATE_FSET    1       /* frequency set from file */
 456//#define STATE_SPIK    2       /* spike detected */
 457//#define STATE_FREQ    3       /* initial frequency */
 458#define STATE_SYNC      4       /* clock synchronized (normal operation) */
 459        uint8_t  discipline_state;      // doc calls it c.state
 460        uint8_t  poll_exp;              // s.poll
 461        int      polladj_count;         // c.count
 462        int      FREQHOLD_cnt;
 463        long     kernel_freq_drift;
 464        peer_t   *last_update_peer;
 465        double   last_update_offset;    // c.last
 466        double   last_update_recv_time; // s.t
 467        double   discipline_jitter;     // c.jitter
 468        /* Since we only compare it with ints, can simplify code
 469         * by not making this variable floating point:
 470         */
 471        unsigned offset_to_jitter_ratio;
 472        //double   cluster_offset;        // s.offset
 473        //double   cluster_jitter;        // s.jitter
 474#if !USING_KERNEL_PLL_LOOP
 475        double   discipline_freq_drift; // c.freq
 476        /* Maybe conditionally calculate wander? it's used only for logging */
 477        double   discipline_wander;     // c.wander
 478#endif
 479};
 480#define G (*ptr_to_globals)
 481
 482
 483#define VERB1 if (MAX_VERBOSE && G.verbose)
 484#define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
 485#define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
 486#define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
 487#define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
 488#define VERB6 if (MAX_VERBOSE >= 6 && G.verbose >= 6)
 489
 490
 491static double LOG2D(int a)
 492{
 493        if (a < 0)
 494                return 1.0 / (1UL << -a);
 495        return 1UL << a;
 496}
 497static ALWAYS_INLINE double SQUARE(double x)
 498{
 499        return x * x;
 500}
 501static ALWAYS_INLINE double MAXD(double a, double b)
 502{
 503        if (a > b)
 504                return a;
 505        return b;
 506}
 507static ALWAYS_INLINE double MIND(double a, double b)
 508{
 509        if (a < b)
 510                return a;
 511        return b;
 512}
 513static NOINLINE double my_SQRT(double X)
 514{
 515        union {
 516                float   f;
 517                int32_t i;
 518        } v;
 519        double invsqrt;
 520        double Xhalf = X * 0.5;
 521
 522        /* Fast and good approximation to 1/sqrt(X), black magic */
 523        v.f = X;
 524        /*v.i = 0x5f3759df - (v.i >> 1);*/
 525        v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
 526        invsqrt = v.f; /* better than 0.2% accuracy */
 527
 528        /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
 529         * f(x) = 1/(x*x) - X  (f==0 when x = 1/sqrt(X))
 530         * f'(x) = -2/(x*x*x)
 531         * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
 532         * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
 533         */
 534        invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
 535        /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
 536        /* With 4 iterations, more than half results will be exact,
 537         * at 6th iterations result stabilizes with about 72% results exact.
 538         * We are well satisfied with 0.05% accuracy.
 539         */
 540
 541        return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
 542}
 543static ALWAYS_INLINE double SQRT(double X)
 544{
 545        /* If this arch doesn't use IEEE 754 floats, fall back to using libm */
 546        if (sizeof(float) != 4)
 547                return sqrt(X);
 548
 549        /* This avoids needing libm, saves about 0.5k on x86-32 */
 550        return my_SQRT(X);
 551}
 552
 553static double
 554gettime1900d(void)
 555{
 556        struct timeval tv;
 557        gettimeofday(&tv, NULL); /* never fails */
 558        G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
 559        return G.cur_time;
 560}
 561
 562static void
 563d_to_tv(double d, struct timeval *tv)
 564{
 565        tv->tv_sec = (long)d;
 566        tv->tv_usec = (d - tv->tv_sec) * 1000000;
 567}
 568
 569static double
 570lfp_to_d(l_fixedpt_t lfp)
 571{
 572        double ret;
 573        lfp.int_partl = ntohl(lfp.int_partl);
 574        lfp.fractionl = ntohl(lfp.fractionl);
 575        ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
 576        return ret;
 577}
 578static double
 579sfp_to_d(s_fixedpt_t sfp)
 580{
 581        double ret;
 582        sfp.int_parts = ntohs(sfp.int_parts);
 583        sfp.fractions = ntohs(sfp.fractions);
 584        ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
 585        return ret;
 586}
 587#if ENABLE_FEATURE_NTPD_SERVER
 588static l_fixedpt_t
 589d_to_lfp(double d)
 590{
 591        l_fixedpt_t lfp;
 592        lfp.int_partl = (uint32_t)d;
 593        lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
 594        lfp.int_partl = htonl(lfp.int_partl);
 595        lfp.fractionl = htonl(lfp.fractionl);
 596        return lfp;
 597}
 598static s_fixedpt_t
 599d_to_sfp(double d)
 600{
 601        s_fixedpt_t sfp;
 602        sfp.int_parts = (uint16_t)d;
 603        sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
 604        sfp.int_parts = htons(sfp.int_parts);
 605        sfp.fractions = htons(sfp.fractions);
 606        return sfp;
 607}
 608#endif
 609
 610static double
 611dispersion(const datapoint_t *dp)
 612{
 613        return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
 614}
 615
 616static double
 617root_distance(peer_t *p)
 618{
 619        /* The root synchronization distance is the maximum error due to
 620         * all causes of the local clock relative to the primary server.
 621         * It is defined as half the total delay plus total dispersion
 622         * plus peer jitter.
 623         */
 624        return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
 625                + p->lastpkt_rootdisp
 626                + p->filter_dispersion
 627                + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
 628                + p->filter_jitter;
 629}
 630
 631static void
 632set_next(peer_t *p, unsigned t)
 633{
 634        p->next_action_time = G.cur_time + t;
 635}
 636
 637/*
 638 * Peer clock filter and its helpers
 639 */
 640static void
 641filter_datapoints(peer_t *p)
 642{
 643        int i, idx;
 644        double sum, wavg;
 645        datapoint_t *fdp;
 646
 647#if 0
 648/* Simulations have shown that use of *averaged* offset for p->filter_offset
 649 * is in fact worse than simply using last received one: with large poll intervals
 650 * (>= 2048) averaging code uses offset values which are outdated by hours,
 651 * and time/frequency correction goes totally wrong when fed essentially bogus offsets.
 652 */
 653        int got_newest;
 654        double minoff, maxoff, w;
 655        double x = x; /* for compiler */
 656        double oldest_off = oldest_off;
 657        double oldest_age = oldest_age;
 658        double newest_off = newest_off;
 659        double newest_age = newest_age;
 660
 661        fdp = p->filter_datapoint;
 662
 663        minoff = maxoff = fdp[0].d_offset;
 664        for (i = 1; i < NUM_DATAPOINTS; i++) {
 665                if (minoff > fdp[i].d_offset)
 666                        minoff = fdp[i].d_offset;
 667                if (maxoff < fdp[i].d_offset)
 668                        maxoff = fdp[i].d_offset;
 669        }
 670
 671        idx = p->datapoint_idx; /* most recent datapoint's index */
 672        /* Average offset:
 673         * Drop two outliers and take weighted average of the rest:
 674         * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
 675         * we use older6/32, not older6/64 since sum of weights should be 1:
 676         * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
 677         */
 678        wavg = 0;
 679        w = 0.5;
 680        /*                     n-1
 681         *                     ---    dispersion(i)
 682         * filter_dispersion =  \     -------------
 683         *                      /       (i+1)
 684         *                     ---     2
 685         *                     i=0
 686         */
 687        got_newest = 0;
 688        sum = 0;
 689        for (i = 0; i < NUM_DATAPOINTS; i++) {
 690                VERB5 {
 691                        bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
 692                                i,
 693                                fdp[idx].d_offset,
 694                                fdp[idx].d_dispersion, dispersion(&fdp[idx]),
 695                                G.cur_time - fdp[idx].d_recv_time,
 696                                (minoff == fdp[idx].d_offset || maxoff == fdp[idx].d_offset)
 697                                        ? " (outlier by offset)" : ""
 698                        );
 699                }
 700
 701                sum += dispersion(&fdp[idx]) / (2 << i);
 702
 703                if (minoff == fdp[idx].d_offset) {
 704                        minoff -= 1; /* so that we don't match it ever again */
 705                } else
 706                if (maxoff == fdp[idx].d_offset) {
 707                        maxoff += 1;
 708                } else {
 709                        oldest_off = fdp[idx].d_offset;
 710                        oldest_age = G.cur_time - fdp[idx].d_recv_time;
 711                        if (!got_newest) {
 712                                got_newest = 1;
 713                                newest_off = oldest_off;
 714                                newest_age = oldest_age;
 715                        }
 716                        x = oldest_off * w;
 717                        wavg += x;
 718                        w /= 2;
 719                }
 720
 721                idx = (idx - 1) & (NUM_DATAPOINTS - 1);
 722        }
 723        p->filter_dispersion = sum;
 724        wavg += x; /* add another older6/64 to form older6/32 */
 725        /* Fix systematic underestimation with large poll intervals.
 726         * Imagine that we still have a bit of uncorrected drift,
 727         * and poll interval is big (say, 100 sec). Offsets form a progression:
 728         * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
 729         * The algorithm above drops 0.0 and 0.7 as outliers,
 730         * and then we have this estimation, ~25% off from 0.7:
 731         * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
 732         */
 733        x = oldest_age - newest_age;
 734        if (x != 0) {
 735                x = newest_age / x; /* in above example, 100 / (600 - 100) */
 736                if (x < 1) { /* paranoia check */
 737                        x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
 738                        wavg += x;
 739                }
 740        }
 741        p->filter_offset = wavg;
 742
 743#else
 744
 745        fdp = p->filter_datapoint;
 746        idx = p->datapoint_idx; /* most recent datapoint's index */
 747
 748        /* filter_offset: simply use the most recent value */
 749        p->filter_offset = fdp[idx].d_offset;
 750
 751        /*                     n-1
 752         *                     ---    dispersion(i)
 753         * filter_dispersion =  \     -------------
 754         *                      /       (i+1)
 755         *                     ---     2
 756         *                     i=0
 757         */
 758        wavg = 0;
 759        sum = 0;
 760        for (i = 0; i < NUM_DATAPOINTS; i++) {
 761                sum += dispersion(&fdp[idx]) / (2 << i);
 762                wavg += fdp[idx].d_offset;
 763                idx = (idx - 1) & (NUM_DATAPOINTS - 1);
 764        }
 765        wavg /= NUM_DATAPOINTS;
 766        p->filter_dispersion = sum;
 767#endif
 768
 769        /*                  +-----                 -----+ ^ 1/2
 770         *                  |       n-1                 |
 771         *                  |       ---                 |
 772         *                  |  1    \                2  |
 773         * filter_jitter =  | --- * /  (avg-offset_j)   |
 774         *                  |  n    ---                 |
 775         *                  |       j=0                 |
 776         *                  +-----                 -----+
 777         * where n is the number of valid datapoints in the filter (n > 1);
 778         * if filter_jitter < precision then filter_jitter = precision
 779         */
 780        sum = 0;
 781        for (i = 0; i < NUM_DATAPOINTS; i++) {
 782                sum += SQUARE(wavg - fdp[i].d_offset);
 783        }
 784        sum = SQRT(sum / NUM_DATAPOINTS);
 785        p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
 786
 787        VERB4 bb_error_msg("filter offset:%+f disp:%f jitter:%f",
 788                        p->filter_offset,
 789                        p->filter_dispersion,
 790                        p->filter_jitter);
 791}
 792
 793static void
 794reset_peer_stats(peer_t *p, double offset)
 795{
 796        int i;
 797        bool small_ofs = fabs(offset) < STEP_THRESHOLD;
 798
 799        /* Used to set p->filter_datapoint[i].d_dispersion = MAXDISP
 800         * and clear reachable bits, but this proved to be too aggressive:
 801         * after step (tested with suspending laptop for ~30 secs),
 802         * this caused all previous data to be considered invalid,
 803         * making us needing to collect full ~8 datapoints per peer
 804         * after step in order to start trusting them.
 805         * In turn, this was making poll interval decrease even after
 806         * step was done. (Poll interval decreases already before step
 807         * in this scenario, because we see large offsets and end up with
 808         * no good peer to select).
