dpdk/drivers/common/iavf/virtchnl.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: BSD-3-Clause
   2 * Copyright(c) 2001-2021 Intel Corporation
   3 */
   4
   5#ifndef _VIRTCHNL_H_
   6#define _VIRTCHNL_H_
   7
   8/* Description:
   9 * This header file describes the VF-PF communication protocol used
  10 * by the drivers for all devices starting from our 40G product line
  11 *
  12 * Admin queue buffer usage:
  13 * desc->opcode is always aqc_opc_send_msg_to_pf
  14 * flags, retval, datalen, and data addr are all used normally.
  15 * The Firmware copies the cookie fields when sending messages between the
  16 * PF and VF, but uses all other fields internally. Due to this limitation,
  17 * we must send all messages as "indirect", i.e. using an external buffer.
  18 *
  19 * All the VSI indexes are relative to the VF. Each VF can have maximum of
  20 * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
  21 * have a maximum of sixteen queues for all of its VSIs.
  22 *
  23 * The PF is required to return a status code in v_retval for all messages
  24 * except RESET_VF, which does not require any response. The return value
  25 * is of status_code type, defined in the shared type.h.
  26 *
  27 * In general, VF driver initialization should roughly follow the order of
  28 * these opcodes. The VF driver must first validate the API version of the
  29 * PF driver, then request a reset, then get resources, then configure
  30 * queues and interrupts. After these operations are complete, the VF
  31 * driver may start its queues, optionally add MAC and VLAN filters, and
  32 * process traffic.
  33 */
  34
  35/* START GENERIC DEFINES
  36 * Need to ensure the following enums and defines hold the same meaning and
  37 * value in current and future projects
  38 */
  39
  40/* Error Codes */
  41enum virtchnl_status_code {
  42        VIRTCHNL_STATUS_SUCCESS                         = 0,
  43        VIRTCHNL_STATUS_ERR_PARAM                       = -5,
  44        VIRTCHNL_STATUS_ERR_NO_MEMORY                   = -18,
  45        VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH             = -38,
  46        VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR             = -39,
  47        VIRTCHNL_STATUS_ERR_INVALID_VF_ID               = -40,
  48        VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR           = -53,
  49        VIRTCHNL_STATUS_ERR_NOT_SUPPORTED               = -64,
  50};
  51
  52/* Backward compatibility */
  53#define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
  54#define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
  55
  56#define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT         0x0
  57#define VIRTCHNL_LINK_SPEED_100MB_SHIFT         0x1
  58#define VIRTCHNL_LINK_SPEED_1000MB_SHIFT        0x2
  59#define VIRTCHNL_LINK_SPEED_10GB_SHIFT          0x3
  60#define VIRTCHNL_LINK_SPEED_40GB_SHIFT          0x4
  61#define VIRTCHNL_LINK_SPEED_20GB_SHIFT          0x5
  62#define VIRTCHNL_LINK_SPEED_25GB_SHIFT          0x6
  63#define VIRTCHNL_LINK_SPEED_5GB_SHIFT           0x7
  64
  65enum virtchnl_link_speed {
  66        VIRTCHNL_LINK_SPEED_UNKNOWN     = 0,
  67        VIRTCHNL_LINK_SPEED_100MB       = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
  68        VIRTCHNL_LINK_SPEED_1GB         = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
  69        VIRTCHNL_LINK_SPEED_10GB        = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
  70        VIRTCHNL_LINK_SPEED_40GB        = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
  71        VIRTCHNL_LINK_SPEED_20GB        = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
  72        VIRTCHNL_LINK_SPEED_25GB        = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
  73        VIRTCHNL_LINK_SPEED_2_5GB       = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
  74        VIRTCHNL_LINK_SPEED_5GB         = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
  75};
  76
  77/* for hsplit_0 field of Rx HMC context */
  78/* deprecated with IAVF 1.0 */
  79enum virtchnl_rx_hsplit {
  80        VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
  81        VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
  82        VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
  83        VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
  84        VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
  85};
  86
  87#define VIRTCHNL_ETH_LENGTH_OF_ADDRESS  6
  88/* END GENERIC DEFINES */
  89
  90/* Opcodes for VF-PF communication. These are placed in the v_opcode field
  91 * of the virtchnl_msg structure.
  92 */
  93enum virtchnl_ops {
  94/* The PF sends status change events to VFs using
  95 * the VIRTCHNL_OP_EVENT opcode.
  96 * VFs send requests to the PF using the other ops.
  97 * Use of "advanced opcode" features must be negotiated as part of capabilities
  98 * exchange and are not considered part of base mode feature set.
  99 */
 100        VIRTCHNL_OP_UNKNOWN = 0,
 101        VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
 102        VIRTCHNL_OP_RESET_VF = 2,
 103        VIRTCHNL_OP_GET_VF_RESOURCES = 3,
 104        VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
 105        VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
 106        VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
 107        VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
 108        VIRTCHNL_OP_ENABLE_QUEUES = 8,
 109        VIRTCHNL_OP_DISABLE_QUEUES = 9,
 110        VIRTCHNL_OP_ADD_ETH_ADDR = 10,
 111        VIRTCHNL_OP_DEL_ETH_ADDR = 11,
 112        VIRTCHNL_OP_ADD_VLAN = 12,
 113        VIRTCHNL_OP_DEL_VLAN = 13,
 114        VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
 115        VIRTCHNL_OP_GET_STATS = 15,
 116        VIRTCHNL_OP_RSVD = 16,
 117        VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
 118        /* opcode 19 is reserved */
 119        /* opcodes 20, 21, and 22 are reserved */
 120        VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
 121        VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
 122        VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
 123        VIRTCHNL_OP_SET_RSS_HENA = 26,
 124        VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
 125        VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
 126        VIRTCHNL_OP_REQUEST_QUEUES = 29,
 127        VIRTCHNL_OP_ENABLE_CHANNELS = 30,
 128        VIRTCHNL_OP_DISABLE_CHANNELS = 31,
 129        VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
 130        VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
 131        /* opcodes 34, 35, 36, and 37 are reserved */
 132        VIRTCHNL_OP_DCF_VLAN_OFFLOAD = 38,
 133        VIRTCHNL_OP_DCF_CMD_DESC = 39,
 134        VIRTCHNL_OP_DCF_CMD_BUFF = 40,
 135        VIRTCHNL_OP_DCF_DISABLE = 41,
 136        VIRTCHNL_OP_DCF_GET_VSI_MAP = 42,
 137        VIRTCHNL_OP_DCF_GET_PKG_INFO = 43,
 138        VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44,
 139        VIRTCHNL_OP_ADD_RSS_CFG = 45,
 140        VIRTCHNL_OP_DEL_RSS_CFG = 46,
 141        VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
 142        VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
 143        VIRTCHNL_OP_QUERY_FDIR_FILTER = 49,
 144        VIRTCHNL_OP_GET_MAX_RSS_QREGION = 50,
 145        VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
 146        VIRTCHNL_OP_ADD_VLAN_V2 = 52,
 147        VIRTCHNL_OP_DEL_VLAN_V2 = 53,
 148        VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
 149        VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
 150        VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
 151        VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
 152        VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2 = 58,
 153        VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 = 59,
 154        VIRTCHNL_OP_ENABLE_QUEUES_V2 = 107,
 155        VIRTCHNL_OP_DISABLE_QUEUES_V2 = 108,
 156        VIRTCHNL_OP_MAP_QUEUE_VECTOR = 111,
 157        VIRTCHNL_OP_MAX,
 158};
 159
 160static inline const char *virtchnl_op_str(enum virtchnl_ops v_opcode)
 161{
 162        switch (v_opcode) {
 163        case VIRTCHNL_OP_UNKNOWN:
 164                return "VIRTCHNL_OP_UNKNOWN";
 165        case VIRTCHNL_OP_VERSION:
 166                return "VIRTCHNL_OP_VERSION";
 167        case VIRTCHNL_OP_RESET_VF:
 168                return "VIRTCHNL_OP_RESET_VF";
 169        case VIRTCHNL_OP_GET_VF_RESOURCES:
 170                return "VIRTCHNL_OP_GET_VF_RESOURCES";
 171        case VIRTCHNL_OP_CONFIG_TX_QUEUE:
 172                return "VIRTCHNL_OP_CONFIG_TX_QUEUE";
 173        case VIRTCHNL_OP_CONFIG_RX_QUEUE:
 174                return "VIRTCHNL_OP_CONFIG_RX_QUEUE";
 175        case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
 176                return "VIRTCHNL_OP_CONFIG_VSI_QUEUES";
 177        case VIRTCHNL_OP_CONFIG_IRQ_MAP:
 178                return "VIRTCHNL_OP_CONFIG_IRQ_MAP";
 179        case VIRTCHNL_OP_ENABLE_QUEUES:
 180                return "VIRTCHNL_OP_ENABLE_QUEUES";
 181        case VIRTCHNL_OP_DISABLE_QUEUES:
 182                return "VIRTCHNL_OP_DISABLE_QUEUES";
 183        case VIRTCHNL_OP_ADD_ETH_ADDR:
 184                return "VIRTCHNL_OP_ADD_ETH_ADDR";
 185        case VIRTCHNL_OP_DEL_ETH_ADDR:
 186                return "VIRTCHNL_OP_DEL_ETH_ADDR";
 187        case VIRTCHNL_OP_ADD_VLAN:
 188                return "VIRTCHNL_OP_ADD_VLAN";
 189        case VIRTCHNL_OP_DEL_VLAN:
 190                return "VIRTCHNL_OP_DEL_VLAN";
 191        case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
 192                return "VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE";
 193        case VIRTCHNL_OP_GET_STATS:
 194                return "VIRTCHNL_OP_GET_STATS";
 195        case VIRTCHNL_OP_RSVD:
 196                return "VIRTCHNL_OP_RSVD";
 197        case VIRTCHNL_OP_EVENT:
 198                return "VIRTCHNL_OP_EVENT";
 199        case VIRTCHNL_OP_CONFIG_RSS_KEY:
 200                return "VIRTCHNL_OP_CONFIG_RSS_KEY";
 201        case VIRTCHNL_OP_CONFIG_RSS_LUT:
 202                return "VIRTCHNL_OP_CONFIG_RSS_LUT";
 203        case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
 204                return "VIRTCHNL_OP_GET_RSS_HENA_CAPS";
 205        case VIRTCHNL_OP_SET_RSS_HENA:
 206                return "VIRTCHNL_OP_SET_RSS_HENA";
 207        case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
 208                return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING";
 209        case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
 210                return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING";
 211        case VIRTCHNL_OP_REQUEST_QUEUES:
 212                return "VIRTCHNL_OP_REQUEST_QUEUES";
 213        case VIRTCHNL_OP_ENABLE_CHANNELS:
 214                return "VIRTCHNL_OP_ENABLE_CHANNELS";
 215        case VIRTCHNL_OP_DISABLE_CHANNELS:
 216                return "VIRTCHNL_OP_DISABLE_CHANNELS";
 217        case VIRTCHNL_OP_ADD_CLOUD_FILTER:
 218                return "VIRTCHNL_OP_ADD_CLOUD_FILTER";
 219        case VIRTCHNL_OP_DEL_CLOUD_FILTER:
 220                return "VIRTCHNL_OP_DEL_CLOUD_FILTER";
 221        case VIRTCHNL_OP_DCF_CMD_DESC:
 222                return "VIRTCHNL_OP_DCF_CMD_DESC";
 223        case VIRTCHNL_OP_DCF_CMD_BUFF:
 224                return "VIRTCHHNL_OP_DCF_CMD_BUFF";
 225        case VIRTCHNL_OP_DCF_DISABLE:
 226                return "VIRTCHNL_OP_DCF_DISABLE";
 227        case VIRTCHNL_OP_DCF_GET_VSI_MAP:
 228                return "VIRTCHNL_OP_DCF_GET_VSI_MAP";
 229        case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
 230                return "VIRTCHNL_OP_GET_SUPPORTED_RXDIDS";
 231        case VIRTCHNL_OP_ADD_RSS_CFG:
 232                return "VIRTCHNL_OP_ADD_RSS_CFG";
 233        case VIRTCHNL_OP_DEL_RSS_CFG:
 234                return "VIRTCHNL_OP_DEL_RSS_CFG";
 235        case VIRTCHNL_OP_ADD_FDIR_FILTER:
 236                return "VIRTCHNL_OP_ADD_FDIR_FILTER";
 237        case VIRTCHNL_OP_DEL_FDIR_FILTER:
 238                return "VIRTCHNL_OP_DEL_FDIR_FILTER";
 239        case VIRTCHNL_OP_QUERY_FDIR_FILTER:
 240                return "VIRTCHNL_OP_QUERY_FDIR_FILTER";
 241        case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
 242                return "VIRTCHNL_OP_GET_MAX_RSS_QREGION";
 243        case VIRTCHNL_OP_ENABLE_QUEUES_V2:
 244                return "VIRTCHNL_OP_ENABLE_QUEUES_V2";
 245        case VIRTCHNL_OP_DISABLE_QUEUES_V2:
 246                return "VIRTCHNL_OP_DISABLE_QUEUES_V2";
 247        case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
 248                return "VIRTCHNL_OP_MAP_QUEUE_VECTOR";
 249        case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
 250                return "VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS";
 251        case VIRTCHNL_OP_ADD_VLAN_V2:
 252                return "VIRTCHNL_OP_ADD_VLAN_V2";
 253        case VIRTCHNL_OP_DEL_VLAN_V2:
 254                return "VIRTCHNL_OP_DEL_VLAN_V2";
 255        case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
 256                return "VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2";
 257        case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
 258                return "VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2";
 259        case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
 260                return "VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2";
 261        case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
 262                return "VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2";
 263        case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
 264                return "VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2";
 265        case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
 266                return "VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2";
 267        case VIRTCHNL_OP_MAX:
 268                return "VIRTCHNL_OP_MAX";
 269        default:
 270                return "Unsupported (update virtchnl.h)";
 271        }
 272}
 273
 274/* These macros are used to generate compilation errors if a structure/union
 275 * is not exactly the correct length. It gives a divide by zero error if the
 276 * structure/union is not of the correct size, otherwise it creates an enum
 277 * that is never used.
 278 */
 279#define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
 280        { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
 281#define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
 282        { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
 283
 284/* Virtual channel message descriptor. This overlays the admin queue
 285 * descriptor. All other data is passed in external buffers.
 286 */
 287
 288struct virtchnl_msg {
 289        u8 pad[8];                       /* AQ flags/opcode/len/retval fields */
 290        enum virtchnl_ops v_opcode; /* avoid confusion with desc->opcode */
 291        enum virtchnl_status_code v_retval;  /* ditto for desc->retval */
 292        u32 vfid;                        /* used by PF when sending to VF */
 293};
 294
 295VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
 296
 297/* Message descriptions and data structures. */
 298
 299/* VIRTCHNL_OP_VERSION
 300 * VF posts its version number to the PF. PF responds with its version number
 301 * in the same format, along with a return code.
 302 * Reply from PF has its major/minor versions also in param0 and param1.
 303 * If there is a major version mismatch, then the VF cannot operate.
 304 * If there is a minor version mismatch, then the VF can operate but should
 305 * add a warning to the system log.
 306 *
 307 * This enum element MUST always be specified as == 1, regardless of other
 308 * changes in the API. The PF must always respond to this message without
 309 * error regardless of version mismatch.
 310 */
 311#define VIRTCHNL_VERSION_MAJOR          1
 312#define VIRTCHNL_VERSION_MINOR          1
 313#define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS       0
 314
 315struct virtchnl_version_info {
 316        u32 major;
 317        u32 minor;
 318};
 319
 320VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
 321
 322#define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
 323#define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
 324
 325/* VIRTCHNL_OP_RESET_VF
 326 * VF sends this request to PF with no parameters
 327 * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
 328 * until reset completion is indicated. The admin queue must be reinitialized
 329 * after this operation.
 330 *
 331 * When reset is complete, PF must ensure that all queues in all VSIs associated
 332 * with the VF are stopped, all queue configurations in the HMC are set to 0,
 333 * and all MAC and VLAN filters (except the default MAC address) on all VSIs
 334 * are cleared.
 335 */
 336
 337/* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
 338 * vsi_type should always be 6 for backward compatibility. Add other fields
 339 * as needed.
 340 */
 341enum virtchnl_vsi_type {
 342        VIRTCHNL_VSI_TYPE_INVALID = 0,
 343        VIRTCHNL_VSI_SRIOV = 6,
 344};
 345
 346/* VIRTCHNL_OP_GET_VF_RESOURCES
 347 * Version 1.0 VF sends this request to PF with no parameters
 348 * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
 349 * PF responds with an indirect message containing
 350 * virtchnl_vf_resource and one or more
 351 * virtchnl_vsi_resource structures.
 352 */
 353
 354struct virtchnl_vsi_resource {
 355        u16 vsi_id;
 356        u16 num_queue_pairs;
 357        enum virtchnl_vsi_type vsi_type;
 358        u16 qset_handle;
 359        u8 default_mac_addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
 360};
 361
 362VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
 363
 364/* VF capability flags
 365 * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
 366 * TX/RX Checksum offloading and TSO for non-tunnelled packets.
 367 */
 368#define VIRTCHNL_VF_OFFLOAD_L2                  0x00000001
 369#define VIRTCHNL_VF_OFFLOAD_IWARP               0x00000002
 370#define VIRTCHNL_VF_OFFLOAD_RSVD                0x00000004
 371#define VIRTCHNL_VF_OFFLOAD_RSS_AQ              0x00000008
 372#define VIRTCHNL_VF_OFFLOAD_RSS_REG             0x00000010
 373#define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR           0x00000020
 374#define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES          0x00000040
 375#define VIRTCHNL_VF_OFFLOAD_CRC                 0x00000080
 376        /* 0X00000100 is reserved */
 377#define VIRTCHNL_VF_LARGE_NUM_QPAIRS            0x00000200
 378#define VIRTCHNL_VF_OFFLOAD_VLAN_V2             0x00008000
 379#define VIRTCHNL_VF_OFFLOAD_VLAN                0x00010000
 380#define VIRTCHNL_VF_OFFLOAD_RX_POLLING          0x00020000
 381#define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2       0x00040000
 382#define VIRTCHNL_VF_OFFLOAD_RSS_PF              0X00080000
 383#define VIRTCHNL_VF_OFFLOAD_ENCAP               0X00100000
 384#define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM          0X00200000
 385#define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM       0X00400000
 386#define VIRTCHNL_VF_OFFLOAD_ADQ                 0X00800000
 387#define VIRTCHNL_VF_OFFLOAD_ADQ_V2              0X01000000
 388#define VIRTCHNL_VF_OFFLOAD_USO                 0X02000000
 389#define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC        0X04000000
 390#define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF          0X08000000
 391#define VIRTCHNL_VF_OFFLOAD_FDIR_PF             0X10000000
 392        /* 0X20000000 is reserved */
 393#define VIRTCHNL_VF_CAP_DCF                     0X40000000
 394        /* 0X80000000 is reserved */
 395
 396/* Define below the capability flags that are not offloads */
 397#define VIRTCHNL_VF_CAP_ADV_LINK_SPEED          0x00000080
 398#define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
 399                               VIRTCHNL_VF_OFFLOAD_VLAN | \
 400                               VIRTCHNL_VF_OFFLOAD_RSS_PF)
 401
 402struct virtchnl_vf_resource {
 403        u16 num_vsis;
 404        u16 num_queue_pairs;
 405        u16 max_vectors;
 406        u16 max_mtu;
 407
 408        u32 vf_cap_flags;
 409        u32 rss_key_size;
 410        u32 rss_lut_size;
 411
 412        struct virtchnl_vsi_resource vsi_res[1];
 413};
 414
 415VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
 416
 417/* VIRTCHNL_OP_CONFIG_TX_QUEUE
 418 * VF sends this message to set up parameters for one TX queue.
 419 * External data buffer contains one instance of virtchnl_txq_info.
 420 * PF configures requested queue and returns a status code.
 421 */
 422
 423/* Tx queue config info */
 424struct virtchnl_txq_info {
 425        u16 vsi_id;
 426        u16 queue_id;
 427        u16 ring_len;           /* number of descriptors, multiple of 8 */
 428        u16 headwb_enabled; /* deprecated with AVF 1.0 */
 429        u64 dma_ring_addr;
 430        u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
 431};
 432
 433VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
 434
 435/* VIRTCHNL_OP_CONFIG_RX_QUEUE
 436 * VF sends this message to set up parameters for one RX queue.
 437 * External data buffer contains one instance of virtchnl_rxq_info.
 438 * PF configures requested queue and returns a status code. The
 439 * crc_disable flag disables CRC stripping on the VF. Setting
 440 * the crc_disable flag to 1 will disable CRC stripping for each
 441 * queue in the VF where the flag is set. The VIRTCHNL_VF_OFFLOAD_CRC
 442 * offload must have been set prior to sending this info or the PF
 443 * will ignore the request. This flag should be set the same for
 444 * all of the queues for a VF.
 445 */
 446
 447/* Rx queue config info */
 448struct virtchnl_rxq_info {
 449        u16 vsi_id;
 450        u16 queue_id;
 451        u32 ring_len;           /* number of descriptors, multiple of 32 */
 452        u16 hdr_size;
 453        u16 splithdr_enabled; /* deprecated with AVF 1.0 */
 454        u32 databuffer_size;
 455        u32 max_pkt_size;
 456        u8 crc_disable;
 457        /* only used when VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC is supported */
 458        u8 rxdid;
 459        u8 pad1[2];
 460        u64 dma_ring_addr;
 461        enum virtchnl_rx_hsplit rx_split_pos; /* deprecated with AVF 1.0 */
 462        u32 pad2;
 463};
 464
 465VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
 466
 467/* VIRTCHNL_OP_CONFIG_VSI_QUEUES
 468 * VF sends this message to set parameters for active TX and RX queues
 469 * associated with the specified VSI.
