busybox/archival/gzip.c
<<
>>
Prefs
   1/* vi: set sw=4 ts=4: */
   2/*
   3 * Gzip implementation for busybox
   4 *
   5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
   6 *
   7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
   8 * "this is a stripped down version of gzip I put into busybox, it does
   9 * only standard in to standard out with -9 compression.  It also requires
  10 * the zcat module for some important functions."
  11 *
  12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
  13 * files as well as stdin/stdout, and to generally behave itself wrt
  14 * command line handling.
  15 *
  16 * Licensed under GPLv2 or later, see file LICENSE in this source tree.
  17 */
  18/* TODO: full support for -v for DESKTOP
  19 * "/usr/bin/gzip -v a bogus aa" should say:
  20a:       85.1% -- replaced with a.gz
  21gzip: bogus: No such file or directory
  22aa:      85.1% -- replaced with aa.gz
  23*/
  24//config:config GZIP
  25//config:       bool "gzip (17 kb)"
  26//config:       default y
  27//config:       help
  28//config:       gzip is used to compress files.
  29//config:       It's probably the most widely used UNIX compression program.
  30//config:
  31//config:config FEATURE_GZIP_LONG_OPTIONS
  32//config:       bool "Enable long options"
  33//config:       default y
  34//config:       depends on GZIP && LONG_OPTS
  35//config:
  36//config:config GZIP_FAST
  37//config:       int "Trade memory for speed (0:small,slow - 2:fast,big)"
  38//config:       default 0
  39//config:       range 0 2
  40//config:       depends on GZIP
  41//config:       help
  42//config:       Enable big memory options for gzip.
  43//config:       0: small buffers, small hash-tables
  44//config:       1: larger buffers, larger hash-tables
  45//config:       2: larger buffers, largest hash-tables
  46//config:       Larger models may give slightly better compression
  47//config:
  48//config:config FEATURE_GZIP_LEVELS
  49//config:       bool "Enable compression levels"
  50//config:       default n
  51//config:       depends on GZIP
  52//config:       help
  53//config:       Enable support for compression levels 4-9. The default level
  54//config:       is 6. If levels 1-3 are specified, 4 is used.
  55//config:       If this option is not selected, -N options are ignored and -6
  56//config:       is used.
  57//config:
  58//config:config FEATURE_GZIP_DECOMPRESS
  59//config:       bool "Enable decompression"
  60//config:       default y
  61//config:       depends on GZIP || GUNZIP || ZCAT
  62//config:       help
  63//config:       Enable -d (--decompress) and -t (--test) options for gzip.
  64//config:       This will be automatically selected if gunzip or zcat is
  65//config:       enabled.
  66
  67//applet:IF_GZIP(APPLET(gzip, BB_DIR_BIN, BB_SUID_DROP))
  68
  69//kbuild:lib-$(CONFIG_GZIP) += gzip.o
  70
  71//usage:#define gzip_trivial_usage
  72//usage:       "[-cfk" IF_FEATURE_GZIP_DECOMPRESS("dt") IF_FEATURE_GZIP_LEVELS("123456789") "] [FILE]..."
  73//usage:#define gzip_full_usage "\n\n"
  74//usage:       "Compress FILEs (or stdin)\n"
  75//usage:        IF_FEATURE_GZIP_LEVELS(
  76//usage:     "\n        -1..9   Compression level"
  77//usage:        )
  78//usage:        IF_FEATURE_GZIP_DECOMPRESS(
  79//usage:     "\n        -d      Decompress"
  80//usage:        )
  81//usage:     "\n        -c      Write to stdout"
  82//usage:     "\n        -f      Force"
  83//usage:     "\n        -k      Keep input files"
  84//usage:        IF_FEATURE_GZIP_DECOMPRESS(
  85//usage:     "\n        -t      Test integrity"
  86//usage:        )
  87//usage:
  88//usage:#define gzip_example_usage
  89//usage:       "$ ls -la /tmp/busybox*\n"
  90//usage:       "-rw-rw-r--    1 andersen andersen  1761280 Apr 14 17:47 /tmp/busybox.tar\n"
  91//usage:       "$ gzip /tmp/busybox.tar\n"
  92//usage:       "$ ls -la /tmp/busybox*\n"
  93//usage:       "-rw-rw-r--    1 andersen andersen   554058 Apr 14 17:49 /tmp/busybox.tar.gz\n"
  94
  95#include "libbb.h"
  96#include "bb_archive.h"
  97
  98/* ===========================================================================
  99 */
 100//#define DEBUG 1
 101/* Diagnostic functions */
 102#ifdef DEBUG
 103static int verbose;
 104#  define Assert(cond,msg) { if (!(cond)) bb_simple_error_msg(msg); }
 105#  define Trace(x) fprintf x
 106#  define Tracev(x) {if (verbose) fprintf x; }
 107#  define Tracevv(x) {if (verbose > 1) fprintf x; }
 108#  define Tracec(c,x) {if (verbose && (c)) fprintf x; }
 109#  define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
 110#else
 111#  define Assert(cond,msg)
 112#  define Trace(x)
 113#  define Tracev(x)
 114#  define Tracevv(x)
 115#  define Tracec(c,x)
 116#  define Tracecv(c,x)
 117#endif
 118
 119/* ===========================================================================
 120 */
 121#if   CONFIG_GZIP_FAST == 0
 122# define SMALL_MEM
 123#elif CONFIG_GZIP_FAST == 1
 124# define MEDIUM_MEM
 125#elif CONFIG_GZIP_FAST == 2
 126# define BIG_MEM
 127#else
 128# error "Invalid CONFIG_GZIP_FAST value"
 129#endif
 130
 131#ifndef INBUFSIZ
 132#  ifdef SMALL_MEM
 133#    define INBUFSIZ  0x2000    /* input buffer size */
 134#  else
 135#    define INBUFSIZ  0x8000    /* input buffer size */
 136#  endif
 137#endif
 138
 139#ifndef OUTBUFSIZ
 140#  ifdef SMALL_MEM
 141#    define OUTBUFSIZ   8192    /* output buffer size */
 142#  else
 143#    define OUTBUFSIZ  16384    /* output buffer size */
 144#  endif
 145#endif
 146
 147#ifndef DIST_BUFSIZE
 148#  ifdef SMALL_MEM
 149#    define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
 150#  else
 151#    define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
 152#  endif
 153#endif
 154
 155/* gzip flag byte */
 156#define ASCII_FLAG   0x01       /* bit 0 set: file probably ascii text */
 157#define CONTINUATION 0x02       /* bit 1 set: continuation of multi-part gzip file */
 158#define EXTRA_FIELD  0x04       /* bit 2 set: extra field present */
 159#define ORIG_NAME    0x08       /* bit 3 set: original file name present */
 160#define COMMENT      0x10       /* bit 4 set: file comment present */
 161#define RESERVED     0xC0       /* bit 6,7:   reserved */
 162
 163/* internal file attribute */
 164#define UNKNOWN 0xffff
 165#define BINARY  0
 166#define ASCII   1
 167
 168#ifndef WSIZE
 169#  define WSIZE 0x8000  /* window size--must be a power of two, and */
 170#endif                  /*  at least 32K for zip's deflate method */
 171
 172#define MIN_MATCH  3
 173#define MAX_MATCH  258
 174/* The minimum and maximum match lengths */
 175
 176#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
 177/* Minimum amount of lookahead, except at the end of the input file.
 178 * See deflate.c for comments about the MIN_MATCH+1.
 179 */
 180
 181#define MAX_DIST  (WSIZE-MIN_LOOKAHEAD)
 182/* In order to simplify the code, particularly on 16 bit machines, match
 183 * distances are limited to MAX_DIST instead of WSIZE.
 184 */
 185
 186#ifndef MAX_PATH_LEN
 187#  define MAX_PATH_LEN   1024   /* max pathname length */
 188#endif
 189
 190#define seekable()    0 /* force sequential output */
 191#define translate_eol 0 /* no option -a yet */
 192
 193#ifndef BITS
 194#  define BITS 16
 195#endif
 196#define INIT_BITS 9             /* Initial number of bits per code */
 197
 198#define BIT_MASK    0x1f        /* Mask for 'number of compression bits' */
 199/* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
 200 * It's a pity that old uncompress does not check bit 0x20. That makes
 201 * extension of the format actually undesirable because old compress
 202 * would just crash on the new format instead of giving a meaningful
 203 * error message. It does check the number of bits, but it's more
 204 * helpful to say "unsupported format, get a new version" than
 205 * "can only handle 16 bits".
 206 */
 207
 208#ifdef MAX_EXT_CHARS
 209#  define MAX_SUFFIX  MAX_EXT_CHARS
 210#else
 211#  define MAX_SUFFIX  30
 212#endif
 213
 214/* ===========================================================================
 215 * Compile with MEDIUM_MEM to reduce the memory requirements or
 216 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
 217 * entire input file can be held in memory (not possible on 16 bit systems).
 218 * Warning: defining these symbols affects HASH_BITS (see below) and thus
 219 * affects the compression ratio. The compressed output
 220 * is still correct, and might even be smaller in some cases.
 221 */
 222#ifdef SMALL_MEM
 223#  define HASH_BITS  13 /* Number of bits used to hash strings */
 224#endif
 225#ifdef MEDIUM_MEM
 226#  define HASH_BITS  14
 227#endif
 228#ifndef HASH_BITS
 229#  define HASH_BITS  15
 230   /* For portability to 16 bit machines, do not use values above 15. */
 231#endif
 232
 233#define HASH_SIZE (unsigned)(1<<HASH_BITS)
 234#define HASH_MASK (HASH_SIZE-1)
 235#define WMASK     (WSIZE-1)
 236/* HASH_SIZE and WSIZE must be powers of two */
 237#ifndef TOO_FAR
 238#  define TOO_FAR 4096
 239#endif
 240/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
 241
 242/* ===========================================================================
 243 * These types are not really 'char', 'short' and 'long'
 244 */
 245typedef uint8_t uch;
 246typedef uint16_t ush;
 247typedef uint32_t ulg;
 248typedef int32_t lng;
 249
 250typedef ush Pos;
 251typedef unsigned IPos;
 252/* A Pos is an index in the character window. We use short instead of int to
 253 * save space in the various tables. IPos is used only for parameter passing.
 254 */
 255
 256enum {
 257        WINDOW_SIZE = 2 * WSIZE,
 258/* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
 259 * input file length plus MIN_LOOKAHEAD.
 260 */
 261
 262#if !ENABLE_FEATURE_GZIP_LEVELS
 263
 264        comp_level_minus4 = 6 - 4,
 265        max_chain_length = 128,
 266/* To speed up deflation, hash chains are never searched beyond this length.
 267 * A higher limit improves compression ratio but degrades the speed.
