busybox/networking/ntpd.c
<<
>>
Prefs
   1/*
   2 * NTP client/server, based on OpenNTPD 3.9p1
   3 *
   4 * Busybox port author: Adam Tkac (C) 2009 <vonsch@gmail.com>
   5 *
   6 * OpenNTPd 3.9p1 copyright holders:
   7 *   Copyright (c) 2003, 2004 Henning Brauer <henning@openbsd.org>
   8 *   Copyright (c) 2004 Alexander Guy <alexander.guy@andern.org>
   9 *
  10 * OpenNTPd code is licensed under ISC-style licence:
  11 *
  12 * Permission to use, copy, modify, and distribute this software for any
  13 * purpose with or without fee is hereby granted, provided that the above
  14 * copyright notice and this permission notice appear in all copies.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  17 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  18 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  19 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  20 * WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER
  21 * IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
  22 * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  23 ***********************************************************************
  24 *
  25 * Parts of OpenNTPD clock syncronization code is replaced by
  26 * code which is based on ntp-4.2.6, which carries the following
  27 * copyright notice:
  28 *
  29 * Copyright (c) University of Delaware 1992-2009
  30 *
  31 * Permission to use, copy, modify, and distribute this software and
  32 * its documentation for any purpose with or without fee is hereby
  33 * granted, provided that the above copyright notice appears in all
  34 * copies and that both the copyright notice and this permission
  35 * notice appear in supporting documentation, and that the name
  36 * University of Delaware not be used in advertising or publicity
  37 * pertaining to distribution of the software without specific,
  38 * written prior permission. The University of Delaware makes no
  39 * representations about the suitability this software for any
  40 * purpose. It is provided "as is" without express or implied warranty.
  41 ***********************************************************************
  42 */
  43//config:config NTPD
  44//config:       bool "ntpd (22 kb)"
  45//config:       default y
  46//config:       help
  47//config:       The NTP client/server daemon.
  48//config:
  49//config:config FEATURE_NTPD_SERVER
  50//config:       bool "Make ntpd usable as a NTP server"
  51//config:       default y
  52//config:       depends on NTPD
  53//config:       help
  54//config:       Make ntpd usable as a NTP server. If you disable this option
  55//config:       ntpd will be usable only as a NTP client.
  56//config:
  57//config:config FEATURE_NTPD_CONF
  58//config:       bool "Make ntpd understand /etc/ntp.conf"
  59//config:       default y
  60//config:       depends on NTPD
  61//config:       help
  62//config:       Make ntpd look in /etc/ntp.conf for peers. Only "server address"
  63//config:       is supported.
  64//config:
  65//config:config FEATURE_NTP_AUTH
  66//config:       bool "Support md5/sha1 message authentication codes"
  67//config:       default y
  68//config:       depends on NTPD
  69
  70//applet:IF_NTPD(APPLET(ntpd, BB_DIR_USR_SBIN, BB_SUID_DROP))
  71
  72//kbuild:lib-$(CONFIG_NTPD) += ntpd.o
  73
  74//usage:#define ntpd_trivial_usage
  75//usage:        "[-dnqNw"IF_FEATURE_NTPD_SERVER("l] [-I IFACE")"] [-S PROG]"
  76//usage:        IF_NOT_FEATURE_NTP_AUTH(" [-p PEER]...")
  77//usage:        IF_FEATURE_NTP_AUTH(" [-k KEYFILE] [-p [keyno:N:]PEER]...")
  78//usage:#define ntpd_full_usage "\n\n"
  79//usage:       "NTP client/server\n"
  80//usage:     "\n        -d[d]   Verbose"
  81//usage:     "\n        -n      Run in foreground"
  82//usage:     "\n        -q      Quit after clock is set"
  83//usage:     "\n        -N      Run at high priority"
  84//usage:     "\n        -w      Do not set time (only query peers), implies -n"
  85//usage:     "\n        -S PROG Run PROG after stepping time, stratum change, and every 11 min"
  86//usage:        IF_NOT_FEATURE_NTP_AUTH(
  87//usage:     "\n        -p PEER Obtain time from PEER (may be repeated)"
  88//usage:        )
  89//usage:        IF_FEATURE_NTP_AUTH(
  90//usage:     "\n        -k FILE Key file (ntp.keys compatible)"
  91//usage:     "\n        -p [keyno:NUM:]PEER"
  92//usage:     "\n                Obtain time from PEER (may be repeated)"
  93//usage:     "\n                Use key NUM for authentication"
  94//usage:        )
  95//usage:        IF_FEATURE_NTPD_CONF(
  96//usage:     "\n                If -p is not given, 'server HOST' lines"
  97//usage:     "\n                from /etc/ntp.conf are used"
  98//usage:        )
  99//usage:        IF_FEATURE_NTPD_SERVER(
 100//usage:     "\n        -l      Also run as server on port 123"
 101//usage:     "\n        -I IFACE Bind server to IFACE, implies -l"
 102//usage:        )
 103
 104// -l and -p options are not compatible with "standard" ntpd:
 105// it has them as "-l logfile" and "-p pidfile".
 106// -S and -w are not compat either, "standard" ntpd has no such opts.
 107
 108#include "libbb.h"
 109#include <math.h>
 110#include <netinet/ip.h> /* For IPTOS_DSCP_AF21 definition */
 111#include <sys/timex.h>
 112#ifndef IPTOS_DSCP_AF21
 113# define IPTOS_DSCP_AF21 0x48
 114#endif
 115
 116#if defined(__FreeBSD__)
 117/* see sys/timex.h */
 118# define adjtimex ntp_adjtime
 119# define ADJ_OFFSET     MOD_OFFSET
 120# define ADJ_STATUS     MOD_STATUS
 121# define ADJ_TIMECONST  MOD_TIMECONST
 122#endif
 123
 124/* Verbosity control (max level of -dddd options accepted).
 125 * max 6 is very talkative (and bloated). 3 is non-bloated,
 126 * production level setting.
 127 */
 128#define MAX_VERBOSE     3
 129
 130/* High-level description of the algorithm:
 131 *
 132 * We start running with very small poll_exp, BURSTPOLL,
 133 * in order to quickly accumulate INITIAL_SAMPLES datapoints
 134 * for each peer. Then, time is stepped if the offset is larger
 135 * than STEP_THRESHOLD, otherwise it isn't stepped.
 136 *
 137 * Then poll_exp is set to MINPOLL, and we enter "steady state": we collect
 138 * a datapoint, we select the best peer, if this datapoint is not a new one
 139 * (IOW: if this datapoint isn't for selected peer), sleep
 140 * and collect another one; otherwise, use its offset to update
 141 * frequency drift, if offset is somewhat large, reduce poll_exp,
 142 * otherwise increase poll_exp.
 143 *
 144 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
 145 * happen, we assume that something "bad" happened (computer
 146 * was hibernated, someone set totally wrong date, etc),
 147 * then the time is stepped, all datapoints are discarded,
 148 * and we go back to steady state.
 149 *
 150 * Made some changes to speed up re-syncing after our clock goes bad
 151 * (tested with suspending my laptop):
 152 * - if largish offset (>= STEP_THRESHOLD == 1 sec) is seen
 153 *   from a peer, schedule next query for this peer soon
 154 *   without drastically lowering poll interval for everybody.
 155 *   This makes us collect enough data for step much faster:
 156 *   e.g. at poll = 10 (1024 secs), step was done within 5 minutes
 157 *   after first reply which indicated that our clock is 14 seconds off.
 158 * - on step, do not discard d_dispersion data of the existing datapoints,
 159 *   do not clear reachable_bits. This prevents discarding first ~8
 160 *   datapoints after the step.
 161 */
 162
 163#define INITIAL_SAMPLES    3    /* how many samples do we want for init */
 164#define MIN_FREQHOLD      10    /* adjust offset, but not freq in this many first adjustments */
 165#define BAD_DELAY_GROWTH   4    /* drop packet if its delay grew by more than this factor */
 166
 167#define RETRY_INTERVAL    32    /* on send/recv error, retry in N secs (need to be power of 2) */
 168#define NOREPLY_INTERVAL 512    /* sent, but got no reply: cap next query by this many seconds */
 169#define RESPONSE_INTERVAL 16    /* wait for reply up to N secs */
 170#define HOSTNAME_INTERVAL  4    /* hostname lookup failed. Wait N * peer->dns_errors secs for next try */
 171#define DNS_ERRORS_CAP  0x3f    /* peer->dns_errors is in [0..63] */
 172
 173/* Step threshold (sec). std ntpd uses 0.128.
 174 */
 175#define STEP_THRESHOLD     1
 176/* Slew threshold (sec): adjtimex() won't accept offsets larger than this.
 177 * Using exact power of 2 (1/8, 1/2 etc) results in smaller code
 178 */
 179#define SLEW_THRESHOLD   0.5
 180// ^^^^ used to be 0.125.
 181// Since Linux 2.6.26 (circa 2006), kernel accepts (-0.5s, +0.5s) range
 182
 183
 184// #define PANIC_THRESHOLD 1000    /* panic threshold (sec) */
 185
 186/* If we got |offset| > BIGOFF from a peer, cap next query interval
 187 * for this peer by this many seconds:
 188 */
 189#define BIGOFF          STEP_THRESHOLD
 190#define BIGOFF_INTERVAL (1 << 7) /* 128 s */
 191
 192#define FREQ_TOLERANCE  0.000015 /* frequency tolerance (15 PPM) */
 193#define BURSTPOLL       0       /* initial poll */
 194#define MINPOLL         5       /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
 195/* If offset > discipline_jitter * POLLADJ_GATE, and poll interval is > 2^BIGPOLL,
 196 * then it is decreased _at once_. (If <= 2^BIGPOLL, it will be decreased _eventually_).
 197 */
 198#define BIGPOLL         9       /* 2^9 sec ~= 8.5 min */
 199#define MAXPOLL         12      /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
 200/* Actively lower poll when we see such big offsets.
 201 * With SLEW_THRESHOLD = 0.125, it means we try to sync more aggressively
 202 * if offset increases over ~0.04 sec
 203 */
 204// #define POLLDOWN_OFFSET (SLEW_THRESHOLD / 3)
 205#define MINDISP         0.01    /* minimum dispersion (sec) */
 206#define MAXDISP         16      /* maximum dispersion (sec) */
 207#define MAXSTRAT        16      /* maximum stratum (infinity metric) */
 208#define MAXDIST         1       /* distance threshold (sec) */
 209#define MIN_SELECTED    1       /* minimum intersection survivors */
 210#define MIN_CLUSTERED   3       /* minimum cluster survivors */
 211
 212/* Correct frequency ourself (0) or let kernel do it (1)? */
 213#define USING_KERNEL_PLL_LOOP 1
 214// /* frequency drift we can correct (500 PPM) */
 215// #define MAXDRIFT        0.000500
 216// /* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
 217// #define ALLAN           512
 218// /* PLL loop gain */
 219// #define PLL             65536
 220// /* FLL loop gain [why it depends on MAXPOLL??] */
 221// #define FLL             (MAXPOLL + 1)
 222
 223/* Poll-adjust threshold.
 224 * When we see that offset is small enough compared to discipline jitter,
 225 * we grow a counter: += MINPOLL. When counter goes over POLLADJ_LIMIT,
 226 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
 227 * and when it goes below -POLLADJ_LIMIT, we poll_exp--.
 228 * (Bumped from 30 to 40 since otherwise I often see poll_exp going *2* steps down)
 229 */
 230#define POLLADJ_LIMIT   40
 231/* If offset < discipline_jitter * POLLADJ_GATE, then we decide to increase
 232 * poll interval (we think we can't improve timekeeping
 233 * by staying at smaller poll).
 234 */
 235#define POLLADJ_GATE    4
 236#define TIMECONST_HACK_GATE 2
 237/* Parameter averaging constant */
 238#define AVG             4
 239
 240#define MAX_KEY_NUMBER  65535
 241#define KEYID_SIZE      sizeof(uint32_t)
 242
 243enum {
 244        NTP_VERSION     = 4,
 245        NTP_MAXSTRATUM  = 15,
 246
 247        NTP_MD5_DIGESTSIZE    = 16,
 248        NTP_MSGSIZE_NOAUTH    = 48,
 249        NTP_MSGSIZE_MD5_AUTH  = NTP_MSGSIZE_NOAUTH + KEYID_SIZE + NTP_MD5_DIGESTSIZE,
 250        NTP_SHA1_DIGESTSIZE   = 20,
 251        NTP_MSGSIZE_SHA1_AUTH = NTP_MSGSIZE_NOAUTH + KEYID_SIZE + NTP_SHA1_DIGESTSIZE,
 252
 253        /* Status Masks */
 254        MODE_MASK       = (7 << 0),
 255        VERSION_MASK    = (7 << 3),
 256        VERSION_SHIFT   = 3,
 257        LI_MASK         = (3 << 6),
 258
 259        /* Leap Second Codes (high order two bits of m_status) */
 260        LI_NOWARNING    = (0 << 6),    /* no warning */
 261        LI_PLUSSEC      = (1 << 6),    /* add a second (61 seconds) */
 262        LI_MINUSSEC     = (2 << 6),    /* minus a second (59 seconds) */
 263        LI_ALARM        = (3 << 6),    /* alarm condition */
 264
 265        /* Mode values */
 266        MODE_RES0       = 0,    /* reserved */
 267        MODE_SYM_ACT    = 1,    /* symmetric active */
 268        MODE_SYM_PAS    = 2,    /* symmetric passive */
 269        MODE_CLIENT     = 3,    /* client */
 270        MODE_SERVER     = 4,    /* server */
 271        MODE_BROADCAST  = 5,    /* broadcast */
 272        MODE_RES1       = 6,    /* reserved for NTP control message */
 273        MODE_RES2       = 7,    /* reserved for private use */
 274};
 275
 276//TODO: better base selection
 277#define OFFSET_1900_1970 2208988800UL  /* 1970 - 1900 in seconds */
 278
 279#define NUM_DATAPOINTS  8
 280
 281typedef struct {
 282        uint32_t int_partl;
 283        uint32_t fractionl;
 284} l_fixedpt_t;
 285
 286typedef struct {
 287        uint16_t int_parts;
 288        uint16_t fractions;
 289} s_fixedpt_t;
 290
 291typedef struct {
 292        uint8_t     m_status;     /* status of local clock and leap info */
 293        uint8_t     m_stratum;
 294        uint8_t     m_ppoll;      /* poll value */
 295        int8_t      m_precision_exp;
 296        s_fixedpt_t m_rootdelay;
 297        s_fixedpt_t m_rootdisp;
 298        uint32_t    m_refid;
 299        l_fixedpt_t m_reftime;
 300        l_fixedpt_t m_orgtime;
 301        l_fixedpt_t m_rectime;
 302        l_fixedpt_t m_xmttime;
 303        uint32_t    m_keyid;
 304        uint8_t     m_digest[ENABLE_FEATURE_NTP_AUTH ? NTP_SHA1_DIGESTSIZE : NTP_MD5_DIGESTSIZE];
 305} msg_t;
 306
 307typedef struct {
 308        double d_offset;
 309        double d_recv_time;
 310        double d_dispersion;
 311} datapoint_t;
 312
 313#if ENABLE_FEATURE_NTP_AUTH
 314enum {
 315        HASH_MD5,
 316        HASH_SHA1,
 317};
 318typedef struct {
 319        unsigned id; //try uint16_t?
