dpdk/drivers/baseband/acc100/rte_acc100_pmd.c
<<
>>
Prefs
   1/* SPDX-License-Identifier: BSD-3-Clause
   2 * Copyright(c) 2020 Intel Corporation
   3 */
   4
   5#include <unistd.h>
   6
   7#include <rte_common.h>
   8#include <rte_log.h>
   9#include <rte_dev.h>
  10#include <rte_malloc.h>
  11#include <rte_mempool.h>
  12#include <rte_byteorder.h>
  13#include <rte_errno.h>
  14#include <rte_branch_prediction.h>
  15#include <rte_hexdump.h>
  16#include <rte_pci.h>
  17#include <rte_bus_pci.h>
  18#ifdef RTE_BBDEV_OFFLOAD_COST
  19#include <rte_cycles.h>
  20#endif
  21
  22#include <rte_bbdev.h>
  23#include <rte_bbdev_pmd.h>
  24#include "rte_acc100_pmd.h"
  25
  26#ifdef RTE_LIBRTE_BBDEV_DEBUG
  27RTE_LOG_REGISTER_DEFAULT(acc100_logtype, DEBUG);
  28#else
  29RTE_LOG_REGISTER_DEFAULT(acc100_logtype, NOTICE);
  30#endif
  31
  32/* Write to MMIO register address */
  33static inline void
  34mmio_write(void *addr, uint32_t value)
  35{
  36        *((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
  37}
  38
  39/* Write a register of a ACC100 device */
  40static inline void
  41acc100_reg_write(struct acc100_device *d, uint32_t offset, uint32_t value)
  42{
  43        void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
  44        mmio_write(reg_addr, value);
  45        usleep(ACC100_LONG_WAIT);
  46}
  47
  48/* Read a register of a ACC100 device */
  49static inline uint32_t
  50acc100_reg_read(struct acc100_device *d, uint32_t offset)
  51{
  52
  53        void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
  54        uint32_t ret = *((volatile uint32_t *)(reg_addr));
  55        return rte_le_to_cpu_32(ret);
  56}
  57
  58/* Basic Implementation of Log2 for exact 2^N */
  59static inline uint32_t
  60log2_basic(uint32_t value)
  61{
  62        return (value == 0) ? 0 : rte_bsf32(value);
  63}
  64
  65/* Calculate memory alignment offset assuming alignment is 2^N */
  66static inline uint32_t
  67calc_mem_alignment_offset(void *unaligned_virt_mem, uint32_t alignment)
  68{
  69        rte_iova_t unaligned_phy_mem = rte_malloc_virt2iova(unaligned_virt_mem);
  70        return (uint32_t)(alignment -
  71                        (unaligned_phy_mem & (alignment-1)));
  72}
  73
  74/* Calculate the offset of the enqueue register */
  75static inline uint32_t
  76queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, uint16_t aq_id)
  77{
  78        if (pf_device)
  79                return ((vf_id << 12) + (qgrp_id << 7) + (aq_id << 3) +
  80                                HWPfQmgrIngressAq);
  81        else
  82                return ((qgrp_id << 7) + (aq_id << 3) +
  83                                HWVfQmgrIngressAq);
  84}
  85
  86enum {UL_4G = 0, UL_5G, DL_4G, DL_5G, NUM_ACC};
  87
  88/* Return the accelerator enum for a Queue Group Index */
  89static inline int
  90accFromQgid(int qg_idx, const struct rte_acc100_conf *acc100_conf)
  91{
  92        int accQg[ACC100_NUM_QGRPS];
  93        int NumQGroupsPerFn[NUM_ACC];
  94        int acc, qgIdx, qgIndex = 0;
  95        for (qgIdx = 0; qgIdx < ACC100_NUM_QGRPS; qgIdx++)
  96                accQg[qgIdx] = 0;
  97        NumQGroupsPerFn[UL_4G] = acc100_conf->q_ul_4g.num_qgroups;
  98        NumQGroupsPerFn[UL_5G] = acc100_conf->q_ul_5g.num_qgroups;
  99        NumQGroupsPerFn[DL_4G] = acc100_conf->q_dl_4g.num_qgroups;
 100        NumQGroupsPerFn[DL_5G] = acc100_conf->q_dl_5g.num_qgroups;
 101        for (acc = UL_4G;  acc < NUM_ACC; acc++)
 102                for (qgIdx = 0; qgIdx < NumQGroupsPerFn[acc]; qgIdx++)
 103                        accQg[qgIndex++] = acc;
 104        acc = accQg[qg_idx];
 105        return acc;
 106}
 107
 108/* Return the queue topology for a Queue Group Index */
 109static inline void
 110qtopFromAcc(struct rte_acc100_queue_topology **qtop, int acc_enum,
 111                struct rte_acc100_conf *acc100_conf)
 112{
 113        struct rte_acc100_queue_topology *p_qtop;
 114        p_qtop = NULL;
 115        switch (acc_enum) {
 116        case UL_4G:
 117                p_qtop = &(acc100_conf->q_ul_4g);
 118                break;
 119        case UL_5G:
 120                p_qtop = &(acc100_conf->q_ul_5g);
 121                break;
 122        case DL_4G:
 123                p_qtop = &(acc100_conf->q_dl_4g);
 124                break;
 125        case DL_5G:
 126                p_qtop = &(acc100_conf->q_dl_5g);
 127                break;
 128        default:
 129                /* NOTREACHED */
 130                rte_bbdev_log(ERR, "Unexpected error evaluating qtopFromAcc");
 131                break;
 132        }
 133        *qtop = p_qtop;
 134}
 135
 136/* Return the AQ depth for a Queue Group Index */
 137static inline int
 138aqDepth(int qg_idx, struct rte_acc100_conf *acc100_conf)
 139{
 140        struct rte_acc100_queue_topology *q_top = NULL;
 141        int acc_enum = accFromQgid(qg_idx, acc100_conf);
 142        qtopFromAcc(&q_top, acc_enum, acc100_conf);
 143        if (unlikely(q_top == NULL))
 144                return 0;
 145        return q_top->aq_depth_log2;
 146}
 147
 148/* Return the AQ depth for a Queue Group Index */
 149static inline int
 150aqNum(int qg_idx, struct rte_acc100_conf *acc100_conf)
 151{
 152        struct rte_acc100_queue_topology *q_top = NULL;
 153        int acc_enum = accFromQgid(qg_idx, acc100_conf);
 154        qtopFromAcc(&q_top, acc_enum, acc100_conf);
 155        if (unlikely(q_top == NULL))