 809         */
 810
 811        for (i = 0; i < NUM_DATAPOINTS; i++) {
 812                if (small_ofs) {
 813                        p->filter_datapoint[i].d_recv_time += offset;
 814                        if (p->filter_datapoint[i].d_offset != 0) {
 815                                p->filter_datapoint[i].d_offset -= offset;
 816                                //bb_error_msg("p->filter_datapoint[%d].d_offset %f -> %f",
 817                                //      i,
 818                                //      p->filter_datapoint[i].d_offset + offset,
 819                                //      p->filter_datapoint[i].d_offset);
 820                        }
 821                } else {
 822                        p->filter_datapoint[i].d_recv_time  = G.cur_time;
 823                        p->filter_datapoint[i].d_offset     = 0;
 824                        /*p->filter_datapoint[i].d_dispersion = MAXDISP;*/
 825                }
 826        }
 827        if (small_ofs) {
 828                p->lastpkt_recv_time += offset;
 829        } else {
 830                /*p->reachable_bits = 0;*/
 831                p->lastpkt_recv_time = G.cur_time;
 832        }
 833        filter_datapoints(p); /* recalc p->filter_xxx */
 834        VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
 835}
 836
 837static len_and_sockaddr*
 838resolve_peer_hostname(peer_t *p)
 839{
 840        len_and_sockaddr *lsa = host2sockaddr(p->p_hostname, 123);
 841        if (lsa) {
 842                free(p->p_lsa);
 843                free(p->p_dotted);
 844                p->p_lsa = lsa;
 845                p->p_dotted = xmalloc_sockaddr2dotted_noport(&lsa->u.sa);
 846                VERB1 if (strcmp(p->p_hostname, p->p_dotted) != 0)
 847                        bb_error_msg("'%s' is %s", p->p_hostname, p->p_dotted);
 848                p->dns_errors = 0;
 849                return lsa;
 850        }
 851        p->dns_errors = ((p->dns_errors << 1) | 1) & DNS_ERRORS_CAP;
 852        return lsa;
 853}
 854
 855#if !ENABLE_FEATURE_NTP_AUTH
 856#define add_peers(s, key_entry) \
 857        add_peers(s)
 858#endif
 859static void
 860add_peers(const char *s, key_entry_t *key_entry)
 861{
 862        llist_t *item;
 863        peer_t *p;
 864
 865        p = xzalloc(sizeof(*p) + strlen(s));
 866        strcpy(p->p_hostname, s);
 867        p->p_fd = -1;
 868        p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
 869        p->next_action_time = G.cur_time; /* = set_next(p, 0); */
 870        reset_peer_stats(p, STEP_THRESHOLD);
 871
 872        /* Names like N.<country2chars>.pool.ntp.org are randomly resolved
 873         * to a pool of machines. Sometimes different N's resolve to the same IP.
 874         * It is not useful to have two peers with same IP. We skip duplicates.
 875         */
 876        if (resolve_peer_hostname(p)) {
 877                for (item = G.ntp_peers; item != NULL; item = item->link) {
 878                        peer_t *pp = (peer_t *) item->data;
 879                        if (pp->p_dotted && strcmp(p->p_dotted, pp->p_dotted) == 0) {
 880                                bb_error_msg("duplicate peer %s (%s)", s, p->p_dotted);
 881                                free(p->p_lsa);
 882                                free(p->p_dotted);
 883                                free(p);
 884                                return;
 885                        }
 886                }
 887        }
 888
 889        IF_FEATURE_NTP_AUTH(p->key_entry = key_entry;)
 890        llist_add_to(&G.ntp_peers, p);
 891        G.peer_cnt++;
 892}
 893
 894static int
 895do_sendto(int fd,
 896                const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
 897                msg_t *msg, ssize_t len)
 898{
 899        ssize_t ret;
 900
 901        errno = 0;
 902        if (!from) {
 903                ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
 904        } else {
 905                ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
 906        }
 907        if (ret != len) {
 908                bb_perror_msg("send failed");
 909                return -1;
 910        }
 911        return 0;
 912}
 913
 914#if ENABLE_FEATURE_NTP_AUTH
 915static void
 916hash(key_entry_t *key_entry, const msg_t *msg, uint8_t *output)
 917{
 918        union {
 919                md5_ctx_t m;
 920                sha1_ctx_t s;
 921        } ctx;
 922        unsigned hash_size = sizeof(*msg) - sizeof(msg->m_keyid) - sizeof(msg->m_digest);
 923
 924        switch (key_entry->type) {
 925        case HASH_MD5:
 926                md5_begin(&ctx.m);
 927                md5_hash(&ctx.m, key_entry->key, key_entry->key_length);
 928                md5_hash(&ctx.m, msg, hash_size);
 929                md5_end(&ctx.m, output);
 930                break;
 931        default: /* it's HASH_SHA1 */
 932                sha1_begin(&ctx.s);
 933                sha1_hash(&ctx.s, key_entry->key, key_entry->key_length);
 934                sha1_hash(&ctx.s, msg, hash_size);
 935                sha1_end(&ctx.s, output);
 936                break;
 937        }
 938}
 939
 940static void
 941hash_peer(peer_t *p)
 942{
 943        p->p_xmt_msg.m_keyid = htonl(p->key_entry->id);
 944        hash(p->key_entry, &p->p_xmt_msg, p->p_xmt_msg.m_digest);
 945}
 946
 947static int
 948hashes_differ(peer_t *p, const msg_t *msg)
 949{
 950        uint8_t digest[NTP_SHA1_DIGESTSIZE];
 951        hash(p->key_entry, msg, digest);
 952        return memcmp(digest, msg->m_digest, p->key_entry->msg_size - NTP_MSGSIZE_NOAUTH - KEYID_SIZE);
 953}
 954#endif
 955
 956static void
 957send_query_to_peer(peer_t *p)
 958{
 959        if (!p->p_lsa)
 960                return;
 961
 962        /* Why do we need to bind()?
 963         * See what happens when we don't bind:
 964         *
 965         * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
 966         * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
 967         * gettimeofday({1259071266, 327885}, NULL) = 0
 968         * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
 969         * ^^^ we sent it from some source port picked by kernel.
 970         * time(NULL)              = 1259071266
 971         * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
 972         * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
 973         * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
 974         * ^^^ this recv will receive packets to any local port!
 975         *
 976         * Uncomment this and use strace to see it in action:
 977         */
 978#define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
 979
 980        if (p->p_fd == -1) {
 981                int fd, family;
 982                len_and_sockaddr *local_lsa;
 983
 984                family = p->p_lsa->u.sa.sa_family;
 985                p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
 986                /* local_lsa has "null" address and port 0 now.
 987                 * bind() ensures we have a *particular port* selected by kernel
 988                 * and remembered in p->p_fd, thus later recv(p->p_fd)
 989                 * receives only packets sent to this port.
 990                 */
 991                PROBE_LOCAL_ADDR
 992                xbind(fd, &local_lsa->u.sa, local_lsa->len);
 993                PROBE_LOCAL_ADDR
 994#if ENABLE_FEATURE_IPV6
 995                if (family == AF_INET)
 996#endif
 997                        setsockopt_int(fd, IPPROTO_IP, IP_TOS, IPTOS_DSCP_AF21);
 998                free(local_lsa);
 999        }
1000
1001        /* Emit message _before_ attempted send. Think of a very short
1002         * roundtrip networks: we need to go back to recv loop ASAP,
1003         * to reduce delay. Printing messages after send works against that.
1004         */
1005        VERB1 bb_error_msg("sending query to %s", p->p_dotted);
1006
1007        /*
1008         * Send out a random 64-bit number as our transmit time.  The NTP
1009         * server will copy said number into the originate field on the
1010         * response that it sends us.  This is totally legal per the SNTP spec.
1011         *
1012         * The impact of this is two fold: we no longer send out the current
1013         * system time for the world to see (which may aid an attacker), and
1014         * it gives us a (not very secure) way of knowing that we're not
1015         * getting spoofed by an attacker that can't capture our traffic
1016         * but can spoof packets from the NTP server we're communicating with.
1017         *
1018         * Save the real transmit timestamp locally.
1019         */
1020        p->p_xmt_msg.m_xmttime.int_partl = rand();
1021        p->p_xmt_msg.m_xmttime.fractionl = rand();
1022        p->p_xmttime = gettime1900d();
1023
1024        /* Were doing it only if sendto worked, but
1025         * loss of sync detection needs reachable_bits updated
1026         * even if sending fails *locally*:
1027         * "network is unreachable" because cable was pulled?
1028         * We still need to declare "unsync" if this condition persists.
1029         */
1030        p->reachable_bits <<= 1;
1031
1032#if ENABLE_FEATURE_NTP_AUTH
1033        if (p->key_entry)
1034                hash_peer(p);
1035        if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
1036                &p->p_xmt_msg, !p->key_entry ? NTP_MSGSIZE_NOAUTH : p->key_entry->msg_size) == -1
1037        )
1038#else
1039        if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
1040                &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
1041        )
1042#endif
1043        {
1044                close(p->p_fd);
1045                p->p_fd = -1;
1046                /*
1047                 * We know that we sent nothing.
1048                 * We can retry *soon* without fearing
1049                 * that we are flooding the peer.
1050                 */
1051                set_next(p, RETRY_INTERVAL);
1052                return;
1053        }
1054
1055        set_next(p, RESPONSE_INTERVAL);
1056}
1057
1058
1059/* Note that there is no provision to prevent several run_scripts
1060 * to be started in quick succession. In fact, it happens rather often
1061 * if initial syncronization results in a step.
1062 * You will see "step" and then "stratum" script runs, sometimes
1063 * as close as only 0.002 seconds apart.
1064 * Script should be ready to deal with this.
1065 */
1066static void run_script(const char *action, double offset)
1067{
1068        char *argv[3];
1069        char *env1, *env2, *env3, *env4;
1070
1071        G.last_script_run = G.cur_time;
1072
1073        if (!G.script_name)
1074                return;
1075
1076        argv[0] = (char*) G.script_name;
1077        argv[1] = (char*) action;
1078        argv[2] = NULL;
1079
1080        VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
1081
1082        env1 = xasprintf("%s=%u", "stratum", G.stratum);
1083        putenv(env1);
1084        env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
1085        putenv(env2);
1086        env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
1087        putenv(env3);
1088        env4 = xasprintf("%s=%f", "offset", offset);
1089        putenv(env4);
1090        /* Other items of potential interest: selected peer,
1091         * rootdelay, reftime, rootdisp, refid, ntp_status,
1092         * last_update_offset, last_update_recv_time, discipline_jitter,
1093         * how many peers have reachable_bits = 0?
1094         */
1095
1096        /* Don't want to wait: it may run hwclock --systohc, and that
1097         * may take some time (seconds): */
1098        /*spawn_and_wait(argv);*/
1099        spawn(argv);
1100
1101        unsetenv("stratum");
1102        unsetenv("freq_drift_ppm");
1103        unsetenv("poll_interval");
1104        unsetenv("offset");
1105        free(env1);
1106        free(env2);
1107        free(env3);
1108        free(env4);
1109}
1110
1111static NOINLINE void
1112step_time(double offset)
1113{
1114        llist_t *item;
1115        double dtime;
1116        struct timeval tvc, tvn;
1117        char buf[sizeof("yyyy-mm-dd hh:mm:ss") + /*paranoia:*/ 4];
1118        time_t tval;
1119
1120        gettimeofday(&tvc, NULL); /* never fails */
1121        dtime = tvc.tv_sec + (1.0e-6 * tvc.tv_usec) + offset;
1122        d_to_tv(dtime, &tvn);
1123        if (settimeofday(&tvn, NULL) == -1)
1124                bb_perror_msg_and_die("settimeofday");
1125
1126        VERB2 {
1127                tval = tvc.tv_sec;
1128                strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
1129                bb_error_msg("current time is %s.%06u", buf, (unsigned)tvc.tv_usec);
1130        }
1131        tval = tvn.tv_sec;
1132        strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
1133        bb_info_msg("setting time to %s.%06u (offset %+fs)", buf, (unsigned)tvn.tv_usec, offset);
1134        //maybe? G.FREQHOLD_cnt = 0;
1135
1136        /* Correct various fields which contain time-relative values: */
1137
1138        /* Globals: */
1139        G.cur_time += offset;
1140        G.last_update_recv_time += offset;
1141        G.last_script_run += offset;
1142
1143        /* p->lastpkt_recv_time, p->next_action_time and such: */
1144        for (item = G.ntp_peers; item != NULL; item = item->link) {
1145                peer_t *pp = (peer_t *) item->data;
1146                reset_peer_stats(pp, offset);
1147                //bb_error_msg("offset:%+f pp->next_action_time:%f -> %f",
1148                //      offset, pp->next_action_time, pp->next_action_time + offset);
1149                pp->next_action_time += offset;
1150                if (pp->p_fd >= 0) {
1151                        /* We wait for reply from this peer too.