 320        smalluint type;
 321        smalluint msg_size;
 322        smalluint key_length;
 323        char key[0];
 324} key_entry_t;
 325#endif
 326
 327typedef struct {
 328        len_and_sockaddr *p_lsa;
 329        char             *p_dotted;
 330#if ENABLE_FEATURE_NTP_AUTH
 331        key_entry_t      *key_entry;
 332#endif
 333        int              p_fd;
 334        int              datapoint_idx;
 335#if ENABLE_FEATURE_NTPD_SERVER
 336        uint32_t         p_refid;
 337#endif
 338        uint32_t         lastpkt_refid;
 339        uint8_t          lastpkt_status;
 340        uint8_t          lastpkt_stratum;
 341        uint8_t          reachable_bits;
 342        uint8_t          dns_errors;
 343        /* when to send new query (if p_fd == -1)
 344         * or when receive times out (if p_fd >= 0): */
 345        double           next_action_time;
 346        double           p_xmttime;
 347        double           p_raw_delay;
 348        /* p_raw_delay is set even by "high delay" packets */
 349        /* lastpkt_delay isn't */
 350        double           lastpkt_recv_time;
 351        double           lastpkt_delay;
 352        double           lastpkt_rootdelay;
 353        double           lastpkt_rootdisp;
 354        /* produced by filter algorithm: */
 355        double           filter_offset;
 356        double           filter_dispersion;
 357        double           filter_jitter;
 358        datapoint_t      filter_datapoint[NUM_DATAPOINTS];
 359        /* last sent packet: */
 360        msg_t            p_xmt_msg;
 361        char             p_hostname[1];
 362} peer_t;
 363
 364enum {
 365        OPT_n = (1 << 0),
 366        OPT_q = (1 << 1),
 367        OPT_N = (1 << 2),
 368        OPT_x = (1 << 3),
 369        OPT_k = (1 << 4) * ENABLE_FEATURE_NTP_AUTH,
 370        /* Insert new options above this line. */
 371        /* Non-compat options: */
 372        OPT_w = (1 << (4+ENABLE_FEATURE_NTP_AUTH)),
 373        OPT_p = (1 << (5+ENABLE_FEATURE_NTP_AUTH)),
 374        OPT_S = (1 << (6+ENABLE_FEATURE_NTP_AUTH)),
 375        OPT_l = (1 << (7+ENABLE_FEATURE_NTP_AUTH)) * ENABLE_FEATURE_NTPD_SERVER,
 376        OPT_I = (1 << (8+ENABLE_FEATURE_NTP_AUTH)) * ENABLE_FEATURE_NTPD_SERVER,
 377        /* We hijack some bits for other purposes */
 378        OPT_qq = (1 << 31),
 379};
 380
 381struct globals {
 382        double   cur_time;
 383        /* total round trip delay to currently selected reference clock */
 384        double   rootdelay;
 385        /* reference timestamp: time when the system clock was last set or corrected */
 386        double   reftime;
 387        /* total dispersion to currently selected reference clock */
 388        double   rootdisp;
 389
 390        double   last_script_run;
 391        char     *script_name;
 392        llist_t  *ntp_peers;
 393#if ENABLE_FEATURE_NTPD_SERVER
 394        int      listen_fd;
 395        char     *if_name;
 396# define G_listen_fd (G.listen_fd)
 397#else
 398# define G_listen_fd (-1)
 399#endif
 400        unsigned verbose;
 401        unsigned peer_cnt;
 402        /* refid: 32-bit code identifying the particular server or reference clock
 403         * in stratum 0 packets this is a four-character ASCII string,
 404         * called the kiss code, used for debugging and monitoring
 405         * in stratum 1 packets this is a four-character ASCII string
 406         * assigned to the reference clock by IANA. Example: "GPS "
 407         * in stratum 2+ packets, it's IPv4 address or 4 first bytes
 408         * of MD5 hash of IPv6
 409         */
 410#if ENABLE_FEATURE_NTPD_SERVER
 411        uint32_t refid;
 412#endif
 413        uint8_t  ntp_status;
 414        /* precision is defined as the larger of the resolution and time to
 415         * read the clock, in log2 units.  For instance, the precision of a
 416         * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
 417         * system clock hardware representation is to the nanosecond.
 418         *
 419         * Delays, jitters of various kinds are clamped down to precision.
 420         *
 421         * If precision_sec is too large, discipline_jitter gets clamped to it
 422         * and if offset is smaller than discipline_jitter * POLLADJ_GATE, poll
 423         * interval grows even though we really can benefit from staying at
 424         * smaller one, collecting non-lagged datapoits and correcting offset.
 425         * (Lagged datapoits exist when poll_exp is large but we still have
 426         * systematic offset error - the time distance between datapoints
 427         * is significant and older datapoints have smaller offsets.
 428         * This makes our offset estimation a bit smaller than reality)
 429         * Due to this effect, setting G_precision_sec close to
 430         * STEP_THRESHOLD isn't such a good idea - offsets may grow
 431         * too big and we will step. I observed it with -6.
 432         *
 433         * OTOH, setting precision_sec far too small would result in futile
 434         * attempts to synchronize to an unachievable precision.
 435         *
 436         * -6 is 1/64 sec, -7 is 1/128 sec and so on.
 437         * -8 is 1/256 ~= 0.003906 (worked well for me --vda)
 438         * -9 is 1/512 ~= 0.001953 (let's try this for some time)
 439         */
 440#define G_precision_exp  -9
 441        /*
 442         * G_precision_exp is used only for constructing outgoing packets.
 443         * It's ok to set G_precision_sec to a slightly different value
 444         * (One which is "nicer looking" in logs).
 445         * Exact value would be (1.0 / (1 << (- G_precision_exp))):
 446         */
 447#define G_precision_sec  0.002
 448        uint8_t  stratum;
 449
 450        //uint8_t  discipline_state;      // doc calls it c.state
 451        uint8_t  poll_exp;              // s.poll
 452        int      polladj_count;         // c.count
 453        int      FREQHOLD_cnt;
 454        long     kernel_freq_drift;
 455        peer_t   *last_update_peer;
 456        double   last_update_offset;    // c.last
 457        double   last_update_recv_time; // s.t
 458        double   discipline_jitter;     // c.jitter
 459        /* Since we only compare it with ints, can simplify code
 460         * by not making this variable floating point:
 461         */
 462        unsigned offset_to_jitter_ratio;
 463        //double   cluster_offset;        // s.offset
 464        //double   cluster_jitter;        // s.jitter
 465#if !USING_KERNEL_PLL_LOOP
 466        double   discipline_freq_drift; // c.freq
 467        /* Maybe conditionally calculate wander? it's used only for logging */
 468        double   discipline_wander;     // c.wander
 469#endif
 470};
 471#define G (*ptr_to_globals)
 472
 473#define VERB1 if (MAX_VERBOSE && G.verbose)
 474#define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
 475#define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
 476#define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
 477#define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
 478#define VERB6 if (MAX_VERBOSE >= 6 && G.verbose >= 6)
 479
 480
 481static double LOG2D(int a)
 482{
 483        if (a < 0)
 484                return 1.0 / (1UL << -a);
 485        return 1UL << a;
 486}
 487static ALWAYS_INLINE double SQUARE(double x)
 488{
 489        return x * x;
 490}
 491static ALWAYS_INLINE double MAXD(double a, double b)
 492{
 493        if (a > b)
 494                return a;
 495        return b;
 496}
 497#if !USING_KERNEL_PLL_LOOP
 498static ALWAYS_INLINE double MIND(double a, double b)
 499{
 500        if (a < b)
 501                return a;
 502        return b;
 503}
 504#endif
 505static NOINLINE double my_SQRT(double X)
 506{
 507        union {
 508                float   f;
 509                int32_t i;
 510        } v;
 511        double invsqrt;
 512        double Xhalf = X * 0.5;
 513
 514        /* Fast and good approximation to 1/sqrt(X), black magic */
 515        v.f = X;
 516        /*v.i = 0x5f3759df - (v.i >> 1);*/
 517        v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
 518        invsqrt = v.f; /* better than 0.2% accuracy */
 519
 520        /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
 521         * f(x) = 1/(x*x) - X  (f==0 when x = 1/sqrt(X))
 522         * f'(x) = -2/(x*x*x)
 523         * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
 524         * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
 525         */
 526        invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
 527        /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
 528        /* With 4 iterations, more than half results will be exact,
 529         * at 6th iterations result stabilizes with about 72% results exact.
 530         * We are well satisfied with 0.05% accuracy.
 531         */
 532
 533        return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
 534}
 535static ALWAYS_INLINE double SQRT(double X)
 536{
 537        /* If this arch doesn't use IEEE 754 floats, fall back to using libm */
 538        if (sizeof(float) != 4)
 539                return sqrt(X);
 540
 541        /* This avoids needing libm, saves about 0.5k on x86-32 */
 542        return my_SQRT(X);
 543}
 544
 545static double
 546gettime1900d(void)
 547{
 548        struct timeval tv;
 549        xgettimeofday(&tv);
 550        G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
 551        return G.cur_time;
 552}
 553
 554static void
 555d_to_tv(struct timeval *tv, double d)
 556{
 557        tv->tv_sec = (long)d;
 558        tv->tv_usec = (d - tv->tv_sec) * 1000000;
 559}
 560
 561static NOINLINE double
 562lfp_to_d(l_fixedpt_t lfp)
 563{
 564        double ret;
 565        lfp.int_partl = ntohl(lfp.int_partl);
 566        lfp.fractionl = ntohl(lfp.fractionl);
 567        ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
 568        return ret;
 569}
 570static NOINLINE double
 571sfp_to_d(s_fixedpt_t sfp)
 572{
 573        double ret;
 574        sfp.int_parts = ntohs(sfp.int_parts);
 575        sfp.fractions = ntohs(sfp.fractions);
 576        ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
 577        return ret;
 578}
 579#if ENABLE_FEATURE_NTPD_SERVER
 580static NOINLINE void
 581d_to_lfp(l_fixedpt_t *lfp, double d)
 582{
 583        uint32_t intl;
 584        uint32_t frac;
 585        intl = (uint32_t)d;
 586        frac = (uint32_t)((d - intl) * UINT_MAX);
 587        lfp->int_partl = htonl(intl);
 588        lfp->fractionl = htonl(frac);
 589}
 590static NOINLINE void
 591d_to_sfp(s_fixedpt_t *sfp, double d)
 592{
 593        uint16_t ints;
 594        uint16_t frac;
 595        ints = (uint16_t)d;
 596        frac = (uint16_t)((d - ints) * USHRT_MAX);
 597        sfp->int_parts = htons(ints);
 598        sfp->fractions = htons(frac);
 599}
 600#endif
 601
 602static double
 603dispersion(const datapoint_t *dp)
 604{
 605        return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
 606}
 607
 608static double
 609root_distance(peer_t *p)
 610{
 611        /* The root synchronization distance is the maximum error due to
 612         * all causes of the local clock relative to the primary server.
 613         * It is defined as half the total delay plus total dispersion
 614         * plus peer jitter.
 615         */
 616        return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
 617                + p->lastpkt_rootdisp
 618                + p->filter_dispersion
 619                + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
 620                + p->filter_jitter;
 621}
 622
 623static void
 624set_next(peer_t *p, unsigned t)
 625{
 626        p->next_action_time = G.cur_time + t;
 627}
 628
 629/*
 630 * Peer clock filter and its helpers
 631 */
 632static void
 633filter_datapoints(peer_t *p)
 634{
 635        int i, idx;
 636        double sum, wavg;
 637        datapoint_t *fdp;
 638
 639/* Simulations have shown that use of *averaged* offset for p->filter_offset
 640 * is in fact worse than simply using last received one: with large poll intervals
 641 * (>= 2048) averaging code uses offset values which are outdated by hours,
 642 * and time/frequency correction goes totally wrong when fed essentially bogus offsets.
 643 */
 644        fdp = p->filter_datapoint;
 645        idx = p->datapoint_idx; /* most recent datapoint's index */
 646
 647        /* filter_offset: simply use the most recent value */
 648        p->filter_offset = fdp[idx].d_offset;
 649
 650        /*                     n-1
 651         *                     ---    dispersion(i)
 652         * filter_dispersion =  \     -------------
 653         *                      /       (i+1)
 654         *                     ---     2
 655         *                     i=0
 656         */
 657        wavg = 0;
 658        sum = 0;
 659        for (i = 0; i < NUM_DATAPOINTS; i++) {
 660                sum += dispersion(&fdp[idx]) / (2 << i);
 661                wavg += fdp[idx].d_offset;
 662                idx = (idx - 1) & (NUM_DATAPOINTS - 1);
 663        }
 664        wavg /= NUM_DATAPOINTS;
 665        p->filter_dispersion = sum;
 666
 667        /*                  +-----                 -----+ ^ 1/2
 668         *                  |       n-1                 |
 669         *                  |       ---                 |
 670         *                  |  1    \                2  |
 671         * filter_jitter =  | --- * /  (avg-offset_j)   |
 672         *                  |  n    ---                 |
 673         *                  |       j=0                 |
 674         *                  +-----                 -----+
 675         * where n is the number of valid datapoints in the filter (n > 1);
 676         * if filter_jitter < precision then filter_jitter = precision
 677         */
 678        sum = 0;
 679        for (i = 0; i < NUM_DATAPOINTS; i++) {
 680                sum += SQUARE(wavg - fdp[i].d_offset);
 681        }
 682        sum = SQRT(sum / NUM_DATAPOINTS);
 683        p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
 684
 685        VERB4 bb_error_msg("filter offset:%+f disp:%f jitter:%f",
 686                        p->filter_offset,
 687                        p->filter_dispersion,
 688                        p->filter_jitter);
 689}
 690
 691static void
 692reset_peer_stats(peer_t *p, double offset)
 693{
 694        int i;
 695        bool small_ofs = fabs(offset) < STEP_THRESHOLD;
 696
 697        /* Used to set p->filter_datapoint[i].d_dispersion = MAXDISP
 698         * and clear reachable bits, but this proved to be too aggressive:
 699         * after step (tested with suspending laptop for ~30 secs),
 700         * this caused all previous data to be considered invalid,
 701         * making us needing to collect full ~8 datapoints per peer
 702         * after step in order to start trusting them.