 156                return 0;
 157        return q_top->num_aqs_per_groups;
 158}
 159
 160static void
 161initQTop(struct rte_acc100_conf *acc100_conf)
 162{
 163        acc100_conf->q_ul_4g.num_aqs_per_groups = 0;
 164        acc100_conf->q_ul_4g.num_qgroups = 0;
 165        acc100_conf->q_ul_4g.first_qgroup_index = -1;
 166        acc100_conf->q_ul_5g.num_aqs_per_groups = 0;
 167        acc100_conf->q_ul_5g.num_qgroups = 0;
 168        acc100_conf->q_ul_5g.first_qgroup_index = -1;
 169        acc100_conf->q_dl_4g.num_aqs_per_groups = 0;
 170        acc100_conf->q_dl_4g.num_qgroups = 0;
 171        acc100_conf->q_dl_4g.first_qgroup_index = -1;
 172        acc100_conf->q_dl_5g.num_aqs_per_groups = 0;
 173        acc100_conf->q_dl_5g.num_qgroups = 0;
 174        acc100_conf->q_dl_5g.first_qgroup_index = -1;
 175}
 176
 177static inline void
 178updateQtop(uint8_t acc, uint8_t qg, struct rte_acc100_conf *acc100_conf,
 179                struct acc100_device *d) {
 180        uint32_t reg;
 181        struct rte_acc100_queue_topology *q_top = NULL;
 182        qtopFromAcc(&q_top, acc, acc100_conf);
 183        if (unlikely(q_top == NULL))
 184                return;
 185        uint16_t aq;
 186        q_top->num_qgroups++;
 187        if (q_top->first_qgroup_index == -1) {
 188                q_top->first_qgroup_index = qg;
 189                /* Can be optimized to assume all are enabled by default */
 190                reg = acc100_reg_read(d, queue_offset(d->pf_device,
 191                                0, qg, ACC100_NUM_AQS - 1));
 192                if (reg & ACC100_QUEUE_ENABLE) {
 193                        q_top->num_aqs_per_groups = ACC100_NUM_AQS;
 194                        return;
 195                }
 196                q_top->num_aqs_per_groups = 0;
 197                for (aq = 0; aq < ACC100_NUM_AQS; aq++) {
 198                        reg = acc100_reg_read(d, queue_offset(d->pf_device,
 199                                        0, qg, aq));
 200                        if (reg & ACC100_QUEUE_ENABLE)
 201                                q_top->num_aqs_per_groups++;
 202                }
 203        }
 204}
 205
 206/* Fetch configuration enabled for the PF/VF using MMIO Read (slow) */
 207static inline void
 208fetch_acc100_config(struct rte_bbdev *dev)
 209{
 210        struct acc100_device *d = dev->data->dev_private;
 211        struct rte_acc100_conf *acc100_conf = &d->acc100_conf;
 212        const struct acc100_registry_addr *reg_addr;
 213        uint8_t acc, qg;
 214        uint32_t reg, reg_aq, reg_len0, reg_len1;
 215        uint32_t reg_mode;
 216
 217        /* No need to retrieve the configuration is already done */
 218        if (d->configured)
 219                return;
 220
 221        /* Choose correct registry addresses for the device type */
 222        if (d->pf_device)
 223                reg_addr = &pf_reg_addr;
 224        else
 225                reg_addr = &vf_reg_addr;
 226
 227        d->ddr_size = (1 + acc100_reg_read(d, reg_addr->ddr_range)) << 10;
 228
 229        /* Single VF Bundle by VF */
 230        acc100_conf->num_vf_bundles = 1;
 231        initQTop(acc100_conf);
 232
 233        struct rte_acc100_queue_topology *q_top = NULL;
 234        int qman_func_id[ACC100_NUM_ACCS] = {ACC100_ACCMAP_0, ACC100_ACCMAP_1,
 235                        ACC100_ACCMAP_2, ACC100_ACCMAP_3, ACC100_ACCMAP_4};
 236        reg = acc100_reg_read(d, reg_addr->qman_group_func);
 237        for (qg = 0; qg < ACC100_NUM_QGRPS_PER_WORD; qg++) {
 238                reg_aq = acc100_reg_read(d,
 239                                queue_offset(d->pf_device, 0, qg, 0));
 240                if (reg_aq & ACC100_QUEUE_ENABLE) {
 241                        uint32_t idx = (reg >> (qg * 4)) & 0x7;
 242                        if (idx < ACC100_NUM_ACCS) {
 243                                acc = qman_func_id[idx];
 244                                updateQtop(acc, qg, acc100_conf, d);
 245                        }
 246                }
 247        }
 248
 249        /* Check the depth of the AQs*/
 250        reg_len0 = acc100_reg_read(d, reg_addr->depth_log0_offset);
 251        reg_len1 = acc100_reg_read(d, reg_addr->depth_log1_offset);
 252        for (acc = 0; acc < NUM_ACC; acc++) {
 253                qtopFromAcc(&q_top, acc, acc100_conf);
 254                if (q_top->first_qgroup_index < ACC100_NUM_QGRPS_PER_WORD)
 255                        q_top->aq_depth_log2 = (reg_len0 >>
 256                                        (q_top->first_qgroup_index * 4))
 257                                        & 0xF;
 258                else
 259                        q_top->aq_depth_log2 = (reg_len1 >>
 260                                        ((q_top->first_qgroup_index -
 261                                        ACC100_NUM_QGRPS_PER_WORD) * 4))
 262                                        & 0xF;
 263        }
 264
 265        /* Read PF mode */
 266        if (d->pf_device) {
 267                reg_mode = acc100_reg_read(d, HWPfHiPfMode);
 268                acc100_conf->pf_mode_en = (reg_mode == ACC100_PF_VAL) ? 1 : 0;
 269        }
 270
 271        rte_bbdev_log_debug(
 272                        "%s Config LLR SIGN IN/OUT %s %s QG %u %u %u %u AQ %u %u %u %u Len %u %u %u %u\n",
 273                        (d->pf_device) ? "PF" : "VF",
 274                        (acc100_conf->input_pos_llr_1_bit) ? "POS" : "NEG",