1152                         * But due to step we are doing, reply's data is no longer
1153                         * useful (in fact, it'll be bogus). Stop waiting for it.
1154                         */
1155                        close(pp->p_fd);
1156                        pp->p_fd = -1;
1157                        set_next(pp, RETRY_INTERVAL);
1158                }
1159        }
1160}
1161
1162static void clamp_pollexp_and_set_MAXSTRAT(void)
1163{
1164        if (G.poll_exp < MINPOLL)
1165                G.poll_exp = MINPOLL;
1166        if (G.poll_exp > BIGPOLL)
1167                G.poll_exp = BIGPOLL;
1168        G.polladj_count = 0;
1169        G.stratum = MAXSTRAT;
1170}
1171
1172
1173/*
1174 * Selection and clustering, and their helpers
1175 */
1176typedef struct {
1177        peer_t *p;
1178        int    type;
1179        double edge;
1180        double opt_rd; /* optimization */
1181} point_t;
1182static int
1183compare_point_edge(const void *aa, const void *bb)
1184{
1185        const point_t *a = aa;
1186        const point_t *b = bb;
1187        if (a->edge < b->edge) {
1188                return -1;
1189        }
1190        return (a->edge > b->edge);
1191}
1192typedef struct {
1193        peer_t *p;
1194        double metric;
1195} survivor_t;
1196static int
1197compare_survivor_metric(const void *aa, const void *bb)
1198{
1199        const survivor_t *a = aa;
1200        const survivor_t *b = bb;
1201        if (a->metric < b->metric) {
1202                return -1;
1203        }
1204        return (a->metric > b->metric);
1205}
1206static int
1207fit(peer_t *p, double rd)
1208{
1209        if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
1210                /* One or zero bits in reachable_bits */
1211                VERB4 bb_error_msg("peer %s unfit for selection: "
1212                                "unreachable", p->p_dotted);
1213                return 0;
1214        }
1215#if 0 /* we filter out such packets earlier */
1216        if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
1217         || p->lastpkt_stratum >= MAXSTRAT
1218        ) {
1219                VERB4 bb_error_msg("peer %s unfit for selection: "
1220                                "bad status/stratum", p->p_dotted);
1221                return 0;
1222        }
1223#endif
1224        /* rd is root_distance(p) */
1225        if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
1226                VERB3 bb_error_msg("peer %s unfit for selection: "
1227                        "root distance %f too high, jitter:%f",
1228                        p->p_dotted, rd, p->filter_jitter
1229                );
1230                return 0;
1231        }
1232//TODO
1233//      /* Do we have a loop? */
1234//      if (p->refid == p->dstaddr || p->refid == s.refid)
1235//              return 0;
1236        return 1;
1237}
1238static peer_t*
1239select_and_cluster(void)
1240{
1241        peer_t     *p;
1242        llist_t    *item;
1243        int        i, j;
1244        int        size = 3 * G.peer_cnt;
1245        /* for selection algorithm */
1246        point_t    point[size];
1247        unsigned   num_points, num_candidates;
1248        double     low, high;
1249        unsigned   num_falsetickers;
1250        /* for cluster algorithm */
1251        survivor_t survivor[size];
1252        unsigned   num_survivors;
1253
1254        /* Selection */
1255
1256        num_points = 0;
1257        item = G.ntp_peers;
1258        while (item != NULL) {
1259                double rd, offset;
1260
1261                p = (peer_t *) item->data;
1262                rd = root_distance(p);
1263                offset = p->filter_offset;
1264                if (!fit(p, rd)) {
1265                        item = item->link;
1266                        continue;
1267                }
1268
1269                VERB5 bb_error_msg("interval: [%f %f %f] %s",
1270                                offset - rd,
1271                                offset,
1272                                offset + rd,
1273                                p->p_dotted
1274                );
1275                point[num_points].p = p;
1276                point[num_points].type = -1;
1277                point[num_points].edge = offset - rd;
1278                point[num_points].opt_rd = rd;
1279                num_points++;
1280                point[num_points].p = p;
1281                point[num_points].type = 0;
1282                point[num_points].edge = offset;
1283                point[num_points].opt_rd = rd;
1284                num_points++;
1285                point[num_points].p = p;
1286                point[num_points].type = 1;
1287                point[num_points].edge = offset + rd;
1288                point[num_points].opt_rd = rd;
1289                num_points++;
1290                item = item->link;
1291        }
1292        num_candidates = num_points / 3;
1293        if (num_candidates == 0) {
1294                VERB3 bb_error_msg("no valid datapoints%s", ", no peer selected");
1295                return NULL;
1296        }
1297//TODO: sorting does not seem to be done in reference code
1298        qsort(point, num_points, sizeof(point[0]), compare_point_edge);
1299
1300        /* Start with the assumption that there are no falsetickers.
1301         * Attempt to find a nonempty intersection interval containing
1302         * the midpoints of all truechimers.
1303         * If a nonempty interval cannot be found, increase the number
1304         * of assumed falsetickers by one and try again.
1305         * If a nonempty interval is found and the number of falsetickers
1306         * is less than the number of truechimers, a majority has been found
1307         * and the midpoint of each truechimer represents
1308         * the candidates available to the cluster algorithm.
1309         */
1310        num_falsetickers = 0;
1311        while (1) {
1312                int c;
1313                unsigned num_midpoints = 0;
1314
1315                low = 1 << 9;
1316                high = - (1 << 9);
1317                c = 0;
1318                for (i = 0; i < num_points; i++) {
1319                        /* We want to do:
1320                         * if (point[i].type == -1) c++;
1321                         * if (point[i].type == 1) c--;
1322                         * and it's simpler to do it this way:
1323                         */
1324                        c -= point[i].type;
1325                        if (c >= num_candidates - num_falsetickers) {
1326                                /* If it was c++ and it got big enough... */
1327                                low = point[i].edge;
1328                                break;
1329                        }
1330                        if (point[i].type == 0)
1331                                num_midpoints++;
1332                }
1333                c = 0;
1334                for (i = num_points-1; i >= 0; i--) {
1335                        c += point[i].type;
1336                        if (c >= num_candidates - num_falsetickers) {
1337                                high = point[i].edge;
1338                                break;
1339                        }
1340                        if (point[i].type == 0)
1341                                num_midpoints++;
1342                }
1343                /* If the number of midpoints is greater than the number
1344                 * of allowed falsetickers, the intersection contains at
1345                 * least one truechimer with no midpoint - bad.
1346                 * Also, interval should be nonempty.
1347                 */
1348                if (num_midpoints <= num_falsetickers && low < high)
1349                        break;
1350                num_falsetickers++;
1351                if (num_falsetickers * 2 >= num_candidates) {
1352                        VERB3 bb_error_msg("falsetickers:%d, candidates:%d%s",
1353                                        num_falsetickers, num_candidates,
1354                                        ", no peer selected");
1355                        return NULL;
1356                }
1357        }
1358        VERB4 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1359                        low, high, num_candidates, num_falsetickers);
1360
1361        /* Clustering */
1362
1363        /* Construct a list of survivors (p, metric)
1364         * from the chime list, where metric is dominated
1365         * first by stratum and then by root distance.
1366         * All other things being equal, this is the order of preference.
1367         */
1368        num_survivors = 0;
1369        for (i = 0; i < num_points; i++) {
1370                if (point[i].edge < low || point[i].edge > high)
1371                        continue;
1372                p = point[i].p;
1373                survivor[num_survivors].p = p;
1374                /* x.opt_rd == root_distance(p); */
1375                survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
1376                VERB5 bb_error_msg("survivor[%d] metric:%f peer:%s",
1377                        num_survivors, survivor[num_survivors].metric, p->p_dotted);
1378                num_survivors++;
1379        }
1380        /* There must be at least MIN_SELECTED survivors to satisfy the
1381         * correctness assertions. Ordinarily, the Byzantine criteria
1382         * require four survivors, but for the demonstration here, one
1383         * is acceptable.
1384         */
1385        if (num_survivors < MIN_SELECTED) {
1386                VERB3 bb_error_msg("survivors:%d%s",
1387                                num_survivors,
1388                                ", no peer selected");
1389                return NULL;
1390        }
1391
1392//looks like this is ONLY used by the fact that later we pick survivor[0].
1393//we can avoid sorting then, just find the minimum once!
1394        qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1395
1396        /* For each association p in turn, calculate the selection
1397         * jitter p->sjitter as the square root of the sum of squares
1398         * (p->offset - q->offset) over all q associations. The idea is
1399         * to repeatedly discard the survivor with maximum selection
1400         * jitter until a termination condition is met.
1401         */
1402        while (1) {
1403                unsigned max_idx = max_idx;
1404                double max_selection_jitter = max_selection_jitter;
1405                double min_jitter = min_jitter;
1406
1407                if (num_survivors <= MIN_CLUSTERED) {
1408                        VERB4 bb_error_msg("num_survivors %d <= %d, not discarding more",
1409                                        num_survivors, MIN_CLUSTERED);
1410                        break;
1411                }
1412
1413                /* To make sure a few survivors are left
1414                 * for the clustering algorithm to chew on,
1415                 * we stop if the number of survivors
1416                 * is less than or equal to MIN_CLUSTERED (3).
1417                 */
1418                for (i = 0; i < num_survivors; i++) {
1419                        double selection_jitter_sq;
1420
1421                        p = survivor[i].p;
1422                        if (i == 0 || p->filter_jitter < min_jitter)
1423                                min_jitter = p->filter_jitter;
1424
1425                        selection_jitter_sq = 0;
1426                        for (j = 0; j < num_survivors; j++) {
1427                                peer_t *q = survivor[j].p;
1428                                selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1429                        }
1430                        if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1431                                max_selection_jitter = selection_jitter_sq;
1432                                max_idx = i;
1433                        }
1434                        VERB6 bb_error_msg("survivor %d selection_jitter^2:%f",
1435                                        i, selection_jitter_sq);
1436                }
1437                max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
1438                VERB5 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1439                                max_idx, max_selection_jitter, min_jitter);
1440
1441                /* If the maximum selection jitter is less than the
1442                 * minimum peer jitter, then tossing out more survivors
1443                 * will not lower the minimum peer jitter, so we might
1444                 * as well stop.
1445                 */
1446                if (max_selection_jitter < min_jitter) {
1447                        VERB4 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1448                                        max_selection_jitter, min_jitter, num_survivors);
1449                        break;
1450                }
1451
1452                /* Delete survivor[max_idx] from the list
1453                 * and go around again.
1454                 */
1455                VERB6 bb_error_msg("dropping survivor %d", max_idx);
1456                num_survivors--;
1457                while (max_idx < num_survivors) {
1458                        survivor[max_idx] = survivor[max_idx + 1];
1459                        max_idx++;
1460                }
1461        }
1462
1463        if (0) {
1464                /* Combine the offsets of the clustering algorithm survivors
1465                 * using a weighted average with weight determined by the root
1466                 * distance. Compute the selection jitter as the weighted RMS
1467                 * difference between the first survivor and the remaining
1468                 * survivors. In some cases the inherent clock jitter can be
1469                 * reduced by not using this algorithm, especially when frequent
1470                 * clockhopping is involved. bbox: thus we don't do it.
1471                 */
1472                double x, y, z, w;
1473                y = z = w = 0;
1474                for (i = 0; i < num_survivors; i++) {
1475                        p = survivor[i].p;
1476                        x = root_distance(p);
1477                        y += 1 / x;
1478                        z += p->filter_offset / x;
1479                        w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1480                }
1481                //G.cluster_offset = z / y;
1482                //G.cluster_jitter = SQRT(w / y);
1483        }
1484
1485        /* Pick the best clock. If the old system peer is on the list
1486         * and at the same stratum as the first survivor on the list,
1487         * then don't do a clock hop. Otherwise, select the first
1488         * survivor on the list as the new system peer.