 268 */
 269
 270        max_lazy_match = 16,
 271/* Attempt to find a better match only when the current match is strictly
 272 * smaller than this value. This mechanism is used only for compression
 273 * levels >= 4.
 274 */
 275
 276        max_insert_length = max_lazy_match,
 277/* Insert new strings in the hash table only if the match length
 278 * is not greater than this length. This saves time but degrades compression.
 279 * max_insert_length is used only for compression levels <= 3.
 280 */
 281
 282        good_match = 8,
 283/* Use a faster search when the previous match is longer than this */
 284
 285/* Values for max_lazy_match, good_match and max_chain_length, depending on
 286 * the desired pack level (0..9). The values given below have been tuned to
 287 * exclude worst case performance for pathological files. Better values may be
 288 * found for specific files.
 289 */
 290
 291        nice_match = 128,       /* Stop searching when current match exceeds this */
 292/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
 293 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
 294 * meaning.
 295 */
 296#endif /* ENABLE_FEATURE_GZIP_LEVELS */
 297};
 298
 299struct globals {
 300/* =========================================================================== */
 301/* global buffers, allocated once */
 302
 303#define DECLARE(type, array, size) \
 304        type * array
 305#define ALLOC(type, array, size) \
 306        array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type))
 307#define FREE(array) \
 308        do { free(array); array = NULL; } while (0)
 309
 310        /* buffer for literals or lengths */
 311        /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
 312        DECLARE(uch, l_buf, INBUFSIZ);
 313
 314        DECLARE(ush, d_buf, DIST_BUFSIZE);
 315        DECLARE(uch, outbuf, OUTBUFSIZ);
 316
 317/* Sliding window. Input bytes are read into the second half of the window,
 318 * and move to the first half later to keep a dictionary of at least WSIZE
 319 * bytes. With this organization, matches are limited to a distance of
 320 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
 321 * performed with a length multiple of the block size. Also, it limits
 322 * the window size to 64K, which is quite useful on MSDOS.
 323 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
 324 * be less efficient).
 325 */
 326        DECLARE(uch, window, 2L * WSIZE);
 327
 328/* Link to older string with same hash index. To limit the size of this
 329 * array to 64K, this link is maintained only for the last 32K strings.
 330 * An index in this array is thus a window index modulo 32K.
 331 */
 332        /* DECLARE(Pos, prev, WSIZE); */
 333        DECLARE(ush, prev, 1L << BITS);
 334
 335/* Heads of the hash chains or 0. */
 336        /* DECLARE(Pos, head, 1<<HASH_BITS); */
 337#define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
 338
 339#if ENABLE_FEATURE_GZIP_LEVELS
 340        unsigned comp_level_minus4;     /* can be a byte */
 341        unsigned max_chain_length;
 342        unsigned max_lazy_match;
 343        unsigned good_match;
 344        unsigned nice_match;
 345#define comp_level_minus4 (G1.comp_level_minus4)
 346#define max_chain_length  (G1.max_chain_length)
 347#define max_lazy_match    (G1.max_lazy_match)
 348#define good_match        (G1.good_match)
 349#define nice_match        (G1.nice_match)
 350#endif
 351
 352/* =========================================================================== */
 353/* all members below are zeroed out in pack_gzip() for each next file */
 354
 355        uint32_t crc;   /* shift register contents */
 356        /*uint32_t *crc_32_tab;*/
 357
 358/* window position at the beginning of the current output block. Gets
 359 * negative when the window is moved backwards.
 360 */
 361        lng block_start;
 362
 363        unsigned ins_h; /* hash index of string to be inserted */
 364
 365/* Number of bits by which ins_h and del_h must be shifted at each
 366 * input step. It must be such that after MIN_MATCH steps, the oldest
 367 * byte no longer takes part in the hash key, that is:
 368 * H_SHIFT * MIN_MATCH >= HASH_BITS
 369 */
 370#define H_SHIFT  ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
 371
 372/* Length of the best match at previous step. Matches not greater than this
 373 * are discarded. This is used in the lazy match evaluation.
 374 */
 375        unsigned prev_length;
 376
 377        unsigned strstart;      /* start of string to insert */
 378        unsigned match_start;   /* start of matching string */
 379        unsigned lookahead;     /* number of valid bytes ahead in window */
 380
 381/* number of input bytes */
 382        ulg isize;              /* only 32 bits stored in .gz file */
 383
 384/* bbox always use stdin/stdout */
 385#define ifd STDIN_FILENO        /* input file descriptor */
 386#define ofd STDOUT_FILENO       /* output file descriptor */
 387
 388#ifdef DEBUG
 389        unsigned insize;        /* valid bytes in l_buf */
 390#endif
 391        unsigned outcnt;        /* bytes in output buffer */
 392        smallint eofile;        /* flag set at end of input file */
 393
 394/* ===========================================================================
 395 * Local data used by the "bit string" routines.
 396 */
 397
 398/* Output buffer. bits are inserted starting at the bottom (least significant
 399 * bits).
 400 */
 401        unsigned bi_buf;        /* was unsigned short */
 402
 403#undef BUF_SIZE
 404#define BUF_SIZE (int)(8 * sizeof(G1.bi_buf))
 405
 406/* Number of bits used within bi_buf. (bi_buf might be implemented on
 407 * more than 16 bits on some systems.)
 408 */
 409        unsigned bi_valid;
 410
 411#ifdef DEBUG
 412        ulg bits_sent;  /* bit length of the compressed data */
 413# define DEBUG_bits_sent(v) (void)(G1.bits_sent v)
 414#else
 415# define DEBUG_bits_sent(v) ((void)0)
 416#endif
 417};
 418
 419#define G1 (*(ptr_to_globals - 1))
 420
 421/* ===========================================================================
 422 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
 423 * (used for the compressed data only)
 424 */
 425static void flush_outbuf(void)
 426{
 427        if (G1.outcnt == 0)
 428                return;
 429
 430        xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
 431        G1.outcnt = 0;
 432}
 433
 434/* ===========================================================================
 435 */
 436/* put_8bit is used for the compressed output */
 437#define put_8bit(c) \
 438do { \
 439        G1.outbuf[G1.outcnt++] = (c); \
 440        if (G1.outcnt == OUTBUFSIZ) \
 441                flush_outbuf(); \
 442} while (0)
 443
 444/* Output a 16 bit value, lsb first */
 445static void put_16bit(ush w)
 446{
 447        /* GCC 4.2.1 won't optimize out redundant loads of G1.outcnt
 448         * (probably because of fear of aliasing with G1.outbuf[]
 449         * stores), do it explicitly:
 450         */
 451        unsigned outcnt = G1.outcnt;
 452        uch *dst = &G1.outbuf[outcnt];
 453
 454#if BB_UNALIGNED_MEMACCESS_OK && BB_LITTLE_ENDIAN
 455        if (outcnt < OUTBUFSIZ-2) {
 456                /* Common case */
 457                ush *dst16 = (void*) dst;
 458                *dst16 = w; /* unaligned LSB 16-bit store */
 459                G1.outcnt = outcnt + 2;
 460                return;
 461        }
 462        *dst = (uch)w;
 463        w >>= 8;
 464        G1.outcnt = ++outcnt;
 465#else
 466        *dst = (uch)w;
 467        w >>= 8;
 468        if (outcnt < OUTBUFSIZ-2) {
 469                /* Common case */
 470                dst[1] = w;
 471                G1.outcnt = outcnt + 2;
 472                return;
 473        }
 474        G1.outcnt = ++outcnt;
 475#endif
 476
 477        /* Slowpath: we will need to do flush_outbuf() */
 478        if (outcnt == OUTBUFSIZ)
 479                flush_outbuf(); /* here */
 480        put_8bit(w); /* or here */
 481}
 482
 483#define OPTIMIZED_PUT_32BIT (CONFIG_GZIP_FAST > 0 && BB_UNALIGNED_MEMACCESS_OK && BB_LITTLE_ENDIAN)
 484static void put_32bit(ulg n)
 485{
 486        if (OPTIMIZED_PUT_32BIT) {
 487                unsigned outcnt = G1.outcnt;
 488                if (outcnt < OUTBUFSIZ-4) {
 489                        /* Common case */
 490                        ulg *dst32 = (void*) &G1.outbuf[outcnt];
 491                        *dst32 = n; /* unaligned LSB 32-bit store */
 492                        //bb_error_msg("%p", dst32); // store alignment debugging
 493                        G1.outcnt = outcnt + 4;
 494                        return;
 495                }
 496        }
 497        put_16bit(n);
 498        put_16bit(n >> 16);
 499}
 500static ALWAYS_INLINE void flush_outbuf_if_32bit_optimized(void)
 501{
 502        /* If put_32bit() performs 32bit stores && it is used in send_bits() */
 503        if (OPTIMIZED_PUT_32BIT && BUF_SIZE > 16)
 504                flush_outbuf();
 505}
 506
 507/* ===========================================================================
 508 * Run a set of bytes through the crc shift register.  If s is a NULL
 509 * pointer, then initialize the crc shift register contents instead.
 510 * Return the current crc in either case.
 511 */
 512static void updcrc(uch *s, unsigned n)
 513{
 514        G1.crc = crc32_block_endian0(G1.crc, s, n, global_crc32_table /*G1.crc_32_tab*/);
 515}
 516
 517/* ===========================================================================
 518 * Read a new buffer from the current input file, perform end-of-line
 519 * translation, and update the crc and input file size.
 520 * IN assertion: size >= 2 (for end-of-line translation)
 521 */
 522static unsigned file_read(void *buf, unsigned size)
 523{
 524        unsigned len;
 525
 526        Assert(G1.insize == 0, "l_buf not empty");
 527
 528        len = safe_read(ifd, buf, size);
 529        if (len == (unsigned)(-1) || len == 0)
 530                return len;
 531
 532        updcrc(buf, len);
 533        G1.isize += len;
 534        return len;
 535}
 536
 537/* ===========================================================================
 538 * Send a value on a given number of bits.
 539 * IN assertion: length <= 16 and value fits in length bits.
 540 */
 541static void send_bits(unsigned value, unsigned length)
 542{
 543        unsigned new_buf;
 544
 545#ifdef DEBUG
 546        Tracev((stderr, " l %2d v %4x ", length, value));
 547        Assert(length > 0 && length <= 15, "invalid length");
 548        DEBUG_bits_sent(+= length);
 549#endif
 550        BUILD_BUG_ON(BUF_SIZE != 32 && BUF_SIZE != 16);
 551
 552        new_buf = G1.bi_buf | (value << G1.bi_valid);
 553        /* NB: the above may sometimes do "<< 32" shift (undefined)
 554         * if check below is changed to "length > BUF_SIZE" instead of >= */
 555        length += G1.bi_valid;
 556
 557        /* If bi_buf is full */
 558        if (length >= BUF_SIZE) {
 559                /* ...use (valid) bits from bi_buf and
 560                 * (BUF_SIZE - bi_valid) bits from value,
 561                 *  leaving (width - (BUF_SIZE-bi_valid)) unused bits in value.