 275                        (acc100_conf->output_pos_llr_1_bit) ? "POS" : "NEG",
 276                        acc100_conf->q_ul_4g.num_qgroups,
 277                        acc100_conf->q_dl_4g.num_qgroups,
 278                        acc100_conf->q_ul_5g.num_qgroups,
 279                        acc100_conf->q_dl_5g.num_qgroups,
 280                        acc100_conf->q_ul_4g.num_aqs_per_groups,
 281                        acc100_conf->q_dl_4g.num_aqs_per_groups,
 282                        acc100_conf->q_ul_5g.num_aqs_per_groups,
 283                        acc100_conf->q_dl_5g.num_aqs_per_groups,
 284                        acc100_conf->q_ul_4g.aq_depth_log2,
 285                        acc100_conf->q_dl_4g.aq_depth_log2,
 286                        acc100_conf->q_ul_5g.aq_depth_log2,
 287                        acc100_conf->q_dl_5g.aq_depth_log2);
 288}
 289
 290static void
 291free_base_addresses(void **base_addrs, int size)
 292{
 293        int i;
 294        for (i = 0; i < size; i++)
 295                rte_free(base_addrs[i]);
 296}
 297
 298static inline uint32_t
 299get_desc_len(void)
 300{
 301        return sizeof(union acc100_dma_desc);
 302}
 303
 304/* Allocate the 2 * 64MB block for the sw rings */
 305static int
 306alloc_2x64mb_sw_rings_mem(struct rte_bbdev *dev, struct acc100_device *d,
 307                int socket)
 308{
 309        uint32_t sw_ring_size = ACC100_SIZE_64MBYTE;
 310        d->sw_rings_base = rte_zmalloc_socket(dev->device->driver->name,
 311                        2 * sw_ring_size, RTE_CACHE_LINE_SIZE, socket);
 312        if (d->sw_rings_base == NULL) {
 313                rte_bbdev_log(ERR, "Failed to allocate memory for %s:%u",
 314                                dev->device->driver->name,
 315                                dev->data->dev_id);
 316                return -ENOMEM;
 317        }
 318        uint32_t next_64mb_align_offset = calc_mem_alignment_offset(
 319                        d->sw_rings_base, ACC100_SIZE_64MBYTE);
 320        d->sw_rings = RTE_PTR_ADD(d->sw_rings_base, next_64mb_align_offset);
 321        d->sw_rings_iova = rte_malloc_virt2iova(d->sw_rings_base) +
 322                        next_64mb_align_offset;
 323        d->sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
 324        d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
 325
 326        return 0;
 327}
 328
 329/* Attempt to allocate minimised memory space for sw rings */
 330static void
 331alloc_sw_rings_min_mem(struct rte_bbdev *dev, struct acc100_device *d,
 332                uint16_t num_queues, int socket)
 333{
 334        rte_iova_t sw_rings_base_iova, next_64mb_align_addr_iova;
 335        uint32_t next_64mb_align_offset;
 336        rte_iova_t sw_ring_iova_end_addr;
 337        void *base_addrs[ACC100_SW_RING_MEM_ALLOC_ATTEMPTS];
 338        void *sw_rings_base;
 339        int i = 0;
 340        uint32_t q_sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
 341        uint32_t dev_sw_ring_size = q_sw_ring_size * num_queues;
 342
 343        /* Find an aligned block of memory to store sw rings */
 344        while (i < ACC100_SW_RING_MEM_ALLOC_ATTEMPTS) {
 345                /*
 346                 * sw_ring allocated memory is guaranteed to be aligned to
 347                 * q_sw_ring_size at the condition that the requested size is
 348                 * less than the page size
 349                 */
 350                sw_rings_base = rte_zmalloc_socket(
 351                                dev->device->driver->name,
 352                                dev_sw_ring_size, q_sw_ring_size, socket);
 353
 354                if (sw_rings_base == NULL) {
 355                        rte_bbdev_log(ERR,
 356                                        "Failed to allocate memory for %s:%u",
 357                                        dev->device->driver->name,
 358                                        dev->data->dev_id);
 359                        break;
 360                }
 361
 362                sw_rings_base_iova = rte_malloc_virt2iova(sw_rings_base);
 363                next_64mb_align_offset = calc_mem_alignment_offset(
 364                                sw_rings_base, ACC100_SIZE_64MBYTE);
 365                next_64mb_align_addr_iova = sw_rings_base_iova +
 366                                next_64mb_align_offset;
 367                sw_ring_iova_end_addr = sw_rings_base_iova + dev_sw_ring_size;
 368
 369                /* Check if the end of the sw ring memory block is before the
 370                 * start of next 64MB aligned mem address
 371                 */
 372                if (sw_ring_iova_end_addr < next_64mb_align_addr_iova) {
 373                        d->sw_rings_iova = sw_rings_base_iova;
 374                        d->sw_rings = sw_rings_base;
 375                        d->sw_rings_base = sw_rings_base;
 376                        d->sw_ring_size = q_sw_ring_size;
 377                        d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
 378                        break;
 379                }
 380                /* Store the address of the unaligned mem block */
 381                base_addrs[i] = sw_rings_base;
 382                i++;
 383        }
 384
 385        /* Free all unaligned blocks of mem allocated in the loop */
 386        free_base_addresses(base_addrs, i);
 387}
 388
 389/*
 390 * Find queue_id of a device queue based on details from the Info Ring.
 391 * If a queue isn't found UINT16_MAX is returned.