 703         * In turn, this was making poll interval decrease even after
 704         * step was done. (Poll interval decreases already before step
 705         * in this scenario, because we see large offsets and end up with
 706         * no good peer to select).
 707         */
 708
 709        for (i = 0; i < NUM_DATAPOINTS; i++) {
 710                if (small_ofs) {
 711                        p->filter_datapoint[i].d_recv_time += offset;
 712                        if (p->filter_datapoint[i].d_offset != 0) {
 713                                p->filter_datapoint[i].d_offset -= offset;
 714                                //bb_error_msg("p->filter_datapoint[%d].d_offset %f -> %f",
 715                                //      i,
 716                                //      p->filter_datapoint[i].d_offset + offset,
 717                                //      p->filter_datapoint[i].d_offset);
 718                        }
 719                } else {
 720                        p->filter_datapoint[i].d_recv_time  = G.cur_time;
 721                        p->filter_datapoint[i].d_offset     = 0;
 722                        /*p->filter_datapoint[i].d_dispersion = MAXDISP;*/
 723                }
 724        }
 725        if (small_ofs) {
 726                p->lastpkt_recv_time += offset;
 727        } else {
 728                /*p->reachable_bits = 0;*/
 729                p->lastpkt_recv_time = G.cur_time;
 730        }
 731        filter_datapoints(p); /* recalc p->filter_xxx */
 732        VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
 733}
 734
 735#if ENABLE_FEATURE_NTPD_SERVER
 736static uint32_t calculate_refid(len_and_sockaddr *lsa)
 737{
 738# if ENABLE_FEATURE_IPV6
 739        if (lsa->u.sa.sa_family == AF_INET6) {
 740                md5_ctx_t md5;
 741                uint32_t res[MD5_OUTSIZE / 4];
 742
 743                md5_begin(&md5);
 744                md5_hash(&md5, &lsa->u.sin6.sin6_addr, sizeof(lsa->u.sin6.sin6_addr));
 745                md5_end(&md5, res);
 746                return res[0];
 747        }
 748# endif
 749        return lsa->u.sin.sin_addr.s_addr;
 750}
 751#endif
 752
 753static len_and_sockaddr*
 754resolve_peer_hostname(peer_t *p)
 755{
 756        len_and_sockaddr *lsa = host2sockaddr(p->p_hostname, 123);
 757        if (lsa) {
 758                free(p->p_lsa);
 759                free(p->p_dotted);
 760                p->p_lsa = lsa;
 761                p->p_dotted = xmalloc_sockaddr2dotted_noport(&lsa->u.sa);
 762                VERB1 if (strcmp(p->p_hostname, p->p_dotted) != 0)
 763                        bb_error_msg("'%s' is %s", p->p_hostname, p->p_dotted);
 764#if ENABLE_FEATURE_NTPD_SERVER
 765                p->p_refid = calculate_refid(p->p_lsa);
 766#endif
 767                p->dns_errors = 0;
 768                return lsa;
 769        }
 770        p->dns_errors = ((p->dns_errors << 1) | 1) & DNS_ERRORS_CAP;
 771        return lsa;
 772}
 773
 774#if !ENABLE_FEATURE_NTP_AUTH
 775#define add_peers(s, key_entry) \
 776        add_peers(s)
 777#endif
 778static void
 779add_peers(const char *s, key_entry_t *key_entry)
 780{
 781        llist_t *item;
 782        peer_t *p;
 783
 784        p = xzalloc(sizeof(*p) + strlen(s));
 785        strcpy(p->p_hostname, s);
 786        p->p_fd = -1;
 787        p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
 788        p->next_action_time = G.cur_time; /* = set_next(p, 0); */
 789        reset_peer_stats(p, STEP_THRESHOLD);
 790
 791        /* Names like N.<country2chars>.pool.ntp.org are randomly resolved
 792         * to a pool of machines. Sometimes different N's resolve to the same IP.
 793         * It is not useful to have two peers with same IP. We skip duplicates.
 794         */
 795        if (resolve_peer_hostname(p)) {
 796                for (item = G.ntp_peers; item != NULL; item = item->link) {
 797                        peer_t *pp = (peer_t *) item->data;
 798                        if (pp->p_dotted && strcmp(p->p_dotted, pp->p_dotted) == 0) {
 799                                bb_error_msg("duplicate peer %s (%s)", s, p->p_dotted);
 800                                free(p->p_lsa);
 801                                free(p->p_dotted);
 802                                free(p);
 803                                return;
 804                        }
 805                }
 806        }
 807
 808        IF_FEATURE_NTP_AUTH(p->key_entry = key_entry;)
 809        llist_add_to(&G.ntp_peers, p);
 810        G.peer_cnt++;
 811}
 812
 813static int
 814do_sendto(int fd,
 815                const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
 816                msg_t *msg, ssize_t len)
 817{
 818        ssize_t ret;
 819
 820        errno = 0;
 821        if (!from) {
 822                ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
 823        } else {
 824                ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
 825        }
 826        if (ret != len) {
 827                bb_simple_perror_msg("send failed");
 828                return -1;
 829        }
 830        return 0;
 831}
 832
 833#if ENABLE_FEATURE_NTP_AUTH
 834static void
 835hash(key_entry_t *key_entry, const msg_t *msg, uint8_t *output)
 836{
 837        union {
 838                md5_ctx_t m;
 839                sha1_ctx_t s;
 840        } ctx;
 841        unsigned hash_size = sizeof(*msg) - sizeof(msg->m_keyid) - sizeof(msg->m_digest);
 842
 843        switch (key_entry->type) {
 844        case HASH_MD5:
 845                md5_begin(&ctx.m);
 846                md5_hash(&ctx.m, key_entry->key, key_entry->key_length);
 847                md5_hash(&ctx.m, msg, hash_size);
 848                md5_end(&ctx.m, output);
 849                break;
 850        default: /* it's HASH_SHA1 */
 851                sha1_begin(&ctx.s);
 852                sha1_hash(&ctx.s, key_entry->key, key_entry->key_length);
 853                sha1_hash(&ctx.s, msg, hash_size);
 854                sha1_end(&ctx.s, output);
 855                break;
 856        }
 857}
 858
 859static void
 860hash_peer(peer_t *p)
 861{
 862        p->p_xmt_msg.m_keyid = htonl(p->key_entry->id);
 863        hash(p->key_entry, &p->p_xmt_msg, p->p_xmt_msg.m_digest);
 864}
 865
 866static int
 867hashes_differ(peer_t *p, const msg_t *msg)
 868{
 869        uint8_t digest[NTP_SHA1_DIGESTSIZE];
 870        hash(p->key_entry, msg, digest);
 871        return memcmp(digest, msg->m_digest, p->key_entry->msg_size - NTP_MSGSIZE_NOAUTH - KEYID_SIZE);
 872}
 873#endif
 874
 875static void
 876send_query_to_peer(peer_t *p)
 877{
 878        if (!p->p_lsa)
 879                return;
 880
 881        /* Why do we need to bind()?
 882         * See what happens when we don't bind:
 883         *
 884         * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
 885         * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
 886         * gettimeofday({1259071266, 327885}, NULL) = 0
 887         * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
 888         * ^^^ we sent it from some source port picked by kernel.
 889         * time(NULL)              = 1259071266
 890         * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
 891         * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
 892         * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
 893         * ^^^ this recv will receive packets to any local port!
 894         *
 895         * Uncomment this and use strace to see it in action:
 896         */
 897#define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
 898
 899        if (p->p_fd == -1) {
 900                int fd, family;
 901                len_and_sockaddr *local_lsa;
 902
 903                family = p->p_lsa->u.sa.sa_family;
 904                p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
 905                /* local_lsa has "null" address and port 0 now.
 906                 * bind() ensures we have a *particular port* selected by kernel
 907                 * and remembered in p->p_fd, thus later recv(p->p_fd)
 908                 * receives only packets sent to this port.
 909                 */
 910                PROBE_LOCAL_ADDR
 911                xbind(fd, &local_lsa->u.sa, local_lsa->len);
 912                PROBE_LOCAL_ADDR
 913#if ENABLE_FEATURE_IPV6
 914                if (family == AF_INET)
 915#endif
 916                        setsockopt_int(fd, IPPROTO_IP, IP_TOS, IPTOS_DSCP_AF21);
 917                free(local_lsa);
 918        }
 919
 920        /* Emit message _before_ attempted send. Think of a very short
 921         * roundtrip networks: we need to go back to recv loop ASAP,
 922         * to reduce delay. Printing messages after send works against that.
 923         */
 924        VERB1 bb_error_msg("sending query to %s", p->p_dotted);
 925
 926        /*
 927         * Send out a random 64-bit number as our transmit time.  The NTP
 928         * server will copy said number into the originate field on the
 929         * response that it sends us.  This is totally legal per the SNTP spec.
 930         *
 931         * The impact of this is two fold: we no longer send out the current
 932         * system time for the world to see (which may aid an attacker), and
 933         * it gives us a (not very secure) way of knowing that we're not
 934         * getting spoofed by an attacker that can't capture our traffic
 935         * but can spoof packets from the NTP server we're communicating with.
 936         *
 937         * Save the real transmit timestamp locally.
 938         */
 939        p->p_xmt_msg.m_xmttime.int_partl = rand();
 940        p->p_xmt_msg.m_xmttime.fractionl = rand();
 941        p->p_xmttime = gettime1900d();
 942
 943        /* Were doing it only if sendto worked, but
 944         * loss of sync detection needs reachable_bits updated
 945         * even if sending fails *locally*:
 946         * "network is unreachable" because cable was pulled?
 947         * We still need to declare "unsync" if this condition persists.
 948         */
 949        p->reachable_bits <<= 1;
 950
 951#if ENABLE_FEATURE_NTP_AUTH
 952        if (p->key_entry)
 953                hash_peer(p);
 954        if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
 955                &p->p_xmt_msg, !p->key_entry ? NTP_MSGSIZE_NOAUTH : p->key_entry->msg_size) == -1
 956        )
 957#else
 958        if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
 959                &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
 960        )
 961#endif
 962        {
 963                close(p->p_fd);
 964                p->p_fd = -1;
 965                /*
 966                 * We know that we sent nothing.
 967                 * We can retry *soon* without fearing
 968                 * that we are flooding the peer.
 969                 */
 970                set_next(p, RETRY_INTERVAL);
 971                return;
 972        }
 973
 974        set_next(p, RESPONSE_INTERVAL);
 975}
 976
 977/* Note that there is no provision to prevent several run_scripts
 978 * to be started in quick succession. In fact, it happens rather often
 979 * if initial syncronization results in a step.
 980 * You will see "step" and then "stratum" script runs, sometimes
 981 * as close as only 0.002 seconds apart.
 982 * Script should be ready to deal with this.
 983 */
 984static void run_script(const char *action, double offset)
 985{
 986        char *argv[3];
 987        char *env1, *env2, *env3, *env4;
 988
 989        G.last_script_run = G.cur_time;
 990
 991        if (!G.script_name)
 992                return;
 993
 994        argv[0] = (char*) G.script_name;
 995        argv[1] = (char*) action;
 996        argv[2] = NULL;
 997
 998        VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
 999
1000        env1 = xasprintf("%s=%u", "stratum", G.stratum);
1001        putenv(env1);
1002        env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
1003        putenv(env2);
1004        env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
1005        putenv(env3);
1006        env4 = xasprintf("%s=%f", "offset", offset);
1007        putenv(env4);
1008        /* Other items of potential interest: selected peer,
1009         * rootdelay, reftime, rootdisp, refid, ntp_status,
1010         * last_update_offset, last_update_recv_time, discipline_jitter,
1011         * how many peers have reachable_bits = 0?
1012         */
1013
1014        /* Don't want to wait: it may run hwclock --systohc, and that
1015         * may take some time (seconds): */
1016        /*spawn_and_wait(argv);*/
1017        spawn(argv);
1018
1019        unsetenv("stratum");
1020        unsetenv("freq_drift_ppm");
1021        unsetenv("poll_interval");
1022        unsetenv("offset");
1023        free(env1);
1024        free(env2);
1025        free(env3);
1026        free(env4);
1027}
1028
1029static NOINLINE void
1030step_time(double offset)
1031{
1032        llist_t *item;
1033        double dtime;
1034        struct timeval tvc, tvn;
1035        char buf[sizeof("yyyy-mm-dd hh:mm:ss") + /*paranoia:*/ 4];
1036        time_t tval;
1037
1038        xgettimeofday(&tvc);
1039        dtime = tvc.tv_sec + (1.0e-6 * tvc.tv_usec) + offset;
1040        d_to_tv(&tvn, dtime);
1041        xsettimeofday(&tvn);
1042
1043        VERB2 {
1044                tval = tvc.tv_sec;
1045                strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
1046                bb_error_msg("current time is %s.%06u", buf, (unsigned)tvc.tv_usec);
1047        }
1048        tval = tvn.tv_sec;
1049        strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
1050        bb_info_msg("setting time to %s.%06u (offset %+fs)", buf, (unsigned)tvn.tv_usec, offset);
1051        //maybe? G.FREQHOLD_cnt = 0;
1052
1053        /* Correct various fields which contain time-relative values: */
1054
1055        /* Globals: */
1056        G.cur_time += offset;
1057        G.last_update_recv_time += offset;
1058        G.last_script_run += offset;
1059
1060        /* p->lastpkt_recv_time, p->next_action_time and such: */
1061        for (item = G.ntp_peers; item != NULL; item = item->link) {
1062                peer_t *pp = (peer_t *) item->data;
1063                reset_peer_stats(pp, offset);
1064                //bb_error_msg("offset:%+f pp->next_action_time:%f -> %f",
1065                //      offset, pp->next_action_time, pp->next_action_time + offset);
1066                pp->next_action_time += offset;
1067                if (pp->p_fd >= 0) {
1068                        /* We wait for reply from this peer too.