 470 * PF configures queues and returns status.
 471 * If the number of queues specified is greater than the number of queues
 472 * associated with the VSI, an error is returned and no queues are configured.
 473 * NOTE: The VF is not required to configure all queues in a single request.
 474 * It may send multiple messages. PF drivers must correctly handle all VF
 475 * requests.
 476 */
 477struct virtchnl_queue_pair_info {
 478        /* NOTE: vsi_id and queue_id should be identical for both queues. */
 479        struct virtchnl_txq_info txq;
 480        struct virtchnl_rxq_info rxq;
 481};
 482
 483VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
 484
 485struct virtchnl_vsi_queue_config_info {
 486        u16 vsi_id;
 487        u16 num_queue_pairs;
 488        u32 pad;
 489        struct virtchnl_queue_pair_info qpair[1];
 490};
 491
 492VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
 493
 494/* VIRTCHNL_OP_REQUEST_QUEUES
 495 * VF sends this message to request the PF to allocate additional queues to
 496 * this VF.  Each VF gets a guaranteed number of queues on init but asking for
 497 * additional queues must be negotiated.  This is a best effort request as it
 498 * is possible the PF does not have enough queues left to support the request.
 499 * If the PF cannot support the number requested it will respond with the
 500 * maximum number it is able to support.  If the request is successful, PF will
 501 * then reset the VF to institute required changes.
 502 */
 503
 504/* VF resource request */
 505struct virtchnl_vf_res_request {
 506        u16 num_queue_pairs;
 507};
 508
 509/* VIRTCHNL_OP_CONFIG_IRQ_MAP
 510 * VF uses this message to map vectors to queues.
 511 * The rxq_map and txq_map fields are bitmaps used to indicate which queues
 512 * are to be associated with the specified vector.
 513 * The "other" causes are always mapped to vector 0. The VF may not request
 514 * that vector 0 be used for traffic.
 515 * PF configures interrupt mapping and returns status.
 516 * NOTE: due to hardware requirements, all active queues (both TX and RX)
 517 * should be mapped to interrupts, even if the driver intends to operate
 518 * only in polling mode. In this case the interrupt may be disabled, but
 519 * the ITR timer will still run to trigger writebacks.
 520 */
 521struct virtchnl_vector_map {
 522        u16 vsi_id;
 523        u16 vector_id;
 524        u16 rxq_map;
 525        u16 txq_map;
 526        u16 rxitr_idx;
 527        u16 txitr_idx;
 528};
 529
 530VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
 531
 532struct virtchnl_irq_map_info {
 533        u16 num_vectors;
 534        struct virtchnl_vector_map vecmap[1];
 535};
 536
 537VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
 538
 539/* VIRTCHNL_OP_ENABLE_QUEUES
 540 * VIRTCHNL_OP_DISABLE_QUEUES
 541 * VF sends these message to enable or disable TX/RX queue pairs.
 542 * The queues fields are bitmaps indicating which queues to act upon.
 543 * (Currently, we only support 16 queues per VF, but we make the field
 544 * u32 to allow for expansion.)
 545 * PF performs requested action and returns status.
 546 * NOTE: The VF is not required to enable/disable all queues in a single
 547 * request. It may send multiple messages.
 548 * PF drivers must correctly handle all VF requests.
 549 */
 550struct virtchnl_queue_select {
 551        u16 vsi_id;
 552        u16 pad;
 553        u32 rx_queues;
 554        u32 tx_queues;
 555};
 556
 557VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
 558
 559/* VIRTCHNL_OP_GET_MAX_RSS_QREGION
 560 *
 561 * if VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
 562 * then this op must be supported.
 563 *
 564 * VF sends this message in order to query the max RSS queue region
 565 * size supported by PF, when VIRTCHNL_VF_LARGE_NUM_QPAIRS is enabled.
 566 * This information should be used when configuring the RSS LUT and/or
 567 * configuring queue region based filters.
 568 *
 569 * The maximum RSS queue region is 2^qregion_width. So, a qregion_width
 570 * of 6 would inform the VF that the PF supports a maximum RSS queue region
 571 * of 64.
 572 *
 573 * A queue region represents a range of queues that can be used to configure
 574 * a RSS LUT. For example, if a VF is given 64 queues, but only a max queue
 575 * region size of 16 (i.e. 2^qregion_width = 16) then it will only be able
 576 * to configure the RSS LUT with queue indices from 0 to 15. However, other
 577 * filters can be used to direct packets to queues >15 via specifying a queue
 578 * base/offset and queue region width.
 579 */
 580struct virtchnl_max_rss_qregion {
 581        u16 vport_id;
 582        u16 qregion_width;
 583        u8 pad[4];
 584};
 585
 586VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_max_rss_qregion);
 587
 588/* VIRTCHNL_OP_ADD_ETH_ADDR
 589 * VF sends this message in order to add one or more unicast or multicast
 590 * address filters for the specified VSI.
 591 * PF adds the filters and returns status.
 592 */
 593
 594/* VIRTCHNL_OP_DEL_ETH_ADDR
 595 * VF sends this message in order to remove one or more unicast or multicast
 596 * filters for the specified VSI.
 597 * PF removes the filters and returns status.
 598 */
 599
 600/* VIRTCHNL_ETHER_ADDR_LEGACY
 601 * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
 602 * bytes. Moving forward all VF drivers should not set type to
 603 * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
 604 * behavior. The control plane function (i.e. PF) can use a best effort method
 605 * of tracking the primary/device unicast in this case, but there is no
 606 * guarantee and functionality depends on the implementation of the PF.
 607 */
 608
 609/* VIRTCHNL_ETHER_ADDR_PRIMARY
 610 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
 611 * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
 612 * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
 613 * function (i.e. PF) to accurately track and use this MAC address for
 614 * displaying on the host and for VM/function reset.
 615 */
 616
 617/* VIRTCHNL_ETHER_ADDR_EXTRA
 618 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
 619 * unicast and/or multicast filters that are being added/deleted via
 620 * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
 621 */
 622struct virtchnl_ether_addr {
 623        u8 addr[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
 624        u8 type;
 625#define VIRTCHNL_ETHER_ADDR_LEGACY      0
 626#define VIRTCHNL_ETHER_ADDR_PRIMARY     1
 627#define VIRTCHNL_ETHER_ADDR_EXTRA       2
 628#define VIRTCHNL_ETHER_ADDR_TYPE_MASK   3 /* first two bits of type are valid */
 629        u8 pad;
 630};
 631
 632VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
 633
 634struct virtchnl_ether_addr_list {
 635        u16 vsi_id;
 636        u16 num_elements;
 637        struct virtchnl_ether_addr list[1];
 638};
 639
 640VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
 641
 642/* VIRTCHNL_OP_ADD_VLAN
 643 * VF sends this message to add one or more VLAN tag filters for receives.
 644 * PF adds the filters and returns status.
 645 * If a port VLAN is configured by the PF, this operation will return an
 646 * error to the VF.
 647 */
 648
 649/* VIRTCHNL_OP_DEL_VLAN
 650 * VF sends this message to remove one or more VLAN tag filters for receives.
 651 * PF removes the filters and returns status.
 652 * If a port VLAN is configured by the PF, this operation will return an
 653 * error to the VF.
 654 */
 655
 656struct virtchnl_vlan_filter_list {
 657        u16 vsi_id;
 658        u16 num_elements;
 659        u16 vlan_id[1];
 660};
 661
 662VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
 663
 664/* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
 665 * structures and opcodes.
 666 *
 667 * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
 668 * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
 669 *
 670 * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
 671 * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
 672 * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
 673 *
 674 * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
 675 * by the PF concurrently. For example, if the PF can support
 676 * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
 677 * would OR the following bits:
 678 *
 679 *      VIRTHCNL_VLAN_ETHERTYPE_8100 |
 680 *      VIRTCHNL_VLAN_ETHERTYPE_88A8 |
 681 *      VIRTCHNL_VLAN_ETHERTYPE_AND;
 682 *
 683 * The VF would interpret this as VLAN filtering can be supported on both 0x8100
 684 * and 0x88A8 VLAN ethertypes.
 685 *
 686 * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
 687 * by the PF concurrently. For example if the PF can support
 688 * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
 689 * offload it would OR the following bits:
 690 *
 691 *      VIRTCHNL_VLAN_ETHERTYPE_8100 |
 692 *      VIRTCHNL_VLAN_ETHERTYPE_88A8 |
 693 *      VIRTCHNL_VLAN_ETHERTYPE_XOR;
 694 *
 695 * The VF would interpret this as VLAN stripping can be supported on either
 696 * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
 697 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
 698 * the previously set value.
 699 *
 700 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
 701 * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
 702 *
 703 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
 704 * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
 705 *
 706 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
 707 * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
 708 *
 709 * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
 710 * VLAN filtering if the underlying PF supports it.
 711 *
 712 * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
 713 * certain VLAN capability can be toggled. For example if the underlying PF/CP
 714 * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
 715 * set this bit along with the supported ethertypes.
 716 */
 717enum virtchnl_vlan_support {
 718        VIRTCHNL_VLAN_UNSUPPORTED =             0,
 719        VIRTCHNL_VLAN_ETHERTYPE_8100 =          0x00000001,
 720        VIRTCHNL_VLAN_ETHERTYPE_88A8 =          0x00000002,
 721        VIRTCHNL_VLAN_ETHERTYPE_9100 =          0x00000004,
 722        VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =     0x00000100,
 723        VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =     0x00000200,
 724        VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =   0x00000400,
 725        VIRTCHNL_VLAN_PRIO =                    0x01000000,
 726        VIRTCHNL_VLAN_FILTER_MASK =             0x10000000,
 727        VIRTCHNL_VLAN_ETHERTYPE_AND =           0x20000000,
 728        VIRTCHNL_VLAN_ETHERTYPE_XOR =           0x40000000,
 729        VIRTCHNL_VLAN_TOGGLE =                  0x80000000
 730};
 731
 732/* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
 733 * for filtering, insertion, and stripping capabilities.
 734 *
 735 * If only outer capabilities are supported (for filtering, insertion, and/or
 736 * stripping) then this refers to the outer most or single VLAN from the VF's
 737 * perspective.
 738 *
 739 * If only inner capabilities are supported (for filtering, insertion, and/or
 740 * stripping) then this refers to the outer most or single VLAN from the VF's
 741 * perspective. Functionally this is the same as if only outer capabilities are
 742 * supported. The VF driver is just forced to use the inner fields when
 743 * adding/deleting filters and enabling/disabling offloads (if supported).