 392 */
 393static inline uint16_t
 394get_queue_id_from_ring_info(struct rte_bbdev_data *data,
 395                const union acc100_info_ring_data ring_data)
 396{
 397        uint16_t queue_id;
 398
 399        for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
 400                struct acc100_queue *acc100_q =
 401                                data->queues[queue_id].queue_private;
 402                if (acc100_q != NULL && acc100_q->aq_id == ring_data.aq_id &&
 403                                acc100_q->qgrp_id == ring_data.qg_id &&
 404                                acc100_q->vf_id == ring_data.vf_id)
 405                        return queue_id;
 406        }
 407
 408        return UINT16_MAX;
 409}
 410
 411/* Checks PF Info Ring to find the interrupt cause and handles it accordingly */
 412static inline void
 413acc100_check_ir(struct acc100_device *acc100_dev)
 414{
 415        volatile union acc100_info_ring_data *ring_data;
 416        uint16_t info_ring_head = acc100_dev->info_ring_head;
 417        if (acc100_dev->info_ring == NULL)
 418                return;
 419
 420        ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
 421                        ACC100_INFO_RING_MASK);
 422
 423        while (ring_data->valid) {
 424                if ((ring_data->int_nb < ACC100_PF_INT_DMA_DL_DESC_IRQ) || (
 425                                ring_data->int_nb >
 426                                ACC100_PF_INT_DMA_DL5G_DESC_IRQ))
 427                        rte_bbdev_log(WARNING, "InfoRing: ITR:%d Info:0x%x",
 428                                ring_data->int_nb, ring_data->detailed_info);
 429                /* Initialize Info Ring entry and move forward */
 430                ring_data->val = 0;
 431                info_ring_head++;
 432                ring_data = acc100_dev->info_ring +
 433                                (info_ring_head & ACC100_INFO_RING_MASK);
 434        }
 435}
 436
 437/* Checks PF Info Ring to find the interrupt cause and handles it accordingly */
 438static inline void
 439acc100_pf_interrupt_handler(struct rte_bbdev *dev)
 440{
 441        struct acc100_device *acc100_dev = dev->data->dev_private;
 442        volatile union acc100_info_ring_data *ring_data;
 443        struct acc100_deq_intr_details deq_intr_det;
 444
 445        ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
 446                        ACC100_INFO_RING_MASK);
 447
 448        while (ring_data->valid) {
 449
 450                rte_bbdev_log_debug(
 451                                "ACC100 PF Interrupt received, Info Ring data: 0x%x",
 452                                ring_data->val);
 453
 454                switch (ring_data->int_nb) {
 455                case ACC100_PF_INT_DMA_DL_DESC_IRQ:
 456                case ACC100_PF_INT_DMA_UL_DESC_IRQ:
 457                case ACC100_PF_INT_DMA_UL5G_DESC_IRQ:
 458                case ACC100_PF_INT_DMA_DL5G_DESC_IRQ:
 459                        deq_intr_det.queue_id = get_queue_id_from_ring_info(
 460                                        dev->data, *ring_data);
 461                        if (deq_intr_det.queue_id == UINT16_MAX) {
 462                                rte_bbdev_log(ERR,
 463                                                "Couldn't find queue: aq_id: %u, qg_id: %u, vf_id: %u",
 464                                                ring_data->aq_id,
 465                                                ring_data->qg_id,
 466                                                ring_data->vf_id);
 467                                return;
 468                        }
 469                        rte_bbdev_pmd_callback_process(dev,
 470                                        RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det);
 471                        break;
 472                default:
 473                        rte_bbdev_pmd_callback_process(dev,
 474                                        RTE_BBDEV_EVENT_ERROR, NULL);
 475                        break;
 476                }
 477
 478                /* Initialize Info Ring entry and move forward */
 479                ring_data->val = 0;
 480                ++acc100_dev->info_ring_head;
 481                ring_data = acc100_dev->info_ring +
 482                                (acc100_dev->info_ring_head &
 483                                ACC100_INFO_RING_MASK);
 484        }
 485}
 486
 487/* Checks VF Info Ring to find the interrupt cause and handles it accordingly */
 488static inline void
 489acc100_vf_interrupt_handler(struct rte_bbdev *dev)
 490{
 491        struct acc100_device *acc100_dev = dev->data->dev_private;
 492        volatile union acc100_info_ring_data *ring_data;
 493        struct acc100_deq_intr_details deq_intr_det;
 494
 495        ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head &
 496                        ACC100_INFO_RING_MASK);
 497
 498        while (ring_data->valid) {
 499
 500                rte_bbdev_log_debug(
 501                                "ACC100 VF Interrupt received, Info Ring data: 0x%x",
 502                                ring_data->val);
 503
 504                switch (ring_data->int_nb) {
 505                case ACC100_VF_INT_DMA_DL_DESC_IRQ:
 506                case ACC100_VF_INT_DMA_UL_DESC_IRQ:
 507                case ACC100_VF_INT_DMA_UL5G_DESC_IRQ:
 508                case ACC100_VF_INT_DMA_DL5G_DESC_IRQ:
 509                        /* VFs are not aware of their vf_id - it's set to 0 in
 510                         * queue structures.
 511                         */
 512                        ring_data->vf_id = 0;
 513                        deq_intr_det.queue_id = get_queue_id_from_ring_info(
 514                                        dev->data, *ring_data);
 515                        if (deq_intr_det.queue_id == UINT16_MAX) {
 516                                rte_bbdev_log(ERR,
 517                                                "Couldn't find queue: aq_id: %u, qg_id: %u",
 518                                                ring_data->aq_id,
 519                                                ring_data->qg_id);
 520                                return;
 521                        }
 522                        rte_bbdev_pmd_callback_process(dev,
 523                                        RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det);
 524                        break;
 525                default:
 526                        rte_bbdev_pmd_callback_process(dev,
 527                                        RTE_BBDEV_EVENT_ERROR, NULL);
 528                        break;
 529                }
 530
 531                /* Initialize Info Ring entry and move forward */
 532                ring_data->valid = 0;
 533                ++acc100_dev->info_ring_head;
 534                ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head
 535                                & ACC100_INFO_RING_MASK);
 536        }
 537}
 538
 539/* Interrupt handler triggered by ACC100 dev for handling specific interrupt */
 540static void
 541acc100_dev_interrupt_handler(void *cb_arg)
 542{
 543        struct rte_bbdev *dev = cb_arg;
 544        struct acc100_device *acc100_dev = dev->data->dev_private;
 545
 546        /* Read info ring */
 547        if (acc100_dev->pf_device)
 548                acc100_pf_interrupt_handler(dev);
 549        else
 550                acc100_vf_interrupt_handler(dev);
 551}
 552
 553/* Allocate and setup inforing */
 554static int
 555allocate_info_ring(struct rte_bbdev *dev)
 556{
 557        struct acc100_device *d = dev->data->dev_private;
 558        const struct acc100_registry_addr *reg_addr;
 559        rte_iova_t info_ring_iova;
 560        uint32_t phys_low, phys_high;
 561
 562        if (d->info_ring != NULL)