1069                         * But due to step we are doing, reply's data is no longer
1070                         * useful (in fact, it'll be bogus). Stop waiting for it.
1071                         */
1072                        close(pp->p_fd);
1073                        pp->p_fd = -1;
1074                        set_next(pp, RETRY_INTERVAL);
1075                }
1076        }
1077}
1078
1079static void clamp_pollexp_and_set_MAXSTRAT(void)
1080{
1081        if (G.poll_exp < MINPOLL)
1082                G.poll_exp = MINPOLL;
1083        if (G.poll_exp > BIGPOLL)
1084                G.poll_exp = BIGPOLL;
1085        G.polladj_count = 0;
1086        G.stratum = MAXSTRAT;
1087}
1088
1089
1090/*
1091 * Selection and clustering, and their helpers
1092 */
1093typedef struct {
1094        peer_t *p;
1095        int    type;
1096        double edge;
1097        double opt_rd; /* optimization */
1098} point_t;
1099static int
1100compare_point_edge(const void *aa, const void *bb)
1101{
1102        const point_t *a = aa;
1103        const point_t *b = bb;
1104        if (a->edge < b->edge) {
1105                return -1;
1106        }
1107        return (a->edge > b->edge);
1108}
1109typedef struct {
1110        peer_t *p;
1111        double metric;
1112} survivor_t;
1113static int
1114compare_survivor_metric(const void *aa, const void *bb)
1115{
1116        const survivor_t *a = aa;
1117        const survivor_t *b = bb;
1118        if (a->metric < b->metric) {
1119                return -1;
1120        }
1121        return (a->metric > b->metric);
1122}
1123static int
1124fit(peer_t *p, double rd)
1125{
1126        if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
1127                /* One or zero bits in reachable_bits */
1128                VERB4 bb_error_msg("peer %s unfit for selection: "
1129                                "unreachable", p->p_dotted);
1130                return 0;
1131        }
1132#if 0 /* we filter out such packets earlier */
1133        if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
1134         || p->lastpkt_stratum >= MAXSTRAT
1135        ) {
1136                VERB4 bb_error_msg("peer %s unfit for selection: "
1137                                "bad status/stratum", p->p_dotted);
1138                return 0;
1139        }
1140#endif
1141        /* rd is root_distance(p) */
1142        if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
1143                VERB3 bb_error_msg("peer %s unfit for selection: "
1144                        "root distance %f too high, jitter:%f",
1145                        p->p_dotted, rd, p->filter_jitter
1146                );
1147                return 0;
1148        }
1149//TODO
1150//      /* Do we have a loop? */
1151//      if (p->refid == p->dstaddr || p->refid == s.refid)
1152//              return 0;
1153        return 1;
1154}
1155static NOINLINE peer_t*
1156select_and_cluster(void)
1157{
1158        peer_t     *p;
1159        llist_t    *item;
1160        int        i, j;
1161        int        size = 3 * G.peer_cnt;
1162        /* for selection algorithm */
1163        point_t    point[size];
1164        unsigned   num_points, num_candidates;
1165        double     low, high;
1166        unsigned   num_falsetickers;
1167        /* for cluster algorithm */
1168        survivor_t survivor[size];
1169        unsigned   num_survivors;
1170
1171        /* Selection */
1172
1173        num_points = 0;
1174        item = G.ntp_peers;
1175        while (item != NULL) {
1176                double rd, offset;
1177
1178                p = (peer_t *) item->data;
1179                rd = root_distance(p);
1180                offset = p->filter_offset;
1181                if (!fit(p, rd)) {
1182                        item = item->link;
1183                        continue;
1184                }
1185
1186                VERB5 bb_error_msg("interval: [%f %f %f] %s",
1187                                offset - rd,
1188                                offset,
1189                                offset + rd,
1190                                p->p_dotted
1191                );
1192                point[num_points].p = p;
1193                point[num_points].type = -1;
1194                point[num_points].edge = offset - rd;
1195                point[num_points].opt_rd = rd;
1196                num_points++;
1197                point[num_points].p = p;
1198                point[num_points].type = 0;
1199                point[num_points].edge = offset;
1200                point[num_points].opt_rd = rd;
1201                num_points++;
1202                point[num_points].p = p;
1203                point[num_points].type = 1;
1204                point[num_points].edge = offset + rd;
1205                point[num_points].opt_rd = rd;
1206                num_points++;
1207                item = item->link;
1208        }
1209        num_candidates = num_points / 3;
1210        if (num_candidates == 0) {
1211                VERB3 bb_error_msg("no valid datapoints%s", ", no peer selected");
1212                return NULL;
1213        }
1214//TODO: sorting does not seem to be done in reference code
1215        qsort(point, num_points, sizeof(point[0]), compare_point_edge);
1216
1217        /* Start with the assumption that there are no falsetickers.
1218         * Attempt to find a nonempty intersection interval containing
1219         * the midpoints of all truechimers.
1220         * If a nonempty interval cannot be found, increase the number
1221         * of assumed falsetickers by one and try again.
1222         * If a nonempty interval is found and the number of falsetickers
1223         * is less than the number of truechimers, a majority has been found
1224         * and the midpoint of each truechimer represents
1225         * the candidates available to the cluster algorithm.
1226         */
1227        num_falsetickers = 0;
1228        while (1) {
1229                int c;
1230                unsigned num_midpoints = 0;
1231
1232                low = 1 << 9;
1233                high = - (1 << 9);
1234                c = 0;
1235                for (i = 0; i < num_points; i++) {
1236                        /* We want to do:
1237                         * if (point[i].type == -1) c++;
1238                         * if (point[i].type == 1) c--;
1239                         * and it's simpler to do it this way:
1240                         */
1241                        c -= point[i].type;
1242                        if (c >= num_candidates - num_falsetickers) {
1243                                /* If it was c++ and it got big enough... */
1244                                low = point[i].edge;
1245                                break;
1246                        }
1247                        if (point[i].type == 0)
1248                                num_midpoints++;
1249                }
1250                c = 0;
1251                for (i = num_points-1; i >= 0; i--) {
1252                        c += point[i].type;
1253                        if (c >= num_candidates - num_falsetickers) {
1254                                high = point[i].edge;
1255                                break;
1256                        }
1257                        if (point[i].type == 0)
1258                                num_midpoints++;
1259                }
1260                /* If the number of midpoints is greater than the number
1261                 * of allowed falsetickers, the intersection contains at
1262                 * least one truechimer with no midpoint - bad.
1263                 * Also, interval should be nonempty.
1264                 */
1265                if (num_midpoints <= num_falsetickers && low < high)
1266                        break;
1267                num_falsetickers++;
1268                if (num_falsetickers * 2 >= num_candidates) {
1269                        VERB3 bb_error_msg("falsetickers:%d, candidates:%d%s",
1270                                        num_falsetickers, num_candidates,
1271                                        ", no peer selected");
1272                        return NULL;
1273                }
1274        }
1275        VERB4 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1276                        low, high, num_candidates, num_falsetickers);
1277
1278        /* Clustering */
1279
1280        /* Construct a list of survivors (p, metric)
1281         * from the chime list, where metric is dominated
1282         * first by stratum and then by root distance.
1283         * All other things being equal, this is the order of preference.
1284         */
1285        num_survivors = 0;
1286        for (i = 0; i < num_points; i++) {
1287                if (point[i].edge < low || point[i].edge > high)
1288                        continue;
1289                p = point[i].p;
1290                survivor[num_survivors].p = p;
1291                /* x.opt_rd == root_distance(p); */
1292                survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
1293                VERB5 bb_error_msg("survivor[%d] metric:%f peer:%s",
1294                        num_survivors, survivor[num_survivors].metric, p->p_dotted);
1295                num_survivors++;
1296        }
1297        /* There must be at least MIN_SELECTED survivors to satisfy the
1298         * correctness assertions. Ordinarily, the Byzantine criteria
1299         * require four survivors, but for the demonstration here, one
1300         * is acceptable.
1301         */
1302        if (num_survivors < MIN_SELECTED) {
1303                VERB3 bb_error_msg("survivors:%d%s",
1304                                num_survivors,
1305                                ", no peer selected");
1306                return NULL;
1307        }
1308
1309//looks like this is ONLY used by the fact that later we pick survivor[0].
1310//we can avoid sorting then, just find the minimum once!
1311        qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1312
1313        /* For each association p in turn, calculate the selection
1314         * jitter p->sjitter as the square root of the sum of squares
1315         * (p->offset - q->offset) over all q associations. The idea is
1316         * to repeatedly discard the survivor with maximum selection
1317         * jitter until a termination condition is met.
1318         */
1319        while (1) {
1320                unsigned max_idx = max_idx;
1321                double max_selection_jitter = max_selection_jitter;
1322                double min_jitter = min_jitter;
1323
1324                if (num_survivors <= MIN_CLUSTERED) {
1325                        VERB4 bb_error_msg("num_survivors %d <= %d, not discarding more",
1326                                        num_survivors, MIN_CLUSTERED);
1327                        break;
1328                }
1329
1330                /* To make sure a few survivors are left
1331                 * for the clustering algorithm to chew on,
1332                 * we stop if the number of survivors
1333                 * is less than or equal to MIN_CLUSTERED (3).
1334                 */
1335                for (i = 0; i < num_survivors; i++) {
1336                        double selection_jitter_sq;
1337
1338                        p = survivor[i].p;
1339                        if (i == 0 || p->filter_jitter < min_jitter)
1340                                min_jitter = p->filter_jitter;
1341
1342                        selection_jitter_sq = 0;
1343                        for (j = 0; j < num_survivors; j++) {
1344                                peer_t *q = survivor[j].p;
1345                                selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1346                        }
1347                        if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1348                                max_selection_jitter = selection_jitter_sq;
1349                                max_idx = i;
1350                        }
1351                        VERB6 bb_error_msg("survivor %d selection_jitter^2:%f",
1352                                        i, selection_jitter_sq);
1353                }
1354                max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
1355                VERB5 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1356                                max_idx, max_selection_jitter, min_jitter);
1357
1358                /* If the maximum selection jitter is less than the
1359                 * minimum peer jitter, then tossing out more survivors
1360                 * will not lower the minimum peer jitter, so we might
1361                 * as well stop.
1362                 */
1363                if (max_selection_jitter < min_jitter) {
1364                        VERB4 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1365                                        max_selection_jitter, min_jitter, num_survivors);
1366                        break;
1367                }
1368
1369                /* Delete survivor[max_idx] from the list
1370                 * and go around again.
1371                 */
1372                VERB6 bb_error_msg("dropping survivor %d", max_idx);
1373                num_survivors--;
1374                while (max_idx < num_survivors) {
1375                        survivor[max_idx] = survivor[max_idx + 1];
1376                        max_idx++;
1377                }
1378        }
1379
1380        if (0) {
1381                /* Combine the offsets of the clustering algorithm survivors
1382                 * using a weighted average with weight determined by the root
1383                 * distance. Compute the selection jitter as the weighted RMS
1384                 * difference between the first survivor and the remaining
1385                 * survivors. In some cases the inherent clock jitter can be
1386                 * reduced by not using this algorithm, especially when frequent
1387                 * clockhopping is involved. bbox: thus we don't do it.
1388                 */
1389                double x, y, z, w;
1390                y = z = w = 0;
1391                for (i = 0; i < num_survivors; i++) {
1392                        p = survivor[i].p;
1393                        x = root_distance(p);
1394                        y += 1 / x;
1395                        z += p->filter_offset / x;
1396                        w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1397                }
1398                //G.cluster_offset = z / y;
1399                //G.cluster_jitter = SQRT(w / y);
1400        }
1401
1402        /* Pick the best clock. If the old system peer is on the list
1403         * and at the same stratum as the first survivor on the list,
1404         * then don't do a clock hop. Otherwise, select the first
1405         * survivor on the list as the new system peer.
1406         */
1407        p = survivor[0].p;
1408        if (G.last_update_peer
1409         && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1410        ) {
1411                /* Starting from 1 is ok here */
1412                for (i = 1; i < num_survivors; i++) {
1413                        if (G.last_update_peer == survivor[i].p) {
1414                                VERB5 bb_simple_error_msg("keeping old synced peer");
1415                                p = G.last_update_peer;
1416                                goto keep_old;
1417                        }
1418                }
1419        }
1420        G.last_update_peer = p;
1421 keep_old:
1422        VERB4 bb_error_msg("selected peer %s filter_offset:%+f age:%f",
1423                        p->p_dotted,
1424                        p->filter_offset,
1425                        G.cur_time - p->lastpkt_recv_time
1426        );
1427        return p;
1428}
1429
1430
1431/*
1432 * Local clock discipline and its helpers
1433 */
1434static void
1435set_new_values(double offset, double recv_time)
1436{
1437        /* Enter new state and set state variables. Note we use the time
1438         * of the last clock filter sample, which must be earlier than
1439         * the current time.
1440         */
1441        VERB4 bb_error_msg("last update offset=%f recv_time=%f",
1442                        offset, recv_time);
1443        G.last_update_offset = offset;
1444        G.last_update_recv_time = recv_time;
1445}
1446/* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
1447static NOINLINE int
1448update_local_clock(peer_t *p)
1449{
1450        int rc;
1451        struct timex tmx;
1452        /* Note: can use G.cluster_offset instead: */
1453        double offset = p->filter_offset;
1454        double recv_time = p->lastpkt_recv_time;
1455        double abs_offset;
1456#if !USING_KERNEL_PLL_LOOP
1457        double freq_drift;
1458        double since_last_update;
1459#endif
1460        double etemp, dtemp;
1461
1462        abs_offset = fabs(offset);
1463
1464#if 0
1465        /* If needed, -S script can do it by looking at $offset
1466         * env var and killing parent */
1467        /* If the offset is too large, give up and go home */
1468        if (abs_offset > PANIC_THRESHOLD) {
1469                bb_error_msg_and_die("offset %f far too big, exiting", offset);
1470        }
1471#endif
1472
1473        /* If this is an old update, for instance as the result
1474         * of a system peer change, avoid it. We never use
1475         * an old sample or the same sample twice.
