dpdk/drivers/net/ice/base/ice_sched.c
<<
>>
Prefs
   1/* SPDX-License-Identifier: BSD-3-Clause
   2 * Copyright(c) 2001-2021 Intel Corporation
   3 */
   4
   5#include "ice_sched.h"
   6
   7/**
   8 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
   9 * @pi: port information structure
  10 * @info: Scheduler element information from firmware
  11 *
  12 * This function inserts the root node of the scheduling tree topology
  13 * to the SW DB.
  14 */
  15static enum ice_status
  16ice_sched_add_root_node(struct ice_port_info *pi,
  17                        struct ice_aqc_txsched_elem_data *info)
  18{
  19        struct ice_sched_node *root;
  20        struct ice_hw *hw;
  21
  22        if (!pi)
  23                return ICE_ERR_PARAM;
  24
  25        hw = pi->hw;
  26
  27        root = (struct ice_sched_node *)ice_malloc(hw, sizeof(*root));
  28        if (!root)
  29                return ICE_ERR_NO_MEMORY;
  30
  31        /* coverity[suspicious_sizeof] */
  32        root->children = (struct ice_sched_node **)
  33                ice_calloc(hw, hw->max_children[0], sizeof(*root));
  34        if (!root->children) {
  35                ice_free(hw, root);
  36                return ICE_ERR_NO_MEMORY;
  37        }
  38
  39        ice_memcpy(&root->info, info, sizeof(*info), ICE_DMA_TO_NONDMA);
  40        pi->root = root;
  41        return ICE_SUCCESS;
  42}
  43
  44/**
  45 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
  46 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
  47 * @teid: node TEID to search
  48 *
  49 * This function searches for a node matching the TEID in the scheduling tree
  50 * from the SW DB. The search is recursive and is restricted by the number of
  51 * layers it has searched through; stopping at the max supported layer.
  52 *
  53 * This function needs to be called when holding the port_info->sched_lock
  54 */
  55struct ice_sched_node *
  56ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
  57{
  58        u16 i;
  59
  60        /* The TEID is same as that of the start_node */
  61        if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
  62                return start_node;
  63
  64        /* The node has no children or is at the max layer */
  65        if (!start_node->num_children ||
  66            start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
  67            start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
  68                return NULL;
  69
  70        /* Check if TEID matches to any of the children nodes */
  71        for (i = 0; i < start_node->num_children; i++)
  72                if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
  73                        return start_node->children[i];
  74
  75        /* Search within each child's sub-tree */
  76        for (i = 0; i < start_node->num_children; i++) {
  77                struct ice_sched_node *tmp;
  78
  79                tmp = ice_sched_find_node_by_teid(start_node->children[i],
  80                                                  teid);
  81                if (tmp)
  82                        return tmp;
  83        }
  84
  85        return NULL;
  86}
  87
  88/**
  89 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
  90 * @hw: pointer to the HW struct
  91 * @cmd_opc: cmd opcode
  92 * @elems_req: number of elements to request
  93 * @buf: pointer to buffer
  94 * @buf_size: buffer size in bytes
  95 * @elems_resp: returns total number of elements response
  96 * @cd: pointer to command details structure or NULL
  97 *
  98 * This function sends a scheduling elements cmd (cmd_opc)
  99 */
 100static enum ice_status
 101ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
 102                            u16 elems_req, void *buf, u16 buf_size,
 103                            u16 *elems_resp, struct ice_sq_cd *cd)
 104{
 105        struct ice_aqc_sched_elem_cmd *cmd;
 106        struct ice_aq_desc desc;
 107        enum ice_status status;
 108
 109        cmd = &desc.params.sched_elem_cmd;
 110        ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
 111        cmd->num_elem_req = CPU_TO_LE16(elems_req);
 112        desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
 113        status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 114        if (!status && elems_resp)
 115                *elems_resp = LE16_TO_CPU(cmd->num_elem_resp);
 116
 117        return status;
 118}
 119
 120/**
 121 * ice_aq_query_sched_elems - query scheduler elements
 122 * @hw: pointer to the HW struct
 123 * @elems_req: number of elements to query
 124 * @buf: pointer to buffer
 125 * @buf_size: buffer size in bytes
 126 * @elems_ret: returns total number of elements returned
 127 * @cd: pointer to command details structure or NULL
 128 *
 129 * Query scheduling elements (0x0404)
 130 */
 131enum ice_status
 132ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
 133                         struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
 134                         u16 *elems_ret, struct ice_sq_cd *cd)
 135{
 136        return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
 137                                           elems_req, (void *)buf, buf_size,
 138                                           elems_ret, cd);
 139}
 140
 141/**
 142 * ice_sched_add_node - Insert the Tx scheduler node in SW DB
 143 * @pi: port information structure
 144 * @layer: Scheduler layer of the node
 145 * @info: Scheduler element information from firmware
 146 *
 147 * This function inserts a scheduler node to the SW DB.
 148 */
 149enum ice_status
 150ice_sched_add_node(struct ice_port_info *pi, u8 layer,
 151                   struct ice_aqc_txsched_elem_data *info)
 152{
 153        struct ice_aqc_txsched_elem_data elem;
 154        struct ice_sched_node *parent;
 155        struct ice_sched_node *node;
 156        enum ice_status status;
 157        struct ice_hw *hw;
 158
 159        if (!pi)
 160                return ICE_ERR_PARAM;
 161
 162        hw = pi->hw;
 163
 164        /* A valid parent node should be there */
 165        parent = ice_sched_find_node_by_teid(pi->root,
 166                                             LE32_TO_CPU(info->parent_teid));
 167        if (!parent) {
 168                ice_debug(hw, ICE_DBG_SCHED, "Parent Node not found for parent_teid=0x%x\n",
 169                          LE32_TO_CPU(info->parent_teid));
 170                return ICE_ERR_PARAM;
 171        }
 172
 173        /* query the current node information from FW before adding it
 174         * to the SW DB
 175         */
 176        status = ice_sched_query_elem(hw, LE32_TO_CPU(info->node_teid), &elem);
 177        if (status)
 178                return status;
 179        node = (struct ice_sched_node *)ice_malloc(hw, sizeof(*node));
 180        if (!node)
 181                return ICE_ERR_NO_MEMORY;
 182        if (hw->max_children[layer]) {
 183                /* coverity[suspicious_sizeof] */
 184                node->children = (struct ice_sched_node **)
 185                        ice_calloc(hw, hw->max_children[layer], sizeof(*node));
 186                if (!node->children) {
 187                        ice_free(hw, node);
 188                        return ICE_ERR_NO_MEMORY;
 189                }
 190        }
 191
 192        node->in_use = true;
 193        node->parent = parent;
 194        node->tx_sched_layer = layer;
 195        parent->children[parent->num_children++] = node;
 196        node->info = elem;
 197        return ICE_SUCCESS;
 198}
 199
 200/**
 201 * ice_aq_delete_sched_elems - delete scheduler elements
 202 * @hw: pointer to the HW struct
 203 * @grps_req: number of groups to delete
 204 * @buf: pointer to buffer
 205 * @buf_size: buffer size in bytes
 206 * @grps_del: returns total number of elements deleted
 207 * @cd: pointer to command details structure or NULL
 208 *
 209 * Delete scheduling elements (0x040F)
 210 */
 211static enum ice_status
 212ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
 213                          struct ice_aqc_delete_elem *buf, u16 buf_size,
 214                          u16 *grps_del, struct ice_sq_cd *cd)
 215{
 216        return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
 217                                           grps_req, (void *)buf, buf_size,
 218                                           grps_del, cd);
 219}
 220
 221/**
 222 * ice_sched_remove_elems - remove nodes from HW
 223 * @hw: pointer to the HW struct
 224 * @parent: pointer to the parent node
 225 * @num_nodes: number of nodes
 226 * @node_teids: array of node teids to be deleted
 227 *
 228 * This function remove nodes from HW
 229 */
 230static enum ice_status
 231ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
 232                       u16 num_nodes, u32 *node_teids)
 233{
 234        struct ice_aqc_delete_elem *buf;
 235        u16 i, num_groups_removed = 0;
 236        enum ice_status status;
 237        u16 buf_size;
 238
 239        buf_size = ice_struct_size(buf, teid, num_nodes);
 240        buf = (struct ice_aqc_delete_elem *)ice_malloc(hw, buf_size);
 241        if (!buf)
 242                return ICE_ERR_NO_MEMORY;
 243
 244        buf->hdr.parent_teid = parent->info.node_teid;
 245        buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
 246        for (i = 0; i < num_nodes; i++)
 247                buf->teid[i] = CPU_TO_LE32(node_teids[i]);
 248
 249        status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
 250                                           &num_groups_removed, NULL);
 251        if (status != ICE_SUCCESS || num_groups_removed != 1)
 252                ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
 253                          hw->adminq.sq_last_status);
 254
 255        ice_free(hw, buf);
 256        return status;
 257}
 258
 259/**
 260 * ice_sched_get_first_node - get the first node of the given layer
 261 * @pi: port information structure
 262 * @parent: pointer the base node of the subtree
 263 * @layer: layer number
 264 *
 265 * This function retrieves the first node of the given layer from the subtree
 266 */
 267static struct ice_sched_node *
 268ice_sched_get_first_node(struct ice_port_info *pi,
 269                         struct ice_sched_node *parent, u8 layer)
 270{
 271        return pi->sib_head[parent->tc_num][layer];
 272}
 273
 274/**
 275 * ice_sched_get_tc_node - get pointer to TC node
 276 * @pi: port information structure
 277 * @tc: TC number
 278 *
 279 * This function returns the TC node pointer
 280 */
 281struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
 282{
 283        u8 i;
 284
 285        if (!pi || !pi->root)
 286                return NULL;
 287        for (i = 0; i < pi->root->num_children; i++)
 288                if (pi->root->children[i]->tc_num == tc)
 289                        return pi->root->children[i];
 290        return NULL;
 291}
 292
 293/**
 294 * ice_free_sched_node - Free a Tx scheduler node from SW DB
 295 * @pi: port information structure
 296 * @node: pointer to the ice_sched_node struct
 297 *
 298 * This function frees up a node from SW DB as well as from HW
 299 *
 300 * This function needs to be called with the port_info->sched_lock held
 301 */
 302void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
 303{
 304        struct ice_sched_node *parent;
 305        struct ice_hw *hw = pi->hw;
 306        u8 i, j;
 307
 308        /* Free the children before freeing up the parent node
 309         * The parent array is updated below and that shifts the nodes
 310         * in the array. So always pick the first child if num children > 0
 311         */
 312        while (node->num_children)
 313                ice_free_sched_node(pi, node->children[0]);
 314
 315        /* Leaf, TC and root nodes can't be deleted by SW */
 316        if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
 317            node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
 318            node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
 319            node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
 320                u32 teid = LE32_TO_CPU(node->info.node_teid);
 321
 322                ice_sched_remove_elems(hw, node->parent, 1, &teid);
 323        }
 324        parent = node->parent;
 325        /* root has no parent */
 326        if (parent) {
 327                struct ice_sched_node *p;
 328
 329                /* update the parent */
 330                for (i = 0; i < parent->num_children; i++)
 331                        if (parent->children[i] == node) {
 332                                for (j = i + 1; j < parent->num_children; j++)
 333                                        parent->children[j - 1] =
 334                                                parent->children[j];
 335                                parent->num_children--;
 336                                break;
 337                        }
 338
 339                p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
 340                while (p) {
 341                        if (p->sibling == node) {
 342                                p->sibling = node->sibling;
 343                                break;
 344                        }
 345                        p = p->sibling;
 346                }
 347
 348                /* update the sibling head if head is getting removed */
 349                if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
 350                        pi->sib_head[node->tc_num][node->tx_sched_layer] =
 351                                node->sibling;
 352        }
 353
 354        /* leaf nodes have no children */
 355        if (node->children)
 356                ice_free(hw, node->children);
 357        ice_free(hw, node);
 358}
 359
 360/**
 361 * ice_aq_get_dflt_topo - gets default scheduler topology
 362 * @hw: pointer to the HW struct
 363 * @lport: logical port number
 364 * @buf: pointer to buffer
 365 * @buf_size: buffer size in bytes
 366 * @num_branches: returns total number of queue to port branches
 367 * @cd: pointer to command details structure or NULL
 368 *
 369 * Get default scheduler topology (0x400)
 370 */
 371static enum ice_status
 372ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
 373                     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
 374                     u8 *num_branches, struct ice_sq_cd *cd)
 375{
 376        struct ice_aqc_get_topo *cmd;
 377        struct ice_aq_desc desc;
 378        enum ice_status status;
 379
 380        cmd = &desc.params.get_topo;
 381        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
 382        cmd->port_num = lport;
 383        status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 384        if (!status && num_branches)
 385                *num_branches = cmd->num_branches;
 386
 387        return status;
 388}
 389
 390/**
 391 * ice_aq_add_sched_elems - adds scheduling element
 392 * @hw: pointer to the HW struct
 393 * @grps_req: the number of groups that are requested to be added
 394 * @buf: pointer to buffer
 395 * @buf_size: buffer size in bytes
 396 * @grps_added: returns total number of groups added
 397 * @cd: pointer to command details structure or NULL
 398 *
 399 * Add scheduling elements (0x0401)
 400 */
 401static enum ice_status
 402ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
 403                       struct ice_aqc_add_elem *buf, u16 buf_size,
 404                       u16 *grps_added, struct ice_sq_cd *cd)
 405{
 406        return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
 407                                           grps_req, (void *)buf, buf_size,
 408                                           grps_added, cd);
 409}
 410
 411/**
 412 * ice_aq_cfg_sched_elems - configures scheduler elements
 413 * @hw: pointer to the HW struct
 414 * @elems_req: number of elements to configure
 415 * @buf: pointer to buffer
 416 * @buf_size: buffer size in bytes
 417 * @elems_cfgd: returns total number of elements configured
 418 * @cd: pointer to command details structure or NULL
 419 *
 420 * Configure scheduling elements (0x0403)
 421 */
 422static enum ice_status
 423ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
 424                       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
 425                       u16 *elems_cfgd, struct ice_sq_cd *cd)
 426{
 427        return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
 428                                           elems_req, (void *)buf, buf_size,
 429                                           elems_cfgd, cd);
 430}
 431
 432/**
 433 * ice_aq_move_sched_elems - move scheduler elements
 434 * @hw: pointer to the HW struct
 435 * @grps_req: number of groups to move
 436 * @buf: pointer to buffer
 437 * @buf_size: buffer size in bytes
 438 * @grps_movd: returns total number of groups moved
 439 * @cd: pointer to command details structure or NULL
 440 *
 441 * Move scheduling elements (0x0408)
 442 */
 443static enum ice_status
 444ice_aq_move_sched_elems(struct ice_hw *hw, u16 grps_req,
 445                        struct ice_aqc_move_elem *buf, u16 buf_size,
 446                        u16 *grps_movd, struct ice_sq_cd *cd)
 447{
 448        return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_move_sched_elems,
 449                                           grps_req, (void *)buf, buf_size,
 450                                           grps_movd, cd);
 451}
 452
 453/**
 454 * ice_aq_suspend_sched_elems - suspend scheduler elements
 455 * @hw: pointer to the HW struct
 456 * @elems_req: number of elements to suspend
 457 * @buf: pointer to buffer
 458 * @buf_size: buffer size in bytes
 459 * @elems_ret: returns total number of elements suspended
 460 * @cd: pointer to command details structure or NULL
 461 *
 462 * Suspend scheduling elements (0x0409)
 463 */
 464static enum ice_status
 465ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
 466                           u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
 467{
 468        return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
 469                                           elems_req, (void *)buf, buf_size,
 470                                           elems_ret, cd);
 471}
 472
 473/**
 474 * ice_aq_resume_sched_elems - resume scheduler elements
 475 * @hw: pointer to the HW struct
 476 * @elems_req: number of elements to resume
 477 * @buf: pointer to buffer
 478 * @buf_size: buffer size in bytes
 479 * @elems_ret: returns total number of elements resumed
 480 * @cd: pointer to command details structure or NULL
 481 *
 482 * resume scheduling elements (0x040A)
 483 */
 484static enum ice_status
 485ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
 486                          u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
 487{
 488        return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
 489                                           elems_req, (void *)buf, buf_size,
 490                                           elems_ret, cd);
 491}
 492
 493/**
 494 * ice_aq_query_sched_res - query scheduler resource
 495 * @hw: pointer to the HW struct
 496 * @buf_size: buffer size in bytes
 497 * @buf: pointer to buffer
 498 * @cd: pointer to command details structure or NULL
 499 *
 500 * Query scheduler resource allocation (0x0412)
 501 */
 502static enum ice_status
 503ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
 504                       struct ice_aqc_query_txsched_res_resp *buf,
 505                       struct ice_sq_cd *cd)
 506{
 507        struct ice_aq_desc desc;
 508
 509        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
 510        return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 511}
 512
 513/**
 514 * ice_sched_suspend_resume_elems - suspend or resume HW nodes
 515 * @hw: pointer to the HW struct
 516 * @num_nodes: number of nodes
 517 * @node_teids: array of node teids to be suspended or resumed
 518 * @suspend: true means suspend / false means resume
 519 *
 520 * This function suspends or resumes HW nodes
 521 */
 522static enum ice_status
 523ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
 524                               bool suspend)
 525{
 526        u16 i, buf_size, num_elem_ret = 0;
 527        enum ice_status status;
 528        __le32 *buf;
 529
 530        buf_size = sizeof(*buf) * num_nodes;
 531        buf = (__le32 *)ice_malloc(hw, buf_size);
 532        if (!buf)
 533                return ICE_ERR_NO_MEMORY;
 534
 535        for (i = 0; i < num_nodes; i++)
 536                buf[i] = CPU_TO_LE32(node_teids[i]);
 537
 538        if (suspend)
 539                status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
 540                                                    buf_size, &num_elem_ret,
 541                                                    NULL);
 542        else
 543                status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
 544                                                   buf_size, &num_elem_ret,
 545                                                   NULL);
 546        if (status != ICE_SUCCESS || num_elem_ret != num_nodes)
 547                ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
 548
 549        ice_free(hw, buf);
 550        return status;
 551}
 552
 553/**
 554 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
 555 * @hw: pointer to the HW struct
 556 * @vsi_handle: VSI handle
 557 * @tc: TC number
 558 * @new_numqs: number of queues
 559 */
 560static enum ice_status
 561ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
 562{
 563        struct ice_vsi_ctx *vsi_ctx;
 564        struct ice_q_ctx *q_ctx;
 565
 566        vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
 567        if (!vsi_ctx)
 568                return ICE_ERR_PARAM;
 569        /* allocate LAN queue contexts */
 570        if (!vsi_ctx->lan_q_ctx[tc]) {
 571                vsi_ctx->lan_q_ctx[tc] = (struct ice_q_ctx *)
 572                        ice_calloc(hw, new_numqs, sizeof(*q_ctx));
 573                if (!vsi_ctx->lan_q_ctx[tc])
 574                        return ICE_ERR_NO_MEMORY;
 575                vsi_ctx->num_lan_q_entries[tc] = new_numqs;
 576                return ICE_SUCCESS;
 577        }
 578        /* num queues are increased, update the queue contexts */
 579        if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
 580                u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
 581
 582                q_ctx = (struct ice_q_ctx *)
 583                        ice_calloc(hw, new_numqs, sizeof(*q_ctx));
 584                if (!q_ctx)
 585                        return ICE_ERR_NO_MEMORY;
 586                ice_memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
 587                           prev_num * sizeof(*q_ctx), ICE_DMA_TO_NONDMA);
 588                ice_free(hw, vsi_ctx->lan_q_ctx[tc]);
 589                vsi_ctx->lan_q_ctx[tc] = q_ctx;
 590                vsi_ctx->num_lan_q_entries[tc] = new_numqs;
 591        }
 592        return ICE_SUCCESS;
 593}
 594
 595/**
 596 * ice_aq_rl_profile - performs a rate limiting task
 597 * @hw: pointer to the HW struct
 598 * @opcode: opcode for add, query, or remove profile(s)
 599 * @num_profiles: the number of profiles
 600 * @buf: pointer to buffer
 601 * @buf_size: buffer size in bytes
 602 * @num_processed: number of processed add or remove profile(s) to return
 603 * @cd: pointer to command details structure
 604 *
 605 * RL profile function to add, query, or remove profile(s)
 606 */
 607static enum ice_status
 608ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
 609                  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
 610                  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
 611{
 612        struct ice_aqc_rl_profile *cmd;
 613        struct ice_aq_desc desc;
 614        enum ice_status status;
 615
 616        cmd = &desc.params.rl_profile;
 617
 618        ice_fill_dflt_direct_cmd_desc(&desc, opcode);
 619        desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
 620        cmd->num_profiles = CPU_TO_LE16(num_profiles);
 621        status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 622        if (!status && num_processed)
 623                *num_processed = LE16_TO_CPU(cmd->num_processed);
 624        return status;
 625}
 626
 627/**
 628 * ice_aq_add_rl_profile - adds rate limiting profile(s)
 629 * @hw: pointer to the HW struct
 630 * @num_profiles: the number of profile(s) to be add
 631 * @buf: pointer to buffer
 632 * @buf_size: buffer size in bytes
 633 * @num_profiles_added: total number of profiles added to return
 634 * @cd: pointer to command details structure
 635 *
 636 * Add RL profile (0x0410)
 637 */
 638static enum ice_status
 639ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
 640                      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
 641                      u16 *num_profiles_added, struct ice_sq_cd *cd)
 642{
 643        return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
 644                                 buf, buf_size, num_profiles_added, cd);
 645}
 646
 647/**
 648 * ice_aq_query_rl_profile - query rate limiting profile(s)
 649 * @hw: pointer to the HW struct
 650 * @num_profiles: the number of profile(s) to query
 651 * @buf: pointer to buffer
 652 * @buf_size: buffer size in bytes
 653 * @cd: pointer to command details structure
 654 *
 655 * Query RL profile (0x0411)
 656 */
 657enum ice_status
 658ice_aq_query_rl_profile(struct ice_hw *hw, u16 num_profiles,
 659                        struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
 660                        struct ice_sq_cd *cd)
 661{
 662        return ice_aq_rl_profile(hw, ice_aqc_opc_query_rl_profiles,
 663                                 num_profiles, buf, buf_size, NULL, cd);
 664}
 665
 666/**
 667 * ice_aq_remove_rl_profile - removes RL profile(s)
 668 * @hw: pointer to the HW struct
 669 * @num_profiles: the number of profile(s) to remove
 670 * @buf: pointer to buffer
 671 * @buf_size: buffer size in bytes
 672 * @num_profiles_removed: total number of profiles removed to return
 673 * @cd: pointer to command details structure or NULL
 674 *
 675 * Remove RL profile (0x0415)
 676 */
 677static enum ice_status
 678ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
 679                         struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
 680                         u16 *num_profiles_removed, struct ice_sq_cd *cd)
 681{
 682        return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
 683                                 num_profiles, buf, buf_size,
 684                                 num_profiles_removed, cd);
 685}
 686
 687/**
 688 * ice_sched_del_rl_profile - remove RL profile
 689 * @hw: pointer to the HW struct
 690 * @rl_info: rate limit profile information
 691 *
 692 * If the profile ID is not referenced anymore, it removes profile ID with
 693 * its associated parameters from HW DB,and locally. The caller needs to
 694 * hold scheduler lock.
 695 */
 696static enum ice_status
 697ice_sched_del_rl_profile(struct ice_hw *hw,
 698                         struct ice_aqc_rl_profile_info *rl_info)
 699{
 700        struct ice_aqc_rl_profile_elem *buf;
 701        u16 num_profiles_removed;
 702        enum ice_status status;
 703        u16 num_profiles = 1;
 704
 705        if (rl_info->prof_id_ref != 0)
 706                return ICE_ERR_IN_USE;
 707
 708        /* Safe to remove profile ID */
 709        buf = &rl_info->profile;
 710        status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
 711                                          &num_profiles_removed, NULL);
 712        if (status || num_profiles_removed != num_profiles)
 713                return ICE_ERR_CFG;
 714
 715        /* Delete stale entry now */
 716        LIST_DEL(&rl_info->list_entry);
 717        ice_free(hw, rl_info);
 718        return status;
 719}
 720
 721/**
 722 * ice_sched_clear_rl_prof - clears RL prof entries
 723 * @pi: port information structure
 724 *
 725 * This function removes all RL profile from HW as well as from SW DB.
 726 */
 727static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
 728{
 729        u16 ln;
 730        struct ice_hw *hw = pi->hw;
 731
 732        for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
 733                struct ice_aqc_rl_profile_info *rl_prof_elem;
 734                struct ice_aqc_rl_profile_info *rl_prof_tmp;
 735
 736                LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
 737                                         &hw->rl_prof_list[ln],
 738                                         ice_aqc_rl_profile_info, list_entry) {
 739                        enum ice_status status;
 740
 741                        rl_prof_elem->prof_id_ref = 0;
 742                        status = ice_sched_del_rl_profile(hw, rl_prof_elem);
 743                        if (status) {
 744                                ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
 745                                /* On error, free mem required */
 746                                LIST_DEL(&rl_prof_elem->list_entry);
 747                                ice_free(hw, rl_prof_elem);
 748                        }
 749                }
 750        }
 751}
 752
 753/**
 754 * ice_sched_clear_agg - clears the aggregator related information
 755 * @hw: pointer to the hardware structure
 756 *
 757 * This function removes aggregator list and free up aggregator related memory
 758 * previously allocated.