1489         */
1490        p = survivor[0].p;
1491        if (G.last_update_peer
1492         && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1493        ) {
1494                /* Starting from 1 is ok here */
1495                for (i = 1; i < num_survivors; i++) {
1496                        if (G.last_update_peer == survivor[i].p) {
1497                                VERB5 bb_error_msg("keeping old synced peer");
1498                                p = G.last_update_peer;
1499                                goto keep_old;
1500                        }
1501                }
1502        }
1503        G.last_update_peer = p;
1504 keep_old:
1505        VERB4 bb_error_msg("selected peer %s filter_offset:%+f age:%f",
1506                        p->p_dotted,
1507                        p->filter_offset,
1508                        G.cur_time - p->lastpkt_recv_time
1509        );
1510        return p;
1511}
1512
1513
1514/*
1515 * Local clock discipline and its helpers
1516 */
1517static void
1518set_new_values(int disc_state, double offset, double recv_time)
1519{
1520        /* Enter new state and set state variables. Note we use the time
1521         * of the last clock filter sample, which must be earlier than
1522         * the current time.
1523         */
1524        VERB4 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
1525                        disc_state, offset, recv_time);
1526        G.discipline_state = disc_state;
1527        G.last_update_offset = offset;
1528        G.last_update_recv_time = recv_time;
1529}
1530/* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
1531static NOINLINE int
1532update_local_clock(peer_t *p)
1533{
1534        int rc;
1535        struct timex tmx;
1536        /* Note: can use G.cluster_offset instead: */
1537        double offset = p->filter_offset;
1538        double recv_time = p->lastpkt_recv_time;
1539        double abs_offset;
1540#if !USING_KERNEL_PLL_LOOP
1541        double freq_drift;
1542#endif
1543#if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
1544        double since_last_update;
1545#endif
1546        double etemp, dtemp;
1547
1548        abs_offset = fabs(offset);
1549
1550#if 0
1551        /* If needed, -S script can do it by looking at $offset
1552         * env var and killing parent */
1553        /* If the offset is too large, give up and go home */
1554        if (abs_offset > PANIC_THRESHOLD) {
1555                bb_error_msg_and_die("offset %f far too big, exiting", offset);
1556        }
1557#endif
1558
1559        /* If this is an old update, for instance as the result
1560         * of a system peer change, avoid it. We never use
1561         * an old sample or the same sample twice.
1562         */
1563        if (recv_time <= G.last_update_recv_time) {
1564                VERB3 bb_error_msg("update from %s: same or older datapoint, not using it",
1565                        p->p_dotted);
1566                return 0; /* "leave poll interval as is" */
1567        }
1568
1569        /* Clock state machine transition function. This is where the
1570         * action is and defines how the system reacts to large time
1571         * and frequency errors.
1572         */
1573#if !USING_KERNEL_PLL_LOOP || USING_INITIAL_FREQ_ESTIMATION
1574        since_last_update = recv_time - G.reftime;
1575#endif
1576#if !USING_KERNEL_PLL_LOOP
1577        freq_drift = 0;
1578#endif
1579#if USING_INITIAL_FREQ_ESTIMATION
1580        if (G.discipline_state == STATE_FREQ) {
1581                /* Ignore updates until the stepout threshold */
1582                if (since_last_update < WATCH_THRESHOLD) {
1583                        VERB4 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1584                                        WATCH_THRESHOLD - since_last_update);
1585                        return 0; /* "leave poll interval as is" */
1586                }
1587# if !USING_KERNEL_PLL_LOOP
1588                freq_drift = (offset - G.last_update_offset) / since_last_update;
1589# endif
1590        }
1591#endif
1592
1593        /* There are two main regimes: when the
1594         * offset exceeds the step threshold and when it does not.
1595         */
1596        if (abs_offset > STEP_THRESHOLD) {
1597#if 0
1598                double remains;
1599
1600// This "spike state" seems to be useless, peer selection already drops
1601// occassional "bad" datapoints. If we are here, there were _many_
1602// large offsets. When a few first large offsets are seen,
1603// we end up in "no valid datapoints, no peer selected" state.
1604// Only when enough of them are seen (which means it's not a fluke),
1605// we end up here. Looks like _our_ clock is off.
1606                switch (G.discipline_state) {
1607                case STATE_SYNC:
1608                        /* The first outlyer: ignore it, switch to SPIK state */
1609                        VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
1610                                p->p_dotted, offset,
1611                                "");
1612                        G.discipline_state = STATE_SPIK;
1613                        return -1; /* "decrease poll interval" */
1614
1615                case STATE_SPIK:
1616                        /* Ignore succeeding outlyers until either an inlyer
1617                         * is found or the stepout threshold is exceeded.
1618                         */
1619                        remains = WATCH_THRESHOLD - since_last_update;
1620                        if (remains > 0) {
1621                                VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
1622                                        p->p_dotted, offset,
1623                                        ", datapoint ignored");
1624                                return -1; /* "decrease poll interval" */
1625                        }
1626                        /* fall through: we need to step */
1627                } /* switch */
1628#endif
1629
1630                /* Step the time and clamp down the poll interval.
1631                 *
1632                 * In NSET state an initial frequency correction is
1633                 * not available, usually because the frequency file has
1634                 * not yet been written. Since the time is outside the
1635                 * capture range, the clock is stepped. The frequency
1636                 * will be set directly following the stepout interval.
1637                 *
1638                 * In FSET state the initial frequency has been set
1639                 * from the frequency file. Since the time is outside
1640                 * the capture range, the clock is stepped immediately,
1641                 * rather than after the stepout interval. Guys get
1642                 * nervous if it takes 17 minutes to set the clock for
1643                 * the first time.
1644                 *
1645                 * In SPIK state the stepout threshold has expired and
1646                 * the phase is still above the step threshold. Note
1647                 * that a single spike greater than the step threshold
1648                 * is always suppressed, even at the longer poll
1649                 * intervals.
1650                 */
1651                VERB4 bb_error_msg("stepping time by %+f; poll_exp=MINPOLL", offset);
1652                step_time(offset);
1653                if (option_mask32 & OPT_q) {
1654                        /* We were only asked to set time once. Done. */
1655                        exit(0);
1656                }
1657
1658                clamp_pollexp_and_set_MAXSTRAT();
1659
1660                run_script("step", offset);
1661
1662                recv_time += offset;
1663
1664#if USING_INITIAL_FREQ_ESTIMATION
1665                if (G.discipline_state == STATE_NSET) {
1666                        set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1667                        return 1; /* "ok to increase poll interval" */
1668                }
1669#endif
1670                abs_offset = offset = 0;
1671                set_new_values(STATE_SYNC, offset, recv_time);
1672        } else { /* abs_offset <= STEP_THRESHOLD */
1673
1674                /* The ratio is calculated before jitter is updated to make
1675                 * poll adjust code more sensitive to large offsets.
1676                 */
1677                G.offset_to_jitter_ratio = abs_offset / G.discipline_jitter;
1678
1679                /* Compute the clock jitter as the RMS of exponentially
1680                 * weighted offset differences. Used by the poll adjust code.
1681                 */
1682                etemp = SQUARE(G.discipline_jitter);
1683                dtemp = SQUARE(offset - G.last_update_offset);
1684                G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1685                if (G.discipline_jitter < G_precision_sec)
1686                        G.discipline_jitter = G_precision_sec;
1687
1688                switch (G.discipline_state) {
1689                case STATE_NSET:
1690                        if (option_mask32 & OPT_q) {
1691                                /* We were only asked to set time once.
1692                                 * The clock is precise enough, no need to step.
1693                                 */
1694                                exit(0);
1695                        }
1696#if USING_INITIAL_FREQ_ESTIMATION
1697                        /* This is the first update received and the frequency
1698                         * has not been initialized. The first thing to do
1699                         * is directly measure the oscillator frequency.
1700                         */
1701                        set_new_values(STATE_FREQ, offset, recv_time);
1702#else
1703                        set_new_values(STATE_SYNC, offset, recv_time);
1704#endif
1705                        VERB4 bb_error_msg("transitioning to FREQ, datapoint ignored");
1706                        return 0; /* "leave poll interval as is" */
1707
1708#if 0 /* this is dead code for now */
1709                case STATE_FSET:
1710                        /* This is the first update and the frequency
1711                         * has been initialized. Adjust the phase, but
1712                         * don't adjust the frequency until the next update.
1713                         */
1714                        set_new_values(STATE_SYNC, offset, recv_time);
1715                        /* freq_drift remains 0 */
1716                        break;
1717#endif
1718
1719#if USING_INITIAL_FREQ_ESTIMATION
1720                case STATE_FREQ:
1721                        /* since_last_update >= WATCH_THRESHOLD, we waited enough.
1722                         * Correct the phase and frequency and switch to SYNC state.
1723                         * freq_drift was already estimated (see code above)
1724                         */
1725                        set_new_values(STATE_SYNC, offset, recv_time);
1726                        break;
1727#endif
1728
1729                default:
1730#if !USING_KERNEL_PLL_LOOP
1731                        /* Compute freq_drift due to PLL and FLL contributions.
1732                         *
1733                         * The FLL and PLL frequency gain constants
1734                         * depend on the poll interval and Allan
1735                         * intercept. The FLL is not used below one-half
1736                         * the Allan intercept. Above that the loop gain
1737                         * increases in steps to 1 / AVG.
1738                         */
1739                        if ((1 << G.poll_exp) > ALLAN / 2) {
1740                                etemp = FLL - G.poll_exp;
1741                                if (etemp < AVG)
1742                                        etemp = AVG;
1743                                freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1744                        }
1745                        /* For the PLL the integration interval
1746                         * (numerator) is the minimum of the update
1747                         * interval and poll interval. This allows
1748                         * oversampling, but not undersampling.
1749                         */
1750                        etemp = MIND(since_last_update, (1 << G.poll_exp));
1751                        dtemp = (4 * PLL) << G.poll_exp;
1752                        freq_drift += offset * etemp / SQUARE(dtemp);
1753#endif
1754                        set_new_values(STATE_SYNC, offset, recv_time);
1755                        break;
1756                }
1757                if (G.stratum != p->lastpkt_stratum + 1) {
1758                        G.stratum = p->lastpkt_stratum + 1;
1759                        run_script("stratum", offset);
1760                }
1761        }
1762
1763        G.reftime = G.cur_time;
1764        G.ntp_status = p->lastpkt_status;
1765        G.refid = p->lastpkt_refid;
1766        G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
1767        dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
1768        dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
1769        G.rootdisp = p->lastpkt_rootdisp + dtemp;
1770        VERB4 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1771
1772        /* We are in STATE_SYNC now, but did not do adjtimex yet.
1773         * (Any other state does not reach this, they all return earlier)
1774         * By this time, freq_drift and offset are set
1775         * to values suitable for adjtimex.
1776         */
1777#if !USING_KERNEL_PLL_LOOP
1778        /* Calculate the new frequency drift and frequency stability (wander).
1779         * Compute the clock wander as the RMS of exponentially weighted
1780         * frequency differences. This is not used directly, but can,
1781         * along with the jitter, be a highly useful monitoring and
1782         * debugging tool.
1783         */
1784        dtemp = G.discipline_freq_drift + freq_drift;
1785        G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
1786        etemp = SQUARE(G.discipline_wander);
1787        dtemp = SQUARE(dtemp);
1788        G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1789
1790        VERB4 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1791                        G.discipline_freq_drift,
1792                        (long)(G.discipline_freq_drift * 65536e6),
1793                        freq_drift,
1794                        G.discipline_wander);
1795#endif
1796        VERB4 {
1797                memset(&tmx, 0, sizeof(tmx));
1798                if (adjtimex(&tmx) < 0)
1799                        bb_perror_msg_and_die("adjtimex");
1800                bb_error_msg("p adjtimex freq:%ld offset:%+ld status:0x%x tc:%ld",
1801                                tmx.freq, tmx.offset, tmx.status, tmx.constant);
1802        }
1803
1804        memset(&tmx, 0, sizeof(tmx));
1805#if 0
1806//doesn't work, offset remains 0 (!) in kernel:
1807//ntpd:  set adjtimex freq:1786097 tmx.offset:77487
1808//ntpd: prev adjtimex freq:1786097 tmx.offset:0
1809//ntpd:  cur adjtimex freq:1786097 tmx.offset:0
1810        tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1811        /* 65536 is one ppm */
1812        tmx.freq = G.discipline_freq_drift * 65536e6;
1813#endif
1814        tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
1815
1816        tmx.offset = (long)(offset * 1000000); /* usec */
1817        if (SLEW_THRESHOLD < STEP_THRESHOLD) {
1818                if (tmx.offset > (long)(SLEW_THRESHOLD * 1000000)) {
1819                        tmx.offset = (long)(SLEW_THRESHOLD * 1000000);
1820                }
1821                if (tmx.offset < -(long)(SLEW_THRESHOLD * 1000000)) {
1822                        tmx.offset = -(long)(SLEW_THRESHOLD * 1000000);
1823                }
1824        }
1825
1826        tmx.status = STA_PLL;
1827        if (G.FREQHOLD_cnt != 0) {
1828                /* man adjtimex on STA_FREQHOLD:
1829                 * "Normally adjustments made via ADJ_OFFSET result in dampened
1830                 * frequency adjustments also being made.