1476         */
1477        if (recv_time <= G.last_update_recv_time) {
1478                VERB3 bb_error_msg("update from %s: same or older datapoint, not using it",
1479                        p->p_dotted);
1480                return 0; /* "leave poll interval as is" */
1481        }
1482
1483        /* Clock state machine transition function. This is where the
1484         * action is and defines how the system reacts to large time
1485         * and frequency errors.
1486         */
1487#if !USING_KERNEL_PLL_LOOP
1488        since_last_update = recv_time - G.reftime;
1489        freq_drift = 0;
1490#endif
1491
1492        /* There are two main regimes: when the
1493         * offset exceeds the step threshold and when it does not.
1494         */
1495        if (abs_offset > STEP_THRESHOLD) {
1496                /* Step the time and clamp down the poll interval.
1497                 *
1498                 * In NSET state an initial frequency correction is
1499                 * not available, usually because the frequency file has
1500                 * not yet been written. Since the time is outside the
1501                 * capture range, the clock is stepped. The frequency
1502                 * will be set directly following the stepout interval.
1503                 *
1504                 * In FSET state the initial frequency has been set
1505                 * from the frequency file. Since the time is outside
1506                 * the capture range, the clock is stepped immediately,
1507                 * rather than after the stepout interval. Guys get
1508                 * nervous if it takes 17 minutes to set the clock for
1509                 * the first time.
1510                 *
1511                 * In SPIK state the stepout threshold has expired and
1512                 * the phase is still above the step threshold. Note
1513                 * that a single spike greater than the step threshold
1514                 * is always suppressed, even at the longer poll
1515                 * intervals.
1516                 */
1517                VERB4 bb_error_msg("stepping time by %+f; poll_exp=MINPOLL", offset);
1518                step_time(offset);
1519                if (option_mask32 & OPT_q) {
1520                        /* We were only asked to set time once. Done. */
1521                        exit(0);
1522                }
1523
1524                clamp_pollexp_and_set_MAXSTRAT();
1525
1526                run_script("step", offset);
1527
1528                recv_time += offset;
1529
1530                abs_offset = offset = 0;
1531                set_new_values(offset, recv_time);
1532        } else { /* abs_offset <= STEP_THRESHOLD */
1533
1534                if (option_mask32 & OPT_q) {
1535                        /* We were only asked to set time once.
1536                         * The clock is precise enough, no need to step.
1537                         */
1538                        exit(0);
1539                }
1540
1541                /* The ratio is calculated before jitter is updated to make
1542                 * poll adjust code more sensitive to large offsets.
1543                 */
1544                G.offset_to_jitter_ratio = abs_offset / G.discipline_jitter;
1545
1546                /* Compute the clock jitter as the RMS of exponentially
1547                 * weighted offset differences. Used by the poll adjust code.
1548                 */
1549                etemp = SQUARE(G.discipline_jitter);
1550                dtemp = SQUARE(offset - G.last_update_offset);
1551                G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1552                if (G.discipline_jitter < G_precision_sec)
1553                        G.discipline_jitter = G_precision_sec;
1554
1555#if !USING_KERNEL_PLL_LOOP
1556                /* Compute freq_drift due to PLL and FLL contributions.
1557                 *
1558                 * The FLL and PLL frequency gain constants
1559                 * depend on the poll interval and Allan
1560                 * intercept. The FLL is not used below one-half
1561                 * the Allan intercept. Above that the loop gain
1562                 * increases in steps to 1 / AVG.
1563                 */
1564                if ((1 << G.poll_exp) > ALLAN / 2) {
1565                        etemp = FLL - G.poll_exp;
1566                        if (etemp < AVG)
1567                                etemp = AVG;
1568                        freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1569                }
1570                /* For the PLL the integration interval
1571                 * (numerator) is the minimum of the update
1572                 * interval and poll interval. This allows
1573                 * oversampling, but not undersampling.
1574                 */
1575                etemp = MIND(since_last_update, (1 << G.poll_exp));
1576                dtemp = (4 * PLL) << G.poll_exp;
1577                freq_drift += offset * etemp / SQUARE(dtemp);
1578#endif
1579                set_new_values(offset, recv_time);
1580                if (G.stratum != p->lastpkt_stratum + 1) {
1581                        G.stratum = p->lastpkt_stratum + 1;
1582                        run_script("stratum", offset);
1583                }
1584        }
1585
1586        G.reftime = G.cur_time;
1587        G.ntp_status = p->lastpkt_status;
1588#if ENABLE_FEATURE_NTPD_SERVER
1589        /* Our current refid is the IPv4 (or md5-hashed IPv6) address of the peer we took time from: */
1590        G.refid = p->p_refid;
1591#endif
1592        G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
1593        dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
1594        dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
1595        G.rootdisp = p->lastpkt_rootdisp + dtemp;
1596        VERB4 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1597
1598        /* By this time, freq_drift and offset are set
1599         * to values suitable for adjtimex.
1600         */
1601#if !USING_KERNEL_PLL_LOOP
1602        /* Calculate the new frequency drift and frequency stability (wander).
1603         * Compute the clock wander as the RMS of exponentially weighted
1604         * frequency differences. This is not used directly, but can,
1605         * along with the jitter, be a highly useful monitoring and
1606         * debugging tool.
1607         */
1608        dtemp = G.discipline_freq_drift + freq_drift;
1609        G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
1610        etemp = SQUARE(G.discipline_wander);
1611        dtemp = SQUARE(dtemp);
1612        G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1613
1614        VERB4 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1615                        G.discipline_freq_drift,
1616                        (long)(G.discipline_freq_drift * 65536e6),
1617                        freq_drift,
1618                        G.discipline_wander);
1619#endif
1620        VERB4 {
1621                memset(&tmx, 0, sizeof(tmx));
1622                if (adjtimex(&tmx) < 0)
1623                        bb_simple_perror_msg_and_die("adjtimex");
1624                bb_error_msg("p adjtimex freq:%ld offset:%+ld status:0x%x tc:%ld",
1625                                tmx.freq, tmx.offset, tmx.status, tmx.constant);
1626        }
1627
1628        memset(&tmx, 0, sizeof(tmx));
1629#if 0
1630//doesn't work, offset remains 0 (!) in kernel:
1631//ntpd:  set adjtimex freq:1786097 tmx.offset:77487
1632//ntpd: prev adjtimex freq:1786097 tmx.offset:0
1633//ntpd:  cur adjtimex freq:1786097 tmx.offset:0
1634        tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1635        /* 65536 is one ppm */
1636        tmx.freq = G.discipline_freq_drift * 65536e6;
1637#endif
1638        tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
1639
1640        tmx.offset = (long)(offset * 1000000); /* usec */
1641        if (SLEW_THRESHOLD < STEP_THRESHOLD) {
1642                if (tmx.offset > (long)(SLEW_THRESHOLD * 1000000)) {
1643                        tmx.offset = (long)(SLEW_THRESHOLD * 1000000);
1644                }
1645                if (tmx.offset < -(long)(SLEW_THRESHOLD * 1000000)) {
1646                        tmx.offset = -(long)(SLEW_THRESHOLD * 1000000);
1647                }
1648        }
1649
1650        tmx.status = STA_PLL;
1651        if (G.FREQHOLD_cnt != 0) {
1652                /* man adjtimex on STA_FREQHOLD:
1653                 * "Normally adjustments made via ADJ_OFFSET result in dampened
1654                 * frequency adjustments also being made.
1655                 * This flag prevents the small frequency adjustment from being
1656                 * made when correcting for an ADJ_OFFSET value."
1657                 *
1658                 * Use this flag for a few first adjustments at the beginning
1659                 * of ntpd execution, otherwise even relatively small initial
1660                 * offset tend to cause largish changes to in-kernel tmx.freq.
1661                 * If ntpd was restarted due to e.g. switch to another network,
1662                 * this destroys already well-established tmx.freq value.
1663                 */
1664                if (G.FREQHOLD_cnt < 0) {
1665                        /* Initialize it */
1666// Example: a laptop whose clock runs slower when hibernated,
1667// after wake up it still has good tmx.freq, but accumulated ~0.5 sec offset:
1668// Run with code where initial G.FREQHOLD_cnt was always 8:
1669//15:17:52.947 no valid datapoints, no peer selected
1670//15:17:56.515 update from:<IP> offset:+0.485133 delay:0.157762 jitter:0.209310 clock drift:-1.393ppm tc:4
1671//15:17:57.719 update from:<IP> offset:+0.483825 delay:0.158070 jitter:0.181159 clock drift:-1.393ppm tc:4
1672//15:17:59.925 update from:<IP> offset:+0.479504 delay:0.158147 jitter:0.156657 clock drift:-1.393ppm tc:4
1673//15:18:33.322 update from:<IP> offset:+0.428119 delay:0.158317 jitter:0.138071 clock drift:-1.393ppm tc:4
1674//15:19:06.718 update from:<IP> offset:+0.376932 delay:0.158276 jitter:0.122075 clock drift:-1.393ppm tc:4
1675//15:19:39.114 update from:<IP> offset:+0.327022 delay:0.158384 jitter:0.108538 clock drift:-1.393ppm tc:4
1676//15:20:12.715 update from:<IP> offset:+0.275596 delay:0.158297 jitter:0.097292 clock drift:-1.393ppm tc:4
1677//15:20:45.111 update from:<IP> offset:+0.225715 delay:0.158271 jitter:0.087841 clock drift:-1.393ppm tc:4
1678// If allowed to continue, it would start increasing tmx.freq now.
1679// Instead, it was ^Ced, and started anew:
1680//15:21:15.043 no valid datapoints, no peer selected
1681//15:21:17.408 update from:<IP> offset:+0.175910 delay:0.158314 jitter:0.076683 clock drift:-1.393ppm tc:4
1682//15:21:19.774 update from:<IP> offset:+0.171784 delay:0.158401 jitter:0.066436 clock drift:-1.393ppm tc:4
1683//15:21:22.140 update from:<IP> offset:+0.171660 delay:0.158592 jitter:0.057536 clock drift:-1.393ppm tc:4
1684//15:21:22.140 update from:<IP> offset:+0.167126 delay:0.158507 jitter:0.049792 clock drift:-1.393ppm tc:4
1685//15:21:55.696 update from:<IP> offset:+0.115223 delay:0.158277 jitter:0.050240 clock drift:-1.393ppm tc:4
1686//15:22:29.093 update from:<IP> offset:+0.068051 delay:0.158243 jitter:0.049405 clock drift:-1.393ppm tc:5
1687//15:23:02.490 update from:<IP> offset:+0.051632 delay:0.158215 jitter:0.043545 clock drift:-1.393ppm tc:5
1688//15:23:34.726 update from:<IP> offset:+0.039984 delay:0.158157 jitter:0.038106 clock drift:-1.393ppm tc:5
1689// STA_FREQHOLD no longer set, started increasing tmx.freq now:
1690//15:24:06.961 update from:<IP> offset:+0.030968 delay:0.158190 jitter:0.033306 clock drift:+2.387ppm tc:5
1691//15:24:40.357 update from:<IP> offset:+0.023648 delay:0.158211 jitter:0.029072 clock drift:+5.454ppm tc:5
1692//15:25:13.774 update from:<IP> offset:+0.018068 delay:0.157660 jitter:0.025288 clock drift:+7.728ppm tc:5
1693//15:26:19.173 update from:<IP> offset:+0.010057 delay:0.157969 jitter:0.022255 clock drift:+8.361ppm tc:6
1694//15:27:26.602 update from:<IP> offset:+0.006737 delay:0.158103 jitter:0.019316 clock drift:+8.792ppm tc:6
1695//15:28:33.030 update from:<IP> offset:+0.004513 delay:0.158294 jitter:0.016765 clock drift:+9.080ppm tc:6
1696//15:29:40.617 update from:<IP> offset:+0.002787 delay:0.157745 jitter:0.014543 clock drift:+9.258ppm tc:6
1697//15:30:47.045 update from:<IP> offset:+0.001324 delay:0.157709 jitter:0.012594 clock drift:+9.342ppm tc:6
1698//15:31:53.473 update from:<IP> offset:+0.000007 delay:0.158142 jitter:0.010922 clock drift:+9.343ppm tc:6
1699//15:32:58.902 update from:<IP> offset:-0.000728 delay:0.158222 jitter:0.009454 clock drift:+9.298ppm tc:6
1700                        /*
1701                         * This expression would choose MIN_FREQHOLD + 14 in the above example
1702                         * (off_032 is +1 for each 0.032768 seconds of offset).
1703                         */
1704                        unsigned off_032 = abs((int)(tmx.offset >> 15));
1705                        G.FREQHOLD_cnt = 1 + MIN_FREQHOLD + off_032;
1706                }
1707                G.FREQHOLD_cnt--;
1708                tmx.status |= STA_FREQHOLD;
1709        }
1710        if (G.ntp_status & LI_PLUSSEC)
1711                tmx.status |= STA_INS;
1712        if (G.ntp_status & LI_MINUSSEC)
1713                tmx.status |= STA_DEL;
1714
1715        tmx.constant = (int)G.poll_exp - 4;
1716        /* EXPERIMENTAL.
1717         * The below if statement should be unnecessary, but...
1718         * It looks like Linux kernel's PLL is far too gentle in changing
1719         * tmx.freq in response to clock offset. Offset keeps growing
1720         * and eventually we fall back to smaller poll intervals.
1721         * We can make correction more aggressive (about x2) by supplying
1722         * PLL time constant which is one less than the real one.
1723         * To be on a safe side, let's do it only if offset is significantly
1724         * larger than jitter.
1725         */
1726        if (G.offset_to_jitter_ratio >= TIMECONST_HACK_GATE)
1727                tmx.constant--;
1728        if (tmx.constant < 0)
1729                tmx.constant = 0;
1730
1731        //tmx.esterror = (uint32_t)(clock_jitter * 1e6);
1732        //tmx.maxerror = (uint32_t)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
1733        rc = adjtimex(&tmx);
1734        if (rc < 0)
1735                bb_simple_perror_msg_and_die("adjtimex");
1736        /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1737         * Not sure why. Perhaps it is normal.