 759 */
 760void ice_sched_clear_agg(struct ice_hw *hw)
 761{
 762        struct ice_sched_agg_info *agg_info;
 763        struct ice_sched_agg_info *atmp;
 764
 765        LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &hw->agg_list,
 766                                 ice_sched_agg_info,
 767                                 list_entry) {
 768                struct ice_sched_agg_vsi_info *agg_vsi_info;
 769                struct ice_sched_agg_vsi_info *vtmp;
 770
 771                LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
 772                                         &agg_info->agg_vsi_list,
 773                                         ice_sched_agg_vsi_info, list_entry) {
 774                        LIST_DEL(&agg_vsi_info->list_entry);
 775                        ice_free(hw, agg_vsi_info);
 776                }
 777                LIST_DEL(&agg_info->list_entry);
 778                ice_free(hw, agg_info);
 779        }
 780}
 781
 782/**
 783 * ice_sched_clear_tx_topo - clears the scheduler tree nodes
 784 * @pi: port information structure
 785 *
 786 * This function removes all the nodes from HW as well as from SW DB.
 787 */
 788static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
 789{
 790        if (!pi)
 791                return;
 792        /* remove RL profiles related lists */
 793        ice_sched_clear_rl_prof(pi);
 794        if (pi->root) {
 795                ice_free_sched_node(pi, pi->root);
 796                pi->root = NULL;
 797        }
 798}
 799
 800/**
 801 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
 802 * @pi: port information structure
 803 *
 804 * Cleanup scheduling elements from SW DB
 805 */
 806void ice_sched_clear_port(struct ice_port_info *pi)
 807{
 808        if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
 809                return;
 810
 811        pi->port_state = ICE_SCHED_PORT_STATE_INIT;
 812        ice_acquire_lock(&pi->sched_lock);
 813        ice_sched_clear_tx_topo(pi);
 814        ice_release_lock(&pi->sched_lock);
 815        ice_destroy_lock(&pi->sched_lock);
 816}
 817
 818/**
 819 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
 820 * @hw: pointer to the HW struct
 821 *
 822 * Cleanup scheduling elements from SW DB for all the ports
 823 */
 824void ice_sched_cleanup_all(struct ice_hw *hw)
 825{
 826        if (!hw)
 827                return;
 828
 829        if (hw->layer_info) {
 830                ice_free(hw, hw->layer_info);
 831                hw->layer_info = NULL;
 832        }
 833
 834        ice_sched_clear_port(hw->port_info);
 835
 836        hw->num_tx_sched_layers = 0;
 837        hw->num_tx_sched_phys_layers = 0;
 838        hw->flattened_layers = 0;
 839        hw->max_cgds = 0;
 840}
 841
 842/**
 843 * ice_aq_cfg_l2_node_cgd - configures L2 node to CGD mapping
 844 * @hw: pointer to the HW struct
 845 * @num_l2_nodes: the number of L2 nodes whose CGDs to configure
 846 * @buf: pointer to buffer
 847 * @buf_size: buffer size in bytes
 848 * @cd: pointer to command details structure or NULL
 849 *
 850 * Configure L2 Node CGD (0x0414)
 851 */
 852enum ice_status
 853ice_aq_cfg_l2_node_cgd(struct ice_hw *hw, u16 num_l2_nodes,
 854                       struct ice_aqc_cfg_l2_node_cgd_elem *buf,
 855                       u16 buf_size, struct ice_sq_cd *cd)
 856{
 857        struct ice_aqc_cfg_l2_node_cgd *cmd;
 858        struct ice_aq_desc desc;
 859
 860        cmd = &desc.params.cfg_l2_node_cgd;
 861        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_l2_node_cgd);
 862        desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
 863
 864        cmd->num_l2_nodes = CPU_TO_LE16(num_l2_nodes);
 865        return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 866}
 867
 868/**
 869 * ice_sched_add_elems - add nodes to HW and SW DB
 870 * @pi: port information structure
 871 * @tc_node: pointer to the branch node
 872 * @parent: pointer to the parent node
 873 * @layer: layer number to add nodes
 874 * @num_nodes: number of nodes
 875 * @num_nodes_added: pointer to num nodes added
 876 * @first_node_teid: if new nodes are added then return the TEID of first node
 877 *
 878 * This function add nodes to HW as well as to SW DB for a given layer
 879 */
 880static enum ice_status
 881ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
 882                    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
 883                    u16 *num_nodes_added, u32 *first_node_teid)
 884{
 885        struct ice_sched_node *prev, *new_node;
 886        struct ice_aqc_add_elem *buf;
 887        u16 i, num_groups_added = 0;
 888        enum ice_status status = ICE_SUCCESS;
 889        struct ice_hw *hw = pi->hw;
 890        u16 buf_size;
 891        u32 teid;
 892
 893        buf_size = ice_struct_size(buf, generic, num_nodes);
 894        buf = (struct ice_aqc_add_elem *)ice_malloc(hw, buf_size);
 895        if (!buf)
 896                return ICE_ERR_NO_MEMORY;
 897
 898        buf->hdr.parent_teid = parent->info.node_teid;
 899        buf->hdr.num_elems = CPU_TO_LE16(num_nodes);
 900        for (i = 0; i < num_nodes; i++) {
 901                buf->generic[i].parent_teid = parent->info.node_teid;
 902                buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
 903                buf->generic[i].data.valid_sections =
 904                        ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
 905                        ICE_AQC_ELEM_VALID_EIR;
 906                buf->generic[i].data.generic = 0;
 907                buf->generic[i].data.cir_bw.bw_profile_idx =
 908                        CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
 909                buf->generic[i].data.cir_bw.bw_alloc =
 910                        CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
 911                buf->generic[i].data.eir_bw.bw_profile_idx =
 912                        CPU_TO_LE16(ICE_SCHED_DFLT_RL_PROF_ID);
 913                buf->generic[i].data.eir_bw.bw_alloc =
 914                        CPU_TO_LE16(ICE_SCHED_DFLT_BW_WT);
 915        }
 916
 917        status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
 918                                        &num_groups_added, NULL);
 919        if (status != ICE_SUCCESS || num_groups_added != 1) {
 920                ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
 921                          hw->adminq.sq_last_status);
 922                ice_free(hw, buf);
 923                return ICE_ERR_CFG;
 924        }
 925
 926        *num_nodes_added = num_nodes;
 927        /* add nodes to the SW DB */
 928        for (i = 0; i < num_nodes; i++) {
 929                status = ice_sched_add_node(pi, layer, &buf->generic[i]);
 930                if (status != ICE_SUCCESS) {
 931                        ice_debug(hw, ICE_DBG_SCHED, "add nodes in SW DB failed status =%d\n",
 932                                  status);
 933                        break;
 934                }
 935
 936                teid = LE32_TO_CPU(buf->generic[i].node_teid);
 937                new_node = ice_sched_find_node_by_teid(parent, teid);
 938                if (!new_node) {
 939                        ice_debug(hw, ICE_DBG_SCHED, "Node is missing for teid =%d\n", teid);
 940                        break;
 941                }
 942
 943                new_node->sibling = NULL;
 944                new_node->tc_num = tc_node->tc_num;
 945
 946                /* add it to previous node sibling pointer */
 947                /* Note: siblings are not linked across branches */
 948                prev = ice_sched_get_first_node(pi, tc_node, layer);
 949                if (prev && prev != new_node) {
 950                        while (prev->sibling)
 951                                prev = prev->sibling;
 952                        prev->sibling = new_node;
 953                }
 954
 955                /* initialize the sibling head */
 956                if (!pi->sib_head[tc_node->tc_num][layer])
 957                        pi->sib_head[tc_node->tc_num][layer] = new_node;
 958
 959                if (i == 0)
 960                        *first_node_teid = teid;
 961        }
 962
 963        ice_free(hw, buf);
 964        return status;
 965}
 966
 967/**
 968 * ice_sched_add_nodes_to_hw_layer - Add nodes to hw layer
 969 * @pi: port information structure
 970 * @tc_node: pointer to TC node
 971 * @parent: pointer to parent node
 972 * @layer: layer number to add nodes
 973 * @num_nodes: number of nodes to be added
 974 * @first_node_teid: pointer to the first node TEID
 975 * @num_nodes_added: pointer to number of nodes added
 976 *
 977 * Add nodes into specific hw layer.
 978 */
 979static enum ice_status
 980ice_sched_add_nodes_to_hw_layer(struct ice_port_info *pi,
 981                                struct ice_sched_node *tc_node,
 982                                struct ice_sched_node *parent, u8 layer,
 983                                u16 num_nodes, u32 *first_node_teid,
 984                                u16 *num_nodes_added)
 985{
 986        u16 max_child_nodes;
 987
 988        *num_nodes_added = 0;
 989
 990        if (!num_nodes)
 991                return ICE_SUCCESS;
 992
 993        if (!parent || layer < pi->hw->sw_entry_point_layer)
 994                return ICE_ERR_PARAM;
 995
 996        /* max children per node per layer */
 997        max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
 998
 999        /* current number of children + required nodes exceed max children */
1000        if ((parent->num_children + num_nodes) > max_child_nodes) {
1001                /* Fail if the parent is a TC node */
1002                if (parent == tc_node)
1003                        return ICE_ERR_CFG;
1004                return ICE_ERR_MAX_LIMIT;
1005        }
1006
1007        return ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
1008                                   num_nodes_added, first_node_teid);
1009}
1010
1011/**
1012 * ice_sched_add_nodes_to_layer - Add nodes to a given layer
1013 * @pi: port information structure
1014 * @tc_node: pointer to TC node
1015 * @parent: pointer to parent node
1016 * @layer: layer number to add nodes
1017 * @num_nodes: number of nodes to be added
1018 * @first_node_teid: pointer to the first node TEID
1019 * @num_nodes_added: pointer to number of nodes added
1020 *
1021 * This function add nodes to a given layer.
1022 */
1023static enum ice_status
1024ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
1025                             struct ice_sched_node *tc_node,
1026                             struct ice_sched_node *parent, u8 layer,
1027                             u16 num_nodes, u32 *first_node_teid,
1028                             u16 *num_nodes_added)
1029{
1030        u32 *first_teid_ptr = first_node_teid;
1031        u16 new_num_nodes = num_nodes;
1032        enum ice_status status = ICE_SUCCESS;
1033
1034        *num_nodes_added = 0;
1035        while (*num_nodes_added < num_nodes) {
1036                u16 max_child_nodes, num_added = 0;
1037                u32 temp;
1038
1039                status = ice_sched_add_nodes_to_hw_layer(pi, tc_node, parent,
1040                                                         layer, new_num_nodes,
1041                                                         first_teid_ptr,
1042                                                         &num_added);
1043                if (status == ICE_SUCCESS)
1044                        *num_nodes_added += num_added;
1045                /* added more nodes than requested ? */
1046                if (*num_nodes_added > num_nodes) {
1047                        ice_debug(pi->hw, ICE_DBG_SCHED, "added extra nodes %d %d\n", num_nodes,
1048                                  *num_nodes_added);
1049                        status = ICE_ERR_CFG;
1050                        break;
1051                }
1052                /* break if all the nodes are added successfully */
1053                if (status == ICE_SUCCESS && (*num_nodes_added == num_nodes))
1054                        break;
1055                /* break if the error is not max limit */
1056                if (status != ICE_SUCCESS && status != ICE_ERR_MAX_LIMIT)
1057                        break;
1058                /* Exceeded the max children */
1059                max_child_nodes = pi->hw->max_children[parent->tx_sched_layer];
1060                /* utilize all the spaces if the parent is not full */
1061                if (parent->num_children < max_child_nodes) {
1062                        new_num_nodes = max_child_nodes - parent->num_children;
1063                } else {
1064                        /* This parent is full, try the next sibling */
1065                        parent = parent->sibling;
1066                        /* Don't modify the first node TEID memory if the
1067                         * first node was added already in the above call.
1068                         * Instead send some temp memory for all other
1069                         * recursive calls.
1070                         */
1071                        if (num_added)
1072                                first_teid_ptr = &temp;
1073
1074                        new_num_nodes = num_nodes - *num_nodes_added;
1075                }
1076        }
1077        return status;
1078}
1079
1080/**
1081 * ice_sched_get_qgrp_layer - get the current queue group layer number
1082 * @hw: pointer to the HW struct
1083 *
1084 * This function returns the current queue group layer number
1085 */
1086static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1087{
1088        /* It's always total layers - 1, the array is 0 relative so -2 */
1089        return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1090}
1091
1092/**
1093 * ice_sched_get_vsi_layer - get the current VSI layer number
1094 * @hw: pointer to the HW struct
1095 *
1096 * This function returns the current VSI layer number
1097 */
1098static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1099{
1100        /* Num Layers       VSI layer
1101         *     9               6
1102         *     7               4
1103         *     5 or less       sw_entry_point_layer
1104         */
1105        /* calculate the VSI layer based on number of layers. */
1106        if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1107                u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1108
1109                if (layer > hw->sw_entry_point_layer)
1110                        return layer;
1111        }
1112        return hw->sw_entry_point_layer;
1113}
1114
1115/**
1116 * ice_sched_get_agg_layer - get the current aggregator layer number
1117 * @hw: pointer to the HW struct
1118 *
1119 * This function returns the current aggregator layer number
1120 */
1121static u8 ice_sched_get_agg_layer(struct ice_hw *hw)
1122{
1123        /* Num Layers       aggregator layer
1124         *     9               4
1125         *     7 or less       sw_entry_point_layer
1126         */
1127        /* calculate the aggregator layer based on number of layers. */
1128        if (hw->num_tx_sched_layers > ICE_AGG_LAYER_OFFSET + 1) {
1129                u8 layer = hw->num_tx_sched_layers - ICE_AGG_LAYER_OFFSET;
1130
1131                if (layer > hw->sw_entry_point_layer)
1132                        return layer;
1133        }
1134        return hw->sw_entry_point_layer;
1135}
1136
1137/**
1138 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1139 * @pi: port information structure
1140 *
1141 * This function removes the leaf node that was created by the FW
1142 * during initialization
1143 */
1144static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1145{
1146        struct ice_sched_node *node;
1147
1148        node = pi->root;
1149        while (node) {
1150                if (!node->num_children)
1151                        break;
1152                node = node->children[0];
1153        }
1154        if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1155                u32 teid = LE32_TO_CPU(node->info.node_teid);
1156                enum ice_status status;
1157
1158                /* remove the default leaf node */
1159                status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1160                if (!status)
1161                        ice_free_sched_node(pi, node);
1162        }
1163}
1164
1165/**
1166 * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1167 * @pi: port information structure
1168 *
1169 * This function frees all the nodes except root and TC that were created by
1170 * the FW during initialization
1171 */
1172static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1173{
1174        struct ice_sched_node *node;
1175
1176        ice_rm_dflt_leaf_node(pi);
1177
1178        /* remove the default nodes except TC and root nodes */
1179        node = pi->root;
1180        while (node) {
1181                if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1182                    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1183                    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1184                        ice_free_sched_node(pi, node);
1185                        break;
1186                }
1187
1188                if (!node->num_children)
1189                        break;
1190                node = node->children[0];
1191        }
1192}
1193
1194/**
1195 * ice_sched_init_port - Initialize scheduler by querying information from FW
1196 * @pi: port info structure for the tree to cleanup
1197 *
1198 * This function is the initial call to find the total number of Tx scheduler
1199 * resources, default topology created by firmware and storing the information
1200 * in SW DB.
1201 */
1202enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1203{
1204        struct ice_aqc_get_topo_elem *buf;
1205        enum ice_status status;
1206        struct ice_hw *hw;
1207        u8 num_branches;
1208        u16 num_elems;
1209        u8 i, j;
1210
1211        if (!pi)
1212                return ICE_ERR_PARAM;
1213        hw = pi->hw;
1214
1215        /* Query the Default Topology from FW */
1216        buf = (struct ice_aqc_get_topo_elem *)ice_malloc(hw,
1217                                                         ICE_AQ_MAX_BUF_LEN);
1218        if (!buf)
1219                return ICE_ERR_NO_MEMORY;
1220
1221        /* Query default scheduling tree topology */
1222        status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1223                                      &num_branches, NULL);
1224        if (status)
1225                goto err_init_port;
1226
1227        /* num_branches should be between 1-8 */
1228        if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1229                ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1230                          num_branches);
1231                status = ICE_ERR_PARAM;
1232                goto err_init_port;
1233        }
1234
1235        /* get the number of elements on the default/first branch */
1236        num_elems = LE16_TO_CPU(buf[0].hdr.num_elems);
1237
1238        /* num_elems should always be between 1-9 */
1239        if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1240                ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1241                          num_elems);
1242                status = ICE_ERR_PARAM;
1243                goto err_init_port;
1244        }
1245
1246        /* If the last node is a leaf node then the index of the queue group
1247         * layer is two less than the number of elements.
1248         */
1249        if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1250            ICE_AQC_ELEM_TYPE_LEAF)
1251                pi->last_node_teid =
1252                        LE32_TO_CPU(buf[0].generic[num_elems - 2].node_teid);
1253        else
1254                pi->last_node_teid =
1255                        LE32_TO_CPU(buf[0].generic[num_elems - 1].node_teid);
1256
1257        /* Insert the Tx Sched root node */
1258        status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1259        if (status)
1260                goto err_init_port;
1261
1262        /* Parse the default tree and cache the information */
1263        for (i = 0; i < num_branches; i++) {
1264                num_elems = LE16_TO_CPU(buf[i].hdr.num_elems);
1265
1266                /* Skip root element as already inserted */
1267                for (j = 1; j < num_elems; j++) {
1268                        /* update the sw entry point */
1269                        if (buf[0].generic[j].data.elem_type ==
1270                            ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1271                                hw->sw_entry_point_layer = j;
1272
1273                        status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
1274                        if (status)
1275                                goto err_init_port;
1276                }
1277        }
1278
1279        /* Remove the default nodes. */
1280        if (pi->root)
1281                ice_sched_rm_dflt_nodes(pi);
1282
1283        /* initialize the port for handling the scheduler tree */
1284        pi->port_state = ICE_SCHED_PORT_STATE_READY;
1285        ice_init_lock(&pi->sched_lock);
1286        for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1287                INIT_LIST_HEAD(&hw->rl_prof_list[i]);
1288
1289err_init_port:
1290        if (status && pi->root) {
1291                ice_free_sched_node(pi, pi->root);
1292                pi->root = NULL;
1293        }
1294
1295        ice_free(hw, buf);
1296        return status;
1297}
1298
1299/**
1300 * ice_sched_get_node - Get the struct ice_sched_node for given TEID
1301 * @pi: port information structure
1302 * @teid: Scheduler node TEID
1303 *
1304 * This function retrieves the ice_sched_node struct for given TEID from
1305 * the SW DB and returns it to the caller.
1306 */
1307struct ice_sched_node *ice_sched_get_node(struct ice_port_info *pi, u32 teid)
1308{
1309        struct ice_sched_node *node;
1310
1311        if (!pi)
1312                return NULL;
1313
1314        /* Find the node starting from root */
1315        ice_acquire_lock(&pi->sched_lock);
1316        node = ice_sched_find_node_by_teid(pi->root, teid);
1317        ice_release_lock(&pi->sched_lock);
1318
1319        if (!node)
1320                ice_debug(pi->hw, ICE_DBG_SCHED, "Node not found for teid=0x%x\n", teid);
1321
1322        return node;
1323}
1324
1325/**
1326 * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1327 * @hw: pointer to the HW struct
1328 *
1329 * query FW for allocated scheduler resources and store in HW struct
1330 */
1331enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1332{
1333        struct ice_aqc_query_txsched_res_resp *buf;
1334        enum ice_status status = ICE_SUCCESS;
1335        __le16 max_sibl;
1336        u8 i;
1337
1338        if (hw->layer_info)
1339                return status;
1340
1341        buf = (struct ice_aqc_query_txsched_res_resp *)
1342                ice_malloc(hw, sizeof(*buf));
1343        if (!buf)
1344                return ICE_ERR_NO_MEMORY;
1345
1346        status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1347        if (status)
1348                goto sched_query_out;
1349
1350        hw->num_tx_sched_layers = LE16_TO_CPU(buf->sched_props.logical_levels);
1351        hw->num_tx_sched_phys_layers =
1352                LE16_TO_CPU(buf->sched_props.phys_levels);
1353        hw->flattened_layers = buf->sched_props.flattening_bitmap;
1354        hw->max_cgds = buf->sched_props.max_pf_cgds;
1355
1356        /* max sibling group size of current layer refers to the max children
1357         * of the below layer node.
1358         * layer 1 node max children will be layer 2 max sibling group size
1359         * layer 2 node max children will be layer 3 max sibling group size
1360         * and so on. This array will be populated from root (index 0) to
1361         * qgroup layer 7. Leaf node has no children.
1362         */
1363        for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1364                max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1365                hw->max_children[i] = LE16_TO_CPU(max_sibl);
1366        }
1367
1368        hw->layer_info = (struct ice_aqc_layer_props *)
1369                         ice_memdup(hw, buf->layer_props,
1370                                    (hw->num_tx_sched_layers *
1371                                     sizeof(*hw->layer_info)),
1372                                    ICE_NONDMA_TO_NONDMA);
1373        if (!hw->layer_info) {
1374                status = ICE_ERR_NO_MEMORY;
1375                goto sched_query_out;
1376        }
1377
1378sched_query_out:
1379        ice_free(hw, buf);
1380        return status;
1381}
1382
1383/**
1384 * ice_sched_get_psm_clk_freq - determine the PSM clock frequency
1385 * @hw: pointer to the HW struct
1386 *
1387 * Determine the PSM clock frequency and store in HW struct
1388 */
1389void ice_sched_get_psm_clk_freq(struct ice_hw *hw)
1390{
1391        u32 val, clk_src;
1392
1393        val = rd32(hw, GLGEN_CLKSTAT_SRC);
1394        clk_src = (val & GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_M) >>
1395                GLGEN_CLKSTAT_SRC_PSM_CLK_SRC_S;
1396
1397#define PSM_CLK_SRC_367_MHZ 0x0
1398#define PSM_CLK_SRC_416_MHZ 0x1
1399#define PSM_CLK_SRC_446_MHZ 0x2
1400#define PSM_CLK_SRC_390_MHZ 0x3
1401
1402        switch (clk_src) {
1403        case PSM_CLK_SRC_367_MHZ:
1404                hw->psm_clk_freq = ICE_PSM_CLK_367MHZ_IN_HZ;
1405                break;
1406        case PSM_CLK_SRC_416_MHZ:
1407                hw->psm_clk_freq = ICE_PSM_CLK_416MHZ_IN_HZ;
1408                break;
1409        case PSM_CLK_SRC_446_MHZ:
1410                hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1411                break;
1412        case PSM_CLK_SRC_390_MHZ:
1413                hw->psm_clk_freq = ICE_PSM_CLK_390MHZ_IN_HZ;
1414                break;
1415        default:
1416                ice_debug(hw, ICE_DBG_SCHED, "PSM clk_src unexpected %u\n",
1417                          clk_src);
1418                /* fall back to a safe default */
1419                hw->psm_clk_freq = ICE_PSM_CLK_446MHZ_IN_HZ;
1420        }
1421}
1422
1423/**
1424 * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1425 * @hw: pointer to the HW struct
1426 * @base: pointer to the base node
1427 * @node: pointer to the node to search
1428 *
1429 * This function checks whether a given node is part of the base node
1430 * subtree or not
1431 */
1432bool
1433ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1434                               struct ice_sched_node *node)
1435{
1436        u8 i;
1437
1438        for (i = 0; i < base->num_children; i++) {
1439                struct ice_sched_node *child = base->children[i];
1440
1441                if (node == child)
1442                        return true;
1443
1444                if (child->tx_sched_layer > node->tx_sched_layer)
1445                        return false;
1446
1447                /* this recursion is intentional, and wouldn't
1448                 * go more than 8 calls
1449                 */
1450                if (ice_sched_find_node_in_subtree(hw, child, node))
1451                        return true;
1452        }
1453        return false;
1454}
1455
1456/**
1457 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1458 * @pi: port information structure
1459 * @vsi_node: software VSI handle
1460 * @qgrp_node: first queue group node identified for scanning
1461 * @owner: LAN or RDMA
1462 *
1463 * This function retrieves a free LAN or RDMA queue group node by scanning
1464 * qgrp_node and its siblings for the queue group with the fewest number
1465 * of queues currently assigned.
1466 */
1467static struct ice_sched_node *
1468ice_sched_get_free_qgrp(struct ice_port_info *pi,
1469                        struct ice_sched_node *vsi_node,
1470                        struct ice_sched_node *qgrp_node, u8 owner)
1471{
1472        struct ice_sched_node *min_qgrp;
1473        u8 min_children;
1474
1475        if (!qgrp_node)
1476                return qgrp_node;
1477        min_children = qgrp_node->num_children;
1478        if (!min_children)
1479                return qgrp_node;
1480        min_qgrp = qgrp_node;
1481        /* scan all queue groups until find a node which has less than the
1482         * minimum number of children. This way all queue group nodes get
1483         * equal number of shares and active. The bandwidth will be equally
1484         * distributed across all queues.