 563                return 0; /* Already configured */
 564
 565        /* Choose correct registry addresses for the device type */
 566        if (d->pf_device)
 567                reg_addr = &pf_reg_addr;
 568        else
 569                reg_addr = &vf_reg_addr;
 570        /* Allocate InfoRing */
 571        d->info_ring = rte_zmalloc_socket("Info Ring",
 572                        ACC100_INFO_RING_NUM_ENTRIES *
 573                        sizeof(*d->info_ring), RTE_CACHE_LINE_SIZE,
 574                        dev->data->socket_id);
 575        if (d->info_ring == NULL) {
 576                rte_bbdev_log(ERR,
 577                                "Failed to allocate Info Ring for %s:%u",
 578                                dev->device->driver->name,
 579                                dev->data->dev_id);
 580                return -ENOMEM;
 581        }
 582        info_ring_iova = rte_malloc_virt2iova(d->info_ring);
 583
 584        /* Setup Info Ring */
 585        phys_high = (uint32_t)(info_ring_iova >> 32);
 586        phys_low  = (uint32_t)(info_ring_iova);
 587        acc100_reg_write(d, reg_addr->info_ring_hi, phys_high);
 588        acc100_reg_write(d, reg_addr->info_ring_lo, phys_low);
 589        acc100_reg_write(d, reg_addr->info_ring_en, ACC100_REG_IRQ_EN_ALL);
 590        d->info_ring_head = (acc100_reg_read(d, reg_addr->info_ring_ptr) &
 591                        0xFFF) / sizeof(union acc100_info_ring_data);
 592        return 0;
 593}
 594
 595
 596/* Allocate 64MB memory used for all software rings */
 597static int
 598acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
 599{
 600        uint32_t phys_low, phys_high, value;
 601        struct acc100_device *d = dev->data->dev_private;
 602        const struct acc100_registry_addr *reg_addr;
 603        int ret;
 604
 605        if (d->pf_device && !d->acc100_conf.pf_mode_en) {
 606                rte_bbdev_log(NOTICE,
 607                                "%s has PF mode disabled. This PF can't be used.",
 608                                dev->data->name);
 609                return -ENODEV;
 610        }
 611
 612        alloc_sw_rings_min_mem(dev, d, num_queues, socket_id);
 613
 614        /* If minimal memory space approach failed, then allocate
 615         * the 2 * 64MB block for the sw rings
 616         */
 617        if (d->sw_rings == NULL)
 618                alloc_2x64mb_sw_rings_mem(dev, d, socket_id);
 619
 620        if (d->sw_rings == NULL) {
 621                rte_bbdev_log(NOTICE,
 622                                "Failure allocating sw_rings memory");
 623                return -ENODEV;
 624        }
 625
 626        /* Configure ACC100 with the base address for DMA descriptor rings
 627         * Same descriptor rings used for UL and DL DMA Engines
 628         * Note : Assuming only VF0 bundle is used for PF mode
 629         */
 630        phys_high = (uint32_t)(d->sw_rings_iova >> 32);
 631        phys_low  = (uint32_t)(d->sw_rings_iova & ~(ACC100_SIZE_64MBYTE-1));
 632
 633        /* Choose correct registry addresses for the device type */
 634        if (d->pf_device)
 635                reg_addr = &pf_reg_addr;
 636        else
 637                reg_addr = &vf_reg_addr;
 638
 639        /* Read the populated cfg from ACC100 registers */
 640        fetch_acc100_config(dev);
 641
 642        /* Release AXI from PF */
 643        if (d->pf_device)
 644                acc100_reg_write(d, HWPfDmaAxiControl, 1);
 645
 646        acc100_reg_write(d, reg_addr->dma_ring_ul5g_hi, phys_high);
 647        acc100_reg_write(d, reg_addr->dma_ring_ul5g_lo, phys_low);
 648        acc100_reg_write(d, reg_addr->dma_ring_dl5g_hi, phys_high);
 649        acc100_reg_write(d, reg_addr->dma_ring_dl5g_lo, phys_low);
 650        acc100_reg_write(d, reg_addr->dma_ring_ul4g_hi, phys_high);
 651        acc100_reg_write(d, reg_addr->dma_ring_ul4g_lo, phys_low);
 652        acc100_reg_write(d, reg_addr->dma_ring_dl4g_hi, phys_high);
 653        acc100_reg_write(d, reg_addr->dma_ring_dl4g_lo, phys_low);
 654
 655        /*
 656         * Configure Ring Size to the max queue ring size
 657         * (used for wrapping purpose)
 658         */
 659        value = log2_basic(d->sw_ring_size / 64);
 660        acc100_reg_write(d, reg_addr->ring_size, value);
 661
 662        /* Configure tail pointer for use when SDONE enabled */
 663        d->tail_ptrs = rte_zmalloc_socket(
 664                        dev->device->driver->name,
 665                        ACC100_NUM_QGRPS * ACC100_NUM_AQS * sizeof(uint32_t),
 666                        RTE_CACHE_LINE_SIZE, socket_id);
 667        if (d->tail_ptrs == NULL) {
 668                rte_bbdev_log(ERR, "Failed to allocate tail ptr for %s:%u",
 669                                dev->device->driver->name,
 670                                dev->data->dev_id);
 671                rte_free(d->sw_rings);
 672                return -ENOMEM;
 673        }
 674        d->tail_ptr_iova = rte_malloc_virt2iova(d->tail_ptrs);
 675
 676        phys_high = (uint32_t)(d->tail_ptr_iova >> 32);
 677        phys_low  = (uint32_t)(d->tail_ptr_iova);
 678        acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_hi, phys_high);
 679        acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_lo, phys_low);
 680        acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_hi, phys_high);
 681        acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_lo, phys_low);
 682        acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_hi, phys_high);
 683        acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_lo, phys_low);
 684        acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_hi, phys_high);
 685        acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_lo, phys_low);
 686
 687        ret = allocate_info_ring(dev);
 688        if (ret < 0) {
 689                rte_bbdev_log(ERR, "Failed to allocate info_ring for %s:%u",
 690                                dev->device->driver->name,
 691                                dev->data->dev_id);
 692                /* Continue */
 693        }
 694
 695        d->harq_layout = rte_zmalloc_socket("HARQ Layout",
 696                        ACC100_HARQ_LAYOUT * sizeof(*d->harq_layout),
 697                        RTE_CACHE_LINE_SIZE, dev->data->socket_id);
 698        if (d->harq_layout == NULL) {
 699                rte_bbdev_log(ERR, "Failed to allocate harq_layout for %s:%u",
 700                                dev->device->driver->name,
 701                                dev->data->dev_id);
 702                rte_free(d->sw_rings);
 703                return -ENOMEM;
 704        }
 705
 706        /* Mark as configured properly */
 707        d->configured = true;
 708
 709        rte_bbdev_log_debug(
 710                        "ACC100 (%s) configured  sw_rings = %p, sw_rings_iova = %#"
 711                        PRIx64, dev->data->name, d->sw_rings, d->sw_rings_iova);
 712
 713        return 0;
 714}
 715
 716static int
 717acc100_intr_enable(struct rte_bbdev *dev)
 718{
 719        int ret;
 720        struct acc100_device *d = dev->data->dev_private;
 721
 722        /* Only MSI are currently supported */
 723        if (dev->intr_handle->type == RTE_INTR_HANDLE_VFIO_MSI ||
 724                        dev->intr_handle->type == RTE_INTR_HANDLE_UIO) {
 725
 726                ret = allocate_info_ring(dev);
 727                if (ret < 0) {
 728                        rte_bbdev_log(ERR,
 729                                        "Couldn't allocate info ring for device: %s",
 730                                        dev->data->name);
 731                        return ret;
 732                }
 733
 734                ret = rte_intr_enable(dev->intr_handle);
 735                if (ret < 0) {