1738         */
1739        VERB4 bb_error_msg("adjtimex:%d freq:%ld offset:%+ld status:0x%x",
1740                                rc, tmx.freq, tmx.offset, tmx.status);
1741        G.kernel_freq_drift = tmx.freq / 65536;
1742        VERB2 bb_error_msg("update from:%s offset:%+f delay:%f jitter:%f clock drift:%+.3fppm tc:%d",
1743                        p->p_dotted,
1744                        offset,
1745                        p->p_raw_delay,
1746                        G.discipline_jitter,
1747                        (double)tmx.freq / 65536,
1748                        (int)tmx.constant
1749        );
1750
1751        return 1; /* "ok to increase poll interval" */
1752}
1753
1754/*
1755 * We've got a new reply packet from a peer, process it
1756 * (helpers first)
1757 */
1758static unsigned
1759poll_interval(int upper_bound)
1760{
1761        unsigned interval, r, mask;
1762        interval = 1 << G.poll_exp;
1763        if (interval > upper_bound)
1764                interval = upper_bound;
1765        mask = ((interval-1) >> 4) | 1;
1766        r = rand();
1767        interval += r & mask; /* ~ random(0..1) * interval/16 */
1768        VERB4 bb_error_msg("chose poll interval:%u (poll_exp:%d)", interval, G.poll_exp);
1769        return interval;
1770}
1771static void
1772adjust_poll(int count)
1773{
1774        G.polladj_count += count;
1775        if (G.polladj_count > POLLADJ_LIMIT) {
1776                G.polladj_count = 0;
1777                if (G.poll_exp < MAXPOLL) {
1778                        G.poll_exp++;
1779                        VERB4 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1780                                        G.discipline_jitter, G.poll_exp);
1781                }
1782        } else if (G.polladj_count < -POLLADJ_LIMIT || (count < 0 && G.poll_exp > BIGPOLL)) {
1783                G.polladj_count = 0;
1784                if (G.poll_exp > MINPOLL) {
1785                        llist_t *item;
1786
1787                        G.poll_exp--;
1788                        /* Correct p->next_action_time in each peer
1789                         * which waits for sending, so that they send earlier.
1790                         * Old pp->next_action_time are on the order
1791                         * of t + (1 << old_poll_exp) + small_random,
1792                         * we simply need to subtract ~half of that.
1793                         */
1794                        for (item = G.ntp_peers; item != NULL; item = item->link) {
1795                                peer_t *pp = (peer_t *) item->data;
1796                                if (pp->p_fd < 0)
1797                                        pp->next_action_time -= (1 << G.poll_exp);
1798                        }
1799                        VERB4 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1800                                        G.discipline_jitter, G.poll_exp);
1801                }
1802        } else {
1803                VERB4 bb_error_msg("polladj: count:%d", G.polladj_count);
1804        }
1805}
1806static NOINLINE void
1807recv_and_process_peer_pkt(peer_t *p)
1808{
1809        int         rc;
1810        ssize_t     size;
1811        msg_t       msg;
1812        double      T1, T2, T3, T4;
1813        double      offset;
1814        double      prev_delay, delay;
1815        unsigned    interval;
1816        datapoint_t *datapoint;
1817        peer_t      *q;
1818
1819        offset = 0;
1820
1821        /* The below can happen as follows:
1822         * = we receive two peer rsponses at once.
1823         * = recv_and_process_peer_pkt(PEER1) -> update_local_clock()
1824         *   -> step_time() and it closes all other fds, sets all ->fd to -1.
1825         * = recv_and_process_peer_pkt(PEER2) sees PEER2->fd == -1
1826         */
1827        if (p->p_fd < 0)
1828                return;
1829
1830        /* We can recvfrom here and check from.IP, but some multihomed
1831         * ntp servers reply from their *other IP*.
1832         * TODO: maybe we should check at least what we can: from.port == 123?
1833         */
1834 recv_again:
1835        size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1836        if (size < 0) {
1837                if (errno == EINTR)
1838                        /* Signal caught */
1839                        goto recv_again;
1840                if (errno == EAGAIN)
1841                        /* There was no packet after all
1842                         * (poll() returning POLLIN for a fd
1843                         * is not a ironclad guarantee that data is there)
1844                         */
1845                        return;
1846                /*
1847                 * If you need a different handling for a specific
1848                 * errno, always explain it in comment.
1849                 */
1850                bb_perror_msg_and_die("recv(%s) error", p->p_dotted);
1851        }
1852
1853#if ENABLE_FEATURE_NTP_AUTH
1854        if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE_MD5_AUTH && size != NTP_MSGSIZE_SHA1_AUTH) {
1855                bb_error_msg("malformed packet received from %s: size %u", p->p_dotted, (int)size);
1856                return;
1857        }
1858        if (p->key_entry && hashes_differ(p, &msg)) {
1859                bb_error_msg("invalid cryptographic hash received from %s", p->p_dotted);
1860                return;
1861        }
1862#else
1863        if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE_MD5_AUTH) {
1864                bb_error_msg("malformed packet received from %s: size %u", p->p_dotted, (int)size);
1865                return;
1866        }
1867#endif
1868
1869        if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1870         || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1871        ) {
1872                /* Somebody else's packet */
1873                return;
1874        }
1875
1876        /* We do not expect any more packets from this peer for now.
1877         * Closing the socket informs kernel about it.
1878         * We open a new socket when we send a new query.
1879         */
1880        close(p->p_fd);
1881        p->p_fd = -1;
1882
1883        if ((msg.m_status & LI_ALARM) == LI_ALARM
1884         || msg.m_stratum == 0
1885         || msg.m_stratum > NTP_MAXSTRATUM
1886        ) {
1887                bb_error_msg("reply from %s: peer is unsynced", p->p_dotted);
1888                /*
1889                 * Stratum 0 responses may have commands in 32-bit m_refid field:
1890                 * "DENY", "RSTR" - peer does not like us at all,
1891                 * "RATE" - peer is overloaded, reduce polling freq.
1892                 * If poll interval is small, increase it.
1893                 */
1894                if (G.poll_exp < BIGPOLL)
1895                        goto increase_interval;
1896                goto pick_normal_interval;
1897        }
1898
1899//      /* Verify valid root distance */
1900//      if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1901//              return;                 /* invalid header values */
1902
1903        /*
1904         * From RFC 2030 (with a correction to the delay math):
1905         *
1906         * Timestamp Name          ID   When Generated
1907         * ------------------------------------------------------------
1908         * Originate Timestamp     T1   time request sent by client
1909         * Receive Timestamp       T2   time request received by server
1910         * Transmit Timestamp      T3   time reply sent by server
1911         * Destination Timestamp   T4   time reply received by client
1912         *
1913         * The roundtrip delay and local clock offset are defined as
1914         *
1915         * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1916         */
1917        T1 = p->p_xmttime;
1918        T2 = lfp_to_d(msg.m_rectime);
1919        T3 = lfp_to_d(msg.m_xmttime);
1920        T4 = G.cur_time;
1921        delay = (T4 - T1) - (T3 - T2);
1922
1923        /*
1924         * If this packet's delay is much bigger than the last one,
1925         * it's better to just ignore it than use its much less precise value.
1926         */
1927        prev_delay = p->p_raw_delay;
1928        p->p_raw_delay = (delay < 0 ? 0.0 : delay);
1929        if (p->reachable_bits
1930         && delay > prev_delay * BAD_DELAY_GROWTH
1931         && delay > 1.0 / (8 * 1024) /* larger than ~0.000122 */
1932        ) {
1933                bb_error_msg("reply from %s: delay %f is too high, ignoring", p->p_dotted, delay);
1934                goto pick_normal_interval;
1935        }
1936
1937        /* The delay calculation is a special case. In cases where the
1938         * server and client clocks are running at different rates and
1939         * with very fast networks, the delay can appear negative. In
1940         * order to avoid violating the Principle of Least Astonishment,
1941         * the delay is clamped not less than the system precision.
1942         */
1943        if (delay < G_precision_sec)
1944                delay = G_precision_sec;
1945        p->lastpkt_delay = delay;
1946        p->lastpkt_recv_time = T4;
1947        VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
1948        p->lastpkt_status = msg.m_status;
1949        p->lastpkt_stratum = msg.m_stratum;
1950        p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
1951        p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
1952        p->lastpkt_refid = msg.m_refid;
1953
1954        p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
1955        datapoint = &p->filter_datapoint[p->datapoint_idx];
1956        datapoint->d_recv_time = T4;
1957        datapoint->d_offset    = offset = ((T2 - T1) + (T3 - T4)) / 2;
1958        datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
1959        if (!p->reachable_bits) {
1960                /* 1st datapoint ever - replicate offset in every element */
1961                int i;
1962                for (i = 0; i < NUM_DATAPOINTS; i++) {
1963                        p->filter_datapoint[i].d_offset = offset;
1964                }
1965        }
1966
1967        p->reachable_bits |= 1;
1968        if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
1969                bb_info_msg("reply from %s: offset:%+f delay:%f status:0x%02x strat:%d refid:0x%08x rootdelay:%f reach:0x%02x",
1970                        p->p_dotted,
1971                        offset,
1972                        p->p_raw_delay,
1973                        p->lastpkt_status,
1974                        p->lastpkt_stratum,
1975                        p->lastpkt_refid,
1976                        p->lastpkt_rootdelay,
1977                        p->reachable_bits
1978                        /* not shown: m_ppoll, m_precision_exp, m_rootdisp,
1979                         * m_reftime, m_orgtime, m_rectime, m_xmttime
1980                         */
1981                );
1982        }
1983
1984        /* Muck with statictics and update the clock */
1985        filter_datapoints(p);
1986        q = select_and_cluster();
1987        rc = 0;
1988        if (q) {
1989                if (!(option_mask32 & OPT_w)) {
1990                        rc = update_local_clock(q);
1991#if 0
1992//Disabled this because there is a case where largish offsets
1993//are unavoidable: if network round-trip delay is, say, ~0.6s,
1994//error in offset estimation would be ~delay/2 ~= 0.3s.
1995//Thus, offsets will be usually in -0.3...0.3s range.
1996//In this case, this code would keep poll interval small,
1997//but it won't be helping.
1998//BIGOFF check below deals with a case of seeing multi-second offsets.
1999
2000                        /* If drift is dangerously large, immediately
2001                         * drop poll interval one step down.
2002                         */
2003                        if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
2004                                VERB4 bb_error_msg("offset:%+f > POLLDOWN_OFFSET", q->filter_offset);
2005                                adjust_poll(-POLLADJ_LIMIT * 3);
2006                                rc = 0;
2007                        }
2008#endif
2009                }
2010        } else {
2011                /* No peer selected.
2012                 * If poll interval is small, increase it.
2013                 */
2014                if (G.poll_exp < BIGPOLL)
2015                        goto increase_interval;
2016        }
2017
2018        if (rc != 0) {
2019                /* Adjust the poll interval by comparing the current offset
2020                 * with the clock jitter. If the offset is less than
2021                 * the clock jitter times a constant, then the averaging interval
2022                 * is increased, otherwise it is decreased. A bit of hysteresis
2023                 * helps calm the dance. Works best using burst mode.
2024                 */
2025                if (rc > 0 && G.offset_to_jitter_ratio <= POLLADJ_GATE) {
2026                        /* was += G.poll_exp but it is a bit
2027                         * too optimistic for my taste at high poll_exp's */
2028 increase_interval:
2029                        adjust_poll(MINPOLL);
2030                } else {
2031                        VERB3 if (rc > 0)
2032                                bb_error_msg("want smaller interval: offset/jitter = %u",
2033                                        G.offset_to_jitter_ratio);
2034                        adjust_poll(-G.poll_exp * 2);
2035                }
2036        }
2037
2038        /* Decide when to send new query for this peer */
2039 pick_normal_interval:
2040        interval = poll_interval(INT_MAX);
2041        if (fabs(offset) >= BIGOFF && interval > BIGOFF_INTERVAL) {
2042                /* If we are synced, offsets are less than SLEW_THRESHOLD,
2043                 * or at the very least not much larger than it.
2044                 * Now we see a largish one.
2045                 * Either this peer is feeling bad, or packet got corrupted,
2046                 * or _our_ clock is wrong now and _all_ peers will show similar
2047                 * largish offsets too.
2048                 * I observed this with laptop suspend stopping clock.
2049                 * In any case, it makes sense to make next request soonish:
2050                 * cases 1 and 2: get a better datapoint,
2051                 * case 3: allows to resync faster.
2052                 */
2053                interval = BIGOFF_INTERVAL;
2054        }
2055
2056        set_next(p, interval);
2057}
2058
2059#if ENABLE_FEATURE_NTPD_SERVER
2060static NOINLINE void
2061recv_and_process_client_pkt(void /*int fd*/)
2062{
2063        ssize_t          size;
2064        //uint8_t          version;
2065        len_and_sockaddr *to;
2066        struct sockaddr  *from;
2067        msg_t            msg;
2068        uint8_t          query_status;
2069        l_fixedpt_t      query_xmttime;
2070
2071        to = get_sock_lsa(G_listen_fd);
2072        from = xzalloc(to->len);
2073
2074        size = recv_from_to(G_listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
2075
2076        /* "ntpq -p" (4.2.8p13) sends a 12-byte NTPv2 request:
2077         * m_status is 0x16: leap:0 version:2 mode:6(reserved1)
2078         *  https://docs.ntpsec.org/latest/mode6.html
2079         * We don't support this.
2080         */
2081
2082# if ENABLE_FEATURE_NTP_AUTH
2083        if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE_MD5_AUTH && size != NTP_MSGSIZE_SHA1_AUTH)
2084# else
2085        if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE_MD5_AUTH)
2086# endif
2087        {
2088                char *addr;
2089                if (size < 0) {
2090                        if (errno == EAGAIN)
2091                                goto bail;
2092                        bb_simple_perror_msg_and_die("recv");
2093                }
2094                addr = xmalloc_sockaddr2dotted_noport(from);
2095                bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
2096                free(addr);
2097                goto bail;
2098        }
2099
2100        /* Respond only to client and symmetric active packets */
2101        if ((msg.m_status & MODE_MASK) != MODE_CLIENT
2102         && (msg.m_status & MODE_MASK) != MODE_SYM_ACT
2103        ) {
2104                goto bail;
2105        }
2106
2107        query_status = msg.m_status;
2108        query_xmttime = msg.m_xmttime;
2109
2110        /* Build a reply packet */
2111        memset(&msg, 0, sizeof(msg));
2112        msg.m_status = G.stratum < MAXSTRAT ? (G.ntp_status & LI_MASK) : LI_ALARM;
2113        msg.m_status |= (query_status & VERSION_MASK);
2114        msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
2115                        MODE_SERVER : MODE_SYM_PAS;
2116        msg.m_stratum = G.stratum;
2117        msg.m_ppoll = G.poll_exp;
2118        msg.m_precision_exp = G_precision_exp;
2119        /* this time was obtained between poll() and recv() */
2120        d_to_lfp(&msg.m_rectime, G.cur_time);
2121        d_to_lfp(&msg.m_xmttime, gettime1900d()); /* this instant */
2122        if (G.peer_cnt == 0) {
2123                /* we have no peers: "stratum 1 server" mode. reftime = our own time */
2124                G.reftime = G.cur_time;
2125        }
2126        d_to_lfp(&msg.m_reftime, G.reftime);
2127        msg.m_orgtime = query_xmttime;
2128        d_to_sfp(&msg.m_rootdelay, G.rootdelay);
2129//simple code does not do this, fix simple code!