1831                 * This flag prevents the small frequency adjustment from being
1832                 * made when correcting for an ADJ_OFFSET value."
1833                 *
1834                 * Use this flag for a few first adjustments at the beginning
1835                 * of ntpd execution, otherwise even relatively small initial
1836                 * offset tend to cause largish changes to in-kernel tmx.freq.
1837                 * If ntpd was restarted due to e.g. switch to another network,
1838                 * this destroys already well-established tmx.freq value.
1839                 */
1840                if (G.FREQHOLD_cnt < 0) {
1841                        /* Initialize it */
1842// Example: a laptop whose clock runs slower when hibernated,
1843// after wake up it still has good tmx.freq, but accumulated ~0.5 sec offset:
1844// Run with code where initial G.FREQHOLD_cnt was always 8:
1845//15:17:52.947 no valid datapoints, no peer selected
1846//15:17:56.515 update from:<IP> offset:+0.485133 delay:0.157762 jitter:0.209310 clock drift:-1.393ppm tc:4
1847//15:17:57.719 update from:<IP> offset:+0.483825 delay:0.158070 jitter:0.181159 clock drift:-1.393ppm tc:4
1848//15:17:59.925 update from:<IP> offset:+0.479504 delay:0.158147 jitter:0.156657 clock drift:-1.393ppm tc:4
1849//15:18:33.322 update from:<IP> offset:+0.428119 delay:0.158317 jitter:0.138071 clock drift:-1.393ppm tc:4
1850//15:19:06.718 update from:<IP> offset:+0.376932 delay:0.158276 jitter:0.122075 clock drift:-1.393ppm tc:4
1851//15:19:39.114 update from:<IP> offset:+0.327022 delay:0.158384 jitter:0.108538 clock drift:-1.393ppm tc:4
1852//15:20:12.715 update from:<IP> offset:+0.275596 delay:0.158297 jitter:0.097292 clock drift:-1.393ppm tc:4
1853//15:20:45.111 update from:<IP> offset:+0.225715 delay:0.158271 jitter:0.087841 clock drift:-1.393ppm tc:4
1854// If allowed to continue, it would start increasing tmx.freq now.
1855// Instead, it was ^Ced, and started anew:
1856//15:21:15.043 no valid datapoints, no peer selected
1857//15:21:17.408 update from:<IP> offset:+0.175910 delay:0.158314 jitter:0.076683 clock drift:-1.393ppm tc:4
1858//15:21:19.774 update from:<IP> offset:+0.171784 delay:0.158401 jitter:0.066436 clock drift:-1.393ppm tc:4
1859//15:21:22.140 update from:<IP> offset:+0.171660 delay:0.158592 jitter:0.057536 clock drift:-1.393ppm tc:4
1860//15:21:22.140 update from:<IP> offset:+0.167126 delay:0.158507 jitter:0.049792 clock drift:-1.393ppm tc:4
1861//15:21:55.696 update from:<IP> offset:+0.115223 delay:0.158277 jitter:0.050240 clock drift:-1.393ppm tc:4
1862//15:22:29.093 update from:<IP> offset:+0.068051 delay:0.158243 jitter:0.049405 clock drift:-1.393ppm tc:5
1863//15:23:02.490 update from:<IP> offset:+0.051632 delay:0.158215 jitter:0.043545 clock drift:-1.393ppm tc:5
1864//15:23:34.726 update from:<IP> offset:+0.039984 delay:0.158157 jitter:0.038106 clock drift:-1.393ppm tc:5
1865// STA_FREQHOLD no longer set, started increasing tmx.freq now:
1866//15:24:06.961 update from:<IP> offset:+0.030968 delay:0.158190 jitter:0.033306 clock drift:+2.387ppm tc:5
1867//15:24:40.357 update from:<IP> offset:+0.023648 delay:0.158211 jitter:0.029072 clock drift:+5.454ppm tc:5
1868//15:25:13.774 update from:<IP> offset:+0.018068 delay:0.157660 jitter:0.025288 clock drift:+7.728ppm tc:5
1869//15:26:19.173 update from:<IP> offset:+0.010057 delay:0.157969 jitter:0.022255 clock drift:+8.361ppm tc:6
1870//15:27:26.602 update from:<IP> offset:+0.006737 delay:0.158103 jitter:0.019316 clock drift:+8.792ppm tc:6
1871//15:28:33.030 update from:<IP> offset:+0.004513 delay:0.158294 jitter:0.016765 clock drift:+9.080ppm tc:6
1872//15:29:40.617 update from:<IP> offset:+0.002787 delay:0.157745 jitter:0.014543 clock drift:+9.258ppm tc:6
1873//15:30:47.045 update from:<IP> offset:+0.001324 delay:0.157709 jitter:0.012594 clock drift:+9.342ppm tc:6
1874//15:31:53.473 update from:<IP> offset:+0.000007 delay:0.158142 jitter:0.010922 clock drift:+9.343ppm tc:6
1875//15:32:58.902 update from:<IP> offset:-0.000728 delay:0.158222 jitter:0.009454 clock drift:+9.298ppm tc:6
1876                        /*
1877                         * This expression would choose MIN_FREQHOLD + 8 in the above example.
1878                         */
1879                        G.FREQHOLD_cnt = 1 + MIN_FREQHOLD + ((unsigned)(abs(tmx.offset)) >> 16);
1880                }
1881                G.FREQHOLD_cnt--;
1882                tmx.status |= STA_FREQHOLD;
1883        }
1884        if (G.ntp_status & LI_PLUSSEC)
1885                tmx.status |= STA_INS;
1886        if (G.ntp_status & LI_MINUSSEC)
1887                tmx.status |= STA_DEL;
1888
1889        tmx.constant = (int)G.poll_exp - 4;
1890        /* EXPERIMENTAL.
1891         * The below if statement should be unnecessary, but...
1892         * It looks like Linux kernel's PLL is far too gentle in changing
1893         * tmx.freq in response to clock offset. Offset keeps growing
1894         * and eventually we fall back to smaller poll intervals.
1895         * We can make correction more aggressive (about x2) by supplying
1896         * PLL time constant which is one less than the real one.
1897         * To be on a safe side, let's do it only if offset is significantly
1898         * larger than jitter.
1899         */
1900        if (G.offset_to_jitter_ratio >= TIMECONST_HACK_GATE)
1901                tmx.constant--;
1902        if (tmx.constant < 0)
1903                tmx.constant = 0;
1904
1905        //tmx.esterror = (uint32_t)(clock_jitter * 1e6);
1906        //tmx.maxerror = (uint32_t)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
1907        rc = adjtimex(&tmx);
1908        if (rc < 0)
1909                bb_perror_msg_and_die("adjtimex");
1910        /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1911         * Not sure why. Perhaps it is normal.
1912         */
1913        VERB4 bb_error_msg("adjtimex:%d freq:%ld offset:%+ld status:0x%x",
1914                                rc, tmx.freq, tmx.offset, tmx.status);
1915        G.kernel_freq_drift = tmx.freq / 65536;
1916        VERB2 bb_error_msg("update from:%s offset:%+f delay:%f jitter:%f clock drift:%+.3fppm tc:%d",
1917                        p->p_dotted,
1918                        offset,
1919                        p->p_raw_delay,
1920                        G.discipline_jitter,
1921                        (double)tmx.freq / 65536,
1922                        (int)tmx.constant
1923        );
1924
1925        return 1; /* "ok to increase poll interval" */
1926}
1927
1928
1929/*
1930 * We've got a new reply packet from a peer, process it
1931 * (helpers first)
1932 */
1933static unsigned
1934poll_interval(int upper_bound)
1935{
1936        unsigned interval, r, mask;
1937        interval = 1 << G.poll_exp;
1938        if (interval > upper_bound)
1939                interval = upper_bound;
1940        mask = ((interval-1) >> 4) | 1;
1941        r = rand();
1942        interval += r & mask; /* ~ random(0..1) * interval/16 */
1943        VERB4 bb_error_msg("chose poll interval:%u (poll_exp:%d)", interval, G.poll_exp);
1944        return interval;
1945}
1946static void
1947adjust_poll(int count)
1948{
1949        G.polladj_count += count;
1950        if (G.polladj_count > POLLADJ_LIMIT) {
1951                G.polladj_count = 0;
1952                if (G.poll_exp < MAXPOLL) {
1953                        G.poll_exp++;
1954                        VERB4 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1955                                        G.discipline_jitter, G.poll_exp);
1956                }
1957        } else if (G.polladj_count < -POLLADJ_LIMIT || (count < 0 && G.poll_exp > BIGPOLL)) {
1958                G.polladj_count = 0;
1959                if (G.poll_exp > MINPOLL) {
1960                        llist_t *item;
1961
1962                        G.poll_exp--;
1963                        /* Correct p->next_action_time in each peer
1964                         * which waits for sending, so that they send earlier.
1965                         * Old pp->next_action_time are on the order
1966                         * of t + (1 << old_poll_exp) + small_random,
1967                         * we simply need to subtract ~half of that.
1968                         */
1969                        for (item = G.ntp_peers; item != NULL; item = item->link) {
1970                                peer_t *pp = (peer_t *) item->data;
1971                                if (pp->p_fd < 0)
1972                                        pp->next_action_time -= (1 << G.poll_exp);
1973                        }
1974                        VERB4 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1975                                        G.discipline_jitter, G.poll_exp);
1976                }
1977        } else {
1978                VERB4 bb_error_msg("polladj: count:%d", G.polladj_count);
1979        }
1980}
1981static NOINLINE void
1982recv_and_process_peer_pkt(peer_t *p)
1983{
1984        int         rc;
1985        ssize_t     size;
1986        msg_t       msg;
1987        double      T1, T2, T3, T4;
1988        double      offset;
1989        double      prev_delay, delay;
1990        unsigned    interval;
1991        datapoint_t *datapoint;
1992        peer_t      *q;
1993
1994        offset = 0;
1995
1996        /* We can recvfrom here and check from.IP, but some multihomed
1997         * ntp servers reply from their *other IP*.
1998         * TODO: maybe we should check at least what we can: from.port == 123?
1999         */
2000 recv_again:
2001        size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
2002        if (size < 0) {
2003                if (errno == EINTR)
2004                        /* Signal caught */
2005                        goto recv_again;
2006                if (errno == EAGAIN)
2007                        /* There was no packet after all
2008                         * (poll() returning POLLIN for a fd
2009                         * is not a ironclad guarantee that data is there)
2010                         */
2011                        return;
2012                /*
2013                 * If you need a different handling for a specific
2014                 * errno, always explain it in comment.
2015                 */
2016                bb_perror_msg_and_die("recv(%s) error", p->p_dotted);
2017        }
2018
2019#if ENABLE_FEATURE_NTP_AUTH
2020        if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE_MD5_AUTH && size != NTP_MSGSIZE_SHA1_AUTH) {
2021                bb_error_msg("malformed packet received from %s", p->p_dotted);
2022                return;
2023        }
2024        if (p->key_entry && hashes_differ(p, &msg)) {
2025                bb_error_msg("invalid cryptographic hash received from %s", p->p_dotted);
2026                return;
2027        }
2028#else
2029        if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE_MD5_AUTH) {
2030                bb_error_msg("malformed packet received from %s", p->p_dotted);
2031                return;
2032        }
2033#endif
2034
2035        if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
2036         || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
2037        ) {
2038                /* Somebody else's packet */
2039                return;
2040        }
2041
2042        /* We do not expect any more packets from this peer for now.
2043         * Closing the socket informs kernel about it.
2044         * We open a new socket when we send a new query.
2045         */
2046        close(p->p_fd);
2047        p->p_fd = -1;
2048
2049        if ((msg.m_status & LI_ALARM) == LI_ALARM
2050         || msg.m_stratum == 0
2051         || msg.m_stratum > NTP_MAXSTRATUM
2052        ) {
2053                bb_error_msg("reply from %s: peer is unsynced", p->p_dotted);
2054                /*
2055                 * Stratum 0 responses may have commands in 32-bit m_refid field:
2056                 * "DENY", "RSTR" - peer does not like us at all,
2057                 * "RATE" - peer is overloaded, reduce polling freq.