 562                 */
 563                value >>= (BUF_SIZE - G1.bi_valid);
 564                if (BUF_SIZE == 32) {
 565                        put_32bit(new_buf);
 566                } else { /* 16 */
 567                        put_16bit(new_buf);
 568                }
 569                new_buf = value;
 570                length -= BUF_SIZE;
 571        }
 572        G1.bi_buf = new_buf;
 573        G1.bi_valid = length;
 574}
 575
 576/* ===========================================================================
 577 * Reverse the first len bits of a code, using straightforward code (a faster
 578 * method would use a table)
 579 * IN assertion: 1 <= len <= 15
 580 */
 581static unsigned bi_reverse(unsigned code, int len)
 582{
 583        unsigned res = 0;
 584
 585        while (1) {
 586                res |= code & 1;
 587                if (--len <= 0) return res;
 588                code >>= 1;
 589                res <<= 1;
 590        }
 591}
 592
 593/* ===========================================================================
 594 * Write out any remaining bits in an incomplete byte.
 595 */
 596static void bi_windup(void)
 597{
 598        unsigned bits = G1.bi_buf;
 599        int cnt = G1.bi_valid;
 600
 601        while (cnt > 0) {
 602                put_8bit(bits);
 603                bits >>= 8;
 604                cnt -= 8;
 605        }
 606        G1.bi_buf = 0;
 607        G1.bi_valid = 0;
 608        DEBUG_bits_sent(= (G1.bits_sent + 7) & ~7);
 609}
 610
 611/* ===========================================================================
 612 * Copy a stored block to the zip file, storing first the length and its
 613 * one's complement if requested.
 614 */
 615static void copy_block(const char *buf, unsigned len, int header)
 616{
 617        bi_windup();            /* align on byte boundary */
 618
 619        if (header) {
 620                unsigned v = ((uint16_t)len) | ((~len) << 16);
 621                put_32bit(v);
 622                DEBUG_bits_sent(+= 2 * 16);
 623        }
 624        DEBUG_bits_sent(+= (ulg) len << 3);
 625        while (len--) {
 626                put_8bit(*buf++);
 627        }
 628        /* The above can 32-bit misalign outbuf */
 629        if (G1.outcnt & 3) /* syscalls are expensive, is it really misaligned? */
 630                flush_outbuf_if_32bit_optimized();
 631}
 632
 633/* ===========================================================================
 634 * Fill the window when the lookahead becomes insufficient.
 635 * Updates strstart and lookahead, and sets eofile if end of input file.
 636 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
 637 * OUT assertions: at least one byte has been read, or eofile is set;
 638 *    file reads are performed for at least two bytes (required for the
 639 *    translate_eol option).
 640 */
 641static void fill_window(void)
 642{
 643        unsigned n, m;
 644        unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
 645        /* Amount of free space at the end of the window. */
 646
 647        /* If the window is almost full and there is insufficient lookahead,
 648         * move the upper half to the lower one to make room in the upper half.
 649         */
 650        if (more == (unsigned) -1) {
 651                /* Very unlikely, but possible on 16 bit machine if strstart == 0
 652                 * and lookahead == 1 (input done one byte at time)
 653                 */
 654                more--;
 655        } else if (G1.strstart >= WSIZE + MAX_DIST) {
 656                /* By the IN assertion, the window is not empty so we can't confuse
 657                 * more == 0 with more == 64K on a 16 bit machine.
 658                 */
 659                Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
 660
 661                memcpy(G1.window, G1.window + WSIZE, WSIZE);
 662                G1.match_start -= WSIZE;
 663                G1.strstart -= WSIZE;   /* we now have strstart >= MAX_DIST: */
 664
 665                G1.block_start -= WSIZE;
 666
 667                for (n = 0; n < HASH_SIZE; n++) {
 668                        m = head[n];
 669                        head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
 670                }
 671                for (n = 0; n < WSIZE; n++) {
 672                        m = G1.prev[n];
 673                        G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
 674                        /* If n is not on any hash chain, prev[n] is garbage but
 675                         * its value will never be used.
 676                         */
 677                }
 678                more += WSIZE;
 679        }
 680        /* At this point, more >= 2 */
 681        if (!G1.eofile) {
 682                n = file_read(G1.window + G1.strstart + G1.lookahead, more);
 683                if (n == 0 || n == (unsigned) -1) {
 684                        G1.eofile = 1;
 685                } else {
 686                        G1.lookahead += n;
 687                }
 688        }
 689}
 690/* Both users fill window with the same loop: */
 691static void fill_window_if_needed(void)
 692{
 693        while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
 694                fill_window();
 695}
 696
 697/* ===========================================================================
 698 * Set match_start to the longest match starting at the given string and
 699 * return its length. Matches shorter or equal to prev_length are discarded,
 700 * in which case the result is equal to prev_length and match_start is
 701 * garbage.
 702 * IN assertions: cur_match is the head of the hash chain for the current
 703 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 704 */
 705
 706/* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
 707 * match.s. The code is functionally equivalent, so you can use the C version
 708 * if desired.
 709 */
 710static int longest_match(IPos cur_match)
 711{
 712        unsigned chain_length = max_chain_length;       /* max hash chain length */
 713        uch *scan = G1.window + G1.strstart;    /* current string */
 714        uch *match;     /* matched string */
 715        int len;        /* length of current match */
 716        int best_len = G1.prev_length;  /* best match length so far */
 717        IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
 718        /* Stop when cur_match becomes <= limit. To simplify the code,
 719         * we prevent matches with the string of window index 0.
 720         */
 721
 722/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 723 * It is easy to get rid of this optimization if necessary.
 724 */
 725#if HASH_BITS < 8 || MAX_MATCH != 258
 726#  error Code too clever
 727#endif
 728        uch *strend = G1.window + G1.strstart + MAX_MATCH;
 729        uch scan_end1 = scan[best_len - 1];
 730        uch scan_end = scan[best_len];
 731
 732        /* Do not waste too much time if we already have a good match: */
 733        if (G1.prev_length >= good_match) {
 734                chain_length >>= 2;
 735        }
 736        Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
 737
 738        do {
 739                Assert(cur_match < G1.strstart, "no future");
 740                match = G1.window + cur_match;
 741
 742                /* Skip to next match if the match length cannot increase
 743                 * or if the match length is less than 2:
 744                 */
 745                if (match[best_len] != scan_end
 746                 || match[best_len - 1] != scan_end1
 747                 || *match != *scan || *++match != scan[1]
 748                ) {
 749                        continue;
 750                }
 751
 752                /* The check at best_len-1 can be removed because it will be made
 753                 * again later. (This heuristic is not always a win.)
 754                 * It is not necessary to compare scan[2] and match[2] since they
 755                 * are always equal when the other bytes match, given that
 756                 * the hash keys are equal and that HASH_BITS >= 8.
 757                 */
 758                scan += 2, match++;
 759
 760                /* We check for insufficient lookahead only every 8th comparison;
 761                 * the 256th check will be made at strstart+258.
 762                 */
 763                do {
 764                } while (*++scan == *++match && *++scan == *++match &&
 765                                 *++scan == *++match && *++scan == *++match &&
 766                                 *++scan == *++match && *++scan == *++match &&
 767                                 *++scan == *++match && *++scan == *++match && scan < strend);
 768
 769                len = MAX_MATCH - (int) (strend - scan);
 770                scan = strend - MAX_MATCH;
 771
 772                if (len > best_len) {
 773                        G1.match_start = cur_match;
 774                        best_len = len;
 775                        if (len >= nice_match)
 776                                break;
 777                        scan_end1 = scan[best_len - 1];
 778                        scan_end = scan[best_len];
 779                }
 780        } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
 781                         && --chain_length != 0);
 782
 783        return best_len;
 784}
 785
 786#ifdef DEBUG
 787/* ===========================================================================
 788 * Check that the match at match_start is indeed a match.
 789 */
 790static void check_match(IPos start, IPos match, int length)
 791{
 792        /* check that the match is indeed a match */
 793        if (memcmp(G1.window + match, G1.window + start, length) != 0) {
 794                bb_error_msg(" start %d, match %d, length %d", start, match, length);
 795                bb_simple_error_msg("invalid match");
 796        }
 797        if (verbose > 1) {
 798                bb_error_msg("\\[%d,%d]", start - match, length);
 799                do {
 800                        bb_putchar_stderr(G1.window[start++]);
 801                } while (--length != 0);
 802        }
 803}
 804#else
 805#  define check_match(start, match, length) ((void)0)
 806#endif
 807
 808
 809/* trees.c -- output deflated data using Huffman coding
 810 * Copyright (C) 1992-1993 Jean-loup Gailly
 811 * This is free software; you can redistribute it and/or modify it under the
 812 * terms of the GNU General Public License, see the file COPYING.
 813 */
 814
 815/*  PURPOSE
 816 *      Encode various sets of source values using variable-length
 817 *      binary code trees.
 818 *
 819 *  DISCUSSION
 820 *      The PKZIP "deflation" process uses several Huffman trees. The more
 821 *      common source values are represented by shorter bit sequences.
 822 *
 823 *      Each code tree is stored in the ZIP file in a compressed form
 824 *      which is itself a Huffman encoding of the lengths of
 825 *      all the code strings (in ascending order by source values).
 826 *      The actual code strings are reconstructed from the lengths in
 827 *      the UNZIP process, as described in the "application note"
 828 *      (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
 829 *
 830 *  REFERENCES
 831 *      Lynch, Thomas J.
 832 *          Data Compression:  Techniques and Applications, pp. 53-55.
 833 *          Lifetime Learning Publications, 1985.  ISBN 0-534-03418-7.
 834 *
 835 *      Storer, James A.
 836 *          Data Compression:  Methods and Theory, pp. 49-50.
 837 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
 838 *
 839 *      Sedgewick, R.
 840 *          Algorithms, p290.
 841 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
 842 *
 843 *  INTERFACE
 844 *      void ct_init()
 845 *          Allocate the match buffer, initialize the various tables [and save
 846 *          the location of the internal file attribute (ascii/binary) and
 847 *          method (DEFLATE/STORE) -- deleted in bbox]
 848 *
 849 *      void ct_tally(int dist, int lc);
 850 *          Save the match info and tally the frequency counts.
 851 *
 852 *      ulg flush_block(char *buf, ulg stored_len, int eof)
 853 *          Determine the best encoding for the current block: dynamic trees,
 854 *          static trees or store, and output the encoded block to the zip
 855 *          file. Returns the total compressed length for the file so far.