1485         */
1486        while (qgrp_node) {
1487                /* make sure the qgroup node is part of the VSI subtree */
1488                if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1489                        if (qgrp_node->num_children < min_children &&
1490                            qgrp_node->owner == owner) {
1491                                /* replace the new min queue group node */
1492                                min_qgrp = qgrp_node;
1493                                min_children = min_qgrp->num_children;
1494                                /* break if it has no children, */
1495                                if (!min_children)
1496                                        break;
1497                        }
1498                qgrp_node = qgrp_node->sibling;
1499        }
1500        return min_qgrp;
1501}
1502
1503/**
1504 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1505 * @pi: port information structure
1506 * @vsi_handle: software VSI handle
1507 * @tc: branch number
1508 * @owner: LAN or RDMA
1509 *
1510 * This function retrieves a free LAN or RDMA queue group node
1511 */
1512struct ice_sched_node *
1513ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1514                           u8 owner)
1515{
1516        struct ice_sched_node *vsi_node, *qgrp_node;
1517        struct ice_vsi_ctx *vsi_ctx;
1518        u16 max_children;
1519        u8 qgrp_layer;
1520
1521        qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1522        max_children = pi->hw->max_children[qgrp_layer];
1523
1524        vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1525        if (!vsi_ctx)
1526                return NULL;
1527        vsi_node = vsi_ctx->sched.vsi_node[tc];
1528        /* validate invalid VSI ID */
1529        if (!vsi_node)
1530                return NULL;
1531
1532        /* get the first queue group node from VSI sub-tree */
1533        qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1534        while (qgrp_node) {
1535                /* make sure the qgroup node is part of the VSI subtree */
1536                if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1537                        if (qgrp_node->num_children < max_children &&
1538                            qgrp_node->owner == owner)
1539                                break;
1540                qgrp_node = qgrp_node->sibling;
1541        }
1542
1543        /* Select the best queue group */
1544        return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1545}
1546
1547/**
1548 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1549 * @pi: pointer to the port information structure
1550 * @tc_node: pointer to the TC node
1551 * @vsi_handle: software VSI handle
1552 *
1553 * This function retrieves a VSI node for a given VSI ID from a given
1554 * TC branch
1555 */
1556struct ice_sched_node *
1557ice_sched_get_vsi_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1558                       u16 vsi_handle)
1559{
1560        struct ice_sched_node *node;
1561        u8 vsi_layer;
1562
1563        vsi_layer = ice_sched_get_vsi_layer(pi->hw);
1564        node = ice_sched_get_first_node(pi, tc_node, vsi_layer);
1565
1566        /* Check whether it already exists */
1567        while (node) {
1568                if (node->vsi_handle == vsi_handle)
1569                        return node;
1570                node = node->sibling;
1571        }
1572
1573        return node;
1574}
1575
1576/**
1577 * ice_sched_get_agg_node - Get an aggregator node based on aggregator ID
1578 * @pi: pointer to the port information structure
1579 * @tc_node: pointer to the TC node
1580 * @agg_id: aggregator ID
1581 *
1582 * This function retrieves an aggregator node for a given aggregator ID from
1583 * a given TC branch
1584 */
1585static struct ice_sched_node *
1586ice_sched_get_agg_node(struct ice_port_info *pi, struct ice_sched_node *tc_node,
1587                       u32 agg_id)
1588{
1589        struct ice_sched_node *node;
1590        struct ice_hw *hw = pi->hw;
1591        u8 agg_layer;
1592
1593        if (!hw)
1594                return NULL;
1595        agg_layer = ice_sched_get_agg_layer(hw);
1596        node = ice_sched_get_first_node(pi, tc_node, agg_layer);
1597
1598        /* Check whether it already exists */
1599        while (node) {
1600                if (node->agg_id == agg_id)
1601                        return node;
1602                node = node->sibling;
1603        }
1604
1605        return node;
1606}
1607
1608/**
1609 * ice_sched_check_node - Compare node parameters between SW DB and HW DB
1610 * @hw: pointer to the HW struct
1611 * @node: pointer to the ice_sched_node struct
1612 *
1613 * This function queries and compares the HW element with SW DB node parameters
1614 */
1615static bool ice_sched_check_node(struct ice_hw *hw, struct ice_sched_node *node)
1616{
1617        struct ice_aqc_txsched_elem_data buf;
1618        enum ice_status status;
1619        u32 node_teid;
1620
1621        node_teid = LE32_TO_CPU(node->info.node_teid);
1622        status = ice_sched_query_elem(hw, node_teid, &buf);
1623        if (status != ICE_SUCCESS)
1624                return false;
1625
1626        if (memcmp(&buf, &node->info, sizeof(buf))) {
1627                ice_debug(hw, ICE_DBG_SCHED, "Node mismatch for teid=0x%x\n",
1628                          node_teid);
1629                return false;
1630        }
1631
1632        return true;
1633}
1634
1635/**
1636 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1637 * @hw: pointer to the HW struct
1638 * @num_qs: number of queues
1639 * @num_nodes: num nodes array
1640 *
1641 * This function calculates the number of VSI child nodes based on the
1642 * number of queues.
1643 */
1644static void
1645ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1646{
1647        u16 num = num_qs;
1648        u8 i, qgl, vsil;
1649
1650        qgl = ice_sched_get_qgrp_layer(hw);
1651        vsil = ice_sched_get_vsi_layer(hw);
1652
1653        /* calculate num nodes from queue group to VSI layer */
1654        for (i = qgl; i > vsil; i--) {
1655                /* round to the next integer if there is a remainder */
1656                num = DIVIDE_AND_ROUND_UP(num, hw->max_children[i]);
1657
1658                /* need at least one node */
1659                num_nodes[i] = num ? num : 1;
1660        }
1661}
1662
1663/**
1664 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1665 * @pi: port information structure
1666 * @vsi_handle: software VSI handle
1667 * @tc_node: pointer to the TC node
1668 * @num_nodes: pointer to the num nodes that needs to be added per layer
1669 * @owner: node owner (LAN or RDMA)
1670 *
1671 * This function adds the VSI child nodes to tree. It gets called for
1672 * LAN and RDMA separately.
1673 */
1674static enum ice_status
1675ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1676                              struct ice_sched_node *tc_node, u16 *num_nodes,
1677                              u8 owner)
1678{
1679        struct ice_sched_node *parent, *node;
1680        struct ice_hw *hw = pi->hw;
1681        enum ice_status status;
1682        u32 first_node_teid;
1683        u16 num_added = 0;
1684        u8 i, qgl, vsil;
1685
1686        qgl = ice_sched_get_qgrp_layer(hw);
1687        vsil = ice_sched_get_vsi_layer(hw);
1688        parent = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1689        for (i = vsil + 1; i <= qgl; i++) {
1690                if (!parent)
1691                        return ICE_ERR_CFG;
1692
1693                status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1694                                                      num_nodes[i],
1695                                                      &first_node_teid,
1696                                                      &num_added);
1697                if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1698                        return ICE_ERR_CFG;
1699
1700                /* The newly added node can be a new parent for the next
1701                 * layer nodes
1702                 */
1703                if (num_added) {
1704                        parent = ice_sched_find_node_by_teid(tc_node,
1705                                                             first_node_teid);
1706                        node = parent;
1707                        while (node) {
1708                                node->owner = owner;
1709                                node = node->sibling;
1710                        }
1711                } else {
1712                        parent = parent->children[0];
1713                }
1714        }
1715
1716        return ICE_SUCCESS;
1717}
1718
1719/**
1720 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1721 * @pi: pointer to the port info structure
1722 * @tc_node: pointer to TC node
1723 * @num_nodes: pointer to num nodes array
1724 *
1725 * This function calculates the number of supported nodes needed to add this
1726 * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1727 * layers
1728 */
1729static void
1730ice_sched_calc_vsi_support_nodes(struct ice_port_info *pi,
1731                                 struct ice_sched_node *tc_node, u16 *num_nodes)
1732{
1733        struct ice_sched_node *node;
1734        u8 vsil;
1735        int i;
1736
1737        vsil = ice_sched_get_vsi_layer(pi->hw);
1738        for (i = vsil; i >= pi->hw->sw_entry_point_layer; i--)
1739                /* Add intermediate nodes if TC has no children and
1740                 * need at least one node for VSI
1741                 */
1742                if (!tc_node->num_children || i == vsil) {
1743                        num_nodes[i]++;
1744                } else {
1745                        /* If intermediate nodes are reached max children
1746                         * then add a new one.
1747                         */
1748                        node = ice_sched_get_first_node(pi, tc_node, (u8)i);
1749                        /* scan all the siblings */
1750                        while (node) {
1751                                if (node->num_children <
1752                                    pi->hw->max_children[i])
1753                                        break;
1754                                node = node->sibling;
1755                        }
1756
1757                        /* tree has one intermediate node to add this new VSI.
1758                         * So no need to calculate supported nodes for below
1759                         * layers.
1760                         */
1761                        if (node)
1762                                break;
1763                        /* all the nodes are full, allocate a new one */
1764                        num_nodes[i]++;
1765                }
1766}
1767
1768/**
1769 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1770 * @pi: port information structure
1771 * @vsi_handle: software VSI handle
1772 * @tc_node: pointer to TC node
1773 * @num_nodes: pointer to num nodes array
1774 *
1775 * This function adds the VSI supported nodes into Tx tree including the
1776 * VSI, its parent and intermediate nodes in below layers
1777 */
1778static enum ice_status
1779ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1780                                struct ice_sched_node *tc_node, u16 *num_nodes)
1781{
1782        struct ice_sched_node *parent = tc_node;
1783        enum ice_status status;
1784        u32 first_node_teid;
1785        u16 num_added = 0;
1786        u8 i, vsil;
1787
1788        if (!pi)
1789                return ICE_ERR_PARAM;
1790
1791        vsil = ice_sched_get_vsi_layer(pi->hw);
1792        for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1793                status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1794                                                      i, num_nodes[i],
1795                                                      &first_node_teid,
1796                                                      &num_added);
1797                if (status != ICE_SUCCESS || num_nodes[i] != num_added)
1798                        return ICE_ERR_CFG;
1799
1800                /* The newly added node can be a new parent for the next
1801                 * layer nodes
1802                 */
1803                if (num_added)
1804                        parent = ice_sched_find_node_by_teid(tc_node,
1805                                                             first_node_teid);
1806                else
1807                        parent = parent->children[0];
1808
1809                if (!parent)
1810                        return ICE_ERR_CFG;
1811
1812                if (i == vsil)
1813                        parent->vsi_handle = vsi_handle;
1814        }
1815
1816        return ICE_SUCCESS;
1817}
1818
1819/**
1820 * ice_sched_add_vsi_to_topo - add a new VSI into tree
1821 * @pi: port information structure
1822 * @vsi_handle: software VSI handle
1823 * @tc: TC number
1824 *
1825 * This function adds a new VSI into scheduler tree
1826 */
1827static enum ice_status
1828ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1829{
1830        u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1831        struct ice_sched_node *tc_node;
1832
1833        tc_node = ice_sched_get_tc_node(pi, tc);
1834        if (!tc_node)
1835                return ICE_ERR_PARAM;
1836
1837        /* calculate number of supported nodes needed for this VSI */
1838        ice_sched_calc_vsi_support_nodes(pi, tc_node, num_nodes);
1839
1840        /* add VSI supported nodes to TC subtree */
1841        return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1842                                               num_nodes);
1843}
1844
1845/**
1846 * ice_sched_update_vsi_child_nodes - update VSI child nodes
1847 * @pi: port information structure
1848 * @vsi_handle: software VSI handle
1849 * @tc: TC number
1850 * @new_numqs: new number of max queues
1851 * @owner: owner of this subtree
1852 *
1853 * This function updates the VSI child nodes based on the number of queues
1854 */
1855static enum ice_status
1856ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1857                                 u8 tc, u16 new_numqs, u8 owner)
1858{
1859        u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1860        struct ice_sched_node *vsi_node;
1861        struct ice_sched_node *tc_node;
1862        struct ice_vsi_ctx *vsi_ctx;
1863        enum ice_status status = ICE_SUCCESS;
1864        struct ice_hw *hw = pi->hw;
1865        u16 prev_numqs;
1866
1867        tc_node = ice_sched_get_tc_node(pi, tc);
1868        if (!tc_node)
1869                return ICE_ERR_CFG;
1870
1871        vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1872        if (!vsi_node)
1873                return ICE_ERR_CFG;
1874
1875        vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1876        if (!vsi_ctx)
1877                return ICE_ERR_PARAM;
1878
1879        prev_numqs = vsi_ctx->sched.max_lanq[tc];
1880        /* num queues are not changed or less than the previous number */
1881        if (new_numqs <= prev_numqs)
1882                return status;
1883        status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1884        if (status)
1885                return status;
1886
1887        if (new_numqs)
1888                ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1889        /* Keep the max number of queue configuration all the time. Update the
1890         * tree only if number of queues > previous number of queues. This may
1891         * leave some extra nodes in the tree if number of queues < previous
1892         * number but that wouldn't harm anything. Removing those extra nodes
1893         * may complicate the code if those nodes are part of SRL or
1894         * individually rate limited.
1895         */
1896        status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1897                                               new_num_nodes, owner);
1898        if (status)
1899                return status;
1900        vsi_ctx->sched.max_lanq[tc] = new_numqs;
1901
1902        return ICE_SUCCESS;
1903}
1904
1905/**
1906 * ice_sched_cfg_vsi - configure the new/existing VSI
1907 * @pi: port information structure
1908 * @vsi_handle: software VSI handle
1909 * @tc: TC number
1910 * @maxqs: max number of queues
1911 * @owner: LAN or RDMA
1912 * @enable: TC enabled or disabled
1913 *
1914 * This function adds/updates VSI nodes based on the number of queues. If TC is
1915 * enabled and VSI is in suspended state then resume the VSI back. If TC is
1916 * disabled then suspend the VSI if it is not already.
1917 */
1918enum ice_status
1919ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1920                  u8 owner, bool enable)
1921{
1922        struct ice_sched_node *vsi_node, *tc_node;
1923        struct ice_vsi_ctx *vsi_ctx;
1924        enum ice_status status = ICE_SUCCESS;
1925        struct ice_hw *hw = pi->hw;
1926
1927        ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1928        tc_node = ice_sched_get_tc_node(pi, tc);
1929        if (!tc_node)
1930                return ICE_ERR_PARAM;
1931        vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1932        if (!vsi_ctx)
1933                return ICE_ERR_PARAM;
1934        vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1935
1936        /* suspend the VSI if TC is not enabled */
1937        if (!enable) {
1938                if (vsi_node && vsi_node->in_use) {
1939                        u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
1940
1941                        status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1942                                                                true);
1943                        if (!status)
1944                                vsi_node->in_use = false;
1945                }
1946                return status;
1947        }
1948
1949        /* TC is enabled, if it is a new VSI then add it to the tree */
1950        if (!vsi_node) {
1951                status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1952                if (status)
1953                        return status;
1954
1955                vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
1956                if (!vsi_node)
1957                        return ICE_ERR_CFG;
1958
1959                vsi_ctx->sched.vsi_node[tc] = vsi_node;
1960                vsi_node->in_use = true;
1961                /* invalidate the max queues whenever VSI gets added first time
1962                 * into the scheduler tree (boot or after reset). We need to
1963                 * recreate the child nodes all the time in these cases.
1964                 */
1965                vsi_ctx->sched.max_lanq[tc] = 0;
1966        }
1967
1968        /* update the VSI child nodes */
1969        status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1970                                                  owner);
1971        if (status)
1972                return status;
1973
1974        /* TC is enabled, resume the VSI if it is in the suspend state */
1975        if (!vsi_node->in_use) {
1976                u32 teid = LE32_TO_CPU(vsi_node->info.node_teid);
1977
1978                status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1979                if (!status)
1980                        vsi_node->in_use = true;
1981        }
1982
1983        return status;
1984}
1985
1986/**
1987 * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry
1988 * @pi: port information structure
1989 * @vsi_handle: software VSI handle
1990 *
1991 * This function removes single aggregator VSI info entry from
1992 * aggregator list.
1993 */
1994static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1995{
1996        struct ice_sched_agg_info *agg_info;
1997        struct ice_sched_agg_info *atmp;
1998
1999        LIST_FOR_EACH_ENTRY_SAFE(agg_info, atmp, &pi->hw->agg_list,
2000                                 ice_sched_agg_info,
2001                                 list_entry) {
2002                struct ice_sched_agg_vsi_info *agg_vsi_info;
2003                struct ice_sched_agg_vsi_info *vtmp;
2004
2005                LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, vtmp,
2006                                         &agg_info->agg_vsi_list,
2007                                         ice_sched_agg_vsi_info, list_entry)
2008                        if (agg_vsi_info->vsi_handle == vsi_handle) {
2009                                LIST_DEL(&agg_vsi_info->list_entry);
2010                                ice_free(pi->hw, agg_vsi_info);
2011                                return;
2012                        }
2013        }
2014}
2015
2016/**
2017 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
2018 * @node: pointer to the sub-tree node
2019 *
2020 * This function checks for a leaf node presence in a given sub-tree node.
2021 */
2022static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
2023{
2024        u8 i;
2025
2026        for (i = 0; i < node->num_children; i++)
2027                if (ice_sched_is_leaf_node_present(node->children[i]))
2028                        return true;
2029        /* check for a leaf node */
2030        return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
2031}
2032
2033/**
2034 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
2035 * @pi: port information structure
2036 * @vsi_handle: software VSI handle
2037 * @owner: LAN or RDMA
2038 *
2039 * This function removes the VSI and its LAN or RDMA children nodes from the
2040 * scheduler tree.
2041 */
2042static enum ice_status
2043ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
2044{
2045        enum ice_status status = ICE_ERR_PARAM;
2046        struct ice_vsi_ctx *vsi_ctx;
2047        u8 i;
2048
2049        ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
2050        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2051                return status;
2052        ice_acquire_lock(&pi->sched_lock);
2053        vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
2054        if (!vsi_ctx)
2055                goto exit_sched_rm_vsi_cfg;
2056
2057        ice_for_each_traffic_class(i) {
2058                struct ice_sched_node *vsi_node, *tc_node;
2059                u8 j = 0;
2060
2061                tc_node = ice_sched_get_tc_node(pi, i);
2062                if (!tc_node)
2063                        continue;
2064
2065                vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2066                if (!vsi_node)
2067                        continue;
2068
2069                if (ice_sched_is_leaf_node_present(vsi_node)) {
2070                        ice_debug(pi->hw, ICE_DBG_SCHED, "VSI has leaf nodes in TC %d\n", i);
2071                        status = ICE_ERR_IN_USE;
2072                        goto exit_sched_rm_vsi_cfg;
2073                }
2074                while (j < vsi_node->num_children) {
2075                        if (vsi_node->children[j]->owner == owner) {
2076                                ice_free_sched_node(pi, vsi_node->children[j]);
2077
2078                                /* reset the counter again since the num
2079                                 * children will be updated after node removal
2080                                 */
2081                                j = 0;
2082                        } else {
2083                                j++;
2084                        }
2085                }
2086                /* remove the VSI if it has no children */
2087                if (!vsi_node->num_children) {
2088                        ice_free_sched_node(pi, vsi_node);
2089                        vsi_ctx->sched.vsi_node[i] = NULL;
2090
2091                        /* clean up aggregator related VSI info if any */
2092                        ice_sched_rm_agg_vsi_info(pi, vsi_handle);
2093                }
2094                if (owner == ICE_SCHED_NODE_OWNER_LAN)
2095                        vsi_ctx->sched.max_lanq[i] = 0;
2096        }
2097        status = ICE_SUCCESS;
2098
2099exit_sched_rm_vsi_cfg:
2100        ice_release_lock(&pi->sched_lock);
2101        return status;
2102}
2103
2104/**
2105 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
2106 * @pi: port information structure
2107 * @vsi_handle: software VSI handle
2108 *
2109 * This function clears the VSI and its LAN children nodes from scheduler tree
2110 * for all TCs.
2111 */
2112enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
2113{
2114        return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
2115}
2116
2117/**
2118 * ice_sched_is_tree_balanced - Check tree nodes are identical or not
2119 * @hw: pointer to the HW struct
2120 * @node: pointer to the ice_sched_node struct
2121 *
2122 * This function compares all the nodes for a given tree against HW DB nodes
2123 * This function needs to be called with the port_info->sched_lock held
2124 */
2125bool ice_sched_is_tree_balanced(struct ice_hw *hw, struct ice_sched_node *node)
2126{
2127        u8 i;
2128
2129        /* start from the leaf node */
2130        for (i = 0; i < node->num_children; i++)
2131                /* Fail if node doesn't match with the SW DB
2132                 * this recursion is intentional, and wouldn't
2133                 * go more than 9 calls
2134                 */
2135                if (!ice_sched_is_tree_balanced(hw, node->children[i]))
2136                        return false;
2137
2138        return ice_sched_check_node(hw, node);
2139}
2140
2141/**
2142 * ice_aq_query_node_to_root - retrieve the tree topology for a given node TEID
2143 * @hw: pointer to the HW struct
2144 * @node_teid: node TEID
2145 * @buf: pointer to buffer
2146 * @buf_size: buffer size in bytes
2147 * @cd: pointer to command details structure or NULL
2148 *
2149 * This function retrieves the tree topology from the firmware for a given
2150 * node TEID to the root node.
2151 */
2152enum ice_status
2153ice_aq_query_node_to_root(struct ice_hw *hw, u32 node_teid,
2154                          struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
2155                          struct ice_sq_cd *cd)
2156{
2157        struct ice_aqc_query_node_to_root *cmd;
2158        struct ice_aq_desc desc;
2159
2160        cmd = &desc.params.query_node_to_root;
2161        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_node_to_root);
2162        cmd->teid = CPU_TO_LE32(node_teid);
2163        return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2164}
2165
2166/**
2167 * ice_get_agg_info - get the aggregator ID
2168 * @hw: pointer to the hardware structure
2169 * @agg_id: aggregator ID
2170 *
2171 * This function validates aggregator ID. The function returns info if
2172 * aggregator ID is present in list otherwise it returns null.
2173 */
2174static struct ice_sched_agg_info *
2175ice_get_agg_info(struct ice_hw *hw, u32 agg_id)
2176{
2177        struct ice_sched_agg_info *agg_info;
2178
2179        LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2180                            list_entry)
2181                if (agg_info->agg_id == agg_id)
2182                        return agg_info;
2183
2184        return NULL;
2185}
2186
2187/**
2188 * ice_sched_get_free_vsi_parent - Find a free parent node in aggregator subtree
2189 * @hw: pointer to the HW struct
2190 * @node: pointer to a child node
2191 * @num_nodes: num nodes count array
2192 *
2193 * This function walks through the aggregator subtree to find a free parent
2194 * node
2195 */
2196static struct ice_sched_node *
2197ice_sched_get_free_vsi_parent(struct ice_hw *hw, struct ice_sched_node *node,
2198                              u16 *num_nodes)
2199{
2200        u8 l = node->tx_sched_layer;
2201        u8 vsil, i;
2202
2203        vsil = ice_sched_get_vsi_layer(hw);
2204
2205        /* Is it VSI parent layer ? */
2206        if (l == vsil - 1)
2207                return (node->num_children < hw->max_children[l]) ? node : NULL;
2208
2209        /* We have intermediate nodes. Let's walk through the subtree. If the
2210         * intermediate node has space to add a new node then clear the count
2211         */
2212        if (node->num_children < hw->max_children[l])
2213                num_nodes[l] = 0;
2214        /* The below recursive call is intentional and wouldn't go more than
2215         * 2 or 3 iterations.
2216         */
2217
2218        for (i = 0; i < node->num_children; i++) {
2219                struct ice_sched_node *parent;
2220
2221                parent = ice_sched_get_free_vsi_parent(hw, node->children[i],
2222                                                       num_nodes);
2223                if (parent)
2224                        return parent;
2225        }
2226
2227        return NULL;
2228}
2229
2230/**
2231 * ice_sched_update_parent - update the new parent in SW DB
2232 * @new_parent: pointer to a new parent node
2233 * @node: pointer to a child node
2234 *
2235 * This function removes the child from the old parent and adds it to a new
2236 * parent
2237 */
2238static void
2239ice_sched_update_parent(struct ice_sched_node *new_parent,
2240                        struct ice_sched_node *node)
2241{
2242        struct ice_sched_node *old_parent;
2243        u8 i, j;
2244
2245        old_parent = node->parent;
2246
2247        /* update the old parent children */
2248        for (i = 0; i < old_parent->num_children; i++)
2249                if (old_parent->children[i] == node) {
2250                        for (j = i + 1; j < old_parent->num_children; j++)
2251                                old_parent->children[j - 1] =
2252                                        old_parent->children[j];
2253                        old_parent->num_children--;
2254                        break;
2255                }
2256
2257        /* now move the node to a new parent */
2258        new_parent->children[new_parent->num_children++] = node;
2259        node->parent = new_parent;
2260        node->info.parent_teid = new_parent->info.node_teid;
2261}
2262
2263/**
2264 * ice_sched_move_nodes - move child nodes to a given parent
2265 * @pi: port information structure
2266 * @parent: pointer to parent node
2267 * @num_items: number of child nodes to be moved
2268 * @list: pointer to child node teids
2269 *
2270 * This function move the child nodes to a given parent.