 744 *
 745 * If both outer and inner capabilities are supported (for filtering, insertion,
 746 * and/or stripping) then outer refers to the outer most or single VLAN and
 747 * inner refers to the second VLAN, if it exists, in the packet.
 748 *
 749 * There is no support for tunneled VLAN offloads, so outer or inner are never
 750 * referring to a tunneled packet from the VF's perspective.
 751 */
 752struct virtchnl_vlan_supported_caps {
 753        u32 outer;
 754        u32 inner;
 755};
 756
 757/* The PF populates these fields based on the supported VLAN filtering. If a
 758 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
 759 * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
 760 * the unsupported fields.
 761 *
 762 * Also, a VF is only allowed to toggle its VLAN filtering setting if the
 763 * VIRTCHNL_VLAN_TOGGLE bit is set.
 764 *
 765 * The ethertype(s) specified in the ethertype_init field are the ethertypes
 766 * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
 767 * most VLAN from the VF's perspective. If both inner and outer filtering are
 768 * allowed then ethertype_init only refers to the outer most VLAN as only
 769 * VLAN ethertype supported for inner VLAN filtering is
 770 * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
 771 * when both inner and outer filtering are allowed.
 772 *
 773 * The max_filters field tells the VF how many VLAN filters it's allowed to have
 774 * at any one time. If it exceeds this amount and tries to add another filter,
 775 * then the request will be rejected by the PF. To prevent failures, the VF
 776 * should keep track of how many VLAN filters it has added and not attempt to
 777 * add more than max_filters.
 778 */
 779struct virtchnl_vlan_filtering_caps {
 780        struct virtchnl_vlan_supported_caps filtering_support;
 781        u32 ethertype_init;
 782        u16 max_filters;
 783        u8 pad[2];
 784};
 785
 786VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
 787
 788/* This enum is used for the virtchnl_vlan_offload_caps structure to specify
 789 * if the PF supports a different ethertype for stripping and insertion.
 790 *
 791 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
 792 * for stripping affect the ethertype(s) specified for insertion and visa versa
 793 * as well. If the VF tries to configure VLAN stripping via
 794 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
 795 * that will be the ethertype for both stripping and insertion.
 796 *
 797 * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
 798 * stripping do not affect the ethertype(s) specified for insertion and visa
 799 * versa.
 800 */
 801enum virtchnl_vlan_ethertype_match {
 802        VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
 803        VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
 804};
 805
 806/* The PF populates these fields based on the supported VLAN offloads. If a
 807 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
 808 * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
 809 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
 810 *
 811 * Also, a VF is only allowed to toggle its VLAN offload setting if the
 812 * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
 813 *
 814 * The VF driver needs to be aware of how the tags are stripped by hardware and
 815 * inserted by the VF driver based on the level of offload support. The PF will
 816 * populate these fields based on where the VLAN tags are expected to be
 817 * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
 818 * interpret these fields. See the definition of the
 819 * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
 820 * enumeration.
 821 */
 822struct virtchnl_vlan_offload_caps {
 823        struct virtchnl_vlan_supported_caps stripping_support;
 824        struct virtchnl_vlan_supported_caps insertion_support;
 825        u32 ethertype_init;
 826        u8 ethertype_match;
 827        u8 pad[3];
 828};
 829
 830VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
 831
 832/* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
 833 * VF sends this message to determine its VLAN capabilities.
 834 *
 835 * PF will mark which capabilities it supports based on hardware support and
 836 * current configuration. For example, if a port VLAN is configured the PF will
 837 * not allow outer VLAN filtering, stripping, or insertion to be configured so
 838 * it will block these features from the VF.
 839 *
 840 * The VF will need to cross reference its capabilities with the PFs
 841 * capabilities in the response message from the PF to determine the VLAN
 842 * support.
 843 */
 844struct virtchnl_vlan_caps {
 845        struct virtchnl_vlan_filtering_caps filtering;
 846        struct virtchnl_vlan_offload_caps offloads;
 847};
 848
 849VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
 850
 851struct virtchnl_vlan {
 852        u16 tci;        /* tci[15:13] = PCP and tci[11:0] = VID */
 853        u16 tci_mask;   /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
 854                         * filtering caps
 855                         */
 856        u16 tpid;       /* 0x8100, 0x88a8, etc. and only type(s) set in
 857                         * filtering caps. Note that tpid here does not refer to
 858                         * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
 859                         * actual 2-byte VLAN TPID
 860                         */
 861        u8 pad[2];
 862};
 863
 864VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
 865
 866struct virtchnl_vlan_filter {
 867        struct virtchnl_vlan inner;
 868        struct virtchnl_vlan outer;
 869        u8 pad[16];
 870};
 871
 872VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
 873
 874/* VIRTCHNL_OP_ADD_VLAN_V2
 875 * VIRTCHNL_OP_DEL_VLAN_V2
 876 *
 877 * VF sends these messages to add/del one or more VLAN tag filters for Rx
 878 * traffic.
 879 *
 880 * The PF attempts to add the filters and returns status.
 881 *
 882 * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
 883 * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
 884 */
 885struct virtchnl_vlan_filter_list_v2 {
 886        u16 vport_id;
 887        u16 num_elements;
 888        u8 pad[4];
 889        struct virtchnl_vlan_filter filters[1];
 890};
 891
 892VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2);
 893
 894/* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
 895 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
 896 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
 897 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
 898 *
 899 * VF sends this message to enable or disable VLAN stripping or insertion. It
 900 * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
 901 * allowed and whether or not it's allowed to enable/disable the specific
 902 * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
 903 * parse the virtchnl_vlan_caps.offloads fields to determine which offload
 904 * messages are allowed.
 905 *
 906 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
 907 * following manner the VF will be allowed to enable and/or disable 0x8100 inner
 908 * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
 909 * case means the outer most or single VLAN from the VF's perspective. This is
 910 * because no outer offloads are supported. See the comments above the
 911 * virtchnl_vlan_supported_caps structure for more details.
 912 *
 913 * virtchnl_vlan_caps.offloads.stripping_support.inner =
 914 *                      VIRTCHNL_VLAN_TOGGLE |
 915 *                      VIRTCHNL_VLAN_ETHERTYPE_8100;
 916 *
 917 * virtchnl_vlan_caps.offloads.insertion_support.inner =
 918 *                      VIRTCHNL_VLAN_TOGGLE |
 919 *                      VIRTCHNL_VLAN_ETHERTYPE_8100;
 920 *
 921 * In order to enable inner (again note that in this case inner is the outer
 922 * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
 923 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
 924 * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
 925 *
 926 * virtchnl_vlan_setting.inner_ethertype_setting =
 927 *                      VIRTCHNL_VLAN_ETHERTYPE_8100;
 928 *
 929 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
 930 * initialization.
 931 *
 932 * The reason that VLAN TPID(s) are not being used for the
 933 * outer_ethertype_setting and inner_ethertype_setting fields is because it's
 934 * possible a device could support VLAN insertion and/or stripping offload on
 935 * multiple ethertypes concurrently, so this method allows a VF to request
 936 * multiple ethertypes in one message using the virtchnl_vlan_support
 937 * enumeration.
 938 *
 939 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
 940 * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
 941 * VLAN insertion and stripping simultaneously. The
 942 * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
 943 * populated based on what the PF can support.
 944 *
 945 * virtchnl_vlan_caps.offloads.stripping_support.outer =
 946 *                      VIRTCHNL_VLAN_TOGGLE |
 947 *                      VIRTCHNL_VLAN_ETHERTYPE_8100 |
 948 *                      VIRTCHNL_VLAN_ETHERTYPE_88A8 |
 949 *                      VIRTCHNL_VLAN_ETHERTYPE_AND;
 950 *
 951 * virtchnl_vlan_caps.offloads.insertion_support.outer =
 952 *                      VIRTCHNL_VLAN_TOGGLE |
 953 *                      VIRTCHNL_VLAN_ETHERTYPE_8100 |
 954 *                      VIRTCHNL_VLAN_ETHERTYPE_88A8 |
 955 *                      VIRTCHNL_VLAN_ETHERTYPE_AND;
 956 *
 957 * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
 958 * would populate the virthcnl_vlan_offload_structure in the following manner
 959 * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
 960 *
 961 * virtchnl_vlan_setting.outer_ethertype_setting =
 962 *                      VIRTHCNL_VLAN_ETHERTYPE_8100 |
 963 *                      VIRTHCNL_VLAN_ETHERTYPE_88A8;
 964 *
 965 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
 966 * initialization.
 967 *
 968 * There is also the case where a PF and the underlying hardware can support
 969 * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
 970 * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
 971 * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
 972 * offloads. The ethertypes must match for stripping and insertion.
 973 *
 974 * virtchnl_vlan_caps.offloads.stripping_support.outer =
 975 *                      VIRTCHNL_VLAN_TOGGLE |
 976 *                      VIRTCHNL_VLAN_ETHERTYPE_8100 |
 977 *                      VIRTCHNL_VLAN_ETHERTYPE_88A8 |
 978 *                      VIRTCHNL_VLAN_ETHERTYPE_XOR;
 979 *
 980 * virtchnl_vlan_caps.offloads.insertion_support.outer =
 981 *                      VIRTCHNL_VLAN_TOGGLE |
 982 *                      VIRTCHNL_VLAN_ETHERTYPE_8100 |
 983 *                      VIRTCHNL_VLAN_ETHERTYPE_88A8 |
 984 *                      VIRTCHNL_VLAN_ETHERTYPE_XOR;
 985 *
 986 * virtchnl_vlan_caps.offloads.ethertype_match =
 987 *                      VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
 988 *
 989 * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
 990 * populate the virtchnl_vlan_setting structure in the following manner and send
 991 * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
 992 * ethertype for VLAN insertion if it's enabled. So, for completeness, a
 993 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
 994 *
 995 * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
 996 *
 997 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
 998 * initialization.
 999 *
1000 * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2
1001 * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2
1002 *
1003 * VF sends this message to enable or disable VLAN filtering. It also needs to
1004 * specify an ethertype. The VF knows which VLAN ethertypes are allowed and
1005 * whether or not it's allowed to enable/disable filtering via the
1006 * VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
1007 * parse the virtchnl_vlan_caps.filtering fields to determine which, if any,
1008 * filtering messages are allowed.
1009 *
1010 * For example, if the PF populates the virtchnl_vlan_caps.filtering in the
1011 * following manner the VF will be allowed to enable/disable 0x8100 and 0x88a8
1012 * outer VLAN filtering together. Note, that the VIRTCHNL_VLAN_ETHERTYPE_AND
1013 * means that all filtering ethertypes will to be enabled and disabled together
1014 * regardless of the request from the VF. This means that the underlying
1015 * hardware only supports VLAN filtering for all VLAN the specified ethertypes
1016 * or none of them.