2058                 * If poll interval is small, increase it.
2059                 */
2060                if (G.poll_exp < BIGPOLL)
2061                        goto increase_interval;
2062                goto pick_normal_interval;
2063        }
2064
2065//      /* Verify valid root distance */
2066//      if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
2067//              return;                 /* invalid header values */
2068
2069        /*
2070         * From RFC 2030 (with a correction to the delay math):
2071         *
2072         * Timestamp Name          ID   When Generated
2073         * ------------------------------------------------------------
2074         * Originate Timestamp     T1   time request sent by client
2075         * Receive Timestamp       T2   time request received by server
2076         * Transmit Timestamp      T3   time reply sent by server
2077         * Destination Timestamp   T4   time reply received by client
2078         *
2079         * The roundtrip delay and local clock offset are defined as
2080         *
2081         * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
2082         */
2083        T1 = p->p_xmttime;
2084        T2 = lfp_to_d(msg.m_rectime);
2085        T3 = lfp_to_d(msg.m_xmttime);
2086        T4 = G.cur_time;
2087        delay = (T4 - T1) - (T3 - T2);
2088
2089        /*
2090         * If this packet's delay is much bigger than the last one,
2091         * it's better to just ignore it than use its much less precise value.
2092         */
2093        prev_delay = p->p_raw_delay;
2094        p->p_raw_delay = (delay < 0 ? 0.0 : delay);
2095        if (p->reachable_bits
2096         && delay > prev_delay * BAD_DELAY_GROWTH
2097         && delay > 1.0 / (8 * 1024) /* larger than ~0.000122 */
2098        ) {
2099                bb_error_msg("reply from %s: delay %f is too high, ignoring", p->p_dotted, delay);
2100                goto pick_normal_interval;
2101        }
2102
2103        /* The delay calculation is a special case. In cases where the
2104         * server and client clocks are running at different rates and
2105         * with very fast networks, the delay can appear negative. In
2106         * order to avoid violating the Principle of Least Astonishment,
2107         * the delay is clamped not less than the system precision.
2108         */
2109        if (delay < G_precision_sec)
2110                delay = G_precision_sec;
2111        p->lastpkt_delay = delay;
2112        p->lastpkt_recv_time = T4;
2113        VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
2114        p->lastpkt_status = msg.m_status;
2115        p->lastpkt_stratum = msg.m_stratum;
2116        p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
2117        p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
2118        p->lastpkt_refid = msg.m_refid;
2119
2120        p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
2121        datapoint = &p->filter_datapoint[p->datapoint_idx];
2122        datapoint->d_recv_time = T4;
2123        datapoint->d_offset    = offset = ((T2 - T1) + (T3 - T4)) / 2;
2124        datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
2125        if (!p->reachable_bits) {
2126                /* 1st datapoint ever - replicate offset in every element */
2127                int i;
2128                for (i = 0; i < NUM_DATAPOINTS; i++) {
2129                        p->filter_datapoint[i].d_offset = offset;
2130                }
2131        }
2132
2133        p->reachable_bits |= 1;
2134        if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
2135                bb_info_msg("reply from %s: offset:%+f delay:%f status:0x%02x strat:%d refid:0x%08x rootdelay:%f reach:0x%02x",
2136                        p->p_dotted,
2137                        offset,
2138                        p->p_raw_delay,
2139                        p->lastpkt_status,
2140                        p->lastpkt_stratum,
2141                        p->lastpkt_refid,
2142                        p->lastpkt_rootdelay,
2143                        p->reachable_bits
2144                        /* not shown: m_ppoll, m_precision_exp, m_rootdisp,
2145                         * m_reftime, m_orgtime, m_rectime, m_xmttime
2146                         */
2147                );
2148        }
2149
2150        /* Muck with statictics and update the clock */
2151        filter_datapoints(p);
2152        q = select_and_cluster();
2153        rc = 0;
2154        if (q) {
2155                if (!(option_mask32 & OPT_w)) {
2156                        rc = update_local_clock(q);
2157#if 0
2158//Disabled this because there is a case where largish offsets
2159//are unavoidable: if network round-trip delay is, say, ~0.6s,
2160//error in offset estimation would be ~delay/2 ~= 0.3s.
2161//Thus, offsets will be usually in -0.3...0.3s range.
2162//In this case, this code would keep poll interval small,
2163//but it won't be helping.
2164//BIGOFF check below deals with a case of seeing multi-second offsets.
2165
2166                        /* If drift is dangerously large, immediately
2167                         * drop poll interval one step down.
2168                         */
2169                        if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
2170                                VERB4 bb_error_msg("offset:%+f > POLLDOWN_OFFSET", q->filter_offset);
2171                                adjust_poll(-POLLADJ_LIMIT * 3);
2172                                rc = 0;
2173                        }
2174#endif
2175                }
2176        } else {
2177                /* No peer selected.
2178                 * If poll interval is small, increase it.
2179                 */
2180                if (G.poll_exp < BIGPOLL)
2181                        goto increase_interval;
2182        }
2183
2184        if (rc != 0) {
2185                /* Adjust the poll interval by comparing the current offset
2186                 * with the clock jitter. If the offset is less than
2187                 * the clock jitter times a constant, then the averaging interval
2188                 * is increased, otherwise it is decreased. A bit of hysteresis
2189                 * helps calm the dance. Works best using burst mode.
2190                 */
2191                if (rc > 0 && G.offset_to_jitter_ratio <= POLLADJ_GATE) {
2192                        /* was += G.poll_exp but it is a bit
2193                         * too optimistic for my taste at high poll_exp's */
2194 increase_interval:
2195                        adjust_poll(MINPOLL);
2196                } else {
2197                        VERB3 if (rc > 0)
2198                                bb_error_msg("want smaller interval: offset/jitter = %u",
2199                                        G.offset_to_jitter_ratio);
2200                        adjust_poll(-G.poll_exp * 2);
2201                }
2202        }
2203
2204        /* Decide when to send new query for this peer */
2205 pick_normal_interval:
2206        interval = poll_interval(INT_MAX);
2207        if (fabs(offset) >= BIGOFF && interval > BIGOFF_INTERVAL) {
2208                /* If we are synced, offsets are less than SLEW_THRESHOLD,
2209                 * or at the very least not much larger than it.
2210                 * Now we see a largish one.
2211                 * Either this peer is feeling bad, or packet got corrupted,
2212                 * or _our_ clock is wrong now and _all_ peers will show similar
2213                 * largish offsets too.
2214                 * I observed this with laptop suspend stopping clock.
2215                 * In any case, it makes sense to make next request soonish:
2216                 * cases 1 and 2: get a better datapoint,
2217                 * case 3: allows to resync faster.
2218                 */
2219                interval = BIGOFF_INTERVAL;
2220        }
2221
2222        set_next(p, interval);
2223}
2224
2225#if ENABLE_FEATURE_NTPD_SERVER
2226static NOINLINE void
2227recv_and_process_client_pkt(void /*int fd*/)
2228{
2229        ssize_t          size;
2230        //uint8_t          version;
2231        len_and_sockaddr *to;
2232        struct sockaddr  *from;
2233        msg_t            msg;
2234        uint8_t          query_status;
2235        l_fixedpt_t      query_xmttime;
2236
2237        to = get_sock_lsa(G_listen_fd);
2238        from = xzalloc(to->len);
2239
2240        size = recv_from_to(G_listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
2241#if ENABLE_FEATURE_NTP_AUTH
2242        if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE_MD5_AUTH && size != NTP_MSGSIZE_SHA1_AUTH)
2243#else
2244        if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE_MD5_AUTH)
2245#endif
2246        {
2247                char *addr;
2248                if (size < 0) {
2249                        if (errno == EAGAIN)
2250                                goto bail;
2251                        bb_perror_msg_and_die("recv");
2252                }
2253                addr = xmalloc_sockaddr2dotted_noport(from);
2254                bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
2255                free(addr);
2256                goto bail;
2257        }
2258
2259        /* Respond only to client and symmetric active packets */
2260        if ((msg.m_status & MODE_MASK) != MODE_CLIENT
2261         && (msg.m_status & MODE_MASK) != MODE_SYM_ACT
2262        ) {
2263                goto bail;
2264        }
2265
2266        query_status = msg.m_status;
2267        query_xmttime = msg.m_xmttime;
2268
2269        /* Build a reply packet */
2270        memset(&msg, 0, sizeof(msg));
2271        msg.m_status = G.stratum < MAXSTRAT ? (G.ntp_status & LI_MASK) : LI_ALARM;
2272        msg.m_status |= (query_status & VERSION_MASK);
2273        msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
2274                        MODE_SERVER : MODE_SYM_PAS;
2275        msg.m_stratum = G.stratum;
2276        msg.m_ppoll = G.poll_exp;
2277        msg.m_precision_exp = G_precision_exp;
2278        /* this time was obtained between poll() and recv() */
2279        msg.m_rectime = d_to_lfp(G.cur_time);
2280        msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
2281        if (G.peer_cnt == 0) {
2282                /* we have no peers: "stratum 1 server" mode. reftime = our own time */
2283                G.reftime = G.cur_time;
2284        }
2285        msg.m_reftime = d_to_lfp(G.reftime);
2286        msg.m_orgtime = query_xmttime;
2287        msg.m_rootdelay = d_to_sfp(G.rootdelay);
2288//simple code does not do this, fix simple code!
2289        msg.m_rootdisp = d_to_sfp(G.rootdisp);
2290        //version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
2291        msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
2292
2293        /* We reply from the local address packet was sent to,
2294         * this makes to/from look swapped here: */
2295        do_sendto(G_listen_fd,
2296                /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
2297                &msg, size);
2298
2299 bail:
2300        free(to);
2301        free(from);
2302}
2303#endif
2304
2305/* Upstream ntpd's options:
2306 *
2307 * -4   Force DNS resolution of host names to the IPv4 namespace.
2308 * -6   Force DNS resolution of host names to the IPv6 namespace.
2309 * -a   Require cryptographic authentication for broadcast client,
2310 *      multicast client and symmetric passive associations.
2311 *      This is the default.
2312 * -A   Do not require cryptographic authentication for broadcast client,
2313 *      multicast client and symmetric passive associations.
2314 *      This is almost never a good idea.
2315 * -b   Enable the client to synchronize to broadcast servers.
2316 * -c conffile
2317 *      Specify the name and path of the configuration file,
2318 *      default /etc/ntp.conf
2319 * -d   Specify debugging mode. This option may occur more than once,
2320 *      with each occurrence indicating greater detail of display.
2321 * -D level
2322 *      Specify debugging level directly.
2323 * -f driftfile
2324 *      Specify the name and path of the frequency file.
2325 *      This is the same operation as the "driftfile FILE"
2326 *      configuration command.
2327 * -g   Normally, ntpd exits with a message to the system log
2328 *      if the offset exceeds the panic threshold, which is 1000 s
2329 *      by default. This option allows the time to be set to any value
2330 *      without restriction; however, this can happen only once.
2331 *      If the threshold is exceeded after that, ntpd will exit
2332 *      with a message to the system log. This option can be used
2333 *      with the -q and -x options. See the tinker command for other options.
2334 * -i jaildir
2335 *      Chroot the server to the directory jaildir. This option also implies
2336 *      that the server attempts to drop root privileges at startup
2337 *      (otherwise, chroot gives very little additional security).
2338 *      You may need to also specify a -u option.
2339 * -k keyfile
2340 *      Specify the name and path of the symmetric key file,
2341 *      default /etc/ntp/keys. This is the same operation
2342 *      as the "keys FILE" configuration command.
2343 * -l logfile
2344 *      Specify the name and path of the log file. The default
2345 *      is the system log file. This is the same operation as
2346 *      the "logfile FILE" configuration command.
2347 * -L   Do not listen to virtual IPs. The default is to listen.
2348 * -n   Don't fork.
2349 * -N   To the extent permitted by the operating system,
2350 *      run the ntpd at the highest priority.
2351 * -p pidfile
2352 *      Specify the name and path of the file used to record the ntpd
2353 *      process ID. This is the same operation as the "pidfile FILE"
2354 *      configuration command.
2355 * -P priority
2356 *      To the extent permitted by the operating system,
2357 *      run the ntpd at the specified priority.
2358 * -q   Exit the ntpd just after the first time the clock is set.