2271 */
2272static enum ice_status
2273ice_sched_move_nodes(struct ice_port_info *pi, struct ice_sched_node *parent,
2274                     u16 num_items, u32 *list)
2275{
2276        enum ice_status status = ICE_SUCCESS;
2277        struct ice_aqc_move_elem *buf;
2278        struct ice_sched_node *node;
2279        u16 i, grps_movd = 0;
2280        struct ice_hw *hw;
2281        u16 buf_len;
2282
2283        hw = pi->hw;
2284
2285        if (!parent || !num_items)
2286                return ICE_ERR_PARAM;
2287
2288        /* Does parent have enough space */
2289        if (parent->num_children + num_items >
2290            hw->max_children[parent->tx_sched_layer])
2291                return ICE_ERR_AQ_FULL;
2292
2293        buf_len = ice_struct_size(buf, teid, 1);
2294        buf = (struct ice_aqc_move_elem *)ice_malloc(hw, buf_len);
2295        if (!buf)
2296                return ICE_ERR_NO_MEMORY;
2297
2298        for (i = 0; i < num_items; i++) {
2299                node = ice_sched_find_node_by_teid(pi->root, list[i]);
2300                if (!node) {
2301                        status = ICE_ERR_PARAM;
2302                        goto move_err_exit;
2303                }
2304
2305                buf->hdr.src_parent_teid = node->info.parent_teid;
2306                buf->hdr.dest_parent_teid = parent->info.node_teid;
2307                buf->teid[0] = node->info.node_teid;
2308                buf->hdr.num_elems = CPU_TO_LE16(1);
2309                status = ice_aq_move_sched_elems(hw, 1, buf, buf_len,
2310                                                 &grps_movd, NULL);
2311                if (status && grps_movd != 1) {
2312                        status = ICE_ERR_CFG;
2313                        goto move_err_exit;
2314                }
2315
2316                /* update the SW DB */
2317                ice_sched_update_parent(parent, node);
2318        }
2319
2320move_err_exit:
2321        ice_free(hw, buf);
2322        return status;
2323}
2324
2325/**
2326 * ice_sched_move_vsi_to_agg - move VSI to aggregator node
2327 * @pi: port information structure
2328 * @vsi_handle: software VSI handle
2329 * @agg_id: aggregator ID
2330 * @tc: TC number
2331 *
2332 * This function moves a VSI to an aggregator node or its subtree.
2333 * Intermediate nodes may be created if required.
2334 */
2335static enum ice_status
2336ice_sched_move_vsi_to_agg(struct ice_port_info *pi, u16 vsi_handle, u32 agg_id,
2337                          u8 tc)
2338{
2339        struct ice_sched_node *vsi_node, *agg_node, *tc_node, *parent;
2340        u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2341        u32 first_node_teid, vsi_teid;
2342        enum ice_status status;
2343        u16 num_nodes_added;
2344        u8 aggl, vsil, i;
2345
2346        tc_node = ice_sched_get_tc_node(pi, tc);
2347        if (!tc_node)
2348                return ICE_ERR_CFG;
2349
2350        agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2351        if (!agg_node)
2352                return ICE_ERR_DOES_NOT_EXIST;
2353
2354        vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
2355        if (!vsi_node)
2356                return ICE_ERR_DOES_NOT_EXIST;
2357
2358        /* Is this VSI already part of given aggregator? */
2359        if (ice_sched_find_node_in_subtree(pi->hw, agg_node, vsi_node))
2360                return ICE_SUCCESS;
2361
2362        aggl = ice_sched_get_agg_layer(pi->hw);
2363        vsil = ice_sched_get_vsi_layer(pi->hw);
2364
2365        /* set intermediate node count to 1 between aggregator and VSI layers */
2366        for (i = aggl + 1; i < vsil; i++)
2367                num_nodes[i] = 1;
2368
2369        /* Check if the aggregator subtree has any free node to add the VSI */
2370        for (i = 0; i < agg_node->num_children; i++) {
2371                parent = ice_sched_get_free_vsi_parent(pi->hw,
2372                                                       agg_node->children[i],
2373                                                       num_nodes);
2374                if (parent)
2375                        goto move_nodes;
2376        }
2377
2378        /* add new nodes */
2379        parent = agg_node;
2380        for (i = aggl + 1; i < vsil; i++) {
2381                status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2382                                                      num_nodes[i],
2383                                                      &first_node_teid,
2384                                                      &num_nodes_added);
2385                if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2386                        return ICE_ERR_CFG;
2387
2388                /* The newly added node can be a new parent for the next
2389                 * layer nodes
2390                 */
2391                if (num_nodes_added)
2392                        parent = ice_sched_find_node_by_teid(tc_node,
2393                                                             first_node_teid);
2394                else
2395                        parent = parent->children[0];
2396
2397                if (!parent)
2398                        return ICE_ERR_CFG;
2399        }
2400
2401move_nodes:
2402        vsi_teid = LE32_TO_CPU(vsi_node->info.node_teid);
2403        return ice_sched_move_nodes(pi, parent, 1, &vsi_teid);
2404}
2405
2406/**
2407 * ice_move_all_vsi_to_dflt_agg - move all VSI(s) to default aggregator
2408 * @pi: port information structure
2409 * @agg_info: aggregator info
2410 * @tc: traffic class number
2411 * @rm_vsi_info: true or false
2412 *
2413 * This function move all the VSI(s) to the default aggregator and delete
2414 * aggregator VSI info based on passed in boolean parameter rm_vsi_info. The
2415 * caller holds the scheduler lock.
2416 */
2417static enum ice_status
2418ice_move_all_vsi_to_dflt_agg(struct ice_port_info *pi,
2419                             struct ice_sched_agg_info *agg_info, u8 tc,
2420                             bool rm_vsi_info)
2421{
2422        struct ice_sched_agg_vsi_info *agg_vsi_info;
2423        struct ice_sched_agg_vsi_info *tmp;
2424        enum ice_status status = ICE_SUCCESS;
2425
2426        LIST_FOR_EACH_ENTRY_SAFE(agg_vsi_info, tmp, &agg_info->agg_vsi_list,
2427                                 ice_sched_agg_vsi_info, list_entry) {
2428                u16 vsi_handle = agg_vsi_info->vsi_handle;
2429
2430                /* Move VSI to default aggregator */
2431                if (!ice_is_tc_ena(agg_vsi_info->tc_bitmap[0], tc))
2432                        continue;
2433
2434                status = ice_sched_move_vsi_to_agg(pi, vsi_handle,
2435                                                   ICE_DFLT_AGG_ID, tc);
2436                if (status)
2437                        break;
2438
2439                ice_clear_bit(tc, agg_vsi_info->tc_bitmap);
2440                if (rm_vsi_info && !agg_vsi_info->tc_bitmap[0]) {
2441                        LIST_DEL(&agg_vsi_info->list_entry);
2442                        ice_free(pi->hw, agg_vsi_info);
2443                }
2444        }
2445
2446        return status;
2447}
2448
2449/**
2450 * ice_sched_is_agg_inuse - check whether the aggregator is in use or not
2451 * @pi: port information structure
2452 * @node: node pointer
2453 *
2454 * This function checks whether the aggregator is attached with any VSI or not.
2455 */
2456static bool
2457ice_sched_is_agg_inuse(struct ice_port_info *pi, struct ice_sched_node *node)
2458{
2459        u8 vsil, i;
2460
2461        vsil = ice_sched_get_vsi_layer(pi->hw);
2462        if (node->tx_sched_layer < vsil - 1) {
2463                for (i = 0; i < node->num_children; i++)
2464                        if (ice_sched_is_agg_inuse(pi, node->children[i]))
2465                                return true;
2466                return false;
2467        } else {
2468                return node->num_children ? true : false;
2469        }
2470}
2471
2472/**
2473 * ice_sched_rm_agg_cfg - remove the aggregator node
2474 * @pi: port information structure
2475 * @agg_id: aggregator ID
2476 * @tc: TC number
2477 *
2478 * This function removes the aggregator node and intermediate nodes if any
2479 * from the given TC
2480 */
2481static enum ice_status
2482ice_sched_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2483{
2484        struct ice_sched_node *tc_node, *agg_node;
2485        struct ice_hw *hw = pi->hw;
2486
2487        tc_node = ice_sched_get_tc_node(pi, tc);
2488        if (!tc_node)
2489                return ICE_ERR_CFG;
2490
2491        agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2492        if (!agg_node)
2493                return ICE_ERR_DOES_NOT_EXIST;
2494
2495        /* Can't remove the aggregator node if it has children */
2496        if (ice_sched_is_agg_inuse(pi, agg_node))
2497                return ICE_ERR_IN_USE;
2498
2499        /* need to remove the whole subtree if aggregator node is the
2500         * only child.
2501         */
2502        while (agg_node->tx_sched_layer > hw->sw_entry_point_layer) {
2503                struct ice_sched_node *parent = agg_node->parent;
2504
2505                if (!parent)
2506                        return ICE_ERR_CFG;
2507
2508                if (parent->num_children > 1)
2509                        break;
2510
2511                agg_node = parent;
2512        }
2513
2514        ice_free_sched_node(pi, agg_node);
2515        return ICE_SUCCESS;
2516}
2517
2518/**
2519 * ice_rm_agg_cfg_tc - remove aggregator configuration for TC
2520 * @pi: port information structure
2521 * @agg_info: aggregator ID
2522 * @tc: TC number
2523 * @rm_vsi_info: bool value true or false
2524 *
2525 * This function removes aggregator reference to VSI of given TC. It removes
2526 * the aggregator configuration completely for requested TC. The caller needs
2527 * to hold the scheduler lock.
2528 */
2529static enum ice_status
2530ice_rm_agg_cfg_tc(struct ice_port_info *pi, struct ice_sched_agg_info *agg_info,
2531                  u8 tc, bool rm_vsi_info)
2532{
2533        enum ice_status status = ICE_SUCCESS;
2534
2535        /* If nothing to remove - return success */
2536        if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2537                goto exit_rm_agg_cfg_tc;
2538
2539        status = ice_move_all_vsi_to_dflt_agg(pi, agg_info, tc, rm_vsi_info);
2540        if (status)
2541                goto exit_rm_agg_cfg_tc;
2542
2543        /* Delete aggregator node(s) */
2544        status = ice_sched_rm_agg_cfg(pi, agg_info->agg_id, tc);
2545        if (status)
2546                goto exit_rm_agg_cfg_tc;
2547
2548        ice_clear_bit(tc, agg_info->tc_bitmap);
2549exit_rm_agg_cfg_tc:
2550        return status;
2551}
2552
2553/**
2554 * ice_save_agg_tc_bitmap - save aggregator TC bitmap
2555 * @pi: port information structure
2556 * @agg_id: aggregator ID
2557 * @tc_bitmap: 8 bits TC bitmap
2558 *
2559 * Save aggregator TC bitmap. This function needs to be called with scheduler
2560 * lock held.
2561 */
2562static enum ice_status
2563ice_save_agg_tc_bitmap(struct ice_port_info *pi, u32 agg_id,
2564                       ice_bitmap_t *tc_bitmap)
2565{
2566        struct ice_sched_agg_info *agg_info;
2567
2568        agg_info = ice_get_agg_info(pi->hw, agg_id);
2569        if (!agg_info)
2570                return ICE_ERR_PARAM;
2571        ice_cp_bitmap(agg_info->replay_tc_bitmap, tc_bitmap,
2572                      ICE_MAX_TRAFFIC_CLASS);
2573        return ICE_SUCCESS;
2574}
2575
2576/**
2577 * ice_sched_add_agg_cfg - create an aggregator node
2578 * @pi: port information structure
2579 * @agg_id: aggregator ID
2580 * @tc: TC number
2581 *
2582 * This function creates an aggregator node and intermediate nodes if required
2583 * for the given TC
2584 */
2585static enum ice_status
2586ice_sched_add_agg_cfg(struct ice_port_info *pi, u32 agg_id, u8 tc)
2587{
2588        struct ice_sched_node *parent, *agg_node, *tc_node;
2589        u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
2590        enum ice_status status = ICE_SUCCESS;
2591        struct ice_hw *hw = pi->hw;
2592        u32 first_node_teid;
2593        u16 num_nodes_added;
2594        u8 i, aggl;
2595
2596        tc_node = ice_sched_get_tc_node(pi, tc);
2597        if (!tc_node)
2598                return ICE_ERR_CFG;
2599
2600        agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
2601        /* Does Agg node already exist ? */
2602        if (agg_node)
2603                return status;
2604
2605        aggl = ice_sched_get_agg_layer(hw);
2606
2607        /* need one node in Agg layer */
2608        num_nodes[aggl] = 1;
2609
2610        /* Check whether the intermediate nodes have space to add the
2611         * new aggregator. If they are full, then SW needs to allocate a new
2612         * intermediate node on those layers
2613         */
2614        for (i = hw->sw_entry_point_layer; i < aggl; i++) {
2615                parent = ice_sched_get_first_node(pi, tc_node, i);
2616
2617                /* scan all the siblings */
2618                while (parent) {
2619                        if (parent->num_children < hw->max_children[i])
2620                                break;
2621                        parent = parent->sibling;
2622                }
2623
2624                /* all the nodes are full, reserve one for this layer */
2625                if (!parent)
2626                        num_nodes[i]++;
2627        }
2628
2629        /* add the aggregator node */
2630        parent = tc_node;
2631        for (i = hw->sw_entry_point_layer; i <= aggl; i++) {
2632                if (!parent)
2633                        return ICE_ERR_CFG;
2634
2635                status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
2636                                                      num_nodes[i],
2637                                                      &first_node_teid,
2638                                                      &num_nodes_added);
2639                if (status != ICE_SUCCESS || num_nodes[i] != num_nodes_added)
2640                        return ICE_ERR_CFG;
2641
2642                /* The newly added node can be a new parent for the next
2643                 * layer nodes
2644                 */
2645                if (num_nodes_added) {
2646                        parent = ice_sched_find_node_by_teid(tc_node,
2647                                                             first_node_teid);
2648                        /* register aggregator ID with the aggregator node */
2649                        if (parent && i == aggl)
2650                                parent->agg_id = agg_id;
2651                } else {
2652                        parent = parent->children[0];
2653                }
2654        }
2655
2656        return ICE_SUCCESS;
2657}
2658
2659/**
2660 * ice_sched_cfg_agg - configure aggregator node
2661 * @pi: port information structure
2662 * @agg_id: aggregator ID
2663 * @agg_type: aggregator type queue, VSI, or aggregator group
2664 * @tc_bitmap: bits TC bitmap
2665 *
2666 * It registers a unique aggregator node into scheduler services. It
2667 * allows a user to register with a unique ID to track it's resources.
2668 * The aggregator type determines if this is a queue group, VSI group
2669 * or aggregator group. It then creates the aggregator node(s) for requested
2670 * TC(s) or removes an existing aggregator node including its configuration
2671 * if indicated via tc_bitmap. Call ice_rm_agg_cfg to release aggregator
2672 * resources and remove aggregator ID.
2673 * This function needs to be called with scheduler lock held.
2674 */
2675static enum ice_status
2676ice_sched_cfg_agg(struct ice_port_info *pi, u32 agg_id,
2677                  enum ice_agg_type agg_type, ice_bitmap_t *tc_bitmap)
2678{
2679        struct ice_sched_agg_info *agg_info;
2680        enum ice_status status = ICE_SUCCESS;
2681        struct ice_hw *hw = pi->hw;
2682        u8 tc;
2683
2684        agg_info = ice_get_agg_info(hw, agg_id);
2685        if (!agg_info) {
2686                /* Create new entry for new aggregator ID */
2687                agg_info = (struct ice_sched_agg_info *)
2688                        ice_malloc(hw, sizeof(*agg_info));
2689                if (!agg_info)
2690                        return ICE_ERR_NO_MEMORY;
2691
2692                agg_info->agg_id = agg_id;
2693                agg_info->agg_type = agg_type;
2694                agg_info->tc_bitmap[0] = 0;
2695
2696                /* Initialize the aggregator VSI list head */
2697                INIT_LIST_HEAD(&agg_info->agg_vsi_list);
2698
2699                /* Add new entry in aggregator list */
2700                LIST_ADD(&agg_info->list_entry, &hw->agg_list);
2701        }
2702        /* Create aggregator node(s) for requested TC(s) */
2703        ice_for_each_traffic_class(tc) {
2704                if (!ice_is_tc_ena(*tc_bitmap, tc)) {
2705                        /* Delete aggregator cfg TC if it exists previously */
2706                        status = ice_rm_agg_cfg_tc(pi, agg_info, tc, false);
2707                        if (status)
2708                                break;
2709                        continue;
2710                }
2711
2712                /* Check if aggregator node for TC already exists */
2713                if (ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
2714                        continue;
2715
2716                /* Create new aggregator node for TC */
2717                status = ice_sched_add_agg_cfg(pi, agg_id, tc);
2718                if (status)
2719                        break;
2720
2721                /* Save aggregator node's TC information */
2722                ice_set_bit(tc, agg_info->tc_bitmap);
2723        }
2724
2725        return status;
2726}
2727
2728/**
2729 * ice_cfg_agg - config aggregator node
2730 * @pi: port information structure
2731 * @agg_id: aggregator ID
2732 * @agg_type: aggregator type queue, VSI, or aggregator group
2733 * @tc_bitmap: bits TC bitmap
2734 *
2735 * This function configures aggregator node(s).
2736 */
2737enum ice_status
2738ice_cfg_agg(struct ice_port_info *pi, u32 agg_id, enum ice_agg_type agg_type,
2739            u8 tc_bitmap)
2740{
2741        ice_bitmap_t bitmap = tc_bitmap;
2742        enum ice_status status;
2743
2744        ice_acquire_lock(&pi->sched_lock);
2745        status = ice_sched_cfg_agg(pi, agg_id, agg_type,
2746                                   (ice_bitmap_t *)&bitmap);
2747        if (!status)
2748                status = ice_save_agg_tc_bitmap(pi, agg_id,
2749                                                (ice_bitmap_t *)&bitmap);
2750        ice_release_lock(&pi->sched_lock);
2751        return status;
2752}
2753
2754/**
2755 * ice_get_agg_vsi_info - get the aggregator ID
2756 * @agg_info: aggregator info
2757 * @vsi_handle: software VSI handle
2758 *
2759 * The function returns aggregator VSI info based on VSI handle. This function
2760 * needs to be called with scheduler lock held.
2761 */
2762static struct ice_sched_agg_vsi_info *
2763ice_get_agg_vsi_info(struct ice_sched_agg_info *agg_info, u16 vsi_handle)
2764{
2765        struct ice_sched_agg_vsi_info *agg_vsi_info;
2766
2767        LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
2768                            ice_sched_agg_vsi_info, list_entry)
2769                if (agg_vsi_info->vsi_handle == vsi_handle)
2770                        return agg_vsi_info;
2771
2772        return NULL;
2773}
2774
2775/**
2776 * ice_get_vsi_agg_info - get the aggregator info of VSI
2777 * @hw: pointer to the hardware structure
2778 * @vsi_handle: Sw VSI handle
2779 *
2780 * The function returns aggregator info of VSI represented via vsi_handle. The
2781 * VSI has in this case a different aggregator than the default one. This
2782 * function needs to be called with scheduler lock held.
2783 */
2784static struct ice_sched_agg_info *
2785ice_get_vsi_agg_info(struct ice_hw *hw, u16 vsi_handle)
2786{
2787        struct ice_sched_agg_info *agg_info;
2788
2789        LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
2790                            list_entry) {
2791                struct ice_sched_agg_vsi_info *agg_vsi_info;
2792
2793                agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2794                if (agg_vsi_info)
2795                        return agg_info;
2796        }
2797        return NULL;
2798}
2799
2800/**
2801 * ice_save_agg_vsi_tc_bitmap - save aggregator VSI TC bitmap
2802 * @pi: port information structure
2803 * @agg_id: aggregator ID
2804 * @vsi_handle: software VSI handle
2805 * @tc_bitmap: TC bitmap of enabled TC(s)
2806 *
2807 * Save VSI to aggregator TC bitmap. This function needs to call with scheduler
2808 * lock held.
2809 */
2810static enum ice_status
2811ice_save_agg_vsi_tc_bitmap(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2812                           ice_bitmap_t *tc_bitmap)
2813{
2814        struct ice_sched_agg_vsi_info *agg_vsi_info;
2815        struct ice_sched_agg_info *agg_info;
2816
2817        agg_info = ice_get_agg_info(pi->hw, agg_id);
2818        if (!agg_info)
2819                return ICE_ERR_PARAM;
2820        /* check if entry already exist */
2821        agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2822        if (!agg_vsi_info)
2823                return ICE_ERR_PARAM;
2824        ice_cp_bitmap(agg_vsi_info->replay_tc_bitmap, tc_bitmap,
2825                      ICE_MAX_TRAFFIC_CLASS);
2826        return ICE_SUCCESS;
2827}
2828
2829/**
2830 * ice_sched_assoc_vsi_to_agg - associate/move VSI to new/default aggregator
2831 * @pi: port information structure
2832 * @agg_id: aggregator ID
2833 * @vsi_handle: software VSI handle
2834 * @tc_bitmap: TC bitmap of enabled TC(s)
2835 *
2836 * This function moves VSI to a new or default aggregator node. If VSI is
2837 * already associated to the aggregator node then no operation is performed on
2838 * the tree. This function needs to be called with scheduler lock held.
2839 */
2840static enum ice_status
2841ice_sched_assoc_vsi_to_agg(struct ice_port_info *pi, u32 agg_id,
2842                           u16 vsi_handle, ice_bitmap_t *tc_bitmap)
2843{
2844        struct ice_sched_agg_vsi_info *agg_vsi_info;
2845        struct ice_sched_agg_info *agg_info;
2846        enum ice_status status = ICE_SUCCESS;
2847        struct ice_hw *hw = pi->hw;
2848        u8 tc;
2849
2850        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2851                return ICE_ERR_PARAM;
2852        agg_info = ice_get_agg_info(hw, agg_id);
2853        if (!agg_info)
2854                return ICE_ERR_PARAM;
2855        /* check if entry already exist */
2856        agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
2857        if (!agg_vsi_info) {
2858                /* Create new entry for VSI under aggregator list */
2859                agg_vsi_info = (struct ice_sched_agg_vsi_info *)
2860                        ice_malloc(hw, sizeof(*agg_vsi_info));
2861                if (!agg_vsi_info)
2862                        return ICE_ERR_PARAM;
2863
2864                /* add VSI ID into the aggregator list */
2865                agg_vsi_info->vsi_handle = vsi_handle;
2866                LIST_ADD(&agg_vsi_info->list_entry, &agg_info->agg_vsi_list);
2867        }
2868        /* Move VSI node to new aggregator node for requested TC(s) */
2869        ice_for_each_traffic_class(tc) {
2870                if (!ice_is_tc_ena(*tc_bitmap, tc))
2871                        continue;
2872
2873                /* Move VSI to new aggregator */
2874                status = ice_sched_move_vsi_to_agg(pi, vsi_handle, agg_id, tc);
2875                if (status)
2876                        break;
2877
2878                ice_set_bit(tc, agg_vsi_info->tc_bitmap);
2879        }
2880        return status;
2881}
2882
2883/**
2884 * ice_sched_rm_unused_rl_prof - remove unused RL profile
2885 * @hw: pointer to the hardware structure
2886 *
2887 * This function removes unused rate limit profiles from the HW and
2888 * SW DB. The caller needs to hold scheduler lock.
2889 */
2890static void ice_sched_rm_unused_rl_prof(struct ice_hw *hw)
2891{
2892        u16 ln;
2893
2894        for (ln = 0; ln < hw->num_tx_sched_layers; ln++) {
2895                struct ice_aqc_rl_profile_info *rl_prof_elem;
2896                struct ice_aqc_rl_profile_info *rl_prof_tmp;
2897
2898                LIST_FOR_EACH_ENTRY_SAFE(rl_prof_elem, rl_prof_tmp,
2899                                         &hw->rl_prof_list[ln],
2900                                         ice_aqc_rl_profile_info, list_entry) {
2901                        if (!ice_sched_del_rl_profile(hw, rl_prof_elem))
2902                                ice_debug(hw, ICE_DBG_SCHED, "Removed rl profile\n");
2903                }
2904        }
2905}
2906
2907/**
2908 * ice_sched_update_elem - update element
2909 * @hw: pointer to the HW struct
2910 * @node: pointer to node
2911 * @info: node info to update
2912 *
2913 * Update the HW DB, and local SW DB of node. Update the scheduling
2914 * parameters of node from argument info data buffer (Info->data buf) and
2915 * returns success or error on config sched element failure. The caller
2916 * needs to hold scheduler lock.
2917 */
2918static enum ice_status
2919ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
2920                      struct ice_aqc_txsched_elem_data *info)
2921{
2922        struct ice_aqc_txsched_elem_data buf;
2923        enum ice_status status;
2924        u16 elem_cfgd = 0;
2925        u16 num_elems = 1;
2926
2927        buf = *info;
2928        /* Parent TEID is reserved field in this aq call */
2929        buf.parent_teid = 0;
2930        /* Element type is reserved field in this aq call */
2931        buf.data.elem_type = 0;
2932        /* Flags is reserved field in this aq call */
2933        buf.data.flags = 0;
2934
2935        /* Update HW DB */
2936        /* Configure element node */
2937        status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
2938                                        &elem_cfgd, NULL);
2939        if (status || elem_cfgd != num_elems) {
2940                ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
2941                return ICE_ERR_CFG;
2942        }
2943
2944        /* Config success case */
2945        /* Now update local SW DB */
2946        /* Only copy the data portion of info buffer */
2947        node->info.data = info->data;
2948        return status;
2949}
2950
2951/**
2952 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
2953 * @hw: pointer to the HW struct
2954 * @node: sched node to configure
2955 * @rl_type: rate limit type CIR, EIR, or shared
2956 * @bw_alloc: BW weight/allocation
2957 *
2958 * This function configures node element's BW allocation.