1017 *
1018 * virtchnl_vlan_caps.filtering.filtering_support.outer =
1019 *                      VIRTCHNL_VLAN_TOGGLE |
1020 *                      VIRTCHNL_VLAN_ETHERTYPE_8100 |
1021 *                      VIRTHCNL_VLAN_ETHERTYPE_88A8 |
1022 *                      VIRTCHNL_VLAN_ETHERTYPE_9100 |
1023 *                      VIRTCHNL_VLAN_ETHERTYPE_AND;
1024 *
1025 * In order to enable outer VLAN filtering for 0x88a8 and 0x8100 VLANs (0x9100
1026 * VLANs aren't supported by the VF driver), the VF would populate the
1027 * virtchnl_vlan_setting structure in the following manner and send the
1028 * VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2. The same message format would be used
1029 * to disable outer VLAN filtering for 0x88a8 and 0x8100 VLANs, but the
1030 * VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2 opcode is used.
1031 *
1032 * virtchnl_vlan_setting.outer_ethertype_setting =
1033 *                      VIRTCHNL_VLAN_ETHERTYPE_8100 |
1034 *                      VIRTCHNL_VLAN_ETHERTYPE_88A8;
1035 *
1036 */
1037struct virtchnl_vlan_setting {
1038        u32 outer_ethertype_setting;
1039        u32 inner_ethertype_setting;
1040        u16 vport_id;
1041        u8 pad[6];
1042};
1043
1044VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
1045
1046/* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
1047 * VF sends VSI id and flags.
1048 * PF returns status code in retval.
1049 * Note: we assume that broadcast accept mode is always enabled.
1050 */
1051struct virtchnl_promisc_info {
1052        u16 vsi_id;
1053        u16 flags;
1054};
1055
1056VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
1057
1058#define FLAG_VF_UNICAST_PROMISC 0x00000001
1059#define FLAG_VF_MULTICAST_PROMISC       0x00000002
1060
1061/* VIRTCHNL_OP_GET_STATS
1062 * VF sends this message to request stats for the selected VSI. VF uses
1063 * the virtchnl_queue_select struct to specify the VSI. The queue_id
1064 * field is ignored by the PF.
1065 *
1066 * PF replies with struct virtchnl_eth_stats in an external buffer.
1067 */
1068
1069struct virtchnl_eth_stats {
1070        u64 rx_bytes;                   /* received bytes */
1071        u64 rx_unicast;                 /* received unicast pkts */
1072        u64 rx_multicast;               /* received multicast pkts */
1073        u64 rx_broadcast;               /* received broadcast pkts */
1074        u64 rx_discards;
1075        u64 rx_unknown_protocol;
1076        u64 tx_bytes;                   /* transmitted bytes */
1077        u64 tx_unicast;                 /* transmitted unicast pkts */
1078        u64 tx_multicast;               /* transmitted multicast pkts */
1079        u64 tx_broadcast;               /* transmitted broadcast pkts */
1080        u64 tx_discards;
1081        u64 tx_errors;
1082};
1083
1084/* VIRTCHNL_OP_CONFIG_RSS_KEY
1085 * VIRTCHNL_OP_CONFIG_RSS_LUT
1086 * VF sends these messages to configure RSS. Only supported if both PF
1087 * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
1088 * configuration negotiation. If this is the case, then the RSS fields in
1089 * the VF resource struct are valid.
1090 * Both the key and LUT are initialized to 0 by the PF, meaning that
1091 * RSS is effectively disabled until set up by the VF.
1092 */
1093struct virtchnl_rss_key {
1094        u16 vsi_id;
1095        u16 key_len;
1096        u8 key[1];         /* RSS hash key, packed bytes */
1097};
1098
1099VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
1100
1101struct virtchnl_rss_lut {
1102        u16 vsi_id;
1103        u16 lut_entries;
1104        u8 lut[1];        /* RSS lookup table */
1105};
1106
1107VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
1108
1109/* VIRTCHNL_OP_GET_RSS_HENA_CAPS
1110 * VIRTCHNL_OP_SET_RSS_HENA
1111 * VF sends these messages to get and set the hash filter enable bits for RSS.
1112 * By default, the PF sets these to all possible traffic types that the
1113 * hardware supports. The VF can query this value if it wants to change the
1114 * traffic types that are hashed by the hardware.
1115 */
1116struct virtchnl_rss_hena {
1117        u64 hena;
1118};
1119
1120VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
1121
1122/* Type of RSS algorithm */
1123enum virtchnl_rss_algorithm {
1124        VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC    = 0,
1125        VIRTCHNL_RSS_ALG_XOR_ASYMMETRIC         = 1,
1126        VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC     = 2,
1127        VIRTCHNL_RSS_ALG_XOR_SYMMETRIC          = 3,
1128};
1129
1130/* This is used by PF driver to enforce how many channels can be supported.
1131 * When ADQ_V2 capability is negotiated, it will allow 16 channels otherwise
1132 * PF driver will allow only max 4 channels
1133 */
1134#define VIRTCHNL_MAX_ADQ_CHANNELS 4
1135#define VIRTCHNL_MAX_ADQ_V2_CHANNELS 16
1136
1137/* VIRTCHNL_OP_ENABLE_CHANNELS
1138 * VIRTCHNL_OP_DISABLE_CHANNELS
1139 * VF sends these messages to enable or disable channels based on
1140 * the user specified queue count and queue offset for each traffic class.
1141 * This struct encompasses all the information that the PF needs from
1142 * VF to create a channel.
1143 */
1144struct virtchnl_channel_info {
1145        u16 count; /* number of queues in a channel */
1146        u16 offset; /* queues in a channel start from 'offset' */
1147        u32 pad;
1148        u64 max_tx_rate;
1149};
1150
1151VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
1152
1153struct virtchnl_tc_info {
1154        u32     num_tc;
1155        u32     pad;
1156        struct  virtchnl_channel_info list[1];
1157};
1158
1159VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
1160
1161/* VIRTCHNL_ADD_CLOUD_FILTER
1162 * VIRTCHNL_DEL_CLOUD_FILTER
1163 * VF sends these messages to add or delete a cloud filter based on the
1164 * user specified match and action filters. These structures encompass
1165 * all the information that the PF needs from the VF to add/delete a
1166 * cloud filter.
1167 */
1168
1169struct virtchnl_l4_spec {
1170        u8      src_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1171        u8      dst_mac[VIRTCHNL_ETH_LENGTH_OF_ADDRESS];
1172        /* vlan_prio is part of this 16 bit field even from OS perspective
1173         * vlan_id:12 is actual vlan_id, then vlanid:bit14..12 is vlan_prio
1174         * in future, when decided to offload vlan_prio, pass that information
1175         * as part of the "vlan_id" field, Bit14..12
1176         */
1177        __be16  vlan_id;
1178        __be16  pad; /* reserved for future use */
1179        __be32  src_ip[4];
1180        __be32  dst_ip[4];
1181        __be16  src_port;
1182        __be16  dst_port;
1183};
1184
1185VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
1186
1187union virtchnl_flow_spec {
1188        struct  virtchnl_l4_spec tcp_spec;
1189        u8      buffer[128]; /* reserved for future use */
1190};
1191
1192VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
1193
1194enum virtchnl_action {
1195        /* action types */
1196        VIRTCHNL_ACTION_DROP = 0,
1197        VIRTCHNL_ACTION_TC_REDIRECT,
1198        VIRTCHNL_ACTION_PASSTHRU,
1199        VIRTCHNL_ACTION_QUEUE,
1200        VIRTCHNL_ACTION_Q_REGION,
1201        VIRTCHNL_ACTION_MARK,
1202        VIRTCHNL_ACTION_COUNT,
1203};
1204
1205enum virtchnl_flow_type {
1206        /* flow types */
1207        VIRTCHNL_TCP_V4_FLOW = 0,
1208        VIRTCHNL_TCP_V6_FLOW,
1209        VIRTCHNL_UDP_V4_FLOW,
1210        VIRTCHNL_UDP_V6_FLOW,
1211};
1212
1213struct virtchnl_filter {
1214        union   virtchnl_flow_spec data;
1215        union   virtchnl_flow_spec mask;
1216        enum    virtchnl_flow_type flow_type;
1217        enum    virtchnl_action action;
1218        u32     action_meta;
1219        u8      field_flags;
1220};
1221
1222VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
1223
1224/* VIRTCHNL_OP_DCF_GET_VSI_MAP
1225 * VF sends this message to get VSI mapping table.
1226 * PF responds with an indirect message containing VF's
1227 * HW VSI IDs.
1228 * The index of vf_vsi array is the logical VF ID, the
1229 * value of vf_vsi array is the VF's HW VSI ID with its
1230 * valid configuration.
1231 */
1232struct virtchnl_dcf_vsi_map {
1233        u16 pf_vsi;     /* PF's HW VSI ID */
1234        u16 num_vfs;    /* The actual number of VFs allocated */
1235#define VIRTCHNL_DCF_VF_VSI_ID_S        0
1236#define VIRTCHNL_DCF_VF_VSI_ID_M        (0xFFF << VIRTCHNL_DCF_VF_VSI_ID_S)
1237#define VIRTCHNL_DCF_VF_VSI_VALID       BIT(15)
1238        u16 vf_vsi[1];
1239};
1240
1241VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_dcf_vsi_map);
1242
1243#define PKG_NAME_SIZE   32
1244#define DSN_SIZE        8
1245
1246struct pkg_version {
1247        u8 major;
1248        u8 minor;
1249        u8 update;
1250        u8 draft;
1251};
1252
1253VIRTCHNL_CHECK_STRUCT_LEN(4, pkg_version);
1254
1255struct virtchnl_pkg_info {
1256        struct pkg_version pkg_ver;
1257        u32 track_id;
1258        char pkg_name[PKG_NAME_SIZE];
1259        u8 dsn[DSN_SIZE];
1260};
1261
1262VIRTCHNL_CHECK_STRUCT_LEN(48, virtchnl_pkg_info);
1263
1264/* VIRTCHNL_OP_DCF_VLAN_OFFLOAD
1265 * DCF negotiates the VIRTCHNL_VF_OFFLOAD_VLAN_V2 capability firstly to get
1266 * the double VLAN configuration, then DCF sends this message to configure the
1267 * outer or inner VLAN offloads (insertion and strip) for the target VF.