2130        d_to_sfp(&msg.m_rootdisp, G.rootdisp);
2131        //version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
2132        msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
2133
2134        /* We reply from the local address packet was sent to,
2135         * this makes to/from look swapped here: */
2136        do_sendto(G_listen_fd,
2137                /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
2138                &msg, size);
2139        VERB3 {
2140                char *addr;
2141                addr = xmalloc_sockaddr2dotted_noport(from);
2142                bb_error_msg("responded to query from %s", addr);
2143                free(addr);
2144        }
2145
2146 bail:
2147        free(to);
2148        free(from);
2149}
2150#endif
2151
2152/* Upstream ntpd's options:
2153 *
2154 * -4   Force DNS resolution of host names to the IPv4 namespace.
2155 * -6   Force DNS resolution of host names to the IPv6 namespace.
2156 * -a   Require cryptographic authentication for broadcast client,
2157 *      multicast client and symmetric passive associations.
2158 *      This is the default.
2159 * -A   Do not require cryptographic authentication for broadcast client,
2160 *      multicast client and symmetric passive associations.
2161 *      This is almost never a good idea.
2162 * -b   Enable the client to synchronize to broadcast servers.
2163 * -c conffile
2164 *      Specify the name and path of the configuration file,
2165 *      default /etc/ntp.conf
2166 * -d   Specify debugging mode. This option may occur more than once,
2167 *      with each occurrence indicating greater detail of display.
2168 * -D level
2169 *      Specify debugging level directly.
2170 * -f driftfile
2171 *      Specify the name and path of the frequency file.
2172 *      This is the same operation as the "driftfile FILE"
2173 *      configuration command.
2174 * -g   Normally, ntpd exits with a message to the system log
2175 *      if the offset exceeds the panic threshold, which is 1000 s
2176 *      by default. This option allows the time to be set to any value
2177 *      without restriction; however, this can happen only once.
2178 *      If the threshold is exceeded after that, ntpd will exit
2179 *      with a message to the system log. This option can be used
2180 *      with the -q and -x options. See the tinker command for other options.
2181 * -i jaildir
2182 *      Chroot the server to the directory jaildir. This option also implies
2183 *      that the server attempts to drop root privileges at startup
2184 *      (otherwise, chroot gives very little additional security).
2185 *      You may need to also specify a -u option.
2186 * -k keyfile
2187 *      Specify the name and path of the symmetric key file,
2188 *      default /etc/ntp/keys. This is the same operation
2189 *      as the "keys FILE" configuration command.
2190 * -l logfile
2191 *      Specify the name and path of the log file. The default
2192 *      is the system log file. This is the same operation as
2193 *      the "logfile FILE" configuration command.
2194 * -L   Do not listen to virtual IPs. The default is to listen.
2195 * -n   Don't fork.
2196 * -N   To the extent permitted by the operating system,
2197 *      run the ntpd at the highest priority.
2198 * -p pidfile
2199 *      Specify the name and path of the file used to record the ntpd
2200 *      process ID. This is the same operation as the "pidfile FILE"
2201 *      configuration command.
2202 * -P priority
2203 *      To the extent permitted by the operating system,
2204 *      run the ntpd at the specified priority.
2205 * -q   Exit the ntpd just after the first time the clock is set.
2206 *      This behavior mimics that of the ntpdate program, which is
2207 *      to be retired. The -g and -x options can be used with this option.
2208 *      Note: The kernel time discipline is disabled with this option.
2209 * -r broadcastdelay
2210 *      Specify the default propagation delay from the broadcast/multicast
2211 *      server to this client. This is necessary only if the delay
2212 *      cannot be computed automatically by the protocol.
2213 * -s statsdir
2214 *      Specify the directory path for files created by the statistics
2215 *      facility. This is the same operation as the "statsdir DIR"
2216 *      configuration command.
2217 * -t key
2218 *      Add a key number to the trusted key list. This option can occur
2219 *      more than once.
2220 * -u user[:group]
2221 *      Specify a user, and optionally a group, to switch to.
2222 * -v variable
2223 * -V variable
2224 *      Add a system variable listed by default.
2225 * -x   Normally, the time is slewed if the offset is less than the step
2226 *      threshold, which is 128 ms by default, and stepped if above
2227 *      the threshold. This option sets the threshold to 600 s, which is
2228 *      well within the accuracy window to set the clock manually.
2229 *      Note: since the slew rate of typical Unix kernels is limited
2230 *      to 0.5 ms/s, each second of adjustment requires an amortization
2231 *      interval of 2000 s. Thus, an adjustment as much as 600 s
2232 *      will take almost 14 days to complete. This option can be used
2233 *      with the -g and -q options. See the tinker command for other options.
2234 *      Note: The kernel time discipline is disabled with this option.
2235 */
2236#if ENABLE_FEATURE_NTP_AUTH
2237static key_entry_t *
2238find_key_entry(llist_t *key_entries, unsigned id)
2239{
2240        while (key_entries) {
2241                key_entry_t *cur = (key_entry_t*) key_entries->data;
2242                if (cur->id == id)
2243                        return cur;
2244                key_entries = key_entries->link;
2245        }
2246        bb_error_msg_and_die("key %u is not defined", id);
2247}
2248#endif
2249
2250/* By doing init in a separate function we decrease stack usage
2251 * in main loop.
2252 */
2253static NOINLINE void ntp_init(char **argv)
2254{
2255        unsigned opts;
2256        llist_t *peers;
2257#if ENABLE_FEATURE_NTP_AUTH
2258        llist_t *key_entries;
2259        char *key_file_path;
2260#endif
2261
2262        srand(getpid());
2263
2264        /* Set some globals */
2265        G.discipline_jitter = G_precision_sec;
2266        G.stratum = MAXSTRAT;
2267        if (BURSTPOLL != 0)
2268                G.poll_exp = BURSTPOLL; /* speeds up initial sync */
2269        G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
2270        G.FREQHOLD_cnt = -1;
2271
2272        /* Parse options */
2273        peers = NULL;
2274        IF_FEATURE_NTP_AUTH(key_entries = NULL;)
2275        opts = getopt32(argv, "^"
2276                        "nqNx" /* compat */
2277                        IF_FEATURE_NTP_AUTH("k:")  /* compat */
2278                        "wp:*S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
2279                        IF_FEATURE_NTPD_SERVER("I:") /* compat */
2280                        "d" /* compat */
2281                        "46aAbgL" /* compat, ignored */
2282                                "\0"
2283                                "=0"      /* should have no arguments */
2284                                ":dd:wn"  /* -d: counter; -p: list; -w implies -n */
2285                                IF_FEATURE_NTPD_SERVER(":Il") /* -I implies -l */
2286                        IF_FEATURE_NTP_AUTH(, &key_file_path)
2287                        , &peers, &G.script_name
2288                        IF_FEATURE_NTPD_SERVER(, &G.if_name)
2289                        , &G.verbose
2290        );
2291
2292//      if (opts & OPT_x) /* disable stepping, only slew is allowed */
2293//              G.time_was_stepped = 1;
2294
2295#if ENABLE_FEATURE_NTPD_SERVER
2296        G_listen_fd = -1;
2297        if (opts & OPT_l) {
2298                G_listen_fd = create_and_bind_dgram_or_die(NULL, 123);
2299                if (G.if_name) {
2300                        if (setsockopt_bindtodevice(G_listen_fd, G.if_name))
2301                                xfunc_die();
2302                }
2303                socket_want_pktinfo(G_listen_fd);
2304                setsockopt_int(G_listen_fd, IPPROTO_IP, IP_TOS, IPTOS_DSCP_AF21);
2305        }
2306#endif
2307        /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
2308        if (opts & OPT_N)
2309                setpriority(PRIO_PROCESS, 0, -15);
2310
2311        if (!(opts & OPT_n)) {
2312                bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
2313                logmode = LOGMODE_NONE;
2314        }
2315
2316#if ENABLE_FEATURE_NTP_AUTH
2317        if (opts & OPT_k) {
2318                char *tokens[4];
2319                parser_t *parser;
2320
2321                parser = config_open(key_file_path);
2322                while (config_read(parser, tokens, 4, 3, "# \t", PARSE_NORMAL | PARSE_MIN_DIE) == 3) {
2323                        key_entry_t *key_entry;
2324                        char buffer[40];
2325                        smalluint hash_type;
2326                        smalluint msg_size;
2327                        smalluint key_length;
2328                        char *key;
2329
2330                        if ((tokens[1][0] | 0x20) == 'm')
2331                                /* supports 'M' and 'md5' formats */
2332                                hash_type = HASH_MD5;
2333                        else
2334                        if (strncasecmp(tokens[1], "sha", 3) == 0)
2335                                /* supports 'sha' and 'sha1' formats */
2336                                hash_type = HASH_SHA1;
2337                        else
2338                                bb_simple_error_msg_and_die("only MD5 and SHA1 keys supported");
2339/* man ntp.keys:
2340 *  MD5    The key is 1 to 16 printable characters terminated by an EOL,
2341 *         whitespace, or a # (which is the "start of comment" character).
2342 *  SHA
2343 *  SHA1
2344 *  RMD160 The key is a hex-encoded ASCII string of 40 characters, which
2345 *         is truncated as necessary.
2346 */
2347                        key_length = strnlen(tokens[2], sizeof(buffer)+1);
2348                        if (key_length >= sizeof(buffer)+1) {
2349 err:
2350                                bb_error_msg_and_die("malformed key at line %u", parser->lineno);
2351                        }
2352                        if (hash_type == HASH_MD5) {
2353                                key = tokens[2];
2354                                msg_size = NTP_MSGSIZE_MD5_AUTH;
2355                        } else /* it's hash_type == HASH_SHA1 */
2356                        if (!(key_length & 1)) {
2357                                key_length >>= 1;
2358                                if (!hex2bin(buffer, tokens[2], key_length))
2359                                        goto err;
2360                                key = buffer;
2361                                msg_size = NTP_MSGSIZE_SHA1_AUTH;
2362                        } else {
2363                                goto err;
2364                        }
2365                        key_entry = xzalloc(sizeof(*key_entry) + key_length);
2366                        key_entry->type = hash_type;
2367                        key_entry->msg_size = msg_size;
2368                        key_entry->key_length = key_length;
2369                        memcpy(key_entry->key, key, key_length);
2370                        key_entry->id = xatou_range(tokens[0], 1, MAX_KEY_NUMBER);
2371                        llist_add_to(&key_entries, key_entry);
2372                }
2373                config_close(parser);
2374        }
2375#endif
2376        if (peers) {
2377#if ENABLE_FEATURE_NTP_AUTH
2378                while (peers) {
2379                        char *peer = llist_pop(&peers);
2380                        key_entry_t *key_entry = NULL;
2381                        if (strncmp(peer, "keyno:", 6) == 0) {
2382                                char *end;
2383                                int key_id;
2384                                peer += 6;
2385                                end = strchr(peer, ':');
2386                                if (!end) bb_show_usage();
2387                                *end = '\0';
2388                                key_id = xatou_range(peer, 1, MAX_KEY_NUMBER);
2389                                *end = ':';
2390                                key_entry = find_key_entry(key_entries, key_id);
2391                                peer = end + 1;
2392                        }
2393                        add_peers(peer, key_entry);
2394                }
2395#else
2396                while (peers)
2397                        add_peers(llist_pop(&peers), NULL);
2398#endif
2399        }
2400#if ENABLE_FEATURE_NTPD_CONF
2401        else {
2402                parser_t *parser;
2403                char *token[3 + 2*ENABLE_FEATURE_NTP_AUTH];
2404
2405                parser = config_open("/etc/ntp.conf");
2406                while (config_read(parser, token, 3 + 2*ENABLE_FEATURE_NTP_AUTH, 1, "# \t", PARSE_NORMAL)) {
2407                        if (strcmp(token[0], "server") == 0 && token[1]) {
2408# if ENABLE_FEATURE_NTP_AUTH
2409                                key_entry_t *key_entry = NULL;
2410                                if (token[2] && token[3] && strcmp(token[2], "key") == 0) {
2411                                        unsigned key_id = xatou_range(token[3], 1, MAX_KEY_NUMBER);
2412                                        key_entry = find_key_entry(key_entries, key_id);
2413                                }
2414                                add_peers(token[1], key_entry);
2415# else
2416                                add_peers(token[1], NULL);
2417# endif
2418                                continue;
2419                        }
2420                        bb_error_msg("skipping %s:%u: unimplemented command '%s'",
2421                                "/etc/ntp.conf", parser->lineno, token[0]
2422                        );
2423                }
2424                config_close(parser);
2425        }
2426#endif
2427        if (G.peer_cnt == 0) {
2428                if (!(opts & OPT_l))
2429                        bb_show_usage();
2430                /* -l but no peers: "stratum 1 server" mode */
2431                G.stratum = 1;
2432        }
2433
2434        if (!(opts & OPT_n)) /* only if backgrounded: */
2435                write_pidfile_std_path_and_ext("ntpd");
2436
2437        /* If network is up, syncronization occurs in ~10 seconds.
2438         * We give "ntpd -q" 10 seconds to get first reply,
2439         * then another 50 seconds to finish syncing.
2440         *
2441         * I tested ntpd 4.2.6p1 and apparently it never exits
2442         * (will try forever), but it does not feel right.
2443         * The goal of -q is to act like ntpdate: set time
2444         * after a reasonably small period of polling, or fail.