2959 */
2960static enum ice_status
2961ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
2962                            enum ice_rl_type rl_type, u16 bw_alloc)
2963{
2964        struct ice_aqc_txsched_elem_data buf;
2965        struct ice_aqc_txsched_elem *data;
2966        enum ice_status status;
2967
2968        buf = node->info;
2969        data = &buf.data;
2970        if (rl_type == ICE_MIN_BW) {
2971                data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2972                data->cir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
2973        } else if (rl_type == ICE_MAX_BW) {
2974                data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2975                data->eir_bw.bw_alloc = CPU_TO_LE16(bw_alloc);
2976        } else {
2977                return ICE_ERR_PARAM;
2978        }
2979
2980        /* Configure element */
2981        status = ice_sched_update_elem(hw, node, &buf);
2982        return status;
2983}
2984
2985/**
2986 * ice_move_vsi_to_agg - moves VSI to new or default aggregator
2987 * @pi: port information structure
2988 * @agg_id: aggregator ID
2989 * @vsi_handle: software VSI handle
2990 * @tc_bitmap: TC bitmap of enabled TC(s)
2991 *
2992 * Move or associate VSI to a new or default aggregator node.
2993 */
2994enum ice_status
2995ice_move_vsi_to_agg(struct ice_port_info *pi, u32 agg_id, u16 vsi_handle,
2996                    u8 tc_bitmap)
2997{
2998        ice_bitmap_t bitmap = tc_bitmap;
2999        enum ice_status status;
3000
3001        ice_acquire_lock(&pi->sched_lock);
3002        status = ice_sched_assoc_vsi_to_agg(pi, agg_id, vsi_handle,
3003                                            (ice_bitmap_t *)&bitmap);
3004        if (!status)
3005                status = ice_save_agg_vsi_tc_bitmap(pi, agg_id, vsi_handle,
3006                                                    (ice_bitmap_t *)&bitmap);
3007        ice_release_lock(&pi->sched_lock);
3008        return status;
3009}
3010
3011/**
3012 * ice_rm_agg_cfg - remove aggregator configuration
3013 * @pi: port information structure
3014 * @agg_id: aggregator ID
3015 *
3016 * This function removes aggregator reference to VSI and delete aggregator ID
3017 * info. It removes the aggregator configuration completely.
3018 */
3019enum ice_status ice_rm_agg_cfg(struct ice_port_info *pi, u32 agg_id)
3020{
3021        struct ice_sched_agg_info *agg_info;
3022        enum ice_status status = ICE_SUCCESS;
3023        u8 tc;
3024
3025        ice_acquire_lock(&pi->sched_lock);
3026        agg_info = ice_get_agg_info(pi->hw, agg_id);
3027        if (!agg_info) {
3028                status = ICE_ERR_DOES_NOT_EXIST;
3029                goto exit_ice_rm_agg_cfg;
3030        }
3031
3032        ice_for_each_traffic_class(tc) {
3033                status = ice_rm_agg_cfg_tc(pi, agg_info, tc, true);
3034                if (status)
3035                        goto exit_ice_rm_agg_cfg;
3036        }
3037
3038        if (ice_is_any_bit_set(agg_info->tc_bitmap, ICE_MAX_TRAFFIC_CLASS)) {
3039                status = ICE_ERR_IN_USE;
3040                goto exit_ice_rm_agg_cfg;
3041        }
3042
3043        /* Safe to delete entry now */
3044        LIST_DEL(&agg_info->list_entry);
3045        ice_free(pi->hw, agg_info);
3046
3047        /* Remove unused RL profile IDs from HW and SW DB */
3048        ice_sched_rm_unused_rl_prof(pi->hw);
3049
3050exit_ice_rm_agg_cfg:
3051        ice_release_lock(&pi->sched_lock);
3052        return status;
3053}
3054
3055/**
3056 * ice_set_clear_cir_bw_alloc - set or clear CIR BW alloc information
3057 * @bw_t_info: bandwidth type information structure
3058 * @bw_alloc: Bandwidth allocation information
3059 *
3060 * Save or clear CIR BW alloc information (bw_alloc) in the passed param
3061 * bw_t_info.
3062 */
3063static void
3064ice_set_clear_cir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3065{
3066        bw_t_info->cir_bw.bw_alloc = bw_alloc;
3067        if (bw_t_info->cir_bw.bw_alloc)
3068                ice_set_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3069        else
3070                ice_clear_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap);
3071}
3072
3073/**
3074 * ice_set_clear_eir_bw_alloc - set or clear EIR BW alloc information
3075 * @bw_t_info: bandwidth type information structure
3076 * @bw_alloc: Bandwidth allocation information
3077 *
3078 * Save or clear EIR BW alloc information (bw_alloc) in the passed param
3079 * bw_t_info.
3080 */
3081static void
3082ice_set_clear_eir_bw_alloc(struct ice_bw_type_info *bw_t_info, u16 bw_alloc)
3083{
3084        bw_t_info->eir_bw.bw_alloc = bw_alloc;
3085        if (bw_t_info->eir_bw.bw_alloc)
3086                ice_set_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3087        else
3088                ice_clear_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap);
3089}
3090
3091/**
3092 * ice_sched_save_vsi_bw_alloc - save VSI node's BW alloc information
3093 * @pi: port information structure
3094 * @vsi_handle: sw VSI handle
3095 * @tc: traffic class
3096 * @rl_type: rate limit type min or max
3097 * @bw_alloc: Bandwidth allocation information
3098 *
3099 * Save BW alloc information of VSI type node for post replay use.
3100 */
3101static enum ice_status
3102ice_sched_save_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3103                            enum ice_rl_type rl_type, u16 bw_alloc)
3104{
3105        struct ice_vsi_ctx *vsi_ctx;
3106
3107        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3108                return ICE_ERR_PARAM;
3109        vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3110        if (!vsi_ctx)
3111                return ICE_ERR_PARAM;
3112        switch (rl_type) {
3113        case ICE_MIN_BW:
3114                ice_set_clear_cir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3115                                           bw_alloc);
3116                break;
3117        case ICE_MAX_BW:
3118                ice_set_clear_eir_bw_alloc(&vsi_ctx->sched.bw_t_info[tc],
3119                                           bw_alloc);
3120                break;
3121        default:
3122                return ICE_ERR_PARAM;
3123        }
3124        return ICE_SUCCESS;
3125}
3126
3127/**
3128 * ice_set_clear_cir_bw - set or clear CIR BW
3129 * @bw_t_info: bandwidth type information structure
3130 * @bw: bandwidth in Kbps - Kilo bits per sec
3131 *
3132 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
3133 */
3134static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3135{
3136        if (bw == ICE_SCHED_DFLT_BW) {
3137                ice_clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3138                bw_t_info->cir_bw.bw = 0;
3139        } else {
3140                /* Save type of BW information */
3141                ice_set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
3142                bw_t_info->cir_bw.bw = bw;
3143        }
3144}
3145
3146/**
3147 * ice_set_clear_eir_bw - set or clear EIR BW
3148 * @bw_t_info: bandwidth type information structure
3149 * @bw: bandwidth in Kbps - Kilo bits per sec
3150 *
3151 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
3152 */
3153static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3154{
3155        if (bw == ICE_SCHED_DFLT_BW) {
3156                ice_clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3157                bw_t_info->eir_bw.bw = 0;
3158        } else {
3159                /* save EIR BW information */
3160                ice_set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
3161                bw_t_info->eir_bw.bw = bw;
3162        }
3163}
3164
3165/**
3166 * ice_set_clear_shared_bw - set or clear shared BW
3167 * @bw_t_info: bandwidth type information structure
3168 * @bw: bandwidth in Kbps - Kilo bits per sec
3169 *
3170 * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
3171 */
3172static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
3173{
3174        if (bw == ICE_SCHED_DFLT_BW) {
3175                ice_clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3176                bw_t_info->shared_bw = 0;
3177        } else {
3178                /* save shared BW information */
3179                ice_set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
3180                bw_t_info->shared_bw = bw;
3181        }
3182}
3183
3184/**
3185 * ice_sched_save_vsi_bw - save VSI node's BW information
3186 * @pi: port information structure
3187 * @vsi_handle: sw VSI handle
3188 * @tc: traffic class
3189 * @rl_type: rate limit type min, max, or shared
3190 * @bw: bandwidth in Kbps - Kilo bits per sec
3191 *
3192 * Save BW information of VSI type node for post replay use.
3193 */
3194static enum ice_status
3195ice_sched_save_vsi_bw(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3196                      enum ice_rl_type rl_type, u32 bw)
3197{
3198        struct ice_vsi_ctx *vsi_ctx;
3199
3200        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3201                return ICE_ERR_PARAM;
3202        vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3203        if (!vsi_ctx)
3204                return ICE_ERR_PARAM;
3205        switch (rl_type) {
3206        case ICE_MIN_BW:
3207                ice_set_clear_cir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3208                break;
3209        case ICE_MAX_BW:
3210                ice_set_clear_eir_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3211                break;
3212        case ICE_SHARED_BW:
3213                ice_set_clear_shared_bw(&vsi_ctx->sched.bw_t_info[tc], bw);
3214                break;
3215        default:
3216                return ICE_ERR_PARAM;
3217        }
3218        return ICE_SUCCESS;
3219}
3220
3221/**
3222 * ice_set_clear_prio - set or clear priority information
3223 * @bw_t_info: bandwidth type information structure
3224 * @prio: priority to save
3225 *
3226 * Save or clear priority (prio) in the passed param bw_t_info.
3227 */
3228static void ice_set_clear_prio(struct ice_bw_type_info *bw_t_info, u8 prio)
3229{
3230        bw_t_info->generic = prio;
3231        if (bw_t_info->generic)
3232                ice_set_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3233        else
3234                ice_clear_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap);
3235}
3236
3237/**
3238 * ice_sched_save_vsi_prio - save VSI node's priority information
3239 * @pi: port information structure
3240 * @vsi_handle: Software VSI handle
3241 * @tc: traffic class
3242 * @prio: priority to save
3243 *
3244 * Save priority information of VSI type node for post replay use.
3245 */
3246static enum ice_status
3247ice_sched_save_vsi_prio(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3248                        u8 prio)
3249{
3250        struct ice_vsi_ctx *vsi_ctx;
3251
3252        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3253                return ICE_ERR_PARAM;
3254        vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
3255        if (!vsi_ctx)
3256                return ICE_ERR_PARAM;
3257        if (tc >= ICE_MAX_TRAFFIC_CLASS)
3258                return ICE_ERR_PARAM;
3259        ice_set_clear_prio(&vsi_ctx->sched.bw_t_info[tc], prio);
3260        return ICE_SUCCESS;
3261}
3262
3263/**
3264 * ice_sched_save_agg_bw_alloc - save aggregator node's BW alloc information
3265 * @pi: port information structure
3266 * @agg_id: node aggregator ID
3267 * @tc: traffic class
3268 * @rl_type: rate limit type min or max
3269 * @bw_alloc: bandwidth alloc information
3270 *
3271 * Save BW alloc information of AGG type node for post replay use.
3272 */
3273static enum ice_status
3274ice_sched_save_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3275                            enum ice_rl_type rl_type, u16 bw_alloc)
3276{
3277        struct ice_sched_agg_info *agg_info;
3278
3279        agg_info = ice_get_agg_info(pi->hw, agg_id);
3280        if (!agg_info)
3281                return ICE_ERR_PARAM;
3282        if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3283                return ICE_ERR_PARAM;
3284        switch (rl_type) {
3285        case ICE_MIN_BW:
3286                ice_set_clear_cir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3287                break;
3288        case ICE_MAX_BW:
3289                ice_set_clear_eir_bw_alloc(&agg_info->bw_t_info[tc], bw_alloc);
3290                break;
3291        default:
3292                return ICE_ERR_PARAM;
3293        }
3294        return ICE_SUCCESS;
3295}
3296
3297/**
3298 * ice_sched_save_agg_bw - save aggregator node's BW information
3299 * @pi: port information structure
3300 * @agg_id: node aggregator ID
3301 * @tc: traffic class
3302 * @rl_type: rate limit type min, max, or shared
3303 * @bw: bandwidth in Kbps - Kilo bits per sec
3304 *
3305 * Save BW information of AGG type node for post replay use.
3306 */
3307static enum ice_status
3308ice_sched_save_agg_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
3309                      enum ice_rl_type rl_type, u32 bw)
3310{
3311        struct ice_sched_agg_info *agg_info;
3312
3313        agg_info = ice_get_agg_info(pi->hw, agg_id);
3314        if (!agg_info)
3315                return ICE_ERR_PARAM;
3316        if (!ice_is_tc_ena(agg_info->tc_bitmap[0], tc))
3317                return ICE_ERR_PARAM;
3318        switch (rl_type) {
3319        case ICE_MIN_BW:
3320                ice_set_clear_cir_bw(&agg_info->bw_t_info[tc], bw);
3321                break;
3322        case ICE_MAX_BW:
3323                ice_set_clear_eir_bw(&agg_info->bw_t_info[tc], bw);
3324                break;
3325        case ICE_SHARED_BW:
3326                ice_set_clear_shared_bw(&agg_info->bw_t_info[tc], bw);
3327                break;
3328        default:
3329                return ICE_ERR_PARAM;
3330        }
3331        return ICE_SUCCESS;
3332}
3333
3334/**
3335 * ice_cfg_vsi_bw_lmt_per_tc - configure VSI BW limit per TC
3336 * @pi: port information structure
3337 * @vsi_handle: software VSI handle
3338 * @tc: traffic class
3339 * @rl_type: min or max
3340 * @bw: bandwidth in Kbps
3341 *
3342 * This function configures BW limit of VSI scheduling node based on TC
3343 * information.
3344 */
3345enum ice_status
3346ice_cfg_vsi_bw_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3347                          enum ice_rl_type rl_type, u32 bw)
3348{
3349        enum ice_status status;
3350
3351        status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3352                                                  ICE_AGG_TYPE_VSI,
3353                                                  tc, rl_type, bw);
3354        if (!status) {
3355                ice_acquire_lock(&pi->sched_lock);
3356                status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
3357                ice_release_lock(&pi->sched_lock);
3358        }
3359        return status;
3360}
3361
3362/**
3363 * ice_cfg_dflt_vsi_bw_lmt_per_tc - configure default VSI BW limit per TC
3364 * @pi: port information structure
3365 * @vsi_handle: software VSI handle
3366 * @tc: traffic class
3367 * @rl_type: min or max
3368 *
3369 * This function configures default BW limit of VSI scheduling node based on TC
3370 * information.
3371 */
3372enum ice_status
3373ice_cfg_vsi_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
3374                               enum ice_rl_type rl_type)
3375{
3376        enum ice_status status;
3377
3378        status = ice_sched_set_node_bw_lmt_per_tc(pi, vsi_handle,
3379                                                  ICE_AGG_TYPE_VSI,
3380                                                  tc, rl_type,
3381                                                  ICE_SCHED_DFLT_BW);
3382        if (!status) {
3383                ice_acquire_lock(&pi->sched_lock);
3384                status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type,
3385                                               ICE_SCHED_DFLT_BW);
3386                ice_release_lock(&pi->sched_lock);
3387        }
3388        return status;
3389}
3390
3391/**
3392 * ice_cfg_agg_bw_lmt_per_tc - configure aggregator BW limit per TC
3393 * @pi: port information structure
3394 * @agg_id: aggregator ID
3395 * @tc: traffic class
3396 * @rl_type: min or max
3397 * @bw: bandwidth in Kbps
3398 *
3399 * This function applies BW limit to aggregator scheduling node based on TC
3400 * information.
3401 */
3402enum ice_status
3403ice_cfg_agg_bw_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3404                          enum ice_rl_type rl_type, u32 bw)
3405{
3406        enum ice_status status;
3407
3408        status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3409                                                  tc, rl_type, bw);
3410        if (!status) {
3411                ice_acquire_lock(&pi->sched_lock);
3412                status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
3413                ice_release_lock(&pi->sched_lock);
3414        }
3415        return status;
3416}
3417
3418/**
3419 * ice_cfg_agg_bw_dflt_lmt_per_tc - configure aggregator BW default limit per TC
3420 * @pi: port information structure
3421 * @agg_id: aggregator ID
3422 * @tc: traffic class
3423 * @rl_type: min or max
3424 *
3425 * This function applies default BW limit to aggregator scheduling node based
3426 * on TC information.
3427 */
3428enum ice_status
3429ice_cfg_agg_bw_dflt_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3430                               enum ice_rl_type rl_type)
3431{
3432        enum ice_status status;
3433
3434        status = ice_sched_set_node_bw_lmt_per_tc(pi, agg_id, ICE_AGG_TYPE_AGG,
3435                                                  tc, rl_type,
3436                                                  ICE_SCHED_DFLT_BW);
3437        if (!status) {
3438                ice_acquire_lock(&pi->sched_lock);
3439                status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type,
3440                                               ICE_SCHED_DFLT_BW);
3441                ice_release_lock(&pi->sched_lock);
3442        }
3443        return status;
3444}
3445
3446/**
3447 * ice_cfg_vsi_bw_shared_lmt - configure VSI BW shared limit
3448 * @pi: port information structure
3449 * @vsi_handle: software VSI handle
3450 * @min_bw: minimum bandwidth in Kbps
3451 * @max_bw: maximum bandwidth in Kbps
3452 * @shared_bw: shared bandwidth in Kbps
3453 *
3454 * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
3455 * classes for VSI matching handle.
3456 */
3457enum ice_status
3458ice_cfg_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle, u32 min_bw,
3459                          u32 max_bw, u32 shared_bw)
3460{
3461        return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle, min_bw, max_bw,
3462                                               shared_bw);
3463}
3464
3465/**
3466 * ice_cfg_vsi_bw_no_shared_lmt - configure VSI BW for no shared limiter
3467 * @pi: port information structure
3468 * @vsi_handle: software VSI handle
3469 *
3470 * This function removes the shared rate limiter(SRL) of all VSI type nodes
3471 * across all traffic classes for VSI matching handle.
3472 */
3473enum ice_status
3474ice_cfg_vsi_bw_no_shared_lmt(struct ice_port_info *pi, u16 vsi_handle)
3475{
3476        return ice_sched_set_vsi_bw_shared_lmt(pi, vsi_handle,
3477                                               ICE_SCHED_DFLT_BW,
3478                                               ICE_SCHED_DFLT_BW,
3479                                               ICE_SCHED_DFLT_BW);
3480}
3481
3482/**
3483 * ice_cfg_agg_bw_shared_lmt - configure aggregator BW shared limit
3484 * @pi: port information structure
3485 * @agg_id: aggregator ID
3486 * @min_bw: minimum bandwidth in Kbps
3487 * @max_bw: maximum bandwidth in Kbps
3488 * @shared_bw: shared bandwidth in Kbps
3489 *
3490 * This function configures the shared rate limiter(SRL) of all aggregator type
3491 * nodes across all traffic classes for aggregator matching agg_id.
3492 */
3493enum ice_status
3494ice_cfg_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id, u32 min_bw,
3495                          u32 max_bw, u32 shared_bw)
3496{
3497        return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, min_bw, max_bw,
3498                                               shared_bw);
3499}
3500
3501/**
3502 * ice_cfg_agg_bw_no_shared_lmt - configure aggregator BW for no shared limiter
3503 * @pi: port information structure
3504 * @agg_id: aggregator ID
3505 *
3506 * This function removes the shared rate limiter(SRL) of all aggregator type
3507 * nodes across all traffic classes for aggregator matching agg_id.
3508 */
3509enum ice_status
3510ice_cfg_agg_bw_no_shared_lmt(struct ice_port_info *pi, u32 agg_id)
3511{
3512        return ice_sched_set_agg_bw_shared_lmt(pi, agg_id, ICE_SCHED_DFLT_BW,
3513                                               ICE_SCHED_DFLT_BW,
3514                                               ICE_SCHED_DFLT_BW);
3515}
3516
3517/**
3518 * ice_cfg_agg_bw_shared_lmt_per_tc - configure aggregator BW shared limit per tc
3519 * @pi: port information structure
3520 * @agg_id: aggregator ID
3521 * @tc: traffic class
3522 * @min_bw: minimum bandwidth in Kbps
3523 * @max_bw: maximum bandwidth in Kbps
3524 * @shared_bw: shared bandwidth in Kbps
3525 *
3526 * This function configures the shared rate limiter(SRL) of all aggregator type
3527 * nodes across all traffic classes for aggregator matching agg_id.
3528 */
3529enum ice_status
3530ice_cfg_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc,
3531                                 u32 min_bw, u32 max_bw, u32 shared_bw)
3532{
3533        return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc, min_bw,
3534                                                      max_bw, shared_bw);
3535}
3536
3537/**
3538 * ice_cfg_agg_bw_shared_lmt_per_tc - configure aggregator BW shared limit per tc
3539 * @pi: port information structure
3540 * @agg_id: aggregator ID
3541 * @tc: traffic class
3542 *
3543 * This function configures the shared rate limiter(SRL) of all aggregator type
3544 * nodes across all traffic classes for aggregator matching agg_id.
3545 */
3546enum ice_status
3547ice_cfg_agg_bw_no_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id, u8 tc)
3548{
3549        return ice_sched_set_agg_bw_shared_lmt_per_tc(pi, agg_id, tc,
3550                                                      ICE_SCHED_DFLT_BW,
3551                                                      ICE_SCHED_DFLT_BW,
3552                                                      ICE_SCHED_DFLT_BW);
3553}
3554
3555/**
3556 * ice_config_vsi_queue_priority - config VSI queue priority of node
3557 * @pi: port information structure
3558 * @num_qs: number of VSI queues
3559 * @q_ids: queue IDs array
3560 * @q_prio: queue priority array
3561 *
3562 * This function configures the queue node priority (Sibling Priority) of the
3563 * passed in VSI's queue(s) for a given traffic class (TC).
3564 */
3565enum ice_status
3566ice_cfg_vsi_q_priority(struct ice_port_info *pi, u16 num_qs, u32 *q_ids,
3567                       u8 *q_prio)
3568{
3569        enum ice_status status = ICE_ERR_PARAM;
3570        u16 i;
3571
3572        ice_acquire_lock(&pi->sched_lock);
3573
3574        for (i = 0; i < num_qs; i++) {
3575                struct ice_sched_node *node;
3576
3577                node = ice_sched_find_node_by_teid(pi->root, q_ids[i]);
3578                if (!node || node->info.data.elem_type !=
3579                    ICE_AQC_ELEM_TYPE_LEAF) {
3580                        status = ICE_ERR_PARAM;
3581                        break;
3582                }
3583                /* Configure Priority */
3584                status = ice_sched_cfg_sibl_node_prio(pi, node, q_prio[i]);
3585                if (status)
3586                        break;
3587        }
3588
3589        ice_release_lock(&pi->sched_lock);
3590        return status;
3591}
3592
3593/**
3594 * ice_cfg_agg_vsi_priority_per_tc - config aggregator's VSI priority per TC
3595 * @pi: port information structure
3596 * @agg_id: Aggregator ID
3597 * @num_vsis: number of VSI(s)
3598 * @vsi_handle_arr: array of software VSI handles
3599 * @node_prio: pointer to node priority
3600 * @tc: traffic class
3601 *
3602 * This function configures the node priority (Sibling Priority) of the
3603 * passed in VSI's for a given traffic class (TC) of an Aggregator ID.