 856 */
 857
 858#define MAX_BITS 15
 859/* All codes must not exceed MAX_BITS bits */
 860
 861#define MAX_BL_BITS 7
 862/* Bit length codes must not exceed MAX_BL_BITS bits */
 863
 864#define LENGTH_CODES 29
 865/* number of length codes, not counting the special END_BLOCK code */
 866
 867#define LITERALS  256
 868/* number of literal bytes 0..255 */
 869
 870#define END_BLOCK 256
 871/* end of block literal code */
 872
 873#define L_CODES (LITERALS+1+LENGTH_CODES)
 874/* number of Literal or Length codes, including the END_BLOCK code */
 875
 876#define D_CODES   30
 877/* number of distance codes */
 878
 879#define BL_CODES  19
 880/* number of codes used to transfer the bit lengths */
 881
 882/* extra bits for each length code */
 883static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
 884        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
 885        4, 4, 5, 5, 5, 5, 0
 886};
 887
 888/* extra bits for each distance code */
 889static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
 890        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
 891        10, 10, 11, 11, 12, 12, 13, 13
 892};
 893
 894/* extra bits for each bit length code */
 895static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
 896        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
 897
 898/* number of codes at each bit length for an optimal tree */
 899static const uint8_t bl_order[BL_CODES] ALIGN1 = {
 900        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
 901
 902#define STORED_BLOCK 0
 903#define STATIC_TREES 1
 904#define DYN_TREES    2
 905/* The three kinds of block type */
 906
 907#ifndef LIT_BUFSIZE
 908#  ifdef SMALL_MEM
 909#    define LIT_BUFSIZE  0x2000
 910#  else
 911#  ifdef MEDIUM_MEM
 912#    define LIT_BUFSIZE  0x4000
 913#  else
 914#    define LIT_BUFSIZE  0x8000
 915#  endif
 916#  endif
 917#endif
 918#ifndef DIST_BUFSIZE
 919#  define DIST_BUFSIZE  LIT_BUFSIZE
 920#endif
 921/* Sizes of match buffers for literals/lengths and distances.  There are
 922 * 4 reasons for limiting LIT_BUFSIZE to 64K:
 923 *   - frequencies can be kept in 16 bit counters
 924 *   - if compression is not successful for the first block, all input data is
 925 *     still in the window so we can still emit a stored block even when input
 926 *     comes from standard input.  (This can also be done for all blocks if
 927 *     LIT_BUFSIZE is not greater than 32K.)
 928 *   - if compression is not successful for a file smaller than 64K, we can
 929 *     even emit a stored file instead of a stored block (saving 5 bytes).
 930 *   - creating new Huffman trees less frequently may not provide fast
 931 *     adaptation to changes in the input data statistics. (Take for
 932 *     example a binary file with poorly compressible code followed by
 933 *     a highly compressible string table.) Smaller buffer sizes give
 934 *     fast adaptation but have of course the overhead of transmitting trees
 935 *     more frequently.
 936 *   - I can't count above 4
 937 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
 938 * memory at the expense of compression). Some optimizations would be possible
 939 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
 940 */
 941#define REP_3_6      16
 942/* repeat previous bit length 3-6 times (2 bits of repeat count) */
 943#define REPZ_3_10    17
 944/* repeat a zero length 3-10 times  (3 bits of repeat count) */
 945#define REPZ_11_138  18
 946/* repeat a zero length 11-138 times  (7 bits of repeat count) */
 947
 948/* ===========================================================================
 949*/
 950/* Data structure describing a single value and its code string. */
 951typedef struct ct_data {
 952        union {
 953                ush freq;               /* frequency count */
 954                ush code;               /* bit string */
 955        } fc;
 956        union {
 957                ush dad;                /* father node in Huffman tree */
 958                ush len;                /* length of bit string */
 959        } dl;
 960} ct_data;
 961
 962#define Freq fc.freq
 963#define Code fc.code
 964#define Dad  dl.dad
 965#define Len  dl.len
 966
 967#define HEAP_SIZE (2*L_CODES + 1)
 968/* maximum heap size */
 969
 970typedef struct tree_desc {
 971        ct_data *dyn_tree;      /* the dynamic tree */
 972        ct_data *static_tree;   /* corresponding static tree or NULL */
 973        const uint8_t *extra_bits;      /* extra bits for each code or NULL */
 974        int extra_base;         /* base index for extra_bits */
 975        int elems;                      /* max number of elements in the tree */
 976        int max_length;         /* max bit length for the codes */
 977        int max_code;           /* largest code with non zero frequency */
 978} tree_desc;
 979
 980struct globals2 {
 981
 982        ush heap[HEAP_SIZE];     /* heap used to build the Huffman trees */
 983        int heap_len;            /* number of elements in the heap */
 984        int heap_max;            /* element of largest frequency */
 985
 986/* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
 987 * The same heap array is used to build all trees.
 988 */
 989
 990        ct_data dyn_ltree[HEAP_SIZE];   /* literal and length tree */
 991        ct_data dyn_dtree[2 * D_CODES + 1];     /* distance tree */
 992
 993        ct_data static_ltree[L_CODES + 2];
 994
 995/* The static literal tree. Since the bit lengths are imposed, there is no
 996 * need for the L_CODES extra codes used during heap construction. However
 997 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
 998 * below).
 999 */
1000
1001        ct_data static_dtree[D_CODES];
1002
1003/* The static distance tree. (Actually a trivial tree since all codes use
1004 * 5 bits.)
1005 */
1006
1007        ct_data bl_tree[2 * BL_CODES + 1];
1008
1009/* Huffman tree for the bit lengths */
1010
1011        tree_desc l_desc;
1012        tree_desc d_desc;
1013        tree_desc bl_desc;
1014
1015        /* was "ush", but "unsigned" results in smaller code */
1016        unsigned bl_count[MAX_BITS + 1];
1017
1018/* The lengths of the bit length codes are sent in order of decreasing
1019 * probability, to avoid transmitting the lengths for unused bit length codes.
1020 */
1021
1022        uch depth[2 * L_CODES + 1];
1023
1024/* Depth of each subtree used as tie breaker for trees of equal frequency */
1025
1026        uch length_code[MAX_MATCH - MIN_MATCH + 1];
1027
1028/* length code for each normalized match length (0 == MIN_MATCH) */
1029
1030        uch dist_code[512];
1031
1032/* distance codes. The first 256 values correspond to the distances
1033 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1034 * the 15 bit distances.
1035 */
1036
1037        int base_length[LENGTH_CODES];
1038
1039/* First normalized length for each code (0 = MIN_MATCH) */
1040
1041        int base_dist[D_CODES];
1042
1043/* First normalized distance for each code (0 = distance of 1) */
1044
1045        uch flag_buf[LIT_BUFSIZE / 8];
1046
1047/* flag_buf is a bit array distinguishing literals from lengths in
1048 * l_buf, thus indicating the presence or absence of a distance.
1049 */
1050
1051        unsigned last_lit;       /* running index in l_buf */
1052        unsigned last_dist;      /* running index in d_buf */
1053        unsigned last_flags;     /* running index in flag_buf */
1054        uch flags;               /* current flags not yet saved in flag_buf */
1055        uch flag_bit;            /* current bit used in flags */
1056
1057/* bits are filled in flags starting at bit 0 (least significant).
1058 * Note: these flags are overkill in the current code since we don't
1059 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
1060 */
1061
1062        ulg opt_len;             /* bit length of current block with optimal trees */
1063        ulg static_len;          /* bit length of current block with static trees */
1064
1065//      ulg compressed_len;      /* total bit length of compressed file */
1066};
1067
1068#define G2ptr ((struct globals2*)(ptr_to_globals))
1069#define G2 (*G2ptr)
1070
1071/* ===========================================================================
1072 */
1073#ifndef DEBUG
1074/* Send a code of the given tree. c and tree must not have side effects */
1075#  define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
1076#else
1077#  define SEND_CODE(c, tree) \
1078{ \
1079        if (verbose > 1) bb_error_msg("\ncd %3d ", (c)); \
1080        send_bits(tree[c].Code, tree[c].Len); \
1081}
1082#endif
1083
1084#define D_CODE(dist) \
1085        ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
1086/* Mapping from a distance to a distance code. dist is the distance - 1 and
1087 * must not have side effects. dist_code[256] and dist_code[257] are never
1088 * used.
1089 * The arguments must not have side effects.
1090 */
1091
1092/* ===========================================================================
1093 * Initialize a new block.
1094 */
1095static void init_block(void)
1096{
1097        int n; /* iterates over tree elements */
1098
1099        /* Initialize the trees. */
1100        for (n = 0; n < L_CODES; n++)
1101                G2.dyn_ltree[n].Freq = 0;
1102        for (n = 0; n < D_CODES; n++)
1103                G2.dyn_dtree[n].Freq = 0;
1104        for (n = 0; n < BL_CODES; n++)
1105                G2.bl_tree[n].Freq = 0;
1106
1107        G2.dyn_ltree[END_BLOCK].Freq = 1;
1108        G2.opt_len = G2.static_len = 0;
1109        G2.last_lit = G2.last_dist = G2.last_flags = 0;
1110        G2.flags = 0;
1111        G2.flag_bit = 1;
1112}
1113
1114/* ===========================================================================
1115 * Restore the heap property by moving down the tree starting at node k,
1116 * exchanging a node with the smallest of its two sons if necessary, stopping
1117 * when the heap property is re-established (each father smaller than its
1118 * two sons).
1119 */
1120
1121/* Compares to subtrees, using the tree depth as tie breaker when
1122 * the subtrees have equal frequency. This minimizes the worst case length. */
1123#define SMALLER(tree, n, m) \
1124        (tree[n].Freq < tree[m].Freq \
1125        || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1126
1127static void pqdownheap(const ct_data *tree, int k)
1128{
1129        int v = G2.heap[k];
1130        int j = k << 1;         /* left son of k */
1131
1132        while (j <= G2.heap_len) {
1133                /* Set j to the smallest of the two sons: */
1134                if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
1135                        j++;
1136
1137                /* Exit if v is smaller than both sons */
1138                if (SMALLER(tree, v, G2.heap[j]))
1139                        break;
1140
1141                /* Exchange v with the smallest son */
1142                G2.heap[k] = G2.heap[j];
1143                k = j;
1144
1145                /* And continue down the tree, setting j to the left son of k */
1146                j <<= 1;
1147        }
1148        G2.heap[k] = v;
1149}
1150
1151/* ===========================================================================
1152 * Compute the optimal bit lengths for a tree and update the total bit length
1153 * for the current block.
1154 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1155 *    above are the tree nodes sorted by increasing frequency.
1156 * OUT assertions: the field len is set to the optimal bit length, the
1157 *     array bl_count contains the frequencies for each bit length.