2445         */
2446        if (opts & OPT_q) {
2447                option_mask32 |= OPT_qq;
2448                alarm(10);
2449        }
2450
2451        bb_signals(0
2452                | (1 << SIGTERM)
2453                | (1 << SIGINT)
2454                | (1 << SIGALRM)
2455                , record_signo
2456        );
2457        bb_signals(0
2458                | (1 << SIGPIPE)
2459                | (1 << SIGCHLD)
2460                , SIG_IGN
2461        );
2462//TODO: free unused elements of key_entries?
2463}
2464
2465int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
2466int ntpd_main(int argc UNUSED_PARAM, char **argv)
2467{
2468#undef G
2469        struct globals G;
2470        struct pollfd *pfd;
2471        peer_t **idx2peer;
2472        unsigned cnt;
2473
2474        memset(&G, 0, sizeof(G));
2475        SET_PTR_TO_GLOBALS(&G);
2476
2477        ntp_init(argv);
2478
2479        /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
2480        cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
2481        idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
2482        pfd = xzalloc(sizeof(pfd[0]) * cnt);
2483
2484        /* Countdown: we never sync before we sent INITIAL_SAMPLES+1
2485         * packets to each peer.
2486         * NB: if some peer is not responding, we may end up sending
2487         * fewer packets to it and more to other peers.
2488         * NB2: sync usually happens using INITIAL_SAMPLES packets,
2489         * since last reply does not come back instantaneously.
2490         */
2491        cnt = G.peer_cnt * (INITIAL_SAMPLES + 1);
2492
2493        while (!bb_got_signal) {
2494                llist_t *item;
2495                unsigned i, j;
2496                int nfds, timeout;
2497                double nextaction;
2498
2499                /* Nothing between here and poll() blocks for any significant time */
2500
2501                nextaction = G.last_script_run + (11*60);
2502                if (nextaction < G.cur_time + 1)
2503                        nextaction = G.cur_time + 1;
2504
2505                i = 0;
2506#if ENABLE_FEATURE_NTPD_SERVER
2507                if (G_listen_fd != -1) {
2508                        pfd[0].fd = G_listen_fd;
2509                        pfd[0].events = POLLIN;
2510                        i++;
2511                }
2512#endif
2513                /* Pass over peer list, send requests, time out on receives */
2514                for (item = G.ntp_peers; item != NULL; item = item->link) {
2515                        peer_t *p = (peer_t *) item->data;
2516
2517                        if (p->next_action_time <= G.cur_time) {
2518                                if (p->p_fd == -1) {
2519                                        /* Time to send new req */
2520                                        if (--cnt == 0) {
2521                                                VERB4 bb_simple_error_msg("disabling burst mode");
2522                                                G.polladj_count = 0;
2523                                                G.poll_exp = MINPOLL;
2524                                        }
2525                                        send_query_to_peer(p);
2526                                } else {
2527                                        /* Timed out waiting for reply */
2528                                        close(p->p_fd);
2529                                        p->p_fd = -1;
2530                                        /* If poll interval is small, increase it */
2531                                        if (G.poll_exp < BIGPOLL)
2532                                                adjust_poll(MINPOLL);
2533                                        timeout = poll_interval(NOREPLY_INTERVAL);
2534                                        bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
2535                                                        p->p_dotted, p->reachable_bits, timeout);
2536
2537                                        /* What if don't see it because it changed its IP? */
2538                                        if (p->reachable_bits == 0)
2539                                                resolve_peer_hostname(p);
2540
2541                                        set_next(p, timeout);
2542                                }
2543                        }
2544
2545                        if (p->next_action_time < nextaction)
2546                                nextaction = p->next_action_time;
2547
2548                        if (p->p_fd >= 0) {
2549                                /* Wait for reply from this peer */
2550                                pfd[i].fd = p->p_fd;
2551                                pfd[i].events = POLLIN;
2552                                idx2peer[i] = p;
2553                                i++;
2554                        }
2555                }
2556
2557                timeout = nextaction - G.cur_time;
2558                if (timeout < 0)
2559                        timeout = 0;
2560                timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
2561
2562                /* Here we may block */
2563                VERB3 {
2564                        if (i > (ENABLE_FEATURE_NTPD_SERVER && G_listen_fd != -1)) {
2565                                /* We wait for at least one reply.
2566                                 * Poll for it, without wasting time for message.
2567                                 * Since replies often come under 1 second, this also
2568                                 * reduces clutter in logs.
2569                                 */
2570                                nfds = poll(pfd, i, 1000);
2571                                if (nfds != 0)
2572                                        goto did_poll;
2573                                if (--timeout <= 0)
2574                                        goto did_poll;
2575                        }
2576                        bb_error_msg("poll:%us sockets:%u interval:%us", timeout, i, 1 << G.poll_exp);
2577                }
2578                nfds = poll(pfd, i, timeout * 1000);
2579 did_poll:
2580                gettime1900d(); /* sets G.cur_time */
2581                if (nfds <= 0) {
2582                        double ct;
2583                        int dns_error;
2584
2585                        if (bb_got_signal)
2586                                break; /* poll was interrupted by a signal */
2587
2588                        if (G.cur_time - G.last_script_run > 11*60) {
2589                                /* Useful for updating battery-backed RTC and such */
2590                                run_script("periodic", G.last_update_offset);
2591                                gettime1900d(); /* sets G.cur_time */
2592                        }
2593
2594                        /* Resolve peer names to IPs, if not resolved yet.
2595                         * We do it only when poll timed out:
2596                         * this way, we almost never overlap DNS resolution with
2597                         * "request-reply" packet round trip.
2598                         */
2599                        dns_error = 0;
2600                        ct = G.cur_time;
2601                        for (item = G.ntp_peers; item != NULL; item = item->link) {
2602                                peer_t *p = (peer_t *) item->data;
2603                                if (p->next_action_time <= ct && !p->p_lsa) {
2604                                        /* This can take up to ~10 sec per each DNS query */
2605                                        dns_error |= (!resolve_peer_hostname(p));
2606                                }
2607                        }
2608                        if (!dns_error)
2609                                goto check_unsync;
2610                        /* Set next time for those which are still not resolved */
2611                        gettime1900d(); /* sets G.cur_time (needed for set_next()) */
2612                        for (item = G.ntp_peers; item != NULL; item = item->link) {
2613                                peer_t *p = (peer_t *) item->data;
2614                                if (p->next_action_time <= ct && !p->p_lsa) {
2615                                        set_next(p, HOSTNAME_INTERVAL * p->dns_errors);
2616                                }
2617                        }
2618                        goto check_unsync;
2619                }
2620
2621                /* Process any received packets */
2622                j = 0;
2623#if ENABLE_FEATURE_NTPD_SERVER
2624                if (G.listen_fd != -1) {
2625                        if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2626                                nfds--;
2627                                recv_and_process_client_pkt(/*G.listen_fd*/);
2628                                gettime1900d(); /* sets G.cur_time */
2629                        }
2630                        j = 1;
2631                }
2632#endif
2633                for (; nfds != 0 && j < i; j++) {
2634                        if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
2635                                /*
2636                                 * At init, alarm was set to 10 sec.
2637                                 * Now we did get a reply.
2638                                 * Increase timeout to 50 seconds to finish syncing.
2639                                 */
2640                                if (option_mask32 & OPT_qq) {
2641                                        option_mask32 &= ~OPT_qq;
2642                                        alarm(50);
2643                                }
2644                                nfds--;
2645                                recv_and_process_peer_pkt(idx2peer[j]);
2646                                gettime1900d(); /* sets G.cur_time */
2647                        }
2648                }
2649
2650 check_unsync:
2651                if (G.ntp_peers && G.stratum != MAXSTRAT) {
2652                        for (item = G.ntp_peers; item != NULL; item = item->link) {
2653                                peer_t *p = (peer_t *) item->data;
2654                                if (p->reachable_bits)
2655                                        goto have_reachable_peer;
2656                        }
2657                        /* No peer responded for last 8 packets, panic */
2658                        clamp_pollexp_and_set_MAXSTRAT();
2659                        run_script("unsync", 0.0);
2660 have_reachable_peer: ;
2661                }
2662        } /* while (!bb_got_signal) */
2663
2664        remove_pidfile_std_path_and_ext("ntpd");
2665        kill_myself_with_sig(bb_got_signal);
2666}
2667
2668
2669
2670
2671
2672
2673/*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2674
2675/*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2676
2677#if 0
2678static double
2679direct_freq(double fp_offset)
2680{
2681#ifdef KERNEL_PLL
2682        /*
2683         * If the kernel is enabled, we need the residual offset to
2684         * calculate the frequency correction.
2685         */
2686        if (pll_control && kern_enable) {
2687                memset(&ntv, 0, sizeof(ntv));
2688                ntp_adjtime(&ntv);
2689#ifdef STA_NANO
2690                clock_offset = ntv.offset / 1e9;
2691#else /* STA_NANO */
2692                clock_offset = ntv.offset / 1e6;
2693#endif /* STA_NANO */
2694                drift_comp = FREQTOD(ntv.freq);
2695        }
2696#endif /* KERNEL_PLL */
2697        set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2698        wander_resid = 0;
2699        return drift_comp;
2700}
2701
2702static void
2703set_freq(double freq) /* frequency update */
2704{
2705        char tbuf[80];
2706
2707        drift_comp = freq;
2708
2709#ifdef KERNEL_PLL
2710        /*
2711         * If the kernel is enabled, update the kernel frequency.
2712         */
2713        if (pll_control && kern_enable) {
2714                memset(&ntv, 0, sizeof(ntv));
2715                ntv.modes = MOD_FREQUENCY;
2716                ntv.freq = DTOFREQ(drift_comp);
2717                ntp_adjtime(&ntv);
2718                snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2719                report_event(EVNT_FSET, NULL, tbuf);
2720        } else {
2721                snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2722                report_event(EVNT_FSET, NULL, tbuf);
2723        }
2724#else /* KERNEL_PLL */
2725        snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2726        report_event(EVNT_FSET, NULL, tbuf);
2727#endif /* KERNEL_PLL */
2728}
2729
2730...
2731...
2732...
2733
2734#ifdef KERNEL_PLL
2735        /*
2736         * This code segment works when clock adjustments are made using
2737         * precision time kernel support and the ntp_adjtime() system
2738         * call. This support is available in Solaris 2.6 and later,
2739         * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2740         * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2741         * DECstation 5000/240 and Alpha AXP, additional kernel
2742         * modifications provide a true microsecond clock and nanosecond
2743         * clock, respectively.
2744         *
2745         * Important note: The kernel discipline is used only if the
2746         * step threshold is less than 0.5 s, as anything higher can
2747         * lead to overflow problems. This might occur if some misguided
2748         * lad set the step threshold to something ridiculous.
2749         */
2750        if (pll_control && kern_enable) {
2751
2752#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2753
2754                /*
2755                 * We initialize the structure for the ntp_adjtime()
2756                 * system call. We have to convert everything to
2757                 * microseconds or nanoseconds first. Do not update the
2758                 * system variables if the ext_enable flag is set. In
2759                 * this case, the external clock driver will update the
2760                 * variables, which will be read later by the local
2761                 * clock driver. Afterwards, remember the time and
2762                 * frequency offsets for jitter and stability values and
2763                 * to update the frequency file.
2764                 */
2765                memset(&ntv,  0, sizeof(ntv));
2766                if (ext_enable) {
2767                        ntv.modes = MOD_STATUS;
2768                } else {
2769#ifdef STA_NANO
2770                        ntv.modes = MOD_BITS | MOD_NANO;
2771#else /* STA_NANO */
2772                        ntv.modes = MOD_BITS;
2773#endif /* STA_NANO */
2774                        if (clock_offset < 0)
2775                                dtemp = -.5;
2776                        else
2777                                dtemp = .5;
2778#ifdef STA_NANO
2779                        ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2780                        ntv.constant = sys_poll;
2781#else /* STA_NANO */
2782                        ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2783                        ntv.constant = sys_poll - 4;
2784#endif /* STA_NANO */
2785                        ntv.esterror = (u_int32)(clock_jitter * 1e6);
2786                        ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2787                        ntv.status = STA_PLL;
2788
2789                        /*
2790                         * Enable/disable the PPS if requested.
2791                         */
2792                        if (pps_enable) {
2793                                if (!(pll_status & STA_PPSTIME))
2794                                        report_event(EVNT_KERN,
2795                                                NULL, "PPS enabled");
2796                                ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2797                        } else {
2798                                if (pll_status & STA_PPSTIME)
2799                                        report_event(EVNT_KERN,
2800                                                NULL, "PPS disabled");
2801                                ntv.status &= ~(STA_PPSTIME | STA_PPSFREQ);
2802                        }
2803                        if (sys_leap == LEAP_ADDSECOND)
2804                                ntv.status |= STA_INS;
2805                        else if (sys_leap == LEAP_DELSECOND)
2806                                ntv.status |= STA_DEL;
2807                }
2808
2809                /*
2810                 * Pass the stuff to the kernel. If it squeals, turn off
2811                 * the pps. In any case, fetch the kernel offset,
2812                 * frequency and jitter.
2813                 */
2814                if (ntp_adjtime(&ntv) == TIME_ERROR) {
2815                        if (!(ntv.status & STA_PPSSIGNAL))
2816                                report_event(EVNT_KERN, NULL,
2817                                                "PPS no signal");
2818                }
2819                pll_status = ntv.status;
2820#ifdef STA_NANO
2821                clock_offset = ntv.offset / 1e9;
2822#else /* STA_NANO */
2823                clock_offset = ntv.offset / 1e6;
2824#endif /* STA_NANO */
2825                clock_frequency = FREQTOD(ntv.freq);
2826
2827                /*
2828                 * If the kernel PPS is lit, monitor its performance.
2829                 */
2830                if (ntv.status & STA_PPSTIME) {
2831#ifdef STA_NANO
2832                        clock_jitter = ntv.jitter / 1e9;
2833#else /* STA_NANO */
2834                        clock_jitter = ntv.jitter / 1e6;
2835#endif /* STA_NANO */
2836                }
2837
2838#if defined(STA_NANO) && NTP_API == 4
2839                /*
2840                 * If the TAI changes, update the kernel TAI.
2841                 */
2842                if (loop_tai != sys_tai) {
2843                        loop_tai = sys_tai;
2844                        ntv.modes = MOD_TAI;
2845                        ntv.constant = sys_tai;
2846                        ntp_adjtime(&ntv);
2847                }
2848#endif /* STA_NANO */
2849        }
2850#endif /* KERNEL_PLL */
2851#endif
2852