2359 *      This behavior mimics that of the ntpdate program, which is
2360 *      to be retired. The -g and -x options can be used with this option.
2361 *      Note: The kernel time discipline is disabled with this option.
2362 * -r broadcastdelay
2363 *      Specify the default propagation delay from the broadcast/multicast
2364 *      server to this client. This is necessary only if the delay
2365 *      cannot be computed automatically by the protocol.
2366 * -s statsdir
2367 *      Specify the directory path for files created by the statistics
2368 *      facility. This is the same operation as the "statsdir DIR"
2369 *      configuration command.
2370 * -t key
2371 *      Add a key number to the trusted key list. This option can occur
2372 *      more than once.
2373 * -u user[:group]
2374 *      Specify a user, and optionally a group, to switch to.
2375 * -v variable
2376 * -V variable
2377 *      Add a system variable listed by default.
2378 * -x   Normally, the time is slewed if the offset is less than the step
2379 *      threshold, which is 128 ms by default, and stepped if above
2380 *      the threshold. This option sets the threshold to 600 s, which is
2381 *      well within the accuracy window to set the clock manually.
2382 *      Note: since the slew rate of typical Unix kernels is limited
2383 *      to 0.5 ms/s, each second of adjustment requires an amortization
2384 *      interval of 2000 s. Thus, an adjustment as much as 600 s
2385 *      will take almost 14 days to complete. This option can be used
2386 *      with the -g and -q options. See the tinker command for other options.
2387 *      Note: The kernel time discipline is disabled with this option.
2388 */
2389#if ENABLE_FEATURE_NTP_AUTH
2390static key_entry_t *
2391find_key_entry(llist_t *key_entries, unsigned id)
2392{
2393        while (key_entries) {
2394                key_entry_t *cur = (key_entry_t*) key_entries->data;
2395                if (cur->id == id)
2396                        return cur;
2397                key_entries = key_entries->link;
2398        }
2399        bb_error_msg_and_die("key %u is not defined", id);
2400}
2401#endif
2402
2403/* By doing init in a separate function we decrease stack usage
2404 * in main loop.
2405 */
2406static NOINLINE void ntp_init(char **argv)
2407{
2408        unsigned opts;
2409        llist_t *peers;
2410#if ENABLE_FEATURE_NTP_AUTH
2411        llist_t *key_entries;
2412        char *key_file_path;
2413#endif
2414
2415        srand(getpid());
2416
2417        if (getuid())
2418                bb_error_msg_and_die(bb_msg_you_must_be_root);
2419
2420        /* Set some globals */
2421        G.discipline_jitter = G_precision_sec;
2422        G.stratum = MAXSTRAT;
2423        if (BURSTPOLL != 0)
2424                G.poll_exp = BURSTPOLL; /* speeds up initial sync */
2425        G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
2426        G.FREQHOLD_cnt = -1;
2427
2428        /* Parse options */
2429        peers = NULL;
2430        IF_FEATURE_NTP_AUTH(key_entries = NULL;)
2431        opts = getopt32(argv, "^"
2432                        "nqNx" /* compat */
2433                        IF_FEATURE_NTP_AUTH("k:")  /* compat */
2434                        "wp:*S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
2435                        IF_FEATURE_NTPD_SERVER("I:") /* compat */
2436                        "d" /* compat */
2437                        "46aAbgL" /* compat, ignored */
2438                                "\0"
2439                                "dd:wn"  /* -d: counter; -p: list; -w implies -n */
2440                                IF_FEATURE_NTPD_SERVER(":Il") /* -I implies -l */
2441                        IF_FEATURE_NTP_AUTH(, &key_file_path)
2442                        , &peers, &G.script_name
2443                        IF_FEATURE_NTPD_SERVER(, &G.if_name)
2444                        , &G.verbose
2445        );
2446
2447//      if (opts & OPT_x) /* disable stepping, only slew is allowed */
2448//              G.time_was_stepped = 1;
2449
2450#if ENABLE_FEATURE_NTPD_SERVER
2451        G_listen_fd = -1;
2452        if (opts & OPT_l) {
2453                G_listen_fd = create_and_bind_dgram_or_die(NULL, 123);
2454                if (G.if_name) {
2455                        if (setsockopt_bindtodevice(G_listen_fd, G.if_name))
2456                                xfunc_die();
2457                }
2458                socket_want_pktinfo(G_listen_fd);
2459                setsockopt_int(G_listen_fd, IPPROTO_IP, IP_TOS, IPTOS_DSCP_AF21);
2460        }
2461#endif
2462        /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
2463        if (opts & OPT_N)
2464                setpriority(PRIO_PROCESS, 0, -15);
2465
2466        if (!(opts & OPT_n)) {
2467                bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
2468                logmode = LOGMODE_NONE;
2469        }
2470
2471#if ENABLE_FEATURE_NTP_AUTH
2472        if (opts & OPT_k) {
2473                char *tokens[4];
2474                parser_t *parser;
2475
2476                parser = config_open(key_file_path);
2477                while (config_read(parser, tokens, 4, 3, "# \t", PARSE_NORMAL | PARSE_MIN_DIE) == 3) {
2478                        key_entry_t *key_entry;
2479                        char buffer[40];
2480                        smalluint hash_type;
2481                        smalluint msg_size;
2482                        smalluint key_length;
2483                        char *key;
2484
2485                        if ((tokens[1][0] | 0x20) == 'm')
2486                                /* supports 'M' and 'md5' formats */
2487                                hash_type = HASH_MD5;
2488                        else
2489                        if (strncasecmp(tokens[1], "sha", 3) == 0)
2490                                /* supports 'sha' and 'sha1' formats */
2491                                hash_type = HASH_SHA1;
2492                        else
2493                                bb_error_msg_and_die("only MD5 and SHA1 keys supported");
2494/* man ntp.keys:
2495 *  MD5    The key is 1 to 16 printable characters terminated by an EOL,
2496 *         whitespace, or a # (which is the "start of comment" character).
2497 *  SHA
2498 *  SHA1
2499 *  RMD160 The key is a hex-encoded ASCII string of 40 characters, which
2500 *         is truncated as necessary.
2501 */
2502                        key_length = strnlen(tokens[2], sizeof(buffer)+1);
2503                        if (key_length >= sizeof(buffer)+1) {
2504 err:
2505                                bb_error_msg_and_die("malformed key at line %u", parser->lineno);
2506                        }
2507                        if (hash_type == HASH_MD5) {
2508                                key = tokens[2];
2509                                msg_size = NTP_MSGSIZE_MD5_AUTH;
2510                        } else /* it's hash_type == HASH_SHA1 */
2511                        if (!(key_length & 1)) {
2512                                key_length >>= 1;
2513                                if (!hex2bin(buffer, tokens[2], key_length))
2514                                        goto err;
2515                                key = buffer;
2516                                msg_size = NTP_MSGSIZE_SHA1_AUTH;
2517                        } else {
2518                                goto err;
2519                        }
2520                        key_entry = xzalloc(sizeof(*key_entry) + key_length);
2521                        key_entry->type = hash_type;
2522                        key_entry->msg_size = msg_size;
2523                        key_entry->key_length = key_length;
2524                        memcpy(key_entry->key, key, key_length);
2525                        key_entry->id = xatou_range(tokens[0], 1, MAX_KEY_NUMBER);
2526                        llist_add_to(&key_entries, key_entry);
2527                }
2528                config_close(parser);
2529        }
2530#endif
2531        if (peers) {
2532#if ENABLE_FEATURE_NTP_AUTH
2533                while (peers) {
2534                        char *peer = llist_pop(&peers);
2535                        key_entry_t *key_entry = NULL;
2536                        if (strncmp(peer, "keyno:", 6) == 0) {
2537                                char *end;
2538                                int key_id;
2539                                peer += 6;
2540                                end = strchr(peer, ':');
2541                                if (!end) bb_show_usage();
2542                                *end = '\0';
2543                                key_id = xatou_range(peer, 1, MAX_KEY_NUMBER);
2544                                *end = ':';
2545                                key_entry = find_key_entry(key_entries, key_id);
2546                                peer = end + 1;
2547                        }
2548                        add_peers(peer, key_entry);
2549                }
2550#else
2551                while (peers)
2552                        add_peers(llist_pop(&peers), NULL);
2553#endif
2554        }
2555#if ENABLE_FEATURE_NTPD_CONF
2556        else {
2557                parser_t *parser;
2558                char *token[3 + 2*ENABLE_FEATURE_NTP_AUTH];
2559
2560                parser = config_open("/etc/ntp.conf");
2561                while (config_read(parser, token, 3 + 2*ENABLE_FEATURE_NTP_AUTH, 1, "# \t", PARSE_NORMAL)) {
2562                        if (strcmp(token[0], "server") == 0 && token[1]) {
2563# if ENABLE_FEATURE_NTP_AUTH
2564                                key_entry_t *key_entry = NULL;
2565                                if (token[2] && token[3] && strcmp(token[2], "key") == 0) {
2566                                        unsigned key_id = xatou_range(token[3], 1, MAX_KEY_NUMBER);
2567                                        key_entry = find_key_entry(key_entries, key_id);
2568                                }
2569                                add_peers(token[1], key_entry);
2570# else
2571                                add_peers(token[1], NULL);
2572# endif
2573                                continue;
2574                        }
2575                        bb_error_msg("skipping %s:%u: unimplemented command '%s'",
2576                                "/etc/ntp.conf", parser->lineno, token[0]
2577                        );
2578                }
2579                config_close(parser);
2580        }
2581#endif
2582        if (G.peer_cnt == 0) {
2583                if (!(opts & OPT_l))
2584                        bb_show_usage();
2585                /* -l but no peers: "stratum 1 server" mode */
2586                G.stratum = 1;
2587        }
2588
2589        if (!(opts & OPT_n)) /* only if backgrounded: */
2590                write_pidfile_std_path_and_ext("ntpd");
2591
2592        /* If network is up, syncronization occurs in ~10 seconds.
2593         * We give "ntpd -q" 10 seconds to get first reply,
2594         * then another 50 seconds to finish syncing.
2595         *
2596         * I tested ntpd 4.2.6p1 and apparently it never exits
2597         * (will try forever), but it does not feel right.
2598         * The goal of -q is to act like ntpdate: set time
2599         * after a reasonably small period of polling, or fail.
2600         */
2601        if (opts & OPT_q) {
2602                option_mask32 |= OPT_qq;
2603                alarm(10);
2604        }
2605
2606        bb_signals(0
2607                | (1 << SIGTERM)
2608                | (1 << SIGINT)
2609                | (1 << SIGALRM)
2610                , record_signo
2611        );
2612        bb_signals(0
2613                | (1 << SIGPIPE)
2614                | (1 << SIGCHLD)
2615                , SIG_IGN
2616        );
2617//TODO: free unused elements of key_entries?
2618}
2619
2620int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
2621int ntpd_main(int argc UNUSED_PARAM, char **argv)
2622{
2623#undef G
2624        struct globals G;
2625        struct pollfd *pfd;
2626        peer_t **idx2peer;
2627        unsigned cnt;
2628
2629        memset(&G, 0, sizeof(G));
2630        SET_PTR_TO_GLOBALS(&G);
2631
2632        ntp_init(argv);
2633
2634        /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
2635        cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
2636        idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
2637        pfd = xzalloc(sizeof(pfd[0]) * cnt);
2638
2639        /* Countdown: we never sync before we sent INITIAL_SAMPLES+1
2640         * packets to each peer.
2641         * NB: if some peer is not responding, we may end up sending
2642         * fewer packets to it and more to other peers.
2643         * NB2: sync usually happens using INITIAL_SAMPLES packets,
2644         * since last reply does not come back instantaneously.