1158 *     The length opt_len is updated; static_len is also updated if stree is
1159 *     not null.
1160 */
1161static void gen_bitlen(const tree_desc *desc)
1162{
1163#define tree desc->dyn_tree
1164        int h;          /* heap index */
1165        int n, m;       /* iterate over the tree elements */
1166        int bits;       /* bit length */
1167        int overflow;   /* number of elements with bit length too large */
1168
1169        for (bits = 0; bits < ARRAY_SIZE(G2.bl_count); bits++)
1170                G2.bl_count[bits] = 0;
1171
1172        /* In a first pass, compute the optimal bit lengths (which may
1173         * overflow in the case of the bit length tree).
1174         */
1175        tree[G2.heap[G2.heap_max]].Len = 0;     /* root of the heap */
1176
1177        overflow = 0;
1178        for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1179                ulg f;          /* frequency */
1180                int xbits;      /* extra bits */
1181
1182                n = G2.heap[h];
1183                bits = tree[tree[n].Dad].Len + 1;
1184                if (bits > desc->max_length) {
1185                        bits = desc->max_length;
1186                        overflow++;
1187                }
1188                tree[n].Len = (ush) bits;
1189                /* We overwrite tree[n].Dad which is no longer needed */
1190
1191                if (n > desc->max_code)
1192                        continue;       /* not a leaf node */
1193
1194                G2.bl_count[bits]++;
1195                xbits = 0;
1196                if (n >= desc->extra_base)
1197                        xbits = desc->extra_bits[n - desc->extra_base];
1198                f = tree[n].Freq;
1199                G2.opt_len += f * (bits + xbits);
1200
1201                if (desc->static_tree)
1202                        G2.static_len += f * (desc->static_tree[n].Len + xbits);
1203        }
1204        if (overflow == 0)
1205                return;
1206
1207        Trace((stderr, "\nbit length overflow\n"));
1208        /* This happens for example on obj2 and pic of the Calgary corpus */
1209
1210        /* Find the first bit length which could increase: */
1211        do {
1212                bits = desc->max_length - 1;
1213                while (G2.bl_count[bits] == 0)
1214                        bits--;
1215                G2.bl_count[bits]--;    /* move one leaf down the tree */
1216                G2.bl_count[bits + 1] += 2;     /* move one overflow item as its brother */
1217                G2.bl_count[desc->max_length]--;
1218                /* The brother of the overflow item also moves one step up,
1219                 * but this does not affect bl_count[desc->max_length]
1220                 */
1221                overflow -= 2;
1222        } while (overflow > 0);
1223
1224        /* Now recompute all bit lengths, scanning in increasing frequency.
1225         * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1226         * lengths instead of fixing only the wrong ones. This idea is taken
1227         * from 'ar' written by Haruhiko Okumura.)
1228         */
1229        for (bits = desc->max_length; bits != 0; bits--) {
1230                n = G2.bl_count[bits];
1231                while (n != 0) {
1232                        m = G2.heap[--h];
1233                        if (m > desc->max_code)
1234                                continue;
1235                        if (tree[m].Len != (unsigned) bits) {
1236                                Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1237                                G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1238                                tree[m].Len = bits;
1239                        }
1240                        n--;
1241                }
1242        }
1243#undef tree
1244}
1245
1246/* ===========================================================================
1247 * Generate the codes for a given tree and bit counts (which need not be
1248 * optimal).
1249 * IN assertion: the array bl_count contains the bit length statistics for
1250 * the given tree and the field len is set for all tree elements.
1251 * OUT assertion: the field code is set for all tree elements of non
1252 *     zero code length.
1253 */
1254static void gen_codes(ct_data *tree, int max_code)
1255{
1256        /* next_code[] and code used to be "ush", but "unsigned" results in smaller code */
1257        unsigned next_code[MAX_BITS + 1]; /* next code value for each bit length */
1258        unsigned code = 0;      /* running code value */
1259        int bits;               /* bit index */
1260        int n;                  /* code index */
1261
1262        /* The distribution counts are first used to generate the code values
1263         * without bit reversal.
1264         */
1265        for (bits = 1; bits <= MAX_BITS; bits++) {
1266                next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
1267        }
1268        /* Check that the bit counts in bl_count are consistent. The last code
1269         * must be all ones.
1270         */
1271        Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
1272                        "inconsistent bit counts");
1273        Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1274
1275        for (n = 0; n <= max_code; n++) {
1276                int len = tree[n].Len;
1277
1278                if (len == 0)
1279                        continue;
1280                /* Now reverse the bits */
1281                tree[n].Code = bi_reverse(next_code[len]++, len);
1282
1283                Tracec(tree != G2.static_ltree,
1284                           (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
1285                                (n > ' ' ? n : ' '), len, tree[n].Code,
1286                                next_code[len] - 1));
1287        }
1288}
1289
1290/* ===========================================================================
1291 * Construct one Huffman tree and assigns the code bit strings and lengths.
1292 * Update the total bit length for the current block.
1293 * IN assertion: the field freq is set for all tree elements.
1294 * OUT assertions: the fields len and code are set to the optimal bit length
1295 *     and corresponding code. The length opt_len is updated; static_len is
1296 *     also updated if stree is not null. The field max_code is set.
1297 */
1298
1299/* Remove the smallest element from the heap and recreate the heap with
1300 * one less element. Updates heap and heap_len. */
1301
1302#define SMALLEST 1
1303/* Index within the heap array of least frequent node in the Huffman tree */
1304
1305#define PQREMOVE(tree, top) \
1306do { \
1307        top = G2.heap[SMALLEST]; \
1308        G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1309        pqdownheap(tree, SMALLEST); \
1310} while (0)
1311
1312static void build_tree(tree_desc *desc)
1313{
1314        ct_data *tree = desc->dyn_tree;
1315        ct_data *stree = desc->static_tree;
1316        int elems = desc->elems;
1317        int n, m;                       /* iterate over heap elements */
1318        int max_code = -1;      /* largest code with non zero frequency */
1319        int node = elems;       /* next internal node of the tree */
1320
1321        /* Construct the initial heap, with least frequent element in
1322         * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1323         * heap[0] is not used.
1324         */
1325        G2.heap_len = 0;
1326        G2.heap_max = HEAP_SIZE;
1327
1328        for (n = 0; n < elems; n++) {
1329                if (tree[n].Freq != 0) {
1330                        G2.heap[++G2.heap_len] = max_code = n;
1331                        G2.depth[n] = 0;
1332                } else {
1333                        tree[n].Len = 0;
1334                }
1335        }
1336
1337        /* The pkzip format requires that at least one distance code exists,
1338         * and that at least one bit should be sent even if there is only one
1339         * possible code. So to avoid special checks later on we force at least
1340         * two codes of non zero frequency.
1341         */
1342        while (G2.heap_len < 2) {
1343                int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
1344
1345                tree[new].Freq = 1;
1346                G2.depth[new] = 0;
1347                G2.opt_len--;
1348                if (stree)
1349                        G2.static_len -= stree[new].Len;
1350                /* new is 0 or 1 so it does not have extra bits */
1351        }
1352        desc->max_code = max_code;
1353
1354        /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1355         * establish sub-heaps of increasing lengths:
1356         */
1357        for (n = G2.heap_len / 2; n >= 1; n--)
1358                pqdownheap(tree, n);
1359
1360        /* Construct the Huffman tree by repeatedly combining the least two
1361         * frequent nodes.
1362         */
1363        do {
1364                PQREMOVE(tree, n);      /* n = node of least frequency */
1365                m = G2.heap[SMALLEST];  /* m = node of next least frequency */
1366
1367                G2.heap[--G2.heap_max] = n;     /* keep the nodes sorted by frequency */
1368                G2.heap[--G2.heap_max] = m;
1369
1370                /* Create a new node father of n and m */
1371                tree[node].Freq = tree[n].Freq + tree[m].Freq;
1372                G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
1373                tree[n].Dad = tree[m].Dad = (ush) node;
1374#ifdef DUMP_BL_TREE
1375                if (tree == G2.bl_tree) {
1376                        bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1377                                        node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1378                }
1379#endif
1380                /* and insert the new node in the heap */
1381                G2.heap[SMALLEST] = node++;
1382                pqdownheap(tree, SMALLEST);
1383        } while (G2.heap_len >= 2);
1384
1385        G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
1386
1387        /* At this point, the fields freq and dad are set. We can now
1388         * generate the bit lengths.
1389         */
1390        gen_bitlen(desc);
1391
1392        /* The field len is now set, we can generate the bit codes */
1393        gen_codes(tree, max_code);
1394}
1395
1396/* ===========================================================================
1397 * Scan a literal or distance tree to determine the frequencies of the codes
1398 * in the bit length tree. Updates opt_len to take into account the repeat
1399 * counts. (The contribution of the bit length codes will be added later
1400 * during the construction of bl_tree.)
1401 */
1402static void scan_tree(ct_data *tree, int max_code)
1403{
1404        int n;                          /* iterates over all tree elements */
1405        int prevlen = -1;       /* last emitted length */
1406        int curlen;                     /* length of current code */
1407        int nextlen = tree[0].Len;      /* length of next code */
1408        int count = 0;          /* repeat count of the current code */
1409        int max_count = 7;      /* max repeat count */
1410        int min_count = 4;      /* min repeat count */
1411
1412        if (nextlen == 0) {
1413                max_count = 138;
1414                min_count = 3;
1415        }
1416        tree[max_code + 1].Len = 0xffff; /* guard */
1417
1418        for (n = 0; n <= max_code; n++) {
1419                curlen = nextlen;
1420                nextlen = tree[n + 1].Len;
1421                if (++count < max_count && curlen == nextlen)
1422                        continue;
1423
1424                if (count < min_count) {
1425                        G2.bl_tree[curlen].Freq += count;
1426                } else if (curlen != 0) {
1427                        if (curlen != prevlen)
1428                                G2.bl_tree[curlen].Freq++;
1429                        G2.bl_tree[REP_3_6].Freq++;
1430                } else if (count <= 10) {
1431                        G2.bl_tree[REPZ_3_10].Freq++;
1432                } else {
1433                        G2.bl_tree[REPZ_11_138].Freq++;
1434                }
1435                count = 0;
1436                prevlen = curlen;
1437
1438                max_count = 7;
1439                min_count = 4;
1440                if (nextlen == 0) {
1441                        max_count = 138;
1442                        min_count = 3;
1443                } else if (curlen == nextlen) {
1444                        max_count = 6;
1445                        min_count = 3;
1446                }
1447        }
1448}
1449
1450/* ===========================================================================
1451 * Send a literal or distance tree in compressed form, using the codes in
1452 * bl_tree.