 736                        rte_bbdev_log(ERR,
 737                                        "Couldn't enable interrupts for device: %s",
 738                                        dev->data->name);
 739                        rte_free(d->info_ring);
 740                        return ret;
 741                }
 742                ret = rte_intr_callback_register(dev->intr_handle,
 743                                acc100_dev_interrupt_handler, dev);
 744                if (ret < 0) {
 745                        rte_bbdev_log(ERR,
 746                                        "Couldn't register interrupt callback for device: %s",
 747                                        dev->data->name);
 748                        rte_free(d->info_ring);
 749                        return ret;
 750                }
 751
 752                return 0;
 753        }
 754
 755        rte_bbdev_log(ERR, "ACC100 (%s) supports only VFIO MSI interrupts",
 756                        dev->data->name);
 757        return -ENOTSUP;
 758}
 759
 760/* Free memory used for software rings */
 761static int
 762acc100_dev_close(struct rte_bbdev *dev)
 763{
 764        struct acc100_device *d = dev->data->dev_private;
 765        acc100_check_ir(d);
 766        if (d->sw_rings_base != NULL) {
 767                rte_free(d->tail_ptrs);
 768                rte_free(d->info_ring);
 769                rte_free(d->sw_rings_base);
 770                d->sw_rings_base = NULL;
 771        }
 772        /* Ensure all in flight HW transactions are completed */
 773        usleep(ACC100_LONG_WAIT);
 774        return 0;
 775}
 776
 777/**
 778 * Report a ACC100 queue index which is free
 779 * Return 0 to 16k for a valid queue_idx or -1 when no queue is available
 780 * Note : Only supporting VF0 Bundle for PF mode
 781 */
 782static int
 783acc100_find_free_queue_idx(struct rte_bbdev *dev,
 784                const struct rte_bbdev_queue_conf *conf)
 785{
 786        struct acc100_device *d = dev->data->dev_private;
 787        int op_2_acc[5] = {0, UL_4G, DL_4G, UL_5G, DL_5G};
 788        int acc = op_2_acc[conf->op_type];
 789        struct rte_acc100_queue_topology *qtop = NULL;
 790
 791        qtopFromAcc(&qtop, acc, &(d->acc100_conf));
 792        if (qtop == NULL)
 793                return -1;
 794        /* Identify matching QGroup Index which are sorted in priority order */
 795        uint16_t group_idx = qtop->first_qgroup_index;
 796        group_idx += conf->priority;
 797        if (group_idx >= ACC100_NUM_QGRPS ||
 798                        conf->priority >= qtop->num_qgroups) {
 799                rte_bbdev_log(INFO, "Invalid Priority on %s, priority %u",
 800                                dev->data->name, conf->priority);
 801                return -1;
 802        }
 803        /* Find a free AQ_idx  */
 804        uint16_t aq_idx;
 805        for (aq_idx = 0; aq_idx < qtop->num_aqs_per_groups; aq_idx++) {
 806                if (((d->q_assigned_bit_map[group_idx] >> aq_idx) & 0x1) == 0) {
 807                        /* Mark the Queue as assigned */
 808                        d->q_assigned_bit_map[group_idx] |= (1 << aq_idx);
 809                        /* Report the AQ Index */
 810                        return (group_idx << ACC100_GRP_ID_SHIFT) + aq_idx;
 811                }
 812        }
 813        rte_bbdev_log(INFO, "Failed to find free queue on %s, priority %u",
 814                        dev->data->name, conf->priority);
 815        return -1;
 816}
 817
 818/* Setup ACC100 queue */
 819static int
 820acc100_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
 821                const struct rte_bbdev_queue_conf *conf)
 822{
 823        struct acc100_device *d = dev->data->dev_private;
 824        struct acc100_queue *q;
 825        int16_t q_idx;
 826
 827        /* Allocate the queue data structure. */
 828        q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
 829                        RTE_CACHE_LINE_SIZE, conf->socket);
 830        if (q == NULL) {
 831                rte_bbdev_log(ERR, "Failed to allocate queue memory");
 832                return -ENOMEM;
 833        }
 834        if (d == NULL) {
 835                rte_bbdev_log(ERR, "Undefined device");
 836                return -ENODEV;
 837        }
 838
 839        q->d = d;
 840        q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
 841        q->ring_addr_iova = d->sw_rings_iova + (d->sw_ring_size * queue_id);
 842
 843        /* Prepare the Ring with default descriptor format */
 844        union acc100_dma_desc *desc = NULL;
 845        unsigned int desc_idx, b_idx;
 846        int fcw_len = (conf->op_type == RTE_BBDEV_OP_LDPC_ENC ?
 847                ACC100_FCW_LE_BLEN : (conf->op_type == RTE_BBDEV_OP_TURBO_DEC ?
 848                ACC100_FCW_TD_BLEN : ACC100_FCW_LD_BLEN));
 849
 850        for (desc_idx = 0; desc_idx < d->sw_ring_max_depth; desc_idx++) {
 851                desc = q->ring_addr + desc_idx;
 852                desc->req.word0 = ACC100_DMA_DESC_TYPE;
 853                desc->req.word1 = 0; /**< Timestamp */
 854                desc->req.word2 = 0;
 855                desc->req.word3 = 0;
 856                uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
 857                desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
 858                desc->req.data_ptrs[0].blen = fcw_len;
 859                desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
 860                desc->req.data_ptrs[0].last = 0;
 861                desc->req.data_ptrs[0].dma_ext = 0;
 862                for (b_idx = 1; b_idx < ACC100_DMA_MAX_NUM_POINTERS - 1;
 863                                b_idx++) {
 864                        desc->req.data_ptrs[b_idx].blkid = ACC100_DMA_BLKID_IN;
 865                        desc->req.data_ptrs[b_idx].last = 1;
 866                        desc->req.data_ptrs[b_idx].dma_ext = 0;
 867                        b_idx++;
 868                        desc->req.data_ptrs[b_idx].blkid =
 869                                        ACC100_DMA_BLKID_OUT_ENC;
 870                        desc->req.data_ptrs[b_idx].last = 1;
 871                        desc->req.data_ptrs[b_idx].dma_ext = 0;
 872                }
 873                /* Preset some fields of LDPC FCW */
 874                desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
 875                desc->req.fcw_ld.gain_i = 1;
 876                desc->req.fcw_ld.gain_h = 1;
 877        }
 878
 879        q->lb_in = rte_zmalloc_socket(dev->device->driver->name,
 880                        RTE_CACHE_LINE_SIZE,
 881                        RTE_CACHE_LINE_SIZE, conf->socket);
 882        if (q->lb_in == NULL) {
 883                rte_bbdev_log(ERR, "Failed to allocate lb_in memory");
 884                rte_free(q);
 885                return -ENOMEM;
 886        }
 887        q->lb_in_addr_iova = rte_malloc_virt2iova(q->lb_in);
 888        q->lb_out = rte_zmalloc_socket(dev->device->driver->name,
 889                        RTE_CACHE_LINE_SIZE,
 890                        RTE_CACHE_LINE_SIZE, conf->socket);
 891        if (q->lb_out == NULL) {
 892                rte_bbdev_log(ERR, "Failed to allocate lb_out memory");
 893                rte_free(q->lb_in);
 894                rte_free(q);
 895                return -ENOMEM;
 896        }
 897        q->lb_out_addr_iova = rte_malloc_virt2iova(q->lb_out);
 898
 899        /*
 900         * Software queue ring wraps synchronously with the HW when it reaches
 901         * the boundary of the maximum allocated queue size, no matter what the
 902         * sw queue size is. This wrapping is guarded by setting the wrap_mask
 903         * to represent the maximum queue size as allocated at the time when
 904         * the device has been setup (in configure()).