2645         */
2646        cnt = G.peer_cnt * (INITIAL_SAMPLES + 1);
2647
2648        while (!bb_got_signal) {
2649                llist_t *item;
2650                unsigned i, j;
2651                int nfds, timeout;
2652                double nextaction;
2653
2654                /* Nothing between here and poll() blocks for any significant time */
2655
2656                nextaction = G.last_script_run + (11*60);
2657                if (nextaction < G.cur_time + 1)
2658                        nextaction = G.cur_time + 1;
2659
2660                i = 0;
2661#if ENABLE_FEATURE_NTPD_SERVER
2662                if (G_listen_fd != -1) {
2663                        pfd[0].fd = G_listen_fd;
2664                        pfd[0].events = POLLIN;
2665                        i++;
2666                }
2667#endif
2668                /* Pass over peer list, send requests, time out on receives */
2669                for (item = G.ntp_peers; item != NULL; item = item->link) {
2670                        peer_t *p = (peer_t *) item->data;
2671
2672                        if (p->next_action_time <= G.cur_time) {
2673                                if (p->p_fd == -1) {
2674                                        /* Time to send new req */
2675                                        if (--cnt == 0) {
2676                                                VERB4 bb_error_msg("disabling burst mode");
2677                                                G.polladj_count = 0;
2678                                                G.poll_exp = MINPOLL;
2679                                        }
2680                                        send_query_to_peer(p);
2681                                } else {
2682                                        /* Timed out waiting for reply */
2683                                        close(p->p_fd);
2684                                        p->p_fd = -1;
2685                                        /* If poll interval is small, increase it */
2686                                        if (G.poll_exp < BIGPOLL)
2687                                                adjust_poll(MINPOLL);
2688                                        timeout = poll_interval(NOREPLY_INTERVAL);
2689                                        bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
2690                                                        p->p_dotted, p->reachable_bits, timeout);
2691
2692                                        /* What if don't see it because it changed its IP? */
2693                                        if (p->reachable_bits == 0)
2694                                                resolve_peer_hostname(p);
2695
2696                                        set_next(p, timeout);
2697                                }
2698                        }
2699
2700                        if (p->next_action_time < nextaction)
2701                                nextaction = p->next_action_time;
2702
2703                        if (p->p_fd >= 0) {
2704                                /* Wait for reply from this peer */
2705                                pfd[i].fd = p->p_fd;
2706                                pfd[i].events = POLLIN;
2707                                idx2peer[i] = p;
2708                                i++;
2709                        }
2710                }
2711
2712                timeout = nextaction - G.cur_time;
2713                if (timeout < 0)
2714                        timeout = 0;
2715                timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
2716
2717                /* Here we may block */
2718                VERB2 {
2719                        if (i > (ENABLE_FEATURE_NTPD_SERVER && G_listen_fd != -1)) {
2720                                /* We wait for at least one reply.
2721                                 * Poll for it, without wasting time for message.
2722                                 * Since replies often come under 1 second, this also
2723                                 * reduces clutter in logs.
2724                                 */
2725                                nfds = poll(pfd, i, 1000);
2726                                if (nfds != 0)
2727                                        goto did_poll;
2728                                if (--timeout <= 0)
2729                                        goto did_poll;
2730                        }
2731                        bb_error_msg("poll:%us sockets:%u interval:%us", timeout, i, 1 << G.poll_exp);
2732                }
2733                nfds = poll(pfd, i, timeout * 1000);
2734 did_poll:
2735                gettime1900d(); /* sets G.cur_time */
2736                if (nfds <= 0) {
2737                        double ct;
2738                        int dns_error;
2739
2740                        if (bb_got_signal)
2741                                break; /* poll was interrupted by a signal */
2742
2743                        if (G.cur_time - G.last_script_run > 11*60) {
2744                                /* Useful for updating battery-backed RTC and such */
2745                                run_script("periodic", G.last_update_offset);
2746                                gettime1900d(); /* sets G.cur_time */
2747                        }
2748
2749                        /* Resolve peer names to IPs, if not resolved yet.
2750                         * We do it only when poll timed out:
2751                         * this way, we almost never overlap DNS resolution with
2752                         * "request-reply" packet round trip.
2753                         */
2754                        dns_error = 0;
2755                        ct = G.cur_time;
2756                        for (item = G.ntp_peers; item != NULL; item = item->link) {
2757                                peer_t *p = (peer_t *) item->data;
2758                                if (p->next_action_time <= ct && !p->p_lsa) {
2759                                        /* This can take up to ~10 sec per each DNS query */
2760                                        dns_error |= (!resolve_peer_hostname(p));
2761                                }
2762                        }
2763                        if (!dns_error)
2764                                goto check_unsync;
2765                        /* Set next time for those which are still not resolved */
2766                        gettime1900d(); /* sets G.cur_time (needed for set_next()) */
2767                        for (item = G.ntp_peers; item != NULL; item = item->link) {
2768                                peer_t *p = (peer_t *) item->data;
2769                                if (p->next_action_time <= ct && !p->p_lsa) {
2770                                        set_next(p, HOSTNAME_INTERVAL * p->dns_errors);
2771                                }
2772                        }
2773                        goto check_unsync;
2774                }
2775
2776                /* Process any received packets */
2777                j = 0;
2778#if ENABLE_FEATURE_NTPD_SERVER
2779                if (G.listen_fd != -1) {
2780                        if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2781                                nfds--;
2782                                recv_and_process_client_pkt(/*G.listen_fd*/);
2783                                gettime1900d(); /* sets G.cur_time */
2784                        }
2785                        j = 1;
2786                }
2787#endif
2788                for (; nfds != 0 && j < i; j++) {
2789                        if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
2790                                /*
2791                                 * At init, alarm was set to 10 sec.
2792                                 * Now we did get a reply.
2793                                 * Increase timeout to 50 seconds to finish syncing.
2794                                 */
2795                                if (option_mask32 & OPT_qq) {
2796                                        option_mask32 &= ~OPT_qq;
2797                                        alarm(50);
2798                                }
2799                                nfds--;
2800                                recv_and_process_peer_pkt(idx2peer[j]);
2801                                gettime1900d(); /* sets G.cur_time */
2802                        }
2803                }
2804
2805 check_unsync:
2806                if (G.ntp_peers && G.stratum != MAXSTRAT) {
2807                        for (item = G.ntp_peers; item != NULL; item = item->link) {
2808                                peer_t *p = (peer_t *) item->data;
2809                                if (p->reachable_bits)
2810                                        goto have_reachable_peer;
2811                        }
2812                        /* No peer responded for last 8 packets, panic */
2813                        clamp_pollexp_and_set_MAXSTRAT();
2814                        run_script("unsync", 0.0);
2815 have_reachable_peer: ;
2816                }
2817        } /* while (!bb_got_signal) */
2818
2819        remove_pidfile_std_path_and_ext("ntpd");
2820        kill_myself_with_sig(bb_got_signal);
2821}
2822
2823
2824
2825
2826
2827
2828/*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2829
2830/*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2831
2832#if 0
2833static double
2834direct_freq(double fp_offset)
2835{
2836#ifdef KERNEL_PLL
2837        /*
2838         * If the kernel is enabled, we need the residual offset to
2839         * calculate the frequency correction.
2840         */
2841        if (pll_control && kern_enable) {
2842                memset(&ntv, 0, sizeof(ntv));
2843                ntp_adjtime(&ntv);
2844#ifdef STA_NANO
2845                clock_offset = ntv.offset / 1e9;
2846#else /* STA_NANO */
2847                clock_offset = ntv.offset / 1e6;
2848#endif /* STA_NANO */
2849                drift_comp = FREQTOD(ntv.freq);
2850        }
2851#endif /* KERNEL_PLL */
2852        set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2853        wander_resid = 0;
2854        return drift_comp;
2855}
2856
2857static void
2858set_freq(double freq) /* frequency update */
2859{
2860        char tbuf[80];
2861
2862        drift_comp = freq;
2863
2864#ifdef KERNEL_PLL
2865        /*
2866         * If the kernel is enabled, update the kernel frequency.
2867         */
2868        if (pll_control && kern_enable) {
2869                memset(&ntv, 0, sizeof(ntv));
2870                ntv.modes = MOD_FREQUENCY;
2871                ntv.freq = DTOFREQ(drift_comp);
2872                ntp_adjtime(&ntv);
2873                snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2874                report_event(EVNT_FSET, NULL, tbuf);
2875        } else {
2876                snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2877                report_event(EVNT_FSET, NULL, tbuf);
2878        }
2879#else /* KERNEL_PLL */
2880        snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2881        report_event(EVNT_FSET, NULL, tbuf);
2882#endif /* KERNEL_PLL */
2883}
2884
2885...
2886...
2887...
2888
2889#ifdef KERNEL_PLL
2890        /*
2891         * This code segment works when clock adjustments are made using
2892         * precision time kernel support and the ntp_adjtime() system
2893         * call. This support is available in Solaris 2.6 and later,
2894         * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2895         * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2896         * DECstation 5000/240 and Alpha AXP, additional kernel
2897         * modifications provide a true microsecond clock and nanosecond
2898         * clock, respectively.
2899         *
2900         * Important note: The kernel discipline is used only if the
2901         * step threshold is less than 0.5 s, as anything higher can
2902         * lead to overflow problems. This might occur if some misguided
2903         * lad set the step threshold to something ridiculous.
2904         */
2905        if (pll_control && kern_enable) {
2906
2907#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2908
2909                /*
2910                 * We initialize the structure for the ntp_adjtime()
2911                 * system call. We have to convert everything to
2912                 * microseconds or nanoseconds first. Do not update the
2913                 * system variables if the ext_enable flag is set. In
2914                 * this case, the external clock driver will update the
2915                 * variables, which will be read later by the local
2916                 * clock driver. Afterwards, remember the time and
2917                 * frequency offsets for jitter and stability values and
2918                 * to update the frequency file.
2919                 */
2920                memset(&ntv,  0, sizeof(ntv));
2921                if (ext_enable) {
2922                        ntv.modes = MOD_STATUS;
2923                } else {
2924#ifdef STA_NANO
2925                        ntv.modes = MOD_BITS | MOD_NANO;
2926#else /* STA_NANO */
2927                        ntv.modes = MOD_BITS;
2928#endif /* STA_NANO */
2929                        if (clock_offset < 0)
2930                                dtemp = -.5;
2931                        else
2932                                dtemp = .5;
2933#ifdef STA_NANO
2934                        ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2935                        ntv.constant = sys_poll;
2936#else /* STA_NANO */
2937                        ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2938                        ntv.constant = sys_poll - 4;
2939#endif /* STA_NANO */
2940                        ntv.esterror = (u_int32)(clock_jitter * 1e6);
2941                        ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2942                        ntv.status = STA_PLL;
2943
2944                        /*
2945                         * Enable/disable the PPS if requested.
2946                         */
2947                        if (pps_enable) {
2948                                if (!(pll_status & STA_PPSTIME))
2949                                        report_event(EVNT_KERN,
2950                                                NULL, "PPS enabled");
2951                                ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2952                        } else {
2953                                if (pll_status & STA_PPSTIME)
2954                                        report_event(EVNT_KERN,
2955                                                NULL, "PPS disabled");
2956                                ntv.status &= ~(STA_PPSTIME | STA_PPSFREQ);
2957                        }
2958                        if (sys_leap == LEAP_ADDSECOND)
2959                                ntv.status |= STA_INS;
2960                        else if (sys_leap == LEAP_DELSECOND)
2961                                ntv.status |= STA_DEL;
2962                }
2963
2964                /*
2965                 * Pass the stuff to the kernel. If it squeals, turn off
2966                 * the pps. In any case, fetch the kernel offset,
2967                 * frequency and jitter.
2968                 */
2969                if (ntp_adjtime(&ntv) == TIME_ERROR) {
2970                        if (!(ntv.status & STA_PPSSIGNAL))
2971                                report_event(EVNT_KERN, NULL,
2972                                                "PPS no signal");
2973                }
2974                pll_status = ntv.status;
2975#ifdef STA_NANO
2976                clock_offset = ntv.offset / 1e9;
2977#else /* STA_NANO */
2978                clock_offset = ntv.offset / 1e6;
2979#endif /* STA_NANO */
2980                clock_frequency = FREQTOD(ntv.freq);
2981
2982                /*
2983                 * If the kernel PPS is lit, monitor its performance.
2984                 */
2985                if (ntv.status & STA_PPSTIME) {
2986#ifdef STA_NANO
2987                        clock_jitter = ntv.jitter / 1e9;
2988#else /* STA_NANO */
2989                        clock_jitter = ntv.jitter / 1e6;
2990#endif /* STA_NANO */
2991                }
2992
2993#if defined(STA_NANO) && NTP_API == 4
2994                /*
2995                 * If the TAI changes, update the kernel TAI.
2996                 */
2997                if (loop_tai != sys_tai) {
2998                        loop_tai = sys_tai;
2999                        ntv.modes = MOD_TAI;
3000                        ntv.constant = sys_tai;
3001                        ntp_adjtime(&ntv);
3002                }
3003#endif /* STA_NANO */
3004        }
3005#endif /* KERNEL_PLL */
3006#endif
3007