1268 */
1269struct virtchnl_dcf_vlan_offload {
1270        u16 vf_id;
1271        u16 tpid;
1272        u16 vlan_flags;
1273#define VIRTCHNL_DCF_VLAN_TYPE_S                0
1274#define VIRTCHNL_DCF_VLAN_TYPE_M                \
1275                        (0x1 << VIRTCHNL_DCF_VLAN_TYPE_S)
1276#define VIRTCHNL_DCF_VLAN_TYPE_INNER            0x0
1277#define VIRTCHNL_DCF_VLAN_TYPE_OUTER            0x1
1278#define VIRTCHNL_DCF_VLAN_INSERT_MODE_S         1
1279#define VIRTCHNL_DCF_VLAN_INSERT_MODE_M \
1280                        (0x7 << VIRTCHNL_DCF_VLAN_INSERT_MODE_S)
1281#define VIRTCHNL_DCF_VLAN_INSERT_DISABLE        0x1
1282#define VIRTCHNL_DCF_VLAN_INSERT_PORT_BASED     0x2
1283#define VIRTCHNL_DCF_VLAN_INSERT_VIA_TX_DESC    0x3
1284#define VIRTCHNL_DCF_VLAN_STRIP_MODE_S          4
1285#define VIRTCHNL_DCF_VLAN_STRIP_MODE_M          \
1286                        (0x7 << VIRTCHNL_DCF_VLAN_STRIP_MODE_S)
1287#define VIRTCHNL_DCF_VLAN_STRIP_DISABLE         0x1
1288#define VIRTCHNL_DCF_VLAN_STRIP_ONLY            0x2
1289#define VIRTCHNL_DCF_VLAN_STRIP_INTO_RX_DESC    0x3
1290        u16 vlan_id;
1291        u16 pad[4];
1292};
1293
1294VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_dcf_vlan_offload);
1295
1296struct virtchnl_supported_rxdids {
1297        u64 supported_rxdids;
1298};
1299
1300VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_supported_rxdids);
1301
1302/* VIRTCHNL_OP_EVENT
1303 * PF sends this message to inform the VF driver of events that may affect it.
1304 * No direct response is expected from the VF, though it may generate other
1305 * messages in response to this one.
1306 */
1307enum virtchnl_event_codes {
1308        VIRTCHNL_EVENT_UNKNOWN = 0,
1309        VIRTCHNL_EVENT_LINK_CHANGE,
1310        VIRTCHNL_EVENT_RESET_IMPENDING,
1311        VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
1312        VIRTCHNL_EVENT_DCF_VSI_MAP_UPDATE,
1313};
1314
1315#define PF_EVENT_SEVERITY_INFO          0
1316#define PF_EVENT_SEVERITY_ATTENTION     1
1317#define PF_EVENT_SEVERITY_ACTION_REQUIRED       2
1318#define PF_EVENT_SEVERITY_CERTAIN_DOOM  255
1319
1320struct virtchnl_pf_event {
1321        enum virtchnl_event_codes event;
1322        union {
1323                /* If the PF driver does not support the new speed reporting
1324                 * capabilities then use link_event else use link_event_adv to
1325                 * get the speed and link information. The ability to understand
1326                 * new speeds is indicated by setting the capability flag
1327                 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
1328                 * in virtchnl_vf_resource struct and can be used to determine
1329                 * which link event struct to use below.
1330                 */
1331                struct {
1332                        enum virtchnl_link_speed link_speed;
1333                        u8 link_status;
1334                } link_event;
1335                struct {
1336                        /* link_speed provided in Mbps */
1337                        u32 link_speed;
1338                        u8 link_status;
1339                } link_event_adv;
1340                struct {
1341                        u16 vf_id;
1342                        u16 vsi_id;
1343                } vf_vsi_map;
1344        } event_data;
1345
1346        int severity;
1347};
1348
1349VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1350
1351
1352/* VF reset states - these are written into the RSTAT register:
1353 * VFGEN_RSTAT on the VF
1354 * When the PF initiates a reset, it writes 0
1355 * When the reset is complete, it writes 1
1356 * When the PF detects that the VF has recovered, it writes 2
1357 * VF checks this register periodically to determine if a reset has occurred,
1358 * then polls it to know when the reset is complete.
1359 * If either the PF or VF reads the register while the hardware
1360 * is in a reset state, it will return DEADBEEF, which, when masked
1361 * will result in 3.
1362 */
1363enum virtchnl_vfr_states {
1364        VIRTCHNL_VFR_INPROGRESS = 0,
1365        VIRTCHNL_VFR_COMPLETED,
1366        VIRTCHNL_VFR_VFACTIVE,
1367};
1368
1369#define VIRTCHNL_MAX_NUM_PROTO_HDRS     32
1370#define PROTO_HDR_SHIFT                 5
1371#define PROTO_HDR_FIELD_START(proto_hdr_type) \
1372                                        (proto_hdr_type << PROTO_HDR_SHIFT)
1373#define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1374
1375/* VF use these macros to configure each protocol header.
1376 * Specify which protocol headers and protocol header fields base on
1377 * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1378 * @param hdr: a struct of virtchnl_proto_hdr
1379 * @param hdr_type: ETH/IPV4/TCP, etc
1380 * @param field: SRC/DST/TEID/SPI, etc
1381 */
1382#define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1383        ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1384#define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1385        ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1386#define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1387        ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1388#define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)       ((hdr)->field_selector)
1389
1390#define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1391        (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1392                VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1393#define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1394        (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1395                VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1396
1397#define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1398        ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1399#define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1400        (((hdr)->type) >> PROTO_HDR_SHIFT)
1401#define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1402        ((hdr)->type == ((val) >> PROTO_HDR_SHIFT))
1403#define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1404        (VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) && \
1405         VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val))
1406
1407/* Protocol header type within a packet segment. A segment consists of one or
1408 * more protocol headers that make up a logical group of protocol headers. Each
1409 * logical group of protocol headers encapsulates or is encapsulated using/by
1410 * tunneling or encapsulation protocols for network virtualization.
1411 */
1412enum virtchnl_proto_hdr_type {
1413        VIRTCHNL_PROTO_HDR_NONE,
1414        VIRTCHNL_PROTO_HDR_ETH,
1415        VIRTCHNL_PROTO_HDR_S_VLAN,
1416        VIRTCHNL_PROTO_HDR_C_VLAN,
1417        VIRTCHNL_PROTO_HDR_IPV4,
1418        VIRTCHNL_PROTO_HDR_IPV6,
1419        VIRTCHNL_PROTO_HDR_TCP,
1420        VIRTCHNL_PROTO_HDR_UDP,
1421        VIRTCHNL_PROTO_HDR_SCTP,
1422        VIRTCHNL_PROTO_HDR_GTPU_IP,
1423        VIRTCHNL_PROTO_HDR_GTPU_EH,
1424        VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1425        VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1426        VIRTCHNL_PROTO_HDR_PPPOE,
1427        VIRTCHNL_PROTO_HDR_L2TPV3,
1428        VIRTCHNL_PROTO_HDR_ESP,
1429        VIRTCHNL_PROTO_HDR_AH,
1430        VIRTCHNL_PROTO_HDR_PFCP,
1431        VIRTCHNL_PROTO_HDR_GTPC,
1432        VIRTCHNL_PROTO_HDR_ECPRI,
1433};
1434
1435/* Protocol header field within a protocol header. */
1436enum virtchnl_proto_hdr_field {
1437        /* ETHER */
1438        VIRTCHNL_PROTO_HDR_ETH_SRC =
1439                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1440        VIRTCHNL_PROTO_HDR_ETH_DST,
1441        VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1442        /* S-VLAN */
1443        VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1444                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1445        /* C-VLAN */
1446        VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1447                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1448        /* IPV4 */
1449        VIRTCHNL_PROTO_HDR_IPV4_SRC =
1450                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1451        VIRTCHNL_PROTO_HDR_IPV4_DST,
1452        VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1453        VIRTCHNL_PROTO_HDR_IPV4_TTL,
1454        VIRTCHNL_PROTO_HDR_IPV4_PROT,
1455        /* IPV6 */
1456        VIRTCHNL_PROTO_HDR_IPV6_SRC =
1457                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1458        VIRTCHNL_PROTO_HDR_IPV6_DST,
1459        VIRTCHNL_PROTO_HDR_IPV6_TC,
1460        VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1461        VIRTCHNL_PROTO_HDR_IPV6_PROT,
1462        /* IPV6 Prefix */
1463        VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_SRC,
1464        VIRTCHNL_PROTO_HDR_IPV6_PREFIX32_DST,
1465        VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_SRC,
1466        VIRTCHNL_PROTO_HDR_IPV6_PREFIX40_DST,
1467        VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_SRC,
1468        VIRTCHNL_PROTO_HDR_IPV6_PREFIX48_DST,
1469        VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_SRC,
1470        VIRTCHNL_PROTO_HDR_IPV6_PREFIX56_DST,
1471        VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_SRC,
1472        VIRTCHNL_PROTO_HDR_IPV6_PREFIX64_DST,
1473        VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_SRC,
1474        VIRTCHNL_PROTO_HDR_IPV6_PREFIX96_DST,
1475        /* TCP */
1476        VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1477                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1478        VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1479        /* UDP */
1480        VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1481                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1482        VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1483        /* SCTP */
1484        VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1485                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1486        VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1487        /* GTPU_IP */
1488        VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1489                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1490        /* GTPU_EH */
1491        VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1492                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1493        VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1494        /* PPPOE */
1495        VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1496                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1497        /* L2TPV3 */
1498        VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1499                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1500        /* ESP */
1501        VIRTCHNL_PROTO_HDR_ESP_SPI =
1502                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1503        /* AH */
1504        VIRTCHNL_PROTO_HDR_AH_SPI =
1505                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1506        /* PFCP */
1507        VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1508                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1509        VIRTCHNL_PROTO_HDR_PFCP_SEID,
1510        /* GTPC */
1511        VIRTCHNL_PROTO_HDR_GTPC_TEID =
1512                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPC),
1513        /* ECPRI */
1514        VIRTCHNL_PROTO_HDR_ECPRI_MSG_TYPE =
1515                PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ECPRI),
1516        VIRTCHNL_PROTO_HDR_ECPRI_PC_RTC_ID,
1517};
1518
1519struct virtchnl_proto_hdr {
1520        enum virtchnl_proto_hdr_type type;
1521        u32 field_selector; /* a bit mask to select field for header type */
1522        u8 buffer[64];
1523        /**
1524         * binary buffer in network order for specific header type.
1525         * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1526         * header is expected to be copied into the buffer.
1527         */
1528};
1529
1530VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1531
1532struct virtchnl_proto_hdrs {
1533        u8 tunnel_level;
1534        /**
1535         * specify where protocol header start from.
1536         * 0 - from the outer layer
1537         * 1 - from the first inner layer
1538         * 2 - from the second inner layer
1539         * ....
1540         **/
1541        int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
1542        struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1543};
1544
1545VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1546
1547struct virtchnl_rss_cfg {
1548        struct virtchnl_proto_hdrs proto_hdrs;     /* protocol headers */
1549        enum virtchnl_rss_algorithm rss_algorithm; /* rss algorithm type */
1550        u8 reserved[128];                          /* reserve for future */
1551};
1552
1553VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1554
1555/* action configuration for FDIR */
1556struct virtchnl_filter_action {
1557        enum virtchnl_action type;
1558        union {
1559                /* used for queue and qgroup action */
1560                struct {
1561                        u16 index;
1562                        u8 region;
1563                } queue;
1564                /* used for count action */
1565                struct {
1566                        /* share counter ID with other flow rules */
1567                        u8 shared;
1568                        u32 id; /* counter ID */
1569                } count;
1570                /* used for mark action */
1571                u32 mark_id;
1572                u8 reserve[32];
1573        } act_conf;
1574};
1575
1576VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1577
1578#define VIRTCHNL_MAX_NUM_ACTIONS  8
1579
1580struct virtchnl_filter_action_set {
1581        /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1582        int count;
1583        struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1584};
1585
1586VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1587
1588/* pattern and action for FDIR rule */
1589struct virtchnl_fdir_rule {
1590        struct virtchnl_proto_hdrs proto_hdrs;
1591        struct virtchnl_filter_action_set action_set;
1592};
1593
1594VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1595
1596/* query information to retrieve fdir rule counters.