 905         *
 906         * The queue depth is set to the queue size value (conf->queue_size).
 907         * This limits the occupancy of the queue at any point of time, so that
 908         * the queue does not get swamped with enqueue requests.
 909         */
 910        q->sw_ring_depth = conf->queue_size;
 911        q->sw_ring_wrap_mask = d->sw_ring_max_depth - 1;
 912
 913        q->op_type = conf->op_type;
 914
 915        q_idx = acc100_find_free_queue_idx(dev, conf);
 916        if (q_idx == -1) {
 917                rte_free(q->lb_in);
 918                rte_free(q->lb_out);
 919                rte_free(q);
 920                return -1;
 921        }
 922
 923        q->qgrp_id = (q_idx >> ACC100_GRP_ID_SHIFT) & 0xF;
 924        q->vf_id = (q_idx >> ACC100_VF_ID_SHIFT)  & 0x3F;
 925        q->aq_id = q_idx & 0xF;
 926        q->aq_depth = (conf->op_type ==  RTE_BBDEV_OP_TURBO_DEC) ?
 927                        (1 << d->acc100_conf.q_ul_4g.aq_depth_log2) :
 928                        (1 << d->acc100_conf.q_dl_4g.aq_depth_log2);
 929
 930        q->mmio_reg_enqueue = RTE_PTR_ADD(d->mmio_base,
 931                        queue_offset(d->pf_device,
 932                                        q->vf_id, q->qgrp_id, q->aq_id));
 933
 934        rte_bbdev_log_debug(
 935                        "Setup dev%u q%u: qgrp_id=%u, vf_id=%u, aq_id=%u, aq_depth=%u, mmio_reg_enqueue=%p",
 936                        dev->data->dev_id, queue_id, q->qgrp_id, q->vf_id,
 937                        q->aq_id, q->aq_depth, q->mmio_reg_enqueue);
 938
 939        dev->data->queues[queue_id].queue_private = q;
 940        return 0;
 941}
 942
 943/* Release ACC100 queue */
 944static int
 945acc100_queue_release(struct rte_bbdev *dev, uint16_t q_id)
 946{
 947        struct acc100_device *d = dev->data->dev_private;
 948        struct acc100_queue *q = dev->data->queues[q_id].queue_private;
 949
 950        if (q != NULL) {
 951                /* Mark the Queue as un-assigned */
 952                d->q_assigned_bit_map[q->qgrp_id] &= (0xFFFFFFFF -
 953                                (1 << q->aq_id));
 954                rte_free(q->lb_in);
 955                rte_free(q->lb_out);
 956                rte_free(q);
 957                dev->data->queues[q_id].queue_private = NULL;
 958        }
 959
 960        return 0;
 961}
 962
 963/* Get ACC100 device info */
 964static void
 965acc100_dev_info_get(struct rte_bbdev *dev,
 966                struct rte_bbdev_driver_info *dev_info)
 967{
 968        struct acc100_device *d = dev->data->dev_private;
 969
 970        static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
 971                {
 972                        .type = RTE_BBDEV_OP_TURBO_DEC,
 973                        .cap.turbo_dec = {
 974                                .capability_flags =
 975                                        RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
 976                                        RTE_BBDEV_TURBO_CRC_TYPE_24B |
 977                                        RTE_BBDEV_TURBO_HALF_ITERATION_EVEN |
 978                                        RTE_BBDEV_TURBO_EARLY_TERMINATION |
 979                                        RTE_BBDEV_TURBO_DEC_INTERRUPTS |
 980                                        RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
 981                                        RTE_BBDEV_TURBO_MAP_DEC |
 982                                        RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
 983                                        RTE_BBDEV_TURBO_DEC_SCATTER_GATHER,
 984                                .max_llr_modulus = INT8_MAX,
 985                                .num_buffers_src =
 986                                                RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
 987                                .num_buffers_hard_out =
 988                                                RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
 989                                .num_buffers_soft_out =
 990                                                RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
 991                        }
 992                },
 993                {
 994                        .type = RTE_BBDEV_OP_TURBO_ENC,
 995                        .cap.turbo_enc = {
 996                                .capability_flags =
 997                                        RTE_BBDEV_TURBO_CRC_24B_ATTACH |
 998                                        RTE_BBDEV_TURBO_RV_INDEX_BYPASS |
 999                                        RTE_BBDEV_TURBO_RATE_MATCH |
1000                                        RTE_BBDEV_TURBO_ENC_INTERRUPTS |
1001                                        RTE_BBDEV_TURBO_ENC_SCATTER_GATHER,
1002                                .num_buffers_src =
1003                                                RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
1004                                .num_buffers_dst =
1005                                                RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
1006                        }
1007                },
1008                {
1009                        .type   = RTE_BBDEV_OP_LDPC_ENC,
1010                        .cap.ldpc_enc = {
1011                                .capability_flags =
1012                                        RTE_BBDEV_LDPC_RATE_MATCH |
1013                                        RTE_BBDEV_LDPC_CRC_24B_ATTACH |
1014                                        RTE_BBDEV_LDPC_INTERLEAVER_BYPASS |
1015                                        RTE_BBDEV_LDPC_ENC_INTERRUPTS,
1016                                .num_buffers_src =
1017                                                RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1018                                .num_buffers_dst =
1019                                                RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1020                        }
1021                },
1022                {
1023                        .type   = RTE_BBDEV_OP_LDPC_DEC,
1024                        .cap.ldpc_dec = {
1025                        .capability_flags =
1026                                RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
1027                                RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
1028                                RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
1029                                RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