1453 */
1454static void send_tree(const ct_data *tree, int max_code)
1455{
1456        int n;                          /* iterates over all tree elements */
1457        int prevlen = -1;       /* last emitted length */
1458        int curlen;                     /* length of current code */
1459        int nextlen = tree[0].Len;      /* length of next code */
1460        int count = 0;          /* repeat count of the current code */
1461        int max_count = 7;      /* max repeat count */
1462        int min_count = 4;      /* min repeat count */
1463
1464/* tree[max_code+1].Len = -1; *//* guard already set */
1465        if (nextlen == 0)
1466                max_count = 138, min_count = 3;
1467
1468        for (n = 0; n <= max_code; n++) {
1469                curlen = nextlen;
1470                nextlen = tree[n + 1].Len;
1471                if (++count < max_count && curlen == nextlen) {
1472                        continue;
1473                } else if (count < min_count) {
1474                        do {
1475                                SEND_CODE(curlen, G2.bl_tree);
1476                        } while (--count);
1477                } else if (curlen != 0) {
1478                        if (curlen != prevlen) {
1479                                SEND_CODE(curlen, G2.bl_tree);
1480                                count--;
1481                        }
1482                        Assert(count >= 3 && count <= 6, " 3_6?");
1483                        SEND_CODE(REP_3_6, G2.bl_tree);
1484                        send_bits(count - 3, 2);
1485                } else if (count <= 10) {
1486                        SEND_CODE(REPZ_3_10, G2.bl_tree);
1487                        send_bits(count - 3, 3);
1488                } else {
1489                        SEND_CODE(REPZ_11_138, G2.bl_tree);
1490                        send_bits(count - 11, 7);
1491                }
1492                count = 0;
1493                prevlen = curlen;
1494                if (nextlen == 0) {
1495                        max_count = 138;
1496                        min_count = 3;
1497                } else if (curlen == nextlen) {
1498                        max_count = 6;
1499                        min_count = 3;
1500                } else {
1501                        max_count = 7;
1502                        min_count = 4;
1503                }
1504        }
1505}
1506
1507/* ===========================================================================
1508 * Construct the Huffman tree for the bit lengths and return the index in
1509 * bl_order of the last bit length code to send.
1510 */
1511static int build_bl_tree(void)
1512{
1513        int max_blindex;        /* index of last bit length code of non zero freq */
1514
1515        /* Determine the bit length frequencies for literal and distance trees */
1516        scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1517        scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
1518
1519        /* Build the bit length tree: */
1520        build_tree(&G2.bl_desc);
1521        /* opt_len now includes the length of the tree representations, except
1522         * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1523         */
1524
1525        /* Determine the number of bit length codes to send. The pkzip format
1526         * requires that at least 4 bit length codes be sent. (appnote.txt says
1527         * 3 but the actual value used is 4.)
1528         */
1529        for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
1530                if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
1531                        break;
1532        }
1533        /* Update opt_len to include the bit length tree and counts */
1534        G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1535        Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", (long)G2.opt_len, (long)G2.static_len));
1536
1537        return max_blindex;
1538}
1539
1540/* ===========================================================================
1541 * Send the header for a block using dynamic Huffman trees: the counts, the
1542 * lengths of the bit length codes, the literal tree and the distance tree.
1543 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1544 */
1545static void send_all_trees(int lcodes, int dcodes, int blcodes)
1546{
1547        int rank;                       /* index in bl_order */
1548
1549        Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1550        Assert(lcodes <= L_CODES && dcodes <= D_CODES
1551                   && blcodes <= BL_CODES, "too many codes");
1552        Tracev((stderr, "\nbl counts: "));
1553        send_bits(lcodes - 257, 5);     /* not +255 as stated in appnote.txt */
1554        send_bits(dcodes - 1, 5);
1555        send_bits(blcodes - 4, 4);      /* not -3 as stated in appnote.txt */
1556        for (rank = 0; rank < blcodes; rank++) {
1557                Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1558                send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
1559        }
1560        Tracev((stderr, "\nbl tree: sent %ld", (long)G1.bits_sent));
1561
1562        send_tree((ct_data *) G2.dyn_ltree, lcodes - 1);        /* send the literal tree */
1563        Tracev((stderr, "\nlit tree: sent %ld", (long)G1.bits_sent));
1564
1565        send_tree((ct_data *) G2.dyn_dtree, dcodes - 1);        /* send the distance tree */
1566        Tracev((stderr, "\ndist tree: sent %ld", (long)G1.bits_sent));
1567}
1568
1569/* ===========================================================================
1570 * Save the match info and tally the frequency counts. Return true if
1571 * the current block must be flushed.
1572 */
1573static int ct_tally(int dist, int lc)
1574{
1575        G1.l_buf[G2.last_lit++] = lc;
1576        if (dist == 0) {
1577                /* lc is the unmatched char */
1578                G2.dyn_ltree[lc].Freq++;
1579        } else {
1580                /* Here, lc is the match length - MIN_MATCH */
1581                dist--;                 /* dist = match distance - 1 */
1582                Assert((ush) dist < (ush) MAX_DIST
1583                 && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1584                 && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1585                );
1586
1587                G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1588                G2.dyn_dtree[D_CODE(dist)].Freq++;
1589
1590                G1.d_buf[G2.last_dist++] = dist;
1591                G2.flags |= G2.flag_bit;
1592        }
1593        G2.flag_bit <<= 1;
1594
1595        /* Output the flags if they fill a byte: */
1596        if ((G2.last_lit & 7) == 0) {
1597                G2.flag_buf[G2.last_flags++] = G2.flags;
1598                G2.flags = 0;
1599                G2.flag_bit = 1;
1600        }
1601        /* Try to guess if it is profitable to stop the current block here */
1602        if ((G2.last_lit & 0xfff) == 0) {
1603                /* Compute an upper bound for the compressed length */
1604                ulg out_length = G2.last_lit * 8L;
1605                ulg in_length = (ulg) G1.strstart - G1.block_start;
1606                int dcode;
1607
1608                for (dcode = 0; dcode < D_CODES; dcode++) {
1609                        out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1610                }
1611                out_length >>= 3;
1612                Trace((stderr,
1613                                "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1614                                G2.last_lit, G2.last_dist,
1615                                (long)in_length, (long)out_length,
1616                                100L - out_length * 100L / in_length));
1617                if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1618                        return 1;
1619        }
1620        return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1621        /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1622         * on 16 bit machines and because stored blocks are restricted to
1623         * 64K-1 bytes.
1624         */
1625}
1626
1627/* ===========================================================================
1628 * Send the block data compressed using the given Huffman trees
1629 */
1630static void compress_block(const ct_data *ltree, const ct_data *dtree)
1631{
1632        unsigned dist;          /* distance of matched string */
1633        int lc;                 /* match length or unmatched char (if dist == 0) */
1634        unsigned lx = 0;        /* running index in l_buf */
1635        unsigned dx = 0;        /* running index in d_buf */
1636        unsigned fx = 0;        /* running index in flag_buf */
1637        uch flag = 0;           /* current flags */
1638        unsigned code;          /* the code to send */
1639        int extra;              /* number of extra bits to send */
1640
1641        if (G2.last_lit != 0) do {
1642                if ((lx & 7) == 0)
1643                        flag = G2.flag_buf[fx++];
1644                lc = G1.l_buf[lx++];
1645                if ((flag & 1) == 0) {
1646                        SEND_CODE(lc, ltree);   /* send a literal byte */
1647                        Tracecv(lc > ' ', (stderr, " '%c' ", lc));
1648                } else {
1649                        /* Here, lc is the match length - MIN_MATCH */
1650                        code = G2.length_code[lc];
1651                        SEND_CODE(code + LITERALS + 1, ltree);  /* send the length code */
1652                        extra = extra_lbits[code];
1653                        if (extra != 0) {
1654                                lc -= G2.base_length[code];
1655                                send_bits(lc, extra);   /* send the extra length bits */
1656                        }
1657                        dist = G1.d_buf[dx++];
1658                        /* Here, dist is the match distance - 1 */
1659                        code = D_CODE(dist);
1660                        Assert(code < D_CODES, "bad d_code");
1661
1662                        SEND_CODE(code, dtree); /* send the distance code */
1663                        extra = extra_dbits[code];
1664                        if (extra != 0) {
1665                                dist -= G2.base_dist[code];
1666                                send_bits(dist, extra); /* send the extra distance bits */
1667                        }
1668                }                       /* literal or match pair ? */
1669                flag >>= 1;
1670        } while (lx < G2.last_lit);
1671
1672        SEND_CODE(END_BLOCK, ltree);
1673}
1674
1675/* ===========================================================================
1676 * Determine the best encoding for the current block: dynamic trees, static
1677 * trees or store, and output the encoded block to the zip file. This function
1678 * returns the total compressed length for the file so far.
1679 */
1680static void flush_block(const char *buf, ulg stored_len, int eof)
1681{
1682        ulg opt_lenb, static_lenb;      /* opt_len and static_len in bytes */
1683        int max_blindex;                /* index of last bit length code of non zero freq */
1684
1685        G2.flag_buf[G2.last_flags] = G2.flags;   /* Save the flags for the last 8 items */
1686
1687        /* Construct the literal and distance trees */
1688        build_tree(&G2.l_desc);
1689        Tracev((stderr, "\nlit data: dyn %ld, stat %ld", (long)G2.opt_len, (long)G2.static_len));
1690
1691        build_tree(&G2.d_desc);
1692        Tracev((stderr, "\ndist data: dyn %ld, stat %ld", (long)G2.opt_len, (long)G2.static_len));
1693        /* At this point, opt_len and static_len are the total bit lengths of
1694         * the compressed block data, excluding the tree representations.
1695         */
1696
1697        /* Build the bit length tree for the above two trees, and get the index
1698         * in bl_order of the last bit length code to send.
1699         */
1700        max_blindex = build_bl_tree();
1701
1702        /* Determine the best encoding. Compute first the block length in bytes */
1703        opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1704        static_lenb = (G2.static_len + 3 + 7) >> 3;
1705
1706        Trace((stderr,
1707                        "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1708                        (unsigned long)opt_lenb, (unsigned long)G2.opt_len,
1709                        (unsigned long)static_lenb, (unsigned long)G2.static_len,
1710                        (unsigned long)stored_len,
1711                        G2.last_lit, G2.last_dist));
1712
1713        if (static_lenb <= opt_lenb)
1714                opt_lenb = static_lenb;
1715
1716        /* If compression failed and this is the first and last block,
1717         * and if the zip file can be seeked (to rewrite the local header),
1718         * the whole file is transformed into a stored file:
1719         */
1720// seekable() is constant FALSE in busybox, and G2.compressed_len is disabled
1721// (this was the only user)
1722//      if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
1723//              /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1724//              if (buf == NULL)
1725//                      bb_error_msg("block vanished");
1726//
1727//              G2.compressed_len = stored_len << 3;
1728//              copy_block(buf, (unsigned) stored_len, 0);      /* without header */
1729//      } else
1730        if (stored_len + 4 <= opt_lenb && buf != NULL) {
1731                /* 4: two words for the lengths */
1732                /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1733                 * Otherwise we can't have processed more than WSIZE input bytes since
1734                 * the last block flush, because compression would have been
1735                 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1736                 * transform a block into a stored block.