3604 */
3605enum ice_status
3606ice_cfg_agg_vsi_priority_per_tc(struct ice_port_info *pi, u32 agg_id,
3607                                u16 num_vsis, u16 *vsi_handle_arr,
3608                                u8 *node_prio, u8 tc)
3609{
3610        struct ice_sched_agg_vsi_info *agg_vsi_info;
3611        struct ice_sched_node *tc_node, *agg_node;
3612        enum ice_status status = ICE_ERR_PARAM;
3613        struct ice_sched_agg_info *agg_info;
3614        bool agg_id_present = false;
3615        struct ice_hw *hw = pi->hw;
3616        u16 i;
3617
3618        ice_acquire_lock(&pi->sched_lock);
3619        LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3620                            list_entry)
3621                if (agg_info->agg_id == agg_id) {
3622                        agg_id_present = true;
3623                        break;
3624                }
3625        if (!agg_id_present)
3626                goto exit_agg_priority_per_tc;
3627
3628        tc_node = ice_sched_get_tc_node(pi, tc);
3629        if (!tc_node)
3630                goto exit_agg_priority_per_tc;
3631
3632        agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3633        if (!agg_node)
3634                goto exit_agg_priority_per_tc;
3635
3636        if (num_vsis > hw->max_children[agg_node->tx_sched_layer])
3637                goto exit_agg_priority_per_tc;
3638
3639        for (i = 0; i < num_vsis; i++) {
3640                struct ice_sched_node *vsi_node;
3641                bool vsi_handle_valid = false;
3642                u16 vsi_handle;
3643
3644                status = ICE_ERR_PARAM;
3645                vsi_handle = vsi_handle_arr[i];
3646                if (!ice_is_vsi_valid(hw, vsi_handle))
3647                        goto exit_agg_priority_per_tc;
3648                /* Verify child nodes before applying settings */
3649                LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
3650                                    ice_sched_agg_vsi_info, list_entry)
3651                        if (agg_vsi_info->vsi_handle == vsi_handle) {
3652                                /* cppcheck-suppress unreadVariable */
3653                                vsi_handle_valid = true;
3654                                break;
3655                        }
3656
3657                if (!vsi_handle_valid)
3658                        goto exit_agg_priority_per_tc;
3659
3660                vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3661                if (!vsi_node)
3662                        goto exit_agg_priority_per_tc;
3663
3664                if (ice_sched_find_node_in_subtree(hw, agg_node, vsi_node)) {
3665                        /* Configure Priority */
3666                        status = ice_sched_cfg_sibl_node_prio(pi, vsi_node,
3667                                                              node_prio[i]);
3668                        if (status)
3669                                break;
3670                        status = ice_sched_save_vsi_prio(pi, vsi_handle, tc,
3671                                                         node_prio[i]);
3672                        if (status)
3673                                break;
3674                }
3675        }
3676
3677exit_agg_priority_per_tc:
3678        ice_release_lock(&pi->sched_lock);
3679        return status;
3680}
3681
3682/**
3683 * ice_cfg_vsi_bw_alloc - config VSI BW alloc per TC
3684 * @pi: port information structure
3685 * @vsi_handle: software VSI handle
3686 * @ena_tcmap: enabled TC map
3687 * @rl_type: Rate limit type CIR/EIR
3688 * @bw_alloc: Array of BW alloc
3689 *
3690 * This function configures the BW allocation of the passed in VSI's
3691 * node(s) for enabled traffic class.
3692 */
3693enum ice_status
3694ice_cfg_vsi_bw_alloc(struct ice_port_info *pi, u16 vsi_handle, u8 ena_tcmap,
3695                     enum ice_rl_type rl_type, u8 *bw_alloc)
3696{
3697        enum ice_status status = ICE_SUCCESS;
3698        u8 tc;
3699
3700        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3701                return ICE_ERR_PARAM;
3702
3703        ice_acquire_lock(&pi->sched_lock);
3704
3705        /* Return success if no nodes are present across TC */
3706        ice_for_each_traffic_class(tc) {
3707                struct ice_sched_node *tc_node, *vsi_node;
3708
3709                if (!ice_is_tc_ena(ena_tcmap, tc))
3710                        continue;
3711
3712                tc_node = ice_sched_get_tc_node(pi, tc);
3713                if (!tc_node)
3714                        continue;
3715
3716                vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
3717                if (!vsi_node)
3718                        continue;
3719
3720                status = ice_sched_cfg_node_bw_alloc(pi->hw, vsi_node, rl_type,
3721                                                     bw_alloc[tc]);
3722                if (status)
3723                        break;
3724                status = ice_sched_save_vsi_bw_alloc(pi, vsi_handle, tc,
3725                                                     rl_type, bw_alloc[tc]);
3726                if (status)
3727                        break;
3728        }
3729
3730        ice_release_lock(&pi->sched_lock);
3731        return status;
3732}
3733
3734/**
3735 * ice_cfg_agg_bw_alloc - config aggregator BW alloc
3736 * @pi: port information structure
3737 * @agg_id: aggregator ID
3738 * @ena_tcmap: enabled TC map
3739 * @rl_type: rate limit type CIR/EIR
3740 * @bw_alloc: array of BW alloc
3741 *
3742 * This function configures the BW allocation of passed in aggregator for
3743 * enabled traffic class(s).
3744 */
3745enum ice_status
3746ice_cfg_agg_bw_alloc(struct ice_port_info *pi, u32 agg_id, u8 ena_tcmap,
3747                     enum ice_rl_type rl_type, u8 *bw_alloc)
3748{
3749        struct ice_sched_agg_info *agg_info;
3750        bool agg_id_present = false;
3751        enum ice_status status = ICE_SUCCESS;
3752        struct ice_hw *hw = pi->hw;
3753        u8 tc;
3754
3755        ice_acquire_lock(&pi->sched_lock);
3756        LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
3757                            list_entry)
3758                if (agg_info->agg_id == agg_id) {
3759                        agg_id_present = true;
3760                        break;
3761                }
3762        if (!agg_id_present) {
3763                status = ICE_ERR_PARAM;
3764                goto exit_cfg_agg_bw_alloc;
3765        }
3766
3767        /* Return success if no nodes are present across TC */
3768        ice_for_each_traffic_class(tc) {
3769                struct ice_sched_node *tc_node, *agg_node;
3770
3771                if (!ice_is_tc_ena(ena_tcmap, tc))
3772                        continue;
3773
3774                tc_node = ice_sched_get_tc_node(pi, tc);
3775                if (!tc_node)
3776                        continue;
3777
3778                agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
3779                if (!agg_node)
3780                        continue;
3781
3782                status = ice_sched_cfg_node_bw_alloc(hw, agg_node, rl_type,
3783                                                     bw_alloc[tc]);
3784                if (status)
3785                        break;
3786                status = ice_sched_save_agg_bw_alloc(pi, agg_id, tc, rl_type,
3787                                                     bw_alloc[tc]);
3788                if (status)
3789                        break;
3790        }
3791
3792exit_cfg_agg_bw_alloc:
3793        ice_release_lock(&pi->sched_lock);
3794        return status;
3795}
3796
3797/**
3798 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
3799 * @hw: pointer to the HW struct
3800 * @bw: bandwidth in Kbps
3801 *
3802 * This function calculates the wakeup parameter of RL profile.
3803 */
3804static u16 ice_sched_calc_wakeup(struct ice_hw *hw, s32 bw)
3805{
3806        s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
3807        s32 wakeup_f_int;
3808        u16 wakeup = 0;
3809
3810        /* Get the wakeup integer value */
3811        bytes_per_sec = DIV_64BIT(((s64)bw * 1000), BITS_PER_BYTE);
3812        wakeup_int = DIV_64BIT(hw->psm_clk_freq, bytes_per_sec);
3813        if (wakeup_int > 63) {
3814                wakeup = (u16)((1 << 15) | wakeup_int);
3815        } else {
3816                /* Calculate fraction value up to 4 decimals
3817                 * Convert Integer value to a constant multiplier
3818                 */
3819                wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
3820                wakeup_a = DIV_64BIT((s64)ICE_RL_PROF_MULTIPLIER *
3821                                     hw->psm_clk_freq, bytes_per_sec);
3822
3823                /* Get Fraction value */
3824                wakeup_f = wakeup_a - wakeup_b;
3825
3826                /* Round up the Fractional value via Ceil(Fractional value) */
3827                if (wakeup_f > DIV_64BIT(ICE_RL_PROF_MULTIPLIER, 2))
3828                        wakeup_f += 1;
3829
3830                wakeup_f_int = (s32)DIV_64BIT(wakeup_f * ICE_RL_PROF_FRACTION,
3831                                              ICE_RL_PROF_MULTIPLIER);
3832                wakeup |= (u16)(wakeup_int << 9);
3833                wakeup |= (u16)(0x1ff & wakeup_f_int);
3834        }
3835
3836        return wakeup;
3837}
3838
3839/**
3840 * ice_sched_bw_to_rl_profile - convert BW to profile parameters
3841 * @hw: pointer to the HW struct
3842 * @bw: bandwidth in Kbps
3843 * @profile: profile parameters to return
3844 *
3845 * This function converts the BW to profile structure format.
3846 */
3847static enum ice_status
3848ice_sched_bw_to_rl_profile(struct ice_hw *hw, u32 bw,
3849                           struct ice_aqc_rl_profile_elem *profile)
3850{
3851        enum ice_status status = ICE_ERR_PARAM;
3852        s64 bytes_per_sec, ts_rate, mv_tmp;
3853        bool found = false;
3854        s32 encode = 0;
3855        s64 mv = 0;
3856        s32 i;
3857
3858        /* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
3859        if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
3860                return status;
3861
3862        /* Bytes per second from Kbps */
3863        bytes_per_sec = DIV_64BIT(((s64)bw * 1000), BITS_PER_BYTE);
3864
3865        /* encode is 6 bits but really useful are 5 bits */
3866        for (i = 0; i < 64; i++) {
3867                u64 pow_result = BIT_ULL(i);
3868
3869                ts_rate = DIV_64BIT((s64)hw->psm_clk_freq,
3870                                    pow_result * ICE_RL_PROF_TS_MULTIPLIER);
3871                if (ts_rate <= 0)
3872                        continue;
3873
3874                /* Multiplier value */
3875                mv_tmp = DIV_64BIT(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
3876                                   ts_rate);
3877
3878                /* Round to the nearest ICE_RL_PROF_MULTIPLIER */
3879                mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
3880
3881                /* First multiplier value greater than the given
3882                 * accuracy bytes
3883                 */
3884                if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
3885                        encode = i;
3886                        found = true;
3887                        break;
3888                }
3889        }
3890        if (found) {
3891                u16 wm;
3892
3893                wm = ice_sched_calc_wakeup(hw, bw);
3894                profile->rl_multiply = CPU_TO_LE16(mv);
3895                profile->wake_up_calc = CPU_TO_LE16(wm);
3896                profile->rl_encode = CPU_TO_LE16(encode);
3897                status = ICE_SUCCESS;
3898        } else {
3899                status = ICE_ERR_DOES_NOT_EXIST;
3900        }
3901
3902        return status;
3903}
3904
3905/**
3906 * ice_sched_add_rl_profile - add RL profile
3907 * @hw: pointer to the hardware structure
3908 * @rl_type: type of rate limit BW - min, max, or shared
3909 * @bw: bandwidth in Kbps - Kilo bits per sec
3910 * @layer_num: specifies in which layer to create profile
3911 *
3912 * This function first checks the existing list for corresponding BW
3913 * parameter. If it exists, it returns the associated profile otherwise
3914 * it creates a new rate limit profile for requested BW, and adds it to
3915 * the HW DB and local list. It returns the new profile or null on error.
3916 * The caller needs to hold the scheduler lock.
3917 */
3918static struct ice_aqc_rl_profile_info *
3919ice_sched_add_rl_profile(struct ice_hw *hw, enum ice_rl_type rl_type,
3920                         u32 bw, u8 layer_num)
3921{
3922        struct ice_aqc_rl_profile_info *rl_prof_elem;
3923        u16 profiles_added = 0, num_profiles = 1;
3924        struct ice_aqc_rl_profile_elem *buf;
3925        enum ice_status status;
3926        u8 profile_type;
3927
3928        if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
3929                return NULL;
3930        switch (rl_type) {
3931        case ICE_MIN_BW:
3932                profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
3933                break;
3934        case ICE_MAX_BW:
3935                profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
3936                break;
3937        case ICE_SHARED_BW:
3938                profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
3939                break;
3940        default:
3941                return NULL;
3942        }
3943
3944        if (!hw)
3945                return NULL;
3946        LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
3947                            ice_aqc_rl_profile_info, list_entry)
3948                if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
3949                    profile_type && rl_prof_elem->bw == bw)
3950                        /* Return existing profile ID info */
3951                        return rl_prof_elem;
3952
3953        /* Create new profile ID */
3954        rl_prof_elem = (struct ice_aqc_rl_profile_info *)
3955                ice_malloc(hw, sizeof(*rl_prof_elem));
3956
3957        if (!rl_prof_elem)
3958                return NULL;
3959
3960        status = ice_sched_bw_to_rl_profile(hw, bw, &rl_prof_elem->profile);
3961        if (status != ICE_SUCCESS)
3962                goto exit_add_rl_prof;
3963
3964        rl_prof_elem->bw = bw;
3965        /* layer_num is zero relative, and fw expects level from 1 to 9 */
3966        rl_prof_elem->profile.level = layer_num + 1;
3967        rl_prof_elem->profile.flags = profile_type;
3968        rl_prof_elem->profile.max_burst_size = CPU_TO_LE16(hw->max_burst_size);
3969
3970        /* Create new entry in HW DB */
3971        buf = &rl_prof_elem->profile;
3972        status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
3973                                       &profiles_added, NULL);
3974        if (status || profiles_added != num_profiles)
3975                goto exit_add_rl_prof;
3976
3977        /* Good entry - add in the list */
3978        rl_prof_elem->prof_id_ref = 0;
3979        LIST_ADD(&rl_prof_elem->list_entry, &hw->rl_prof_list[layer_num]);
3980        return rl_prof_elem;
3981
3982exit_add_rl_prof:
3983        ice_free(hw, rl_prof_elem);
3984        return NULL;
3985}
3986
3987/**
3988 * ice_sched_cfg_node_bw_lmt - configure node sched params
3989 * @hw: pointer to the HW struct
3990 * @node: sched node to configure
3991 * @rl_type: rate limit type CIR, EIR, or shared
3992 * @rl_prof_id: rate limit profile ID
3993 *
3994 * This function configures node element's BW limit.
3995 */
3996static enum ice_status
3997ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
3998                          enum ice_rl_type rl_type, u16 rl_prof_id)
3999{
4000        struct ice_aqc_txsched_elem_data buf;
4001        struct ice_aqc_txsched_elem *data;
4002
4003        buf = node->info;
4004        data = &buf.data;
4005        switch (rl_type) {
4006        case ICE_MIN_BW:
4007                data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
4008                data->cir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4009                break;
4010        case ICE_MAX_BW:
4011                data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
4012                data->eir_bw.bw_profile_idx = CPU_TO_LE16(rl_prof_id);
4013                break;
4014        case ICE_SHARED_BW:
4015                data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
4016                data->srl_id = CPU_TO_LE16(rl_prof_id);
4017                break;
4018        default:
4019                /* Unknown rate limit type */
4020                return ICE_ERR_PARAM;
4021        }
4022
4023        /* Configure element */
4024        return ice_sched_update_elem(hw, node, &buf);
4025}
4026
4027/**
4028 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
4029 * @node: sched node
4030 * @rl_type: rate limit type
4031 *
4032 * If existing profile matches, it returns the corresponding rate
4033 * limit profile ID, otherwise it returns an invalid ID as error.
4034 */
4035static u16
4036ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
4037                              enum ice_rl_type rl_type)
4038{
4039        u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
4040        struct ice_aqc_txsched_elem *data;
4041
4042        data = &node->info.data;
4043        switch (rl_type) {
4044        case ICE_MIN_BW:
4045                if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
4046                        rl_prof_id = LE16_TO_CPU(data->cir_bw.bw_profile_idx);
4047                break;
4048        case ICE_MAX_BW:
4049                if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
4050                        rl_prof_id = LE16_TO_CPU(data->eir_bw.bw_profile_idx);
4051                break;
4052        case ICE_SHARED_BW:
4053                if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
4054                        rl_prof_id = LE16_TO_CPU(data->srl_id);
4055                break;
4056        default:
4057                break;
4058        }
4059
4060        return rl_prof_id;
4061}
4062
4063/**
4064 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
4065 * @pi: port information structure
4066 * @rl_type: type of rate limit BW - min, max, or shared
4067 * @layer_index: layer index
4068 *
4069 * This function returns requested profile creation layer.
4070 */
4071static u8
4072ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
4073                            u8 layer_index)
4074{
4075        struct ice_hw *hw = pi->hw;
4076
4077        if (layer_index >= hw->num_tx_sched_layers)
4078                return ICE_SCHED_INVAL_LAYER_NUM;
4079        switch (rl_type) {
4080        case ICE_MIN_BW:
4081                if (hw->layer_info[layer_index].max_cir_rl_profiles)
4082                        return layer_index;
4083                break;
4084        case ICE_MAX_BW:
4085                if (hw->layer_info[layer_index].max_eir_rl_profiles)
4086                        return layer_index;
4087                break;
4088        case ICE_SHARED_BW:
4089                /* if current layer doesn't support SRL profile creation
4090                 * then try a layer up or down.
4091                 */
4092                if (hw->layer_info[layer_index].max_srl_profiles)
4093                        return layer_index;
4094                else if (layer_index < hw->num_tx_sched_layers - 1 &&
4095                         hw->layer_info[layer_index + 1].max_srl_profiles)
4096                        return layer_index + 1;
4097                else if (layer_index > 0 &&
4098                         hw->layer_info[layer_index - 1].max_srl_profiles)
4099                        return layer_index - 1;
4100                break;
4101        default:
4102                break;
4103        }
4104        return ICE_SCHED_INVAL_LAYER_NUM;
4105}
4106
4107/**
4108 * ice_sched_get_srl_node - get shared rate limit node
4109 * @node: tree node
4110 * @srl_layer: shared rate limit layer
4111 *
4112 * This function returns SRL node to be used for shared rate limit purpose.
4113 * The caller needs to hold scheduler lock.
4114 */
4115static struct ice_sched_node *
4116ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
4117{
4118        if (srl_layer > node->tx_sched_layer)
4119                return node->children[0];
4120        else if (srl_layer < node->tx_sched_layer)
4121                /* Node can't be created without a parent. It will always
4122                 * have a valid parent except root node.
4123                 */
4124                return node->parent;
4125        else
4126                return node;
4127}
4128
4129/**
4130 * ice_sched_rm_rl_profile - remove RL profile ID
4131 * @hw: pointer to the hardware structure
4132 * @layer_num: layer number where profiles are saved
4133 * @profile_type: profile type like EIR, CIR, or SRL
4134 * @profile_id: profile ID to remove
4135 *
4136 * This function removes rate limit profile from layer 'layer_num' of type
4137 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
4138 * scheduler lock.
4139 */
4140static enum ice_status
4141ice_sched_rm_rl_profile(struct ice_hw *hw, u8 layer_num, u8 profile_type,
4142                        u16 profile_id)
4143{
4144        struct ice_aqc_rl_profile_info *rl_prof_elem;
4145        enum ice_status status = ICE_SUCCESS;
4146
4147        if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
4148                return ICE_ERR_PARAM;
4149        /* Check the existing list for RL profile */
4150        LIST_FOR_EACH_ENTRY(rl_prof_elem, &hw->rl_prof_list[layer_num],
4151                            ice_aqc_rl_profile_info, list_entry)
4152                if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
4153                    profile_type &&
4154                    LE16_TO_CPU(rl_prof_elem->profile.profile_id) ==
4155                    profile_id) {
4156                        if (rl_prof_elem->prof_id_ref)
4157                                rl_prof_elem->prof_id_ref--;
4158
4159                        /* Remove old profile ID from database */
4160                        status = ice_sched_del_rl_profile(hw, rl_prof_elem);
4161                        if (status && status != ICE_ERR_IN_USE)
4162                                ice_debug(hw, ICE_DBG_SCHED, "Remove rl profile failed\n");
4163                        break;
4164                }
4165        if (status == ICE_ERR_IN_USE)
4166                status = ICE_SUCCESS;
4167        return status;
4168}
4169
4170/**
4171 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
4172 * @pi: port information structure
4173 * @node: pointer to node structure
4174 * @rl_type: rate limit type min, max, or shared
4175 * @layer_num: layer number where RL profiles are saved
4176 *
4177 * This function configures node element's BW rate limit profile ID of
4178 * type CIR, EIR, or SRL to default. This function needs to be called
4179 * with the scheduler lock held.
4180 */
4181static enum ice_status
4182ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
4183                           struct ice_sched_node *node,
4184                           enum ice_rl_type rl_type, u8 layer_num)
4185{
4186        enum ice_status status;
4187        struct ice_hw *hw;
4188        u8 profile_type;
4189        u16 rl_prof_id;
4190        u16 old_id;
4191
4192        hw = pi->hw;
4193        switch (rl_type) {
4194        case ICE_MIN_BW:
4195                profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
4196                rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4197                break;
4198        case ICE_MAX_BW:
4199                profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
4200                rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
4201                break;
4202        case ICE_SHARED_BW:
4203                profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
4204                /* No SRL is configured for default case */
4205                rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
4206                break;
4207        default:
4208                return ICE_ERR_PARAM;
4209        }
4210        /* Save existing RL prof ID for later clean up */
4211        old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4212        /* Configure BW scheduling parameters */
4213        status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4214        if (status)
4215                return status;
4216
4217        /* Remove stale RL profile ID */
4218        if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
4219            old_id == ICE_SCHED_INVAL_PROF_ID)
4220                return ICE_SUCCESS;
4221
4222        return ice_sched_rm_rl_profile(hw, layer_num, profile_type, old_id);
4223}
4224
4225/**
4226 * ice_sched_set_node_bw - set node's bandwidth
4227 * @pi: port information structure
4228 * @node: tree node
4229 * @rl_type: rate limit type min, max, or shared
4230 * @bw: bandwidth in Kbps - Kilo bits per sec
4231 * @layer_num: layer number
4232 *
4233 * This function adds new profile corresponding to requested BW, configures
4234 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
4235 * ID from local database. The caller needs to hold scheduler lock.
4236 */
4237static enum ice_status
4238ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
4239                      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
4240{
4241        struct ice_aqc_rl_profile_info *rl_prof_info;
4242        enum ice_status status = ICE_ERR_PARAM;
4243        struct ice_hw *hw = pi->hw;
4244        u16 old_id, rl_prof_id;
4245
4246        rl_prof_info = ice_sched_add_rl_profile(hw, rl_type, bw, layer_num);
4247        if (!rl_prof_info)
4248                return status;
4249
4250        rl_prof_id = LE16_TO_CPU(rl_prof_info->profile.profile_id);
4251
4252        /* Save existing RL prof ID for later clean up */
4253        old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
4254        /* Configure BW scheduling parameters */
4255        status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
4256        if (status)
4257                return status;
4258
4259        /* New changes has been applied */
4260        /* Increment the profile ID reference count */
4261        rl_prof_info->prof_id_ref++;
4262
4263        /* Check for old ID removal */
4264        if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
4265            old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
4266                return ICE_SUCCESS;
4267
4268        return ice_sched_rm_rl_profile(hw, layer_num,
4269                                       rl_prof_info->profile.flags &
4270                                       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
4271}
4272
4273/**
4274 * ice_sched_set_node_bw_lmt - set node's BW limit
4275 * @pi: port information structure
4276 * @node: tree node
4277 * @rl_type: rate limit type min, max, or shared
4278 * @bw: bandwidth in Kbps - Kilo bits per sec
4279 *
4280 * It updates node's BW limit parameters like BW RL profile ID of type CIR,
4281 * EIR, or SRL. The caller needs to hold scheduler lock.
4282 *
4283 * NOTE: Caller provides the correct SRL node in case of shared profile
4284 * settings.
4285 */
4286static enum ice_status
4287ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
4288                          enum ice_rl_type rl_type, u32 bw)
4289{
4290        struct ice_hw *hw;
4291        u8 layer_num;
4292
4293        if (!pi)
4294                return ICE_ERR_PARAM;
4295        hw = pi->hw;
4296        /* Remove unused RL profile IDs from HW and SW DB */
4297        ice_sched_rm_unused_rl_prof(hw);
4298
4299        layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
4300                                                node->tx_sched_layer);
4301        if (layer_num >= hw->num_tx_sched_layers)
4302                return ICE_ERR_PARAM;
4303
4304        if (bw == ICE_SCHED_DFLT_BW)
4305                return ice_sched_set_node_bw_dflt(pi, node, rl_type, layer_num);
4306        return ice_sched_set_node_bw(pi, node, rl_type, bw, layer_num);
4307}
4308
4309/**
4310 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
4311 * @pi: port information structure
4312 * @node: pointer to node structure
4313 * @rl_type: rate limit type min, max, or shared
4314 *
4315 * This function configures node element's BW rate limit profile ID of
4316 * type CIR, EIR, or SRL to default. This function needs to be called
4317 * with the scheduler lock held.
4318 */
4319static enum ice_status
4320ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
4321                               struct ice_sched_node *node,
4322                               enum ice_rl_type rl_type)
4323{
4324        return ice_sched_set_node_bw_lmt(pi, node, rl_type,
4325                                         ICE_SCHED_DFLT_BW);
4326}
4327
4328/**
4329 * ice_sched_validate_srl_node - Check node for SRL applicability
4330 * @node: sched node to configure
4331 * @sel_layer: selected SRL layer
4332 *
4333 * This function checks if the SRL can be applied to a selceted layer node on
4334 * behalf of the requested node (first argument). This function needs to be
4335 * called with scheduler lock held.
4336 */
4337static enum ice_status
4338ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
4339{
4340        /* SRL profiles are not available on all layers. Check if the
4341         * SRL profile can be applied to a node above or below the
4342         * requested node. SRL configuration is possible only if the
4343         * selected layer's node has single child.
4344         */
4345        if (sel_layer == node->tx_sched_layer ||
4346            ((sel_layer == node->tx_sched_layer + 1) &&
4347            node->num_children == 1) ||
4348            ((sel_layer == node->tx_sched_layer - 1) &&
4349            (node->parent && node->parent->num_children == 1)))
4350                return ICE_SUCCESS;
4351
4352        return ICE_ERR_CFG;
4353}
4354
4355/**
4356 * ice_sched_save_q_bw - save queue node's BW information
4357 * @q_ctx: queue context structure
4358 * @rl_type: rate limit type min, max, or shared
4359 * @bw: bandwidth in Kbps - Kilo bits per sec
4360 *
4361 * Save BW information of queue type node for post replay use.