1597 * PF will fill out this structure to reset counter.
1598 */
1599struct virtchnl_fdir_query_info {
1600        u32 match_packets_valid:1;
1601        u32 match_bytes_valid:1;
1602        u32 reserved:30;  /* Reserved, must be zero. */
1603        u32 pad;
1604        u64 matched_packets; /* Number of packets for this rule. */
1605        u64 matched_bytes;   /* Number of bytes through this rule. */
1606};
1607
1608VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_fdir_query_info);
1609
1610/* Status returned to VF after VF requests FDIR commands
1611 * VIRTCHNL_FDIR_SUCCESS
1612 * VF FDIR related request is successfully done by PF
1613 * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER.
1614 *
1615 * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1616 * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1617 *
1618 * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1619 * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1620 *
1621 * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1622 * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1623 *
1624 * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1625 * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1626 *
1627 * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1628 * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1629 * or HW doesn't support.
1630 *
1631 * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1632 * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1633 * for programming.
1634 *
1635 * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID
1636 * OP_QUERY_FDIR_FILTER request is failed due to parameters validation,
1637 * for example, VF query counter of a rule who has no counter action.
1638 */
1639enum virtchnl_fdir_prgm_status {
1640        VIRTCHNL_FDIR_SUCCESS = 0,
1641        VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1642        VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1643        VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1644        VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1645        VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1646        VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1647        VIRTCHNL_FDIR_FAILURE_QUERY_INVALID,
1648};
1649
1650/* VIRTCHNL_OP_ADD_FDIR_FILTER
1651 * VF sends this request to PF by filling out vsi_id,
1652 * validate_only and rule_cfg. PF will return flow_id
1653 * if the request is successfully done and return add_status to VF.
1654 */
1655struct virtchnl_fdir_add {
1656        u16 vsi_id;  /* INPUT */
1657        /*
1658         * 1 for validating a fdir rule, 0 for creating a fdir rule.
1659         * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1660         */
1661        u16 validate_only; /* INPUT */
1662        u32 flow_id;       /* OUTPUT */
1663        struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1664        enum virtchnl_fdir_prgm_status status; /* OUTPUT */
1665};
1666
1667VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1668
1669/* VIRTCHNL_OP_DEL_FDIR_FILTER
1670 * VF sends this request to PF by filling out vsi_id
1671 * and flow_id. PF will return del_status to VF.
1672 */
1673struct virtchnl_fdir_del {
1674        u16 vsi_id;  /* INPUT */
1675        u16 pad;
1676        u32 flow_id; /* INPUT */
1677        enum virtchnl_fdir_prgm_status status; /* OUTPUT */
1678};
1679
1680VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1681
1682/* VIRTCHNL_OP_QUERY_FDIR_FILTER
1683 * VF sends this request to PF by filling out vsi_id,
1684 * flow_id and reset_counter. PF will return query_info
1685 * and query_status to VF.
1686 */
1687struct virtchnl_fdir_query {
1688        u16 vsi_id;   /* INPUT */
1689        u16 pad1[3];
1690        u32 flow_id;  /* INPUT */
1691        u32 reset_counter:1; /* INPUT */
1692        struct virtchnl_fdir_query_info query_info; /* OUTPUT */
1693        enum virtchnl_fdir_prgm_status status;  /* OUTPUT */
1694        u32 pad2;
1695};
1696
1697VIRTCHNL_CHECK_STRUCT_LEN(48, virtchnl_fdir_query);
1698
1699/* TX and RX queue types are valid in legacy as well as split queue models.
1700 * With Split Queue model, 2 additional types are introduced - TX_COMPLETION
1701 * and RX_BUFFER. In split queue model, RX corresponds to the queue where HW
1702 * posts completions.
1703 */
1704enum virtchnl_queue_type {
1705        VIRTCHNL_QUEUE_TYPE_TX                  = 0,
1706        VIRTCHNL_QUEUE_TYPE_RX                  = 1,
1707        VIRTCHNL_QUEUE_TYPE_TX_COMPLETION       = 2,
1708        VIRTCHNL_QUEUE_TYPE_RX_BUFFER           = 3,
1709        VIRTCHNL_QUEUE_TYPE_CONFIG_TX           = 4,
1710        VIRTCHNL_QUEUE_TYPE_CONFIG_RX           = 5
1711};
1712
1713
1714/* structure to specify a chunk of contiguous queues */
1715struct virtchnl_queue_chunk {
1716        enum virtchnl_queue_type type;
1717        u16 start_queue_id;
1718        u16 num_queues;
1719};
1720
1721VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_queue_chunk);
1722
1723/* structure to specify several chunks of contiguous queues */
1724struct virtchnl_queue_chunks {
1725        u16 num_chunks;
1726        u16 rsvd;
1727        struct virtchnl_queue_chunk chunks[1];
1728};
1729
1730VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_chunks);
1731
1732
1733/* VIRTCHNL_OP_ENABLE_QUEUES_V2
1734 * VIRTCHNL_OP_DISABLE_QUEUES_V2
1735 * VIRTCHNL_OP_DEL_QUEUES
1736 *
1737 * If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1738 * then all of these ops are available.
1739 *
1740 * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1741 * then VIRTCHNL_OP_ENABLE_QUEUES_V2 and VIRTCHNL_OP_DISABLE_QUEUES_V2 are
1742 * available.
1743 *
1744 * PF sends these messages to enable, disable or delete queues specified in
1745 * chunks. PF sends virtchnl_del_ena_dis_queues struct to specify the queues
1746 * to be enabled/disabled/deleted. Also applicable to single queue RX or
1747 * TX. CP performs requested action and returns status.
1748 */
1749struct virtchnl_del_ena_dis_queues {
1750        u16 vport_id;
1751        u16 pad;
1752        struct virtchnl_queue_chunks chunks;
1753};
1754
1755VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_del_ena_dis_queues);
1756
1757/* Virtchannel interrupt throttling rate index */
1758enum virtchnl_itr_idx {
1759        VIRTCHNL_ITR_IDX_0      = 0,
1760        VIRTCHNL_ITR_IDX_1      = 1,
1761        VIRTCHNL_ITR_IDX_NO_ITR = 3,
1762};
1763
1764/* Queue to vector mapping */
1765struct virtchnl_queue_vector {
1766        u16 queue_id;
1767        u16 vector_id;
1768        u8 pad[4];
1769        enum virtchnl_itr_idx itr_idx;
1770        enum virtchnl_queue_type queue_type;
1771};
1772
1773VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_queue_vector);
1774
1775/* VIRTCHNL_OP_MAP_QUEUE_VECTOR
1776 * VIRTCHNL_OP_UNMAP_QUEUE_VECTOR
1777 *
1778 * If VIRTCHNL_CAP_EXT_FEATURES was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1779 * then all of these ops are available.
1780 *
1781 * If VIRTCHNL_VF_LARGE_NUM_QPAIRS was negotiated in VIRTCHNL_OP_GET_VF_RESOURCES
1782 * then only VIRTCHNL_OP_MAP_QUEUE_VECTOR is available.
1783 *
1784 * PF sends this message to map or unmap queues to vectors and ITR index
1785 * registers. External data buffer contains virtchnl_queue_vector_maps structure
1786 * that contains num_qv_maps of virtchnl_queue_vector structures.
1787 * CP maps the requested queue vector maps after validating the queue and vector
1788 * ids and returns a status code.
1789 */
1790struct virtchnl_queue_vector_maps {
1791        u16 vport_id;
1792        u16 num_qv_maps;
1793        u8 pad[4];
1794        struct virtchnl_queue_vector qv_maps[1];
1795};
1796
1797VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_queue_vector_maps);
1798
1799
1800/* Since VF messages are limited by u16 size, precalculate the maximum possible
1801 * values of nested elements in virtchnl structures that virtual channel can
1802 * possibly handle in a single message.