1737                 */
1738                send_bits((STORED_BLOCK << 1) + eof, 3);        /* send block type */
1739//              G2.compressed_len = ((G2.compressed_len + 3 + 7) & ~7L)
1740//                              + ((stored_len + 4) << 3);
1741                copy_block(buf, (unsigned) stored_len, 1);      /* with header */
1742        } else
1743        if (static_lenb == opt_lenb) {
1744                send_bits((STATIC_TREES << 1) + eof, 3);
1745                compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1746//              G2.compressed_len += 3 + G2.static_len;
1747        } else {
1748                send_bits((DYN_TREES << 1) + eof, 3);
1749                send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
1750                                        max_blindex + 1);
1751                compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1752//              G2.compressed_len += 3 + G2.opt_len;
1753        }
1754//      Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
1755        init_block();
1756
1757        if (eof) {
1758                bi_windup();
1759//              G2.compressed_len += 7; /* align on byte boundary */
1760        }
1761//      Tracev((stderr, "\ncomprlen %lu(%lu) ",
1762//                      (unsigned long)G2.compressed_len >> 3,
1763//                      (unsigned long)G2.compressed_len - 7 * eof));
1764
1765        return; /* was "return G2.compressed_len >> 3;" */
1766}
1767
1768/* ===========================================================================
1769 * Update a hash value with the given input byte
1770 * IN  assertion: all calls to UPDATE_HASH are made with consecutive
1771 *    input characters, so that a running hash key can be computed from the
1772 *    previous key instead of complete recalculation each time.
1773 */
1774#define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1775
1776/* ===========================================================================
1777 * Same as above, but achieves better compression. We use a lazy
1778 * evaluation for matches: a match is finally adopted only if there is
1779 * no better match at the next window position.
1780 *
1781 * Processes a new input file and return its compressed length. Sets
1782 * the compressed length, crc, deflate flags and internal file
1783 * attributes.
1784 */
1785
1786/* Flush the current block, with given end-of-file flag.
1787 * IN assertion: strstart is set to the end of the current match. */
1788#define FLUSH_BLOCK(eof) \
1789        flush_block( \
1790                G1.block_start >= 0L \
1791                        ? (char*)&G1.window[(unsigned)G1.block_start] \
1792                        : (char*)NULL, \
1793                (ulg)G1.strstart - G1.block_start, \
1794                (eof) \
1795        )
1796
1797/* Insert string s in the dictionary and set match_head to the previous head
1798 * of the hash chain (the most recent string with same hash key). Return
1799 * the previous length of the hash chain.
1800 * IN  assertion: all calls to INSERT_STRING are made with consecutive
1801 *    input characters and the first MIN_MATCH bytes of s are valid
1802 *    (except for the last MIN_MATCH-1 bytes of the input file). */
1803#define INSERT_STRING(s, match_head) \
1804do { \
1805        UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1806        G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1807        head[G1.ins_h] = (s); \
1808} while (0)
1809
1810static NOINLINE void deflate(void)
1811{
1812        IPos hash_head;         /* head of hash chain */
1813        IPos prev_match;        /* previous match */
1814        int flush;                      /* set if current block must be flushed */
1815        int match_available = 0;        /* set if previous match exists */
1816        unsigned match_length = MIN_MATCH - 1;  /* length of best match */
1817
1818        /* Process the input block. */
1819        while (G1.lookahead != 0) {
1820                /* Insert the string window[strstart .. strstart+2] in the
1821                 * dictionary, and set hash_head to the head of the hash chain:
1822                 */
1823                INSERT_STRING(G1.strstart, hash_head);
1824
1825                /* Find the longest match, discarding those <= prev_length.
1826                 */
1827                G1.prev_length = match_length;
1828                prev_match = G1.match_start;
1829                match_length = MIN_MATCH - 1;
1830
1831                if (hash_head != 0 && G1.prev_length < max_lazy_match
1832                 && G1.strstart - hash_head <= MAX_DIST
1833                ) {
1834                        /* To simplify the code, we prevent matches with the string
1835                         * of window index 0 (in particular we have to avoid a match
1836                         * of the string with itself at the start of the input file).
1837                         */
1838                        match_length = longest_match(hash_head);
1839                        /* longest_match() sets match_start */
1840                        if (match_length > G1.lookahead)
1841                                match_length = G1.lookahead;
1842
1843                        /* Ignore a length 3 match if it is too distant: */
1844                        if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1845                                /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1846                                 * but we will ignore the current match anyway.
1847                                 */
1848                                match_length--;
1849                        }
1850                }
1851                /* If there was a match at the previous step and the current
1852                 * match is not better, output the previous match:
1853                 */
1854                if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1855                        check_match(G1.strstart - 1, prev_match, G1.prev_length);
1856                        flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1857
1858                        /* Insert in hash table all strings up to the end of the match.
1859                         * strstart-1 and strstart are already inserted.
1860                         */
1861                        G1.lookahead -= G1.prev_length - 1;
1862                        G1.prev_length -= 2;
1863                        do {
1864                                G1.strstart++;
1865                                INSERT_STRING(G1.strstart, hash_head);
1866                                /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1867                                 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1868                                 * these bytes are garbage, but it does not matter since the
1869                                 * next lookahead bytes will always be emitted as literals.
1870                                 */
1871                        } while (--G1.prev_length != 0);
1872                        match_available = 0;
1873                        match_length = MIN_MATCH - 1;
1874                        G1.strstart++;
1875                        if (flush) {
1876                                FLUSH_BLOCK(0);
1877                                G1.block_start = G1.strstart;
1878                        }
1879                } else if (match_available) {
1880                        /* If there was no match at the previous position, output a
1881                         * single literal. If there was a match but the current match
1882                         * is longer, truncate the previous match to a single literal.
1883                         */
1884                        Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1885                        if (ct_tally(0, G1.window[G1.strstart - 1])) {
1886                                FLUSH_BLOCK(0);
1887                                G1.block_start = G1.strstart;
1888                        }
1889                        G1.strstart++;
1890                        G1.lookahead--;
1891                } else {
1892                        /* There is no previous match to compare with, wait for
1893                         * the next step to decide.
1894                         */
1895                        match_available = 1;
1896                        G1.strstart++;
1897                        G1.lookahead--;
1898                }
1899                Assert(G1.strstart <= G1.isize && G1.lookahead <= G1.isize, "a bit too far");
1900
1901                /* Make sure that we always have enough lookahead, except
1902                 * at the end of the input file. We need MAX_MATCH bytes
1903                 * for the next match, plus MIN_MATCH bytes to insert the
1904                 * string following the next match.
1905                 */
1906                fill_window_if_needed();
1907        }
1908        if (match_available)
1909                ct_tally(0, G1.window[G1.strstart - 1]);
1910
1911        FLUSH_BLOCK(1); /* eof */
1912}
1913
1914/* ===========================================================================
1915 * Initialize the bit string routines.
1916 */
1917static void bi_init(void)
1918{
1919        //G1.bi_buf = 0; // globals are zeroed in pack_gzip()
1920        //G1.bi_valid = 0; // globals are zeroed in pack_gzip()
1921        //DEBUG_bits_sent(= 0L); // globals are zeroed in pack_gzip()
1922}
1923
1924/* ===========================================================================
1925 * Initialize the "longest match" routines for a new file
1926 */
1927static void lm_init(void)
1928{
1929        unsigned j;
1930
1931        /* Initialize the hash table. */
1932        memset(head, 0, HASH_SIZE * sizeof(*head));
1933        /* prev will be initialized on the fly */
1934
1935        /* ??? reduce max_chain_length for binary files */
1936
1937        //G1.strstart = 0; // globals are zeroed in pack_gzip()
1938        //G1.block_start = 0L; // globals are zeroed in pack_gzip()
1939
1940        G1.lookahead = file_read(G1.window,
1941                        sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1942
1943        if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1944                G1.eofile = 1;
1945                G1.lookahead = 0;
1946                return;
1947        }
1948        //G1.eofile = 0; // globals are zeroed in pack_gzip()
1949
1950        /* Make sure that we always have enough lookahead. This is important
1951         * if input comes from a device such as a tty.
1952         */
1953        fill_window_if_needed();
1954
1955        //G1.ins_h = 0; // globals are zeroed in pack_gzip()
1956        for (j = 0; j < MIN_MATCH - 1; j++)
1957                UPDATE_HASH(G1.ins_h, G1.window[j]);
1958        /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1959         * not important since only literal bytes will be emitted.
1960         */
1961}
1962
1963/* ===========================================================================
1964 * Allocate the match buffer, initialize the various tables and save the
1965 * location of the internal file attribute (ascii/binary) and method
1966 * (DEFLATE/STORE).