4362 */
4363static enum ice_status
4364ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
4365{
4366        switch (rl_type) {
4367        case ICE_MIN_BW:
4368                ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
4369                break;
4370        case ICE_MAX_BW:
4371                ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
4372                break;
4373        case ICE_SHARED_BW:
4374                ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
4375                break;
4376        default:
4377                return ICE_ERR_PARAM;
4378        }
4379        return ICE_SUCCESS;
4380}
4381
4382/**
4383 * ice_sched_set_q_bw_lmt - sets queue BW limit
4384 * @pi: port information structure
4385 * @vsi_handle: sw VSI handle
4386 * @tc: traffic class
4387 * @q_handle: software queue handle
4388 * @rl_type: min, max, or shared
4389 * @bw: bandwidth in Kbps
4390 *
4391 * This function sets BW limit of queue scheduling node.
4392 */
4393static enum ice_status
4394ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4395                       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4396{
4397        enum ice_status status = ICE_ERR_PARAM;
4398        struct ice_sched_node *node;
4399        struct ice_q_ctx *q_ctx;
4400
4401        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4402                return ICE_ERR_PARAM;
4403        ice_acquire_lock(&pi->sched_lock);
4404        q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
4405        if (!q_ctx)
4406                goto exit_q_bw_lmt;
4407        node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
4408        if (!node) {
4409                ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
4410                goto exit_q_bw_lmt;
4411        }
4412
4413        /* Return error if it is not a leaf node */
4414        if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
4415                goto exit_q_bw_lmt;
4416
4417        /* SRL bandwidth layer selection */
4418        if (rl_type == ICE_SHARED_BW) {
4419                u8 sel_layer; /* selected layer */
4420
4421                sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
4422                                                        node->tx_sched_layer);
4423                if (sel_layer >= pi->hw->num_tx_sched_layers) {
4424                        status = ICE_ERR_PARAM;
4425                        goto exit_q_bw_lmt;
4426                }
4427                status = ice_sched_validate_srl_node(node, sel_layer);
4428                if (status)
4429                        goto exit_q_bw_lmt;
4430        }
4431
4432        if (bw == ICE_SCHED_DFLT_BW)
4433                status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4434        else
4435                status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4436
4437        if (!status)
4438                status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
4439
4440exit_q_bw_lmt:
4441        ice_release_lock(&pi->sched_lock);
4442        return status;
4443}
4444
4445/**
4446 * ice_cfg_q_bw_lmt - configure queue BW limit
4447 * @pi: port information structure
4448 * @vsi_handle: sw VSI handle
4449 * @tc: traffic class
4450 * @q_handle: software queue handle
4451 * @rl_type: min, max, or shared
4452 * @bw: bandwidth in Kbps
4453 *
4454 * This function configures BW limit of queue scheduling node.
4455 */
4456enum ice_status
4457ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4458                 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
4459{
4460        return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4461                                      bw);
4462}
4463
4464/**
4465 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
4466 * @pi: port information structure
4467 * @vsi_handle: sw VSI handle
4468 * @tc: traffic class
4469 * @q_handle: software queue handle
4470 * @rl_type: min, max, or shared
4471 *
4472 * This function configures BW default limit of queue scheduling node.
4473 */
4474enum ice_status
4475ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4476                      u16 q_handle, enum ice_rl_type rl_type)
4477{
4478        return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
4479                                      ICE_SCHED_DFLT_BW);
4480}
4481
4482/**
4483 * ice_sched_save_tc_node_bw - save TC node BW limit
4484 * @pi: port information structure
4485 * @tc: TC number
4486 * @rl_type: min or max
4487 * @bw: bandwidth in Kbps
4488 *
4489 * This function saves the modified values of bandwidth settings for later
4490 * replay purpose (restore) after reset.
4491 */
4492static enum ice_status
4493ice_sched_save_tc_node_bw(struct ice_port_info *pi, u8 tc,
4494                          enum ice_rl_type rl_type, u32 bw)
4495{
4496        if (tc >= ICE_MAX_TRAFFIC_CLASS)
4497                return ICE_ERR_PARAM;
4498        switch (rl_type) {
4499        case ICE_MIN_BW:
4500                ice_set_clear_cir_bw(&pi->tc_node_bw_t_info[tc], bw);
4501                break;
4502        case ICE_MAX_BW:
4503                ice_set_clear_eir_bw(&pi->tc_node_bw_t_info[tc], bw);
4504                break;
4505        case ICE_SHARED_BW:
4506                ice_set_clear_shared_bw(&pi->tc_node_bw_t_info[tc], bw);
4507                break;
4508        default:
4509                return ICE_ERR_PARAM;
4510        }
4511        return ICE_SUCCESS;
4512}
4513
4514/**
4515 * ice_sched_set_tc_node_bw_lmt - sets TC node BW limit
4516 * @pi: port information structure
4517 * @tc: TC number
4518 * @rl_type: min or max
4519 * @bw: bandwidth in Kbps
4520 *
4521 * This function configures bandwidth limit of TC node.
4522 */
4523static enum ice_status
4524ice_sched_set_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4525                             enum ice_rl_type rl_type, u32 bw)
4526{
4527        enum ice_status status = ICE_ERR_PARAM;
4528        struct ice_sched_node *tc_node;
4529
4530        if (tc >= ICE_MAX_TRAFFIC_CLASS)
4531                return status;
4532        ice_acquire_lock(&pi->sched_lock);
4533        tc_node = ice_sched_get_tc_node(pi, tc);
4534        if (!tc_node)
4535                goto exit_set_tc_node_bw;
4536        if (bw == ICE_SCHED_DFLT_BW)
4537                status = ice_sched_set_node_bw_dflt_lmt(pi, tc_node, rl_type);
4538        else
4539                status = ice_sched_set_node_bw_lmt(pi, tc_node, rl_type, bw);
4540        if (!status)
4541                status = ice_sched_save_tc_node_bw(pi, tc, rl_type, bw);
4542
4543exit_set_tc_node_bw:
4544        ice_release_lock(&pi->sched_lock);
4545        return status;
4546}
4547
4548/**
4549 * ice_cfg_tc_node_bw_lmt - configure TC node BW limit
4550 * @pi: port information structure
4551 * @tc: TC number
4552 * @rl_type: min or max
4553 * @bw: bandwidth in Kbps
4554 *
4555 * This function configures BW limit of TC node.
4556 * Note: The minimum guaranteed reservation is done via DCBX.
4557 */
4558enum ice_status
4559ice_cfg_tc_node_bw_lmt(struct ice_port_info *pi, u8 tc,
4560                       enum ice_rl_type rl_type, u32 bw)
4561{
4562        return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, bw);
4563}
4564
4565/**
4566 * ice_cfg_tc_node_bw_dflt_lmt - configure TC node BW default limit
4567 * @pi: port information structure
4568 * @tc: TC number
4569 * @rl_type: min or max
4570 *
4571 * This function configures BW default limit of TC node.
4572 */
4573enum ice_status
4574ice_cfg_tc_node_bw_dflt_lmt(struct ice_port_info *pi, u8 tc,
4575                            enum ice_rl_type rl_type)
4576{
4577        return ice_sched_set_tc_node_bw_lmt(pi, tc, rl_type, ICE_SCHED_DFLT_BW);
4578}
4579
4580/**
4581 * ice_sched_save_tc_node_bw_alloc - save TC node's BW alloc information
4582 * @pi: port information structure
4583 * @tc: traffic class
4584 * @rl_type: rate limit type min or max
4585 * @bw_alloc: Bandwidth allocation information
4586 *
4587 * Save BW alloc information of VSI type node for post replay use.
4588 */
4589static enum ice_status
4590ice_sched_save_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4591                                enum ice_rl_type rl_type, u16 bw_alloc)
4592{
4593        if (tc >= ICE_MAX_TRAFFIC_CLASS)
4594                return ICE_ERR_PARAM;
4595        switch (rl_type) {
4596        case ICE_MIN_BW:
4597                ice_set_clear_cir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4598                                           bw_alloc);
4599                break;
4600        case ICE_MAX_BW:
4601                ice_set_clear_eir_bw_alloc(&pi->tc_node_bw_t_info[tc],
4602                                           bw_alloc);
4603                break;
4604        default:
4605                return ICE_ERR_PARAM;
4606        }
4607        return ICE_SUCCESS;
4608}
4609
4610/**
4611 * ice_sched_set_tc_node_bw_alloc - set TC node BW alloc
4612 * @pi: port information structure
4613 * @tc: TC number
4614 * @rl_type: min or max
4615 * @bw_alloc: bandwidth alloc
4616 *
4617 * This function configures bandwidth alloc of TC node, also saves the
4618 * changed settings for replay purpose, and return success if it succeeds
4619 * in modifying bandwidth alloc setting.
4620 */
4621static enum ice_status
4622ice_sched_set_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4623                               enum ice_rl_type rl_type, u8 bw_alloc)
4624{
4625        enum ice_status status = ICE_ERR_PARAM;
4626        struct ice_sched_node *tc_node;
4627
4628        if (tc >= ICE_MAX_TRAFFIC_CLASS)
4629                return status;
4630        ice_acquire_lock(&pi->sched_lock);
4631        tc_node = ice_sched_get_tc_node(pi, tc);
4632        if (!tc_node)
4633                goto exit_set_tc_node_bw_alloc;
4634        status = ice_sched_cfg_node_bw_alloc(pi->hw, tc_node, rl_type,
4635                                             bw_alloc);
4636        if (status)
4637                goto exit_set_tc_node_bw_alloc;
4638        status = ice_sched_save_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4639
4640exit_set_tc_node_bw_alloc:
4641        ice_release_lock(&pi->sched_lock);
4642        return status;
4643}
4644
4645/**
4646 * ice_cfg_tc_node_bw_alloc - configure TC node BW alloc
4647 * @pi: port information structure
4648 * @tc: TC number
4649 * @rl_type: min or max
4650 * @bw_alloc: bandwidth alloc
4651 *
4652 * This function configures BW limit of TC node.
4653 * Note: The minimum guaranteed reservation is done via DCBX.
4654 */
4655enum ice_status
4656ice_cfg_tc_node_bw_alloc(struct ice_port_info *pi, u8 tc,
4657                         enum ice_rl_type rl_type, u8 bw_alloc)
4658{
4659        return ice_sched_set_tc_node_bw_alloc(pi, tc, rl_type, bw_alloc);
4660}
4661
4662/**
4663 * ice_sched_set_agg_bw_dflt_lmt - set aggregator node's BW limit to default
4664 * @pi: port information structure
4665 * @vsi_handle: software VSI handle
4666 *
4667 * This function retrieves the aggregator ID based on VSI ID and TC,
4668 * and sets node's BW limit to default. This function needs to be
4669 * called with the scheduler lock held.
4670 */
4671enum ice_status
4672ice_sched_set_agg_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle)
4673{
4674        struct ice_vsi_ctx *vsi_ctx;
4675        enum ice_status status = ICE_SUCCESS;
4676        u8 tc;
4677
4678        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4679                return ICE_ERR_PARAM;
4680        vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4681        if (!vsi_ctx)
4682                return ICE_ERR_PARAM;
4683
4684        ice_for_each_traffic_class(tc) {
4685                struct ice_sched_node *node;
4686
4687                node = vsi_ctx->sched.ag_node[tc];
4688                if (!node)
4689                        continue;
4690
4691                /* Set min profile to default */
4692                status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MIN_BW);
4693                if (status)
4694                        break;
4695
4696                /* Set max profile to default */
4697                status = ice_sched_set_node_bw_dflt_lmt(pi, node, ICE_MAX_BW);
4698                if (status)
4699                        break;
4700
4701                /* Remove shared profile, if there is one */
4702                status = ice_sched_set_node_bw_dflt_lmt(pi, node,
4703                                                        ICE_SHARED_BW);
4704                if (status)
4705                        break;
4706        }
4707
4708        return status;
4709}
4710
4711/**
4712 * ice_sched_get_node_by_id_type - get node from ID type
4713 * @pi: port information structure
4714 * @id: identifier
4715 * @agg_type: type of aggregator
4716 * @tc: traffic class
4717 *
4718 * This function returns node identified by ID of type aggregator, and
4719 * based on traffic class (TC). This function needs to be called with
4720 * the scheduler lock held.
4721 */
4722static struct ice_sched_node *
4723ice_sched_get_node_by_id_type(struct ice_port_info *pi, u32 id,
4724                              enum ice_agg_type agg_type, u8 tc)
4725{
4726        struct ice_sched_node *node = NULL;
4727        struct ice_sched_node *child_node;
4728
4729        switch (agg_type) {
4730        case ICE_AGG_TYPE_VSI: {
4731                struct ice_vsi_ctx *vsi_ctx;
4732                u16 vsi_handle = (u16)id;
4733
4734                if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4735                        break;
4736                /* Get sched_vsi_info */
4737                vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
4738                if (!vsi_ctx)
4739                        break;
4740                node = vsi_ctx->sched.vsi_node[tc];
4741                break;
4742        }
4743
4744        case ICE_AGG_TYPE_AGG: {
4745                struct ice_sched_node *tc_node;
4746
4747                tc_node = ice_sched_get_tc_node(pi, tc);
4748                if (tc_node)
4749                        node = ice_sched_get_agg_node(pi, tc_node, id);
4750                break;
4751        }
4752
4753        case ICE_AGG_TYPE_Q:
4754                /* The current implementation allows single queue to modify */
4755                node = ice_sched_get_node(pi, id);
4756                break;
4757
4758        case ICE_AGG_TYPE_QG:
4759                /* The current implementation allows single qg to modify */
4760                child_node = ice_sched_get_node(pi, id);
4761                if (!child_node)
4762                        break;
4763                node = child_node->parent;
4764                break;
4765
4766        default:
4767                break;
4768        }
4769
4770        return node;
4771}
4772
4773/**
4774 * ice_sched_set_node_bw_lmt_per_tc - set node BW limit per TC
4775 * @pi: port information structure
4776 * @id: ID (software VSI handle or AGG ID)
4777 * @agg_type: aggregator type (VSI or AGG type node)
4778 * @tc: traffic class
4779 * @rl_type: min or max
4780 * @bw: bandwidth in Kbps
4781 *
4782 * This function sets BW limit of VSI or Aggregator scheduling node
4783 * based on TC information from passed in argument BW.
4784 */
4785enum ice_status
4786ice_sched_set_node_bw_lmt_per_tc(struct ice_port_info *pi, u32 id,
4787                                 enum ice_agg_type agg_type, u8 tc,
4788                                 enum ice_rl_type rl_type, u32 bw)
4789{
4790        enum ice_status status = ICE_ERR_PARAM;
4791        struct ice_sched_node *node;
4792
4793        if (!pi)
4794                return status;
4795
4796        if (rl_type == ICE_UNKNOWN_BW)
4797                return status;
4798
4799        ice_acquire_lock(&pi->sched_lock);
4800        node = ice_sched_get_node_by_id_type(pi, id, agg_type, tc);
4801        if (!node) {
4802                ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong id, agg type, or tc\n");
4803                goto exit_set_node_bw_lmt_per_tc;
4804        }
4805        if (bw == ICE_SCHED_DFLT_BW)
4806                status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
4807        else
4808                status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
4809
4810exit_set_node_bw_lmt_per_tc:
4811        ice_release_lock(&pi->sched_lock);
4812        return status;
4813}
4814
4815/**
4816 * ice_sched_validate_vsi_srl_node - validate VSI SRL node
4817 * @pi: port information structure
4818 * @vsi_handle: software VSI handle
4819 *
4820 * This function validates SRL node of the VSI node if available SRL layer is
4821 * different than the VSI node layer on all TC(s).This function needs to be
4822 * called with scheduler lock held.
4823 */
4824static enum ice_status
4825ice_sched_validate_vsi_srl_node(struct ice_port_info *pi, u16 vsi_handle)
4826{
4827        u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
4828        u8 tc;
4829
4830        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4831                return ICE_ERR_PARAM;
4832
4833        /* Return success if no nodes are present across TC */
4834        ice_for_each_traffic_class(tc) {
4835                struct ice_sched_node *tc_node, *vsi_node;
4836                enum ice_rl_type rl_type = ICE_SHARED_BW;
4837                enum ice_status status;
4838
4839                tc_node = ice_sched_get_tc_node(pi, tc);
4840                if (!tc_node)
4841                        continue;
4842
4843                vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
4844                if (!vsi_node)
4845                        continue;
4846
4847                /* SRL bandwidth layer selection */
4848                if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
4849                        u8 node_layer = vsi_node->tx_sched_layer;
4850                        u8 layer_num;
4851
4852                        layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
4853                                                                node_layer);
4854                        if (layer_num >= pi->hw->num_tx_sched_layers)
4855                                return ICE_ERR_PARAM;
4856                        sel_layer = layer_num;
4857                }
4858
4859                status = ice_sched_validate_srl_node(vsi_node, sel_layer);
4860                if (status)
4861                        return status;
4862        }
4863        return ICE_SUCCESS;
4864}
4865
4866/**
4867 * ice_sched_set_save_vsi_srl_node_bw - set VSI shared limit values
4868 * @pi: port information structure
4869 * @vsi_handle: software VSI handle
4870 * @tc: traffic class
4871 * @srl_node: sched node to configure
4872 * @rl_type: rate limit type minimum, maximum, or shared
4873 * @bw: minimum, maximum, or shared bandwidth in Kbps
4874 *
4875 * Configure shared rate limiter(SRL) of VSI type nodes across given traffic
4876 * class, and saves those value for later use for replaying purposes. The
4877 * caller holds the scheduler lock.
4878 */
4879static enum ice_status
4880ice_sched_set_save_vsi_srl_node_bw(struct ice_port_info *pi, u16 vsi_handle,
4881                                   u8 tc, struct ice_sched_node *srl_node,
4882                                   enum ice_rl_type rl_type, u32 bw)
4883{
4884        enum ice_status status;
4885
4886        if (bw == ICE_SCHED_DFLT_BW) {
4887                status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
4888        } else {
4889                status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
4890                if (status)
4891                        return status;
4892                status = ice_sched_save_vsi_bw(pi, vsi_handle, tc, rl_type, bw);
4893        }
4894        return status;
4895}
4896
4897/**
4898 * ice_sched_set_vsi_node_srl_per_tc - set VSI node BW shared limit for tc
4899 * @pi: port information structure
4900 * @vsi_handle: software VSI handle
4901 * @tc: traffic class
4902 * @min_bw: minimum bandwidth in Kbps
4903 * @max_bw: maximum bandwidth in Kbps
4904 * @shared_bw: shared bandwidth in Kbps
4905 *
4906 * Configure shared rate limiter(SRL) of  VSI type nodes across requested
4907 * traffic class for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW
4908 * is passed, it removes the corresponding bw from the node. The caller
4909 * holds scheduler lock.
4910 */
4911static enum ice_status
4912ice_sched_set_vsi_node_srl_per_tc(struct ice_port_info *pi, u16 vsi_handle,
4913                                  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
4914{
4915        struct ice_sched_node *tc_node, *vsi_node, *cfg_node;
4916        enum ice_status status;
4917        u8 layer_num;
4918
4919        tc_node = ice_sched_get_tc_node(pi, tc);
4920        if (!tc_node)
4921                return ICE_ERR_CFG;
4922
4923        vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
4924        if (!vsi_node)
4925                return ICE_ERR_CFG;
4926
4927        layer_num = ice_sched_get_rl_prof_layer(pi, ICE_SHARED_BW,
4928                                                vsi_node->tx_sched_layer);
4929        if (layer_num >= pi->hw->num_tx_sched_layers)
4930                return ICE_ERR_PARAM;
4931
4932        /* SRL node may be different */
4933        cfg_node = ice_sched_get_srl_node(vsi_node, layer_num);
4934        if (!cfg_node)
4935                return ICE_ERR_CFG;
4936
4937        status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
4938                                                    cfg_node, ICE_MIN_BW,
4939                                                    min_bw);
4940        if (status)
4941                return status;
4942
4943        status = ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc,
4944                                                    cfg_node, ICE_MAX_BW,
4945                                                    max_bw);
4946        if (status)
4947                return status;
4948
4949        return ice_sched_set_save_vsi_srl_node_bw(pi, vsi_handle, tc, cfg_node,
4950                                                  ICE_SHARED_BW, shared_bw);
4951}
4952
4953/**
4954 * ice_sched_set_vsi_bw_shared_lmt - set VSI BW shared limit
4955 * @pi: port information structure
4956 * @vsi_handle: software VSI handle
4957 * @min_bw: minimum bandwidth in Kbps
4958 * @max_bw: maximum bandwidth in Kbps
4959 * @shared_bw: shared bandwidth in Kbps
4960 *
4961 * Configure shared rate limiter(SRL) of all VSI type nodes across all traffic
4962 * classes for VSI matching handle. When BW value of ICE_SCHED_DFLT_BW is
4963 * passed, it removes those value(s) from the node.
4964 */
4965enum ice_status
4966ice_sched_set_vsi_bw_shared_lmt(struct ice_port_info *pi, u16 vsi_handle,
4967                                u32 min_bw, u32 max_bw, u32 shared_bw)
4968{
4969        enum ice_status status = ICE_SUCCESS;
4970        u8 tc;
4971
4972        if (!pi)
4973                return ICE_ERR_PARAM;
4974
4975        if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4976                return ICE_ERR_PARAM;
4977
4978        ice_acquire_lock(&pi->sched_lock);
4979        status = ice_sched_validate_vsi_srl_node(pi, vsi_handle);
4980        if (status)
4981                goto exit_set_vsi_bw_shared_lmt;
4982        /* Return success if no nodes are present across TC */
4983        ice_for_each_traffic_class(tc) {
4984                struct ice_sched_node *tc_node, *vsi_node;
4985
4986                tc_node = ice_sched_get_tc_node(pi, tc);
4987                if (!tc_node)
4988                        continue;
4989
4990                vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
4991                if (!vsi_node)
4992                        continue;
4993
4994                status = ice_sched_set_vsi_node_srl_per_tc(pi, vsi_handle, tc,
4995                                                           min_bw, max_bw,
4996                                                           shared_bw);
4997                if (status)
4998                        break;
4999        }
5000
5001exit_set_vsi_bw_shared_lmt:
5002        ice_release_lock(&pi->sched_lock);
5003        return status;
5004}
5005
5006/**
5007 * ice_sched_validate_agg_srl_node - validate AGG SRL node
5008 * @pi: port information structure
5009 * @agg_id: aggregator ID
5010 *
5011 * This function validates SRL node of the AGG node if available SRL layer is
5012 * different than the AGG node layer on all TC(s).This function needs to be
5013 * called with scheduler lock held.
5014 */
5015static enum ice_status
5016ice_sched_validate_agg_srl_node(struct ice_port_info *pi, u32 agg_id)
5017{
5018        u8 sel_layer = ICE_SCHED_INVAL_LAYER_NUM;
5019        struct ice_sched_agg_info *agg_info;
5020        bool agg_id_present = false;
5021        enum ice_status status = ICE_SUCCESS;
5022        u8 tc;
5023
5024        LIST_FOR_EACH_ENTRY(agg_info, &pi->hw->agg_list, ice_sched_agg_info,
5025                            list_entry)
5026                if (agg_info->agg_id == agg_id) {
5027                        agg_id_present = true;
5028                        break;
5029                }
5030        if (!agg_id_present)
5031                return ICE_ERR_PARAM;
5032        /* Return success if no nodes are present across TC */
5033        ice_for_each_traffic_class(tc) {
5034                struct ice_sched_node *tc_node, *agg_node;
5035                enum ice_rl_type rl_type = ICE_SHARED_BW;
5036
5037                tc_node = ice_sched_get_tc_node(pi, tc);
5038                if (!tc_node)
5039                        continue;
5040
5041                agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5042                if (!agg_node)
5043                        continue;
5044                /* SRL bandwidth layer selection */
5045                if (sel_layer == ICE_SCHED_INVAL_LAYER_NUM) {
5046                        u8 node_layer = agg_node->tx_sched_layer;
5047                        u8 layer_num;
5048
5049                        layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5050                                                                node_layer);
5051                        if (layer_num >= pi->hw->num_tx_sched_layers)
5052                                return ICE_ERR_PARAM;
5053                        sel_layer = layer_num;
5054                }
5055
5056                status = ice_sched_validate_srl_node(agg_node, sel_layer);
5057                if (status)
5058                        break;
5059        }
5060        return status;
5061}
5062
5063/**
5064 * ice_sched_validate_agg_id - Validate aggregator id
5065 * @pi: port information structure
5066 * @agg_id: aggregator ID
5067 *
5068 * This function validates aggregator id. Caller holds the scheduler lock.