1803 */
1804enum virtchnl_vector_limits {
1805        VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX       =
1806                ((u16)(~0) - sizeof(struct virtchnl_vsi_queue_config_info)) /
1807                sizeof(struct virtchnl_queue_pair_info),
1808
1809        VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX          =
1810                ((u16)(~0) - sizeof(struct virtchnl_irq_map_info)) /
1811                sizeof(struct virtchnl_vector_map),
1812
1813        VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX        =
1814                ((u16)(~0) - sizeof(struct virtchnl_ether_addr_list)) /
1815                sizeof(struct virtchnl_ether_addr),
1816
1817        VIRTCHNL_OP_ADD_DEL_VLAN_MAX            =
1818                ((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list)) /
1819                sizeof(u16),
1820
1821
1822        VIRTCHNL_OP_ENABLE_CHANNELS_MAX         =
1823                ((u16)(~0) - sizeof(struct virtchnl_tc_info)) /
1824                sizeof(struct virtchnl_channel_info),
1825
1826        VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX    =
1827                ((u16)(~0) - sizeof(struct virtchnl_del_ena_dis_queues)) /
1828                sizeof(struct virtchnl_queue_chunk),
1829
1830        VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX  =
1831                ((u16)(~0) - sizeof(struct virtchnl_queue_vector_maps)) /
1832                sizeof(struct virtchnl_queue_vector),
1833
1834        VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX         =
1835                ((u16)(~0) - sizeof(struct virtchnl_vlan_filter_list_v2)) /
1836                sizeof(struct virtchnl_vlan_filter),
1837};
1838
1839/**
1840 * virtchnl_vc_validate_vf_msg
1841 * @ver: Virtchnl version info
1842 * @v_opcode: Opcode for the message
1843 * @msg: pointer to the msg buffer
1844 * @msglen: msg length
1845 *
1846 * validate msg format against struct for each opcode
1847 */
1848static inline int
1849virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
1850                            u8 *msg, u16 msglen)
1851{
1852        bool err_msg_format = false;
1853        u32 valid_len = 0;
1854
1855        /* Validate message length. */
1856        switch (v_opcode) {
1857        case VIRTCHNL_OP_VERSION:
1858                valid_len = sizeof(struct virtchnl_version_info);
1859                break;
1860        case VIRTCHNL_OP_RESET_VF:
1861                break;
1862        case VIRTCHNL_OP_GET_VF_RESOURCES:
1863                if (VF_IS_V11(ver))
1864                        valid_len = sizeof(u32);
1865                break;
1866        case VIRTCHNL_OP_CONFIG_TX_QUEUE:
1867                valid_len = sizeof(struct virtchnl_txq_info);
1868                break;
1869        case VIRTCHNL_OP_CONFIG_RX_QUEUE:
1870                valid_len = sizeof(struct virtchnl_rxq_info);
1871                break;
1872        case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
1873                valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
1874                if (msglen >= valid_len) {
1875                        struct virtchnl_vsi_queue_config_info *vqc =
1876                            (struct virtchnl_vsi_queue_config_info *)msg;
1877
1878                        if (vqc->num_queue_pairs == 0 || vqc->num_queue_pairs >
1879                            VIRTCHNL_OP_CONFIG_VSI_QUEUES_MAX) {
1880                                err_msg_format = true;
1881                                break;
1882                        }
1883
1884                        valid_len += (vqc->num_queue_pairs *
1885                                      sizeof(struct
1886                                             virtchnl_queue_pair_info));
1887                }
1888                break;
1889        case VIRTCHNL_OP_CONFIG_IRQ_MAP:
1890                valid_len = sizeof(struct virtchnl_irq_map_info);
1891                if (msglen >= valid_len) {
1892                        struct virtchnl_irq_map_info *vimi =
1893                            (struct virtchnl_irq_map_info *)msg;
1894
1895                        if (vimi->num_vectors == 0 || vimi->num_vectors >
1896                            VIRTCHNL_OP_CONFIG_IRQ_MAP_MAX) {
1897                                err_msg_format = true;
1898                                break;
1899                        }
1900
1901                        valid_len += (vimi->num_vectors *
1902                                      sizeof(struct virtchnl_vector_map));
1903                }
1904                break;
1905        case VIRTCHNL_OP_ENABLE_QUEUES:
1906        case VIRTCHNL_OP_DISABLE_QUEUES:
1907                valid_len = sizeof(struct virtchnl_queue_select);
1908                break;
1909        case VIRTCHNL_OP_GET_MAX_RSS_QREGION:
1910                break;
1911        case VIRTCHNL_OP_ADD_ETH_ADDR:
1912        case VIRTCHNL_OP_DEL_ETH_ADDR:
1913                valid_len = sizeof(struct virtchnl_ether_addr_list);
1914                if (msglen >= valid_len) {
1915                        struct virtchnl_ether_addr_list *veal =
1916                            (struct virtchnl_ether_addr_list *)msg;
1917
1918                        if (veal->num_elements == 0 || veal->num_elements >
1919                            VIRTCHNL_OP_ADD_DEL_ETH_ADDR_MAX) {
1920                                err_msg_format = true;
1921                                break;
1922                        }
1923
1924                        valid_len += veal->num_elements *
1925                            sizeof(struct virtchnl_ether_addr);
1926                }
1927                break;
1928        case VIRTCHNL_OP_ADD_VLAN:
1929        case VIRTCHNL_OP_DEL_VLAN:
1930                valid_len = sizeof(struct virtchnl_vlan_filter_list);
1931                if (msglen >= valid_len) {
1932                        struct virtchnl_vlan_filter_list *vfl =
1933                            (struct virtchnl_vlan_filter_list *)msg;
1934
1935                        if (vfl->num_elements == 0 || vfl->num_elements >
1936                            VIRTCHNL_OP_ADD_DEL_VLAN_MAX) {
1937                                err_msg_format = true;
1938                                break;
1939                        }
1940
1941                        valid_len += vfl->num_elements * sizeof(u16);
1942                }
1943                break;
1944        case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
1945                valid_len = sizeof(struct virtchnl_promisc_info);
1946                break;
1947        case VIRTCHNL_OP_GET_STATS:
1948                valid_len = sizeof(struct virtchnl_queue_select);
1949                break;
1950        case VIRTCHNL_OP_CONFIG_RSS_KEY:
1951                valid_len = sizeof(struct virtchnl_rss_key);
1952                if (msglen >= valid_len) {
1953                        struct virtchnl_rss_key *vrk =
1954                                (struct virtchnl_rss_key *)msg;
1955
1956                        if (vrk->key_len == 0) {
1957                                /* zero length is allowed as input */
1958                                break;
1959                        }
1960
1961                        valid_len += vrk->key_len - 1;
1962                }
1963                break;
1964        case VIRTCHNL_OP_CONFIG_RSS_LUT:
1965                valid_len = sizeof(struct virtchnl_rss_lut);
1966                if (msglen >= valid_len) {
1967                        struct virtchnl_rss_lut *vrl =
1968                                (struct virtchnl_rss_lut *)msg;
1969
1970                        if (vrl->lut_entries == 0) {
1971                                /* zero entries is allowed as input */
1972                                break;
1973                        }
1974
1975                        valid_len += vrl->lut_entries - 1;
1976                }
1977                break;
1978        case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
1979                break;
1980        case VIRTCHNL_OP_SET_RSS_HENA:
1981                valid_len = sizeof(struct virtchnl_rss_hena);
1982                break;
1983        case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
1984        case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
1985                break;
1986        case VIRTCHNL_OP_REQUEST_QUEUES:
1987                valid_len = sizeof(struct virtchnl_vf_res_request);
1988                break;
1989        case VIRTCHNL_OP_ENABLE_CHANNELS:
1990                valid_len = sizeof(struct virtchnl_tc_info);
1991                if (msglen >= valid_len) {
1992                        struct virtchnl_tc_info *vti =
1993                                (struct virtchnl_tc_info *)msg;
1994
1995                        if (vti->num_tc == 0 || vti->num_tc >
1996                            VIRTCHNL_OP_ENABLE_CHANNELS_MAX) {
1997                                err_msg_format = true;
1998                                break;
1999                        }
2000
2001                        valid_len += (vti->num_tc - 1) *
2002                                     sizeof(struct virtchnl_channel_info);
2003                }
2004                break;
2005        case VIRTCHNL_OP_DISABLE_CHANNELS:
2006                break;
2007        case VIRTCHNL_OP_ADD_CLOUD_FILTER:
2008        case VIRTCHNL_OP_DEL_CLOUD_FILTER:
2009                valid_len = sizeof(struct virtchnl_filter);
2010                break;
2011        case VIRTCHNL_OP_DCF_VLAN_OFFLOAD:
2012                valid_len = sizeof(struct virtchnl_dcf_vlan_offload);
2013                break;
2014        case VIRTCHNL_OP_DCF_CMD_DESC:
2015        case VIRTCHNL_OP_DCF_CMD_BUFF:
2016                /* These two opcodes are specific to handle the AdminQ command,
2017                 * so the validation needs to be done in PF's context.
2018                 */
2019                valid_len = msglen;
2020                break;
2021        case VIRTCHNL_OP_DCF_DISABLE:
2022        case VIRTCHNL_OP_DCF_GET_VSI_MAP:
2023        case VIRTCHNL_OP_DCF_GET_PKG_INFO:
2024                break;
2025        case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
2026                break;
2027        case VIRTCHNL_OP_ADD_RSS_CFG:
2028        case VIRTCHNL_OP_DEL_RSS_CFG:
2029                valid_len = sizeof(struct virtchnl_rss_cfg);
2030                break;
2031        case VIRTCHNL_OP_ADD_FDIR_FILTER:
2032                valid_len = sizeof(struct virtchnl_fdir_add);
2033                break;
2034        case VIRTCHNL_OP_DEL_FDIR_FILTER:
2035                valid_len = sizeof(struct virtchnl_fdir_del);
2036                break;
2037        case VIRTCHNL_OP_QUERY_FDIR_FILTER:
2038                valid_len = sizeof(struct virtchnl_fdir_query);
2039                break;
2040        case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
2041                break;
2042        case VIRTCHNL_OP_ADD_VLAN_V2:
2043        case VIRTCHNL_OP_DEL_VLAN_V2:
2044                valid_len = sizeof(struct virtchnl_vlan_filter_list_v2);
2045                if (msglen >= valid_len) {
2046                        struct virtchnl_vlan_filter_list_v2 *vfl =
2047                            (struct virtchnl_vlan_filter_list_v2 *)msg;
2048
2049                        if (vfl->num_elements == 0 || vfl->num_elements >
2050                            VIRTCHNL_OP_ADD_DEL_VLAN_V2_MAX) {
2051                                err_msg_format = true;
2052                                break;
2053                        }
2054
2055                        valid_len += (vfl->num_elements - 1) *
2056                                sizeof(struct virtchnl_vlan_filter);
2057                }
2058                break;
2059        case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
2060        case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
2061        case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
2062        case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
2063        case VIRTCHNL_OP_ENABLE_VLAN_FILTERING_V2:
2064        case VIRTCHNL_OP_DISABLE_VLAN_FILTERING_V2:
2065                valid_len = sizeof(struct virtchnl_vlan_setting);
2066                break;
2067        case VIRTCHNL_OP_ENABLE_QUEUES_V2:
2068        case VIRTCHNL_OP_DISABLE_QUEUES_V2:
2069                valid_len = sizeof(struct virtchnl_del_ena_dis_queues);
2070                if (msglen >= valid_len) {
2071                        struct virtchnl_del_ena_dis_queues *qs =
2072                                (struct virtchnl_del_ena_dis_queues *)msg;
2073                        if (qs->chunks.num_chunks == 0 ||
2074                            qs->chunks.num_chunks > VIRTCHNL_OP_ENABLE_DISABLE_DEL_QUEUES_V2_MAX) {
2075                                err_msg_format = true;
2076                                break;
2077                        }
2078                        valid_len += (qs->chunks.num_chunks - 1) *
2079                                      sizeof(struct virtchnl_queue_chunk);
2080                }
2081                break;
2082        case VIRTCHNL_OP_MAP_QUEUE_VECTOR:
2083                valid_len = sizeof(struct virtchnl_queue_vector_maps);
2084                if (msglen >= valid_len) {
2085                        struct virtchnl_queue_vector_maps *v_qp =
2086                                (struct virtchnl_queue_vector_maps *)msg;
2087                        if (v_qp->num_qv_maps == 0 ||
2088                            v_qp->num_qv_maps > VIRTCHNL_OP_MAP_UNMAP_QUEUE_VECTOR_MAX) {
2089                                err_msg_format = true;
2090                                break;
2091                        }
2092                        valid_len += (v_qp->num_qv_maps - 1) *
2093                                      sizeof(struct virtchnl_queue_vector);
2094                }
2095                break;
2096        /* These are always errors coming from the VF. */
2097        case VIRTCHNL_OP_EVENT:
2098        case VIRTCHNL_OP_UNKNOWN:
2099        default:
2100                return VIRTCHNL_STATUS_ERR_PARAM;
2101        }
2102        /* few more checks */
2103        if (err_msg_format || valid_len != msglen)
2104                return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
2105
2106        return 0;
2107}
2108#endif /* _VIRTCHNL_H_ */
2109