1967 * One callsite in zip()
1968 */
1969static void ct_init(void)
1970{
1971        int n;                          /* iterates over tree elements */
1972        int length;                     /* length value */
1973        int code;                       /* code value */
1974        int dist;                       /* distance index */
1975
1976//      //G2.compressed_len = 0L; // globals are zeroed in pack_gzip()
1977
1978#ifdef NOT_NEEDED
1979        if (G2.static_dtree[0].Len != 0)
1980                return;                 /* ct_init already called */
1981#endif
1982
1983        /* Initialize the mapping length (0..255) -> length code (0..28) */
1984        length = 0;
1985        for (code = 0; code < LENGTH_CODES - 1; code++) {
1986                G2.base_length[code] = length;
1987                for (n = 0; n < (1 << extra_lbits[code]); n++) {
1988                        G2.length_code[length++] = code;
1989                }
1990        }
1991        Assert(length == 256, "ct_init: length != 256");
1992        /* Note that the length 255 (match length 258) can be represented
1993         * in two different ways: code 284 + 5 bits or code 285, so we
1994         * overwrite length_code[255] to use the best encoding:
1995         */
1996        G2.length_code[length - 1] = code;
1997
1998        /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1999        dist = 0;
2000        for (code = 0; code < 16; code++) {
2001                G2.base_dist[code] = dist;
2002                for (n = 0; n < (1 << extra_dbits[code]); n++) {
2003                        G2.dist_code[dist++] = code;
2004                }
2005        }
2006        Assert(dist == 256, "ct_init: dist != 256");
2007        dist >>= 7;                     /* from now on, all distances are divided by 128 */
2008        for (; code < D_CODES; code++) {
2009                G2.base_dist[code] = dist << 7;
2010                for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
2011                        G2.dist_code[256 + dist++] = code;
2012                }
2013        }
2014        Assert(dist == 256, "ct_init: 256+dist != 512");
2015
2016        /* Construct the codes of the static literal tree */
2017        //for (n = 0; n <= MAX_BITS; n++) // globals are zeroed in pack_gzip()
2018        //      G2.bl_count[n] = 0;
2019
2020        n = 0;
2021        while (n <= 143) {
2022                G2.static_ltree[n++].Len = 8;
2023                //G2.bl_count[8]++;
2024        }
2025        //G2.bl_count[8] = 143 + 1;
2026        while (n <= 255) {
2027                G2.static_ltree[n++].Len = 9;
2028                //G2.bl_count[9]++;
2029        }
2030        //G2.bl_count[9] = 255 - 143;
2031        while (n <= 279) {
2032                G2.static_ltree[n++].Len = 7;
2033                //G2.bl_count[7]++;
2034        }
2035        //G2.bl_count[7] = 279 - 255;
2036        while (n <= 287) {
2037                G2.static_ltree[n++].Len = 8;
2038                //G2.bl_count[8]++;
2039        }
2040        //G2.bl_count[8] += 287 - 279;
2041        G2.bl_count[7] = 279 - 255;
2042        G2.bl_count[8] = (143 + 1) + (287 - 279);
2043        G2.bl_count[9] = 255 - 143;
2044        /* Codes 286 and 287 do not exist, but we must include them in the
2045         * tree construction to get a canonical Huffman tree (longest code
2046         * all ones)
2047         */
2048        gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
2049
2050        /* The static distance tree is trivial: */
2051        for (n = 0; n < D_CODES; n++) {
2052                G2.static_dtree[n].Len = 5;
2053                G2.static_dtree[n].Code = bi_reverse(n, 5);
2054        }
2055
2056        /* Initialize the first block of the first file: */
2057        init_block();
2058}
2059
2060/* ===========================================================================
2061 * Deflate in to out.
2062 * IN assertions: the input and output buffers are cleared.
2063 */
2064static void zip(void)
2065{
2066        unsigned deflate_flags;
2067
2068        //G1.outcnt = 0; // globals are zeroed in pack_gzip()
2069
2070        /* Write the header to the gzip file. See algorithm.doc for the format */
2071        /* magic header for gzip files: 1F 8B */
2072        /* compression method: 8 (DEFLATED) */
2073        /* general flags: 0 */
2074        put_32bit(0x00088b1f);
2075        put_32bit(0);           /* Unix timestamp */
2076
2077        /* Write deflated file to zip file */
2078        G1.crc = ~0;
2079
2080        bi_init();
2081        ct_init();
2082        lm_init();
2083
2084        deflate_flags = 0x300; /* extra flags. OS id = 3 (Unix) */
2085#if ENABLE_FEATURE_GZIP_LEVELS
2086        /* Note that comp_level < 4 do not exist in this version of gzip */
2087        if (comp_level_minus4 == 9 - 4) {
2088                deflate_flags |= 0x02; /* SLOW flag */
2089        }
2090#endif
2091        put_16bit(deflate_flags);
2092
2093        /* The above 32-bit misaligns outbuf (10 bytes are stored), flush it */
2094        flush_outbuf_if_32bit_optimized();
2095
2096        deflate();
2097
2098        /* Write the crc and uncompressed size */
2099        put_32bit(~G1.crc);
2100        put_32bit(G1.isize);
2101
2102        flush_outbuf();
2103}
2104
2105/* ======================================================================== */
2106static
2107IF_DESKTOP(long long) int FAST_FUNC pack_gzip(transformer_state_t *xstate UNUSED_PARAM)
2108{
2109        /* Reinit G1.xxx except pointers to allocated buffers, and entire G2 */
2110        memset(&G1.crc, 0, (sizeof(G1) - offsetof(struct globals, crc)) + sizeof(G2));
2111
2112        /* Clear input and output buffers */
2113        //G1.outcnt = 0;
2114#ifdef DEBUG
2115        //G1.insize = 0;
2116#endif
2117        //G1.isize = 0;
2118
2119        /* Reinit G2.xxx */
2120        G2.l_desc.dyn_tree     = G2.dyn_ltree;
2121        G2.l_desc.static_tree  = G2.static_ltree;
2122        G2.l_desc.extra_bits   = extra_lbits;
2123        G2.l_desc.extra_base   = LITERALS + 1;
2124        G2.l_desc.elems        = L_CODES;
2125        G2.l_desc.max_length   = MAX_BITS;
2126        //G2.l_desc.max_code     = 0;
2127        G2.d_desc.dyn_tree     = G2.dyn_dtree;
2128        G2.d_desc.static_tree  = G2.static_dtree;
2129        G2.d_desc.extra_bits   = extra_dbits;
2130        //G2.d_desc.extra_base   = 0;
2131        G2.d_desc.elems        = D_CODES;
2132        G2.d_desc.max_length   = MAX_BITS;
2133        //G2.d_desc.max_code     = 0;
2134        G2.bl_desc.dyn_tree    = G2.bl_tree;
2135        //G2.bl_desc.static_tree = NULL;
2136        G2.bl_desc.extra_bits  = extra_blbits,
2137        //G2.bl_desc.extra_base  = 0;
2138        G2.bl_desc.elems       = BL_CODES;
2139        G2.bl_desc.max_length  = MAX_BL_BITS;
2140        //G2.bl_desc.max_code    = 0;
2141
2142#if 0
2143        /* Saving of timestamp is disabled. Why?
2144         * - it is not Y2038-safe.
2145         * - some people want deterministic results
2146         *   (normally they'd use -n, but our -n is a nop).
2147         * - it's bloat.
2148         * Per RFC 1952, gzfile.time=0 is "no timestamp".
2149         * If users will demand this to be reinstated,
2150         * implement -n "don't save timestamp".
2151         */
2152        struct stat s;
2153        s.st_ctime = 0;
2154        fstat(STDIN_FILENO, &s);
2155        zip(s.st_ctime);
2156#else
2157        zip();
2158#endif
2159        return 0;
2160}
2161
2162#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2163static const char gzip_longopts[] ALIGN1 =
2164        "stdout\0"              No_argument       "c"
2165        "to-stdout\0"           No_argument       "c"
2166        "force\0"               No_argument       "f"
2167        "verbose\0"             No_argument       "v"
2168#if ENABLE_FEATURE_GZIP_DECOMPRESS
2169        "decompress\0"          No_argument       "d"
2170        "uncompress\0"          No_argument       "d"
2171        "test\0"                No_argument       "t"
2172#endif
2173        "quiet\0"               No_argument       "q"
2174        "fast\0"                No_argument       "1"
2175        "best\0"                No_argument       "9"
2176        "no-name\0"             No_argument       "n"
2177        ;
2178#endif
2179
2180/*
2181 * Linux kernel build uses gzip -d -n. We accept and ignore -n.
2182 * Man page says:
2183 * -n --no-name
2184 * gzip: do not save the original file name and time stamp.
2185 * (The original name is always saved if the name had to be truncated.)
2186 * gunzip: do not restore the original file name/time even if present
2187 * (remove only the gzip suffix from the compressed file name).
2188 * This option is the default when decompressing.
2189 * -N --name
2190 * gzip: always save the original file name and time stamp (this is the default)
2191 * gunzip: restore the original file name and time stamp if present.
2192 */
2193
2194int gzip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
2195#if ENABLE_FEATURE_GZIP_DECOMPRESS
2196int gzip_main(int argc, char **argv)
2197#else
2198int gzip_main(int argc UNUSED_PARAM, char **argv)
2199#endif
2200{
2201        unsigned opt;
2202#if ENABLE_FEATURE_GZIP_LEVELS
2203        static const struct {
2204                uint8_t good;
2205                uint8_t chain_shift;
2206                uint8_t lazy2;
2207                uint8_t nice2;
2208        } gzip_level_config[6] = {
2209                {4,   4,   4/2,  16/2}, /* Level 4 */
2210                {8,   5,  16/2,  32/2}, /* Level 5 */
2211                {8,   7,  16/2, 128/2}, /* Level 6 */
2212                {8,   8,  32/2, 128/2}, /* Level 7 */
2213                {32, 10, 128/2, 258/2}, /* Level 8 */
2214                {32, 12, 258/2, 258/2}, /* Level 9 */
2215        };
2216#endif
2217
2218        SET_PTR_TO_GLOBALS((char *)xzalloc(sizeof(struct globals)+sizeof(struct globals2))
2219                        + sizeof(struct globals));
2220
2221        /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
2222#if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2223        opt = getopt32long(argv, BBUNPK_OPTSTR IF_FEATURE_GZIP_DECOMPRESS("dt") "n123456789", gzip_longopts);
2224#else
2225        opt = getopt32(argv, BBUNPK_OPTSTR IF_FEATURE_GZIP_DECOMPRESS("dt") "n123456789");
2226#endif
2227#if ENABLE_FEATURE_GZIP_DECOMPRESS /* gunzip_main may not be visible... */
2228        if (opt & (BBUNPK_OPT_DECOMPRESS|BBUNPK_OPT_TEST)) /* -d and/or -t */
2229                return gunzip_main(argc, argv);
2230#endif
2231#if ENABLE_FEATURE_GZIP_LEVELS
2232        opt >>= (BBUNPK_OPTSTRLEN IF_FEATURE_GZIP_DECOMPRESS(+ 2) + 1); /* drop cfkvq[dt]n bits */
2233        if (opt == 0)
2234                opt = 1 << 5; /* default: 6 */
2235        opt = ffs(opt >> 4); /* Maps -1..-4 to [0], -5 to [1] ... -9 to [5] */
2236
2237        comp_level_minus4 = opt;
2238
2239        max_chain_length = 1 << gzip_level_config[opt].chain_shift;
2240        good_match       = gzip_level_config[opt].good;
2241        max_lazy_match   = gzip_level_config[opt].lazy2 * 2;
2242        nice_match       = gzip_level_config[opt].nice2 * 2;
2243#endif
2244        option_mask32 &= BBUNPK_OPTSTRMASK; /* retain only -cfkvq */
2245
2246        /* Allocate all global buffers (for DYN_ALLOC option) */
2247        ALLOC(uch, G1.l_buf, INBUFSIZ);
2248        ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2249        ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2250        ALLOC(uch, G1.window, 2L * WSIZE);
2251        ALLOC(ush, G1.prev, 1L << BITS);
2252
2253        /* Initialize the CRC32 table */
2254        global_crc32_new_table_le();
2255
2256        argv += optind;
2257        return bbunpack(argv, pack_gzip, append_ext, "gz");
2258}
2259