5069 */
5070static enum ice_status
5071ice_sched_validate_agg_id(struct ice_port_info *pi, u32 agg_id)
5072{
5073        struct ice_sched_agg_info *agg_info;
5074        struct ice_sched_agg_info *tmp;
5075        bool agg_id_present = false;
5076        enum ice_status status;
5077
5078        status = ice_sched_validate_agg_srl_node(pi, agg_id);
5079        if (status)
5080                return status;
5081
5082        LIST_FOR_EACH_ENTRY_SAFE(agg_info, tmp, &pi->hw->agg_list,
5083                                 ice_sched_agg_info, list_entry)
5084                if (agg_info->agg_id == agg_id) {
5085                        agg_id_present = true;
5086                        break;
5087                }
5088
5089        if (!agg_id_present)
5090                return ICE_ERR_PARAM;
5091
5092        return ICE_SUCCESS;
5093}
5094
5095/**
5096 * ice_sched_set_save_agg_srl_node_bw - set aggregator shared limit values
5097 * @pi: port information structure
5098 * @agg_id: aggregator ID
5099 * @tc: traffic class
5100 * @srl_node: sched node to configure
5101 * @rl_type: rate limit type minimum, maximum, or shared
5102 * @bw: minimum, maximum, or shared bandwidth in Kbps
5103 *
5104 * Configure shared rate limiter(SRL) of aggregator type nodes across
5105 * requested traffic class, and saves those value for later use for
5106 * replaying purposes. The caller holds the scheduler lock.
5107 */
5108static enum ice_status
5109ice_sched_set_save_agg_srl_node_bw(struct ice_port_info *pi, u32 agg_id, u8 tc,
5110                                   struct ice_sched_node *srl_node,
5111                                   enum ice_rl_type rl_type, u32 bw)
5112{
5113        enum ice_status status;
5114
5115        if (bw == ICE_SCHED_DFLT_BW) {
5116                status = ice_sched_set_node_bw_dflt_lmt(pi, srl_node, rl_type);
5117        } else {
5118                status = ice_sched_set_node_bw_lmt(pi, srl_node, rl_type, bw);
5119                if (status)
5120                        return status;
5121                status = ice_sched_save_agg_bw(pi, agg_id, tc, rl_type, bw);
5122        }
5123        return status;
5124}
5125
5126/**
5127 * ice_sched_set_agg_node_srl_per_tc - set aggregator SRL per tc
5128 * @pi: port information structure
5129 * @agg_id: aggregator ID
5130 * @tc: traffic class
5131 * @min_bw: minimum bandwidth in Kbps
5132 * @max_bw: maximum bandwidth in Kbps
5133 * @shared_bw: shared bandwidth in Kbps
5134 *
5135 * This function configures the shared rate limiter(SRL) of aggregator type
5136 * node for a given traffic class for aggregator matching agg_id. When BW
5137 * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node. Caller
5138 * holds the scheduler lock.
5139 */
5140static enum ice_status
5141ice_sched_set_agg_node_srl_per_tc(struct ice_port_info *pi, u32 agg_id,
5142                                  u8 tc, u32 min_bw, u32 max_bw, u32 shared_bw)
5143{
5144        struct ice_sched_node *tc_node, *agg_node, *cfg_node;
5145        enum ice_rl_type rl_type = ICE_SHARED_BW;
5146        enum ice_status status = ICE_ERR_CFG;
5147        u8 layer_num;
5148
5149        tc_node = ice_sched_get_tc_node(pi, tc);
5150        if (!tc_node)
5151                return ICE_ERR_CFG;
5152
5153        agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5154        if (!agg_node)
5155                return ICE_ERR_CFG;
5156
5157        layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
5158                                                agg_node->tx_sched_layer);
5159        if (layer_num >= pi->hw->num_tx_sched_layers)
5160                return ICE_ERR_PARAM;
5161
5162        /* SRL node may be different */
5163        cfg_node = ice_sched_get_srl_node(agg_node, layer_num);
5164        if (!cfg_node)
5165                return ICE_ERR_CFG;
5166
5167        status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5168                                                    ICE_MIN_BW, min_bw);
5169        if (status)
5170                return status;
5171
5172        status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5173                                                    ICE_MAX_BW, max_bw);
5174        if (status)
5175                return status;
5176
5177        status = ice_sched_set_save_agg_srl_node_bw(pi, agg_id, tc, cfg_node,
5178                                                    ICE_SHARED_BW, shared_bw);
5179        return status;
5180}
5181
5182/**
5183 * ice_sched_set_agg_bw_shared_lmt - set aggregator BW shared limit
5184 * @pi: port information structure
5185 * @agg_id: aggregator ID
5186 * @min_bw: minimum bandwidth in Kbps
5187 * @max_bw: maximum bandwidth in Kbps
5188 * @shared_bw: shared bandwidth in Kbps
5189 *
5190 * This function configures the shared rate limiter(SRL) of all aggregator type
5191 * nodes across all traffic classes for aggregator matching agg_id. When
5192 * BW value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the
5193 * node(s).
5194 */
5195enum ice_status
5196ice_sched_set_agg_bw_shared_lmt(struct ice_port_info *pi, u32 agg_id,
5197                                u32 min_bw, u32 max_bw, u32 shared_bw)
5198{
5199        enum ice_status status;
5200        u8 tc;
5201
5202        if (!pi)
5203                return ICE_ERR_PARAM;
5204
5205        ice_acquire_lock(&pi->sched_lock);
5206        status = ice_sched_validate_agg_id(pi, agg_id);
5207        if (status)
5208                goto exit_agg_bw_shared_lmt;
5209
5210        /* Return success if no nodes are present across TC */
5211        ice_for_each_traffic_class(tc) {
5212                struct ice_sched_node *tc_node, *agg_node;
5213
5214                tc_node = ice_sched_get_tc_node(pi, tc);
5215                if (!tc_node)
5216                        continue;
5217
5218                agg_node = ice_sched_get_agg_node(pi, tc_node, agg_id);
5219                if (!agg_node)
5220                        continue;
5221
5222                status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc,
5223                                                           min_bw, max_bw,
5224                                                           shared_bw);
5225                if (status)
5226                        break;
5227        }
5228
5229exit_agg_bw_shared_lmt:
5230        ice_release_lock(&pi->sched_lock);
5231        return status;
5232}
5233
5234/**
5235 * ice_sched_set_agg_bw_shared_lmt_per_tc - set aggregator BW shared lmt per tc
5236 * @pi: port information structure
5237 * @agg_id: aggregator ID
5238 * @tc: traffic class
5239 * @min_bw: minimum bandwidth in Kbps
5240 * @max_bw: maximum bandwidth in Kbps
5241 * @shared_bw: shared bandwidth in Kbps
5242 *
5243 * This function configures the shared rate limiter(SRL) of aggregator type
5244 * node for a given traffic class for aggregator matching agg_id. When BW
5245 * value of ICE_SCHED_DFLT_BW is passed, it removes SRL from the node.
5246 */
5247enum ice_status
5248ice_sched_set_agg_bw_shared_lmt_per_tc(struct ice_port_info *pi, u32 agg_id,
5249                                       u8 tc, u32 min_bw, u32 max_bw,
5250                                       u32 shared_bw)
5251{
5252        enum ice_status status;
5253
5254        if (!pi)
5255                return ICE_ERR_PARAM;
5256        ice_acquire_lock(&pi->sched_lock);
5257        status = ice_sched_validate_agg_id(pi, agg_id);
5258        if (status)
5259                goto exit_agg_bw_shared_lmt_per_tc;
5260
5261        status = ice_sched_set_agg_node_srl_per_tc(pi, agg_id, tc, min_bw,
5262                                                   max_bw, shared_bw);
5263
5264exit_agg_bw_shared_lmt_per_tc:
5265        ice_release_lock(&pi->sched_lock);
5266        return status;
5267}
5268
5269/**
5270 * ice_sched_cfg_sibl_node_prio - configure node sibling priority
5271 * @pi: port information structure
5272 * @node: sched node to configure
5273 * @priority: sibling priority
5274 *
5275 * This function configures node element's sibling priority only. This
5276 * function needs to be called with scheduler lock held.
5277 */
5278enum ice_status
5279ice_sched_cfg_sibl_node_prio(struct ice_port_info *pi,
5280                             struct ice_sched_node *node, u8 priority)
5281{
5282        struct ice_aqc_txsched_elem_data buf;
5283        struct ice_aqc_txsched_elem *data;
5284        struct ice_hw *hw = pi->hw;
5285        enum ice_status status;
5286
5287        if (!hw)
5288                return ICE_ERR_PARAM;
5289        buf = node->info;
5290        data = &buf.data;
5291        data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5292        priority = (priority << ICE_AQC_ELEM_GENERIC_PRIO_S) &
5293                   ICE_AQC_ELEM_GENERIC_PRIO_M;
5294        data->generic &= ~ICE_AQC_ELEM_GENERIC_PRIO_M;
5295        data->generic |= priority;
5296
5297        /* Configure element */
5298        status = ice_sched_update_elem(hw, node, &buf);
5299        return status;
5300}
5301
5302/**
5303 * ice_cfg_rl_burst_size - Set burst size value
5304 * @hw: pointer to the HW struct
5305 * @bytes: burst size in bytes
5306 *
5307 * This function configures/set the burst size to requested new value. The new
5308 * burst size value is used for future rate limit calls. It doesn't change the
5309 * existing or previously created RL profiles.
5310 */
5311enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
5312{
5313        u16 burst_size_to_prog;
5314
5315        if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
5316            bytes > ICE_MAX_BURST_SIZE_ALLOWED)
5317                return ICE_ERR_PARAM;
5318        if (ice_round_to_num(bytes, 64) <=
5319            ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
5320                /* 64 byte granularity case */
5321                /* Disable MSB granularity bit */
5322                burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
5323                /* round number to nearest 64 byte granularity */
5324                bytes = ice_round_to_num(bytes, 64);
5325                /* The value is in 64 byte chunks */
5326                burst_size_to_prog |= (u16)(bytes / 64);
5327        } else {
5328                /* k bytes granularity case */
5329                /* Enable MSB granularity bit */
5330                burst_size_to_prog = ICE_KBYTE_GRANULARITY;
5331                /* round number to nearest 1024 granularity */
5332                bytes = ice_round_to_num(bytes, 1024);
5333                /* check rounding doesn't go beyond allowed */
5334                if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
5335                        bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
5336                /* The value is in k bytes */
5337                burst_size_to_prog |= (u16)(bytes / 1024);
5338        }
5339        hw->max_burst_size = burst_size_to_prog;
5340        return ICE_SUCCESS;
5341}
5342
5343/**
5344 * ice_sched_replay_node_prio - re-configure node priority
5345 * @hw: pointer to the HW struct
5346 * @node: sched node to configure
5347 * @priority: priority value
5348 *
5349 * This function configures node element's priority value. It
5350 * needs to be called with scheduler lock held.
5351 */
5352static enum ice_status
5353ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
5354                           u8 priority)
5355{
5356        struct ice_aqc_txsched_elem_data buf;
5357        struct ice_aqc_txsched_elem *data;
5358        enum ice_status status;
5359
5360        buf = node->info;
5361        data = &buf.data;
5362        data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
5363        data->generic = priority;
5364
5365        /* Configure element */
5366        status = ice_sched_update_elem(hw, node, &buf);
5367        return status;
5368}
5369
5370/**
5371 * ice_sched_replay_node_bw - replay node(s) BW
5372 * @hw: pointer to the HW struct
5373 * @node: sched node to configure
5374 * @bw_t_info: BW type information
5375 *
5376 * This function restores node's BW from bw_t_info. The caller needs
5377 * to hold the scheduler lock.
5378 */
5379static enum ice_status
5380ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
5381                         struct ice_bw_type_info *bw_t_info)
5382{
5383        struct ice_port_info *pi = hw->port_info;
5384        enum ice_status status = ICE_ERR_PARAM;
5385        u16 bw_alloc;
5386
5387        if (!node)
5388                return status;
5389        if (!ice_is_any_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
5390                return ICE_SUCCESS;
5391        if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_PRIO)) {
5392                status = ice_sched_replay_node_prio(hw, node,
5393                                                    bw_t_info->generic);
5394                if (status)
5395                        return status;
5396        }
5397        if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR)) {
5398                status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
5399                                                   bw_t_info->cir_bw.bw);
5400                if (status)
5401                        return status;
5402        }
5403        if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CIR_WT)) {
5404                bw_alloc = bw_t_info->cir_bw.bw_alloc;
5405                status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
5406                                                     bw_alloc);
5407                if (status)
5408                        return status;
5409        }
5410        if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR)) {
5411                status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
5412                                                   bw_t_info->eir_bw.bw);
5413                if (status)
5414                        return status;
5415        }
5416        if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_EIR_WT)) {
5417                bw_alloc = bw_t_info->eir_bw.bw_alloc;
5418                status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
5419                                                     bw_alloc);
5420                if (status)
5421                        return status;
5422        }
5423        if (ice_is_bit_set(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_SHARED))
5424                status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
5425                                                   bw_t_info->shared_bw);
5426        return status;
5427}
5428
5429/**
5430 * ice_sched_replay_agg_bw - replay aggregator node(s) BW
5431 * @hw: pointer to the HW struct
5432 * @agg_info: aggregator data structure
5433 *
5434 * This function re-creates aggregator type nodes. The caller needs to hold
5435 * the scheduler lock.
5436 */
5437static enum ice_status
5438ice_sched_replay_agg_bw(struct ice_hw *hw, struct ice_sched_agg_info *agg_info)
5439{
5440        struct ice_sched_node *tc_node, *agg_node;
5441        enum ice_status status = ICE_SUCCESS;
5442        u8 tc;
5443
5444        if (!agg_info)
5445                return ICE_ERR_PARAM;
5446        ice_for_each_traffic_class(tc) {
5447                if (!ice_is_any_bit_set(agg_info->bw_t_info[tc].bw_t_bitmap,
5448                                        ICE_BW_TYPE_CNT))
5449                        continue;
5450                tc_node = ice_sched_get_tc_node(hw->port_info, tc);
5451                if (!tc_node) {
5452                        status = ICE_ERR_PARAM;
5453                        break;
5454                }
5455                agg_node = ice_sched_get_agg_node(hw->port_info, tc_node,
5456                                                  agg_info->agg_id);
5457                if (!agg_node) {
5458                        status = ICE_ERR_PARAM;
5459                        break;
5460                }
5461                status = ice_sched_replay_node_bw(hw, agg_node,
5462                                                  &agg_info->bw_t_info[tc]);
5463                if (status)
5464                        break;
5465        }
5466        return status;
5467}
5468
5469/**
5470 * ice_sched_get_ena_tc_bitmap - get enabled TC bitmap
5471 * @pi: port info struct
5472 * @tc_bitmap: 8 bits TC bitmap to check
5473 * @ena_tc_bitmap: 8 bits enabled TC bitmap to return
5474 *
5475 * This function returns enabled TC bitmap in variable ena_tc_bitmap. Some TCs
5476 * may be missing, it returns enabled TCs. This function needs to be called with
5477 * scheduler lock held.
5478 */
5479static void
5480ice_sched_get_ena_tc_bitmap(struct ice_port_info *pi, ice_bitmap_t *tc_bitmap,
5481                            ice_bitmap_t *ena_tc_bitmap)
5482{
5483        u8 tc;
5484
5485        /* Some TC(s) may be missing after reset, adjust for replay */
5486        ice_for_each_traffic_class(tc)
5487                if (ice_is_tc_ena(*tc_bitmap, tc) &&
5488                    (ice_sched_get_tc_node(pi, tc)))
5489                        ice_set_bit(tc, ena_tc_bitmap);
5490}
5491
5492/**
5493 * ice_sched_replay_agg - recreate aggregator node(s)
5494 * @hw: pointer to the HW struct
5495 *
5496 * This function recreate aggregator type nodes which are not replayed earlier.
5497 * It also replay aggregator BW information. These aggregator nodes are not
5498 * associated with VSI type node yet.
5499 */
5500void ice_sched_replay_agg(struct ice_hw *hw)
5501{
5502        struct ice_port_info *pi = hw->port_info;
5503        struct ice_sched_agg_info *agg_info;
5504
5505        ice_acquire_lock(&pi->sched_lock);
5506        LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5507                            list_entry)
5508                /* replay aggregator (re-create aggregator node) */
5509                if (!ice_cmp_bitmap(agg_info->tc_bitmap,
5510                                    agg_info->replay_tc_bitmap,
5511                                    ICE_MAX_TRAFFIC_CLASS)) {
5512                        ice_declare_bitmap(replay_bitmap,
5513                                           ICE_MAX_TRAFFIC_CLASS);
5514                        enum ice_status status;
5515
5516                        ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5517                        ice_sched_get_ena_tc_bitmap(pi,
5518                                                    agg_info->replay_tc_bitmap,
5519                                                    replay_bitmap);
5520                        status = ice_sched_cfg_agg(hw->port_info,
5521                                                   agg_info->agg_id,
5522                                                   ICE_AGG_TYPE_AGG,
5523                                                   replay_bitmap);
5524                        if (status) {
5525                                ice_info(hw, "Replay agg id[%d] failed\n",
5526                                         agg_info->agg_id);
5527                                /* Move on to next one */
5528                                continue;
5529                        }
5530                        /* Replay aggregator node BW (restore aggregator BW) */
5531                        status = ice_sched_replay_agg_bw(hw, agg_info);
5532                        if (status)
5533                                ice_info(hw, "Replay agg bw [id=%d] failed\n",
5534                                         agg_info->agg_id);
5535                }
5536        ice_release_lock(&pi->sched_lock);
5537}
5538
5539/**
5540 * ice_sched_replay_agg_vsi_preinit - Agg/VSI replay pre initialization
5541 * @hw: pointer to the HW struct
5542 *
5543 * This function initialize aggregator(s) TC bitmap to zero. A required
5544 * preinit step for replaying aggregators.
5545 */
5546void ice_sched_replay_agg_vsi_preinit(struct ice_hw *hw)
5547{
5548        struct ice_port_info *pi = hw->port_info;
5549        struct ice_sched_agg_info *agg_info;
5550
5551        ice_acquire_lock(&pi->sched_lock);
5552        LIST_FOR_EACH_ENTRY(agg_info, &hw->agg_list, ice_sched_agg_info,
5553                            list_entry) {
5554                struct ice_sched_agg_vsi_info *agg_vsi_info;
5555
5556                agg_info->tc_bitmap[0] = 0;
5557                LIST_FOR_EACH_ENTRY(agg_vsi_info, &agg_info->agg_vsi_list,
5558                                    ice_sched_agg_vsi_info, list_entry)
5559                        agg_vsi_info->tc_bitmap[0] = 0;
5560        }
5561        ice_release_lock(&pi->sched_lock);
5562}
5563
5564/**
5565 * ice_sched_replay_root_node_bw - replay root node BW
5566 * @pi: port information structure
5567 *
5568 * Replay root node BW settings.
5569 */
5570enum ice_status ice_sched_replay_root_node_bw(struct ice_port_info *pi)
5571{
5572        enum ice_status status = ICE_SUCCESS;
5573
5574        if (!pi->hw)
5575                return ICE_ERR_PARAM;
5576        ice_acquire_lock(&pi->sched_lock);
5577
5578        status = ice_sched_replay_node_bw(pi->hw, pi->root,
5579                                          &pi->root_node_bw_t_info);
5580        ice_release_lock(&pi->sched_lock);
5581        return status;
5582}
5583
5584/**
5585 * ice_sched_replay_tc_node_bw - replay TC node(s) BW
5586 * @pi: port information structure
5587 *
5588 * This function replay TC nodes.
5589 */
5590enum ice_status ice_sched_replay_tc_node_bw(struct ice_port_info *pi)
5591{
5592        enum ice_status status = ICE_SUCCESS;
5593        u8 tc;
5594
5595        if (!pi->hw)
5596                return ICE_ERR_PARAM;
5597        ice_acquire_lock(&pi->sched_lock);
5598        ice_for_each_traffic_class(tc) {
5599                struct ice_sched_node *tc_node;
5600
5601                tc_node = ice_sched_get_tc_node(pi, tc);
5602                if (!tc_node)
5603                        continue; /* TC not present */
5604                status = ice_sched_replay_node_bw(pi->hw, tc_node,
5605                                                  &pi->tc_node_bw_t_info[tc]);
5606                if (status)
5607                        break;
5608        }
5609        ice_release_lock(&pi->sched_lock);
5610        return status;
5611}
5612
5613/**
5614 * ice_sched_replay_vsi_bw - replay VSI type node(s) BW
5615 * @hw: pointer to the HW struct
5616 * @vsi_handle: software VSI handle
5617 * @tc_bitmap: 8 bits TC bitmap
5618 *
5619 * This function replays VSI type nodes bandwidth. This function needs to be
5620 * called with scheduler lock held.
5621 */
5622static enum ice_status
5623ice_sched_replay_vsi_bw(struct ice_hw *hw, u16 vsi_handle,
5624                        ice_bitmap_t *tc_bitmap)
5625{
5626        struct ice_sched_node *vsi_node, *tc_node;
5627        struct ice_port_info *pi = hw->port_info;
5628        struct ice_bw_type_info *bw_t_info;
5629        struct ice_vsi_ctx *vsi_ctx;
5630        enum ice_status status = ICE_SUCCESS;
5631        u8 tc;
5632
5633        vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
5634        if (!vsi_ctx)
5635                return ICE_ERR_PARAM;
5636        ice_for_each_traffic_class(tc) {
5637                if (!ice_is_tc_ena(*tc_bitmap, tc))
5638                        continue;
5639                tc_node = ice_sched_get_tc_node(pi, tc);
5640                if (!tc_node)
5641                        continue;
5642                vsi_node = ice_sched_get_vsi_node(pi, tc_node, vsi_handle);
5643                if (!vsi_node)
5644                        continue;
5645                bw_t_info = &vsi_ctx->sched.bw_t_info[tc];
5646                status = ice_sched_replay_node_bw(hw, vsi_node, bw_t_info);
5647                if (status)
5648                        break;
5649        }
5650        return status;
5651}
5652
5653/**
5654 * ice_sched_replay_vsi_agg - replay aggregator & VSI to aggregator node(s)
5655 * @hw: pointer to the HW struct
5656 * @vsi_handle: software VSI handle
5657 *
5658 * This function replays aggregator node, VSI to aggregator type nodes, and
5659 * their node bandwidth information. This function needs to be called with
5660 * scheduler lock held.
5661 */
5662static enum ice_status
5663ice_sched_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5664{
5665        ice_declare_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5666        struct ice_sched_agg_vsi_info *agg_vsi_info;
5667        struct ice_port_info *pi = hw->port_info;
5668        struct ice_sched_agg_info *agg_info;
5669        enum ice_status status;
5670
5671        ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5672        if (!ice_is_vsi_valid(hw, vsi_handle))
5673                return ICE_ERR_PARAM;
5674        agg_info = ice_get_vsi_agg_info(hw, vsi_handle);
5675        if (!agg_info)
5676                return ICE_SUCCESS; /* Not present in list - default Agg case */
5677        agg_vsi_info = ice_get_agg_vsi_info(agg_info, vsi_handle);
5678        if (!agg_vsi_info)
5679                return ICE_SUCCESS; /* Not present in list - default Agg case */
5680        ice_sched_get_ena_tc_bitmap(pi, agg_info->replay_tc_bitmap,
5681                                    replay_bitmap);
5682        /* Replay aggregator node associated to vsi_handle */
5683        status = ice_sched_cfg_agg(hw->port_info, agg_info->agg_id,
5684                                   ICE_AGG_TYPE_AGG, replay_bitmap);
5685        if (status)
5686                return status;
5687        /* Replay aggregator node BW (restore aggregator BW) */
5688        status = ice_sched_replay_agg_bw(hw, agg_info);
5689        if (status)
5690                return status;
5691
5692        ice_zero_bitmap(replay_bitmap, ICE_MAX_TRAFFIC_CLASS);
5693        ice_sched_get_ena_tc_bitmap(pi, agg_vsi_info->replay_tc_bitmap,
5694                                    replay_bitmap);
5695        /* Move this VSI (vsi_handle) to above aggregator */
5696        status = ice_sched_assoc_vsi_to_agg(pi, agg_info->agg_id, vsi_handle,
5697                                            replay_bitmap);
5698        if (status)
5699                return status;
5700        /* Replay VSI BW (restore VSI BW) */
5701        return ice_sched_replay_vsi_bw(hw, vsi_handle,
5702                                       agg_vsi_info->tc_bitmap);
5703}
5704
5705/**
5706 * ice_replay_vsi_agg - replay VSI to aggregator node
5707 * @hw: pointer to the HW struct
5708 * @vsi_handle: software VSI handle
5709 *
5710 * This function replays association of VSI to aggregator type nodes, and
5711 * node bandwidth information.
5712 */
5713enum ice_status ice_replay_vsi_agg(struct ice_hw *hw, u16 vsi_handle)
5714{
5715        struct ice_port_info *pi = hw->port_info;
5716        enum ice_status status;
5717
5718        ice_acquire_lock(&pi->sched_lock);
5719        status = ice_sched_replay_vsi_agg(hw, vsi_handle);
5720        ice_release_lock(&pi->sched_lock);
5721        return status;
5722}
5723
5724/**
5725 * ice_sched_replay_q_bw - replay queue type node BW
5726 * @pi: port information structure
5727 * @q_ctx: queue context structure
5728 *
5729 * This function replays queue type node bandwidth. This function needs to be
5730 * called with scheduler lock held.
5731 */
5732enum ice_status
5733ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
5734{
5735        struct ice_sched_node *q_node;
5736
5737        /* Following also checks the presence of node in tree */
5738        q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
5739        if (!q_node)
5740                return ICE_ERR_PARAM;
5741        return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
5742}
5743