1030#ifdef ACC100_EXT_MEM
1031                                RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK |
1032                                RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE |
1033                                RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE |
1034#endif
1035                                RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE |
1036                                RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS |
1037                                RTE_BBDEV_LDPC_DECODE_BYPASS |
1038                                RTE_BBDEV_LDPC_DEC_SCATTER_GATHER |
1039                                RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION |
1040                                RTE_BBDEV_LDPC_LLR_COMPRESSION |
1041                                RTE_BBDEV_LDPC_DEC_INTERRUPTS,
1042                        .llr_size = 8,
1043                        .llr_decimals = 1,
1044                        .num_buffers_src =
1045                                        RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1046                        .num_buffers_hard_out =
1047                                        RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
1048                        .num_buffers_soft_out = 0,
1049                        }
1050                },
1051                RTE_BBDEV_END_OF_CAPABILITIES_LIST()
1052        };
1053
1054        static struct rte_bbdev_queue_conf default_queue_conf;
1055        default_queue_conf.socket = dev->data->socket_id;
1056        default_queue_conf.queue_size = ACC100_MAX_QUEUE_DEPTH;
1057
1058        dev_info->driver_name = dev->device->driver->name;
1059
1060        /* Read and save the populated config from ACC100 registers */
1061        fetch_acc100_config(dev);
1062
1063        /* This isn't ideal because it reports the maximum number of queues but
1064         * does not provide info on how many can be uplink/downlink or different
1065         * priorities
1066         */
1067        dev_info->max_num_queues =
1068                        d->acc100_conf.q_dl_5g.num_aqs_per_groups *
1069                        d->acc100_conf.q_dl_5g.num_qgroups +
1070                        d->acc100_conf.q_ul_5g.num_aqs_per_groups *
1071                        d->acc100_conf.q_ul_5g.num_qgroups +
1072                        d->acc100_conf.q_dl_4g.num_aqs_per_groups *
1073                        d->acc100_conf.q_dl_4g.num_qgroups +
1074                        d->acc100_conf.q_ul_4g.num_aqs_per_groups *
1075                        d->acc100_conf.q_ul_4g.num_qgroups;
1076        dev_info->queue_size_lim = ACC100_MAX_QUEUE_DEPTH;
1077        dev_info->hardware_accelerated = true;
1078        dev_info->max_dl_queue_priority =
1079                        d->acc100_conf.q_dl_4g.num_qgroups - 1;
1080        dev_info->max_ul_queue_priority =
1081                        d->acc100_conf.q_ul_4g.num_qgroups - 1;
1082        dev_info->default_queue_conf = default_queue_conf;
1083        dev_info->cpu_flag_reqs = NULL;
1084        dev_info->min_alignment = 64;
1085        dev_info->capabilities = bbdev_capabilities;
1086#ifdef ACC100_EXT_MEM
1087        dev_info->harq_buffer_size = d->ddr_size;
1088#else
1089        dev_info->harq_buffer_size = 0;
1090#endif
1091        acc100_check_ir(d);
1092}
1093
1094static int
1095acc100_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
1096{
1097        struct acc100_queue *q = dev->data->queues[queue_id].queue_private;
1098
1099        if (dev->intr_handle->type != RTE_INTR_HANDLE_VFIO_MSI &&
1100                        dev->intr_handle->type != RTE_INTR_HANDLE_UIO)
1101                return -ENOTSUP;
1102
1103        q->irq_enable = 1;
1104        return 0;
1105}
1106
1107static int
1108acc100_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
1109{
1110        struct acc100_queue *q = dev->data->queues[queue_id].queue_private;
1111
1112        if (dev->intr_handle->type != RTE_INTR_HANDLE_VFIO_MSI &&
1113                        dev->intr_handle->type != RTE_INTR_HANDLE_UIO)
1114                return -ENOTSUP;
1115
1116        q->irq_enable = 0;
1117        return 0;
1118}
1119
1120static const struct rte_bbdev_ops acc100_bbdev_ops = {
1121        .setup_queues = acc100_setup_queues,
1122        .intr_enable = acc100_intr_enable,
1123        .close = acc100_dev_close,
1124        .info_get = acc100_dev_info_get,
1125        .queue_setup = acc100_queue_setup,
1126        .queue_release = acc100_queue_release,
1127        .queue_intr_enable = acc100_queue_intr_enable,
1128        .queue_intr_disable = acc100_queue_intr_disable
1129};
1130
1131/* ACC100 PCI PF address map */
1132static struct rte_pci_id pci_id_acc100_pf_map[] = {
1133        {
1134                RTE_PCI_DEVICE(RTE_ACC100_VENDOR_ID, RTE_ACC100_PF_DEVICE_ID)
1135        },
1136        {.device_id = 0},
1137};
1138
1139/* ACC100 PCI VF address map */
1140static struct rte_pci_id pci_id_acc100_vf_map[] = {
1141        {
1142                RTE_PCI_DEVICE(RTE_ACC100_VENDOR_ID, RTE_ACC100_VF_DEVICE_ID)
1143        },
1144        {.device_id = 0},
1145};
1146
1147/* Read flag value 0/1 from bitmap */
1148static inline bool
1149check_bit(uint32_t bitmap, uint32_t bitmask)
1150{
1151        return bitmap & bitmask;
1152}
1153
1154static inline char *
1155mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
1156{
1157        if (unlikely(len > rte_pktmbuf_tailroom(m)))
1158                return NULL;
1159
1160        char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
1161        m->data_len = (uint16_t)(m->data_len + len);
1162        m_head->pkt_len  = (m_head->pkt_len + len);
1163        return tail;
1164}
1165
1166/* Fill in a frame control word for turbo encoding. */
1167static inline void
1168acc100_fcw_te_fill(const struct rte_bbdev_enc_op *op, struct acc100_fcw_te *fcw)
1169{
1170        fcw->code_block_mode = op->turbo_enc.code_block_mode;
1171        if (fcw->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1172                fcw->k_neg = op->turbo_enc.tb_params.k_neg;
1173                fcw->k_pos = op->turbo_enc.tb_params.k_pos;
1174                fcw->c_neg = op->turbo_enc.tb_params.c_neg;
1175                fcw->c = op->turbo_enc.tb_params.c;
1176                fcw->ncb_neg = op->turbo_enc.tb_params.ncb_neg;
1177                fcw->ncb_pos = op->turbo_enc.tb_params.ncb_pos;
1178
1179                if (check_bit(op->turbo_enc.op_flags,
1180                                RTE_BBDEV_TURBO_RATE_MATCH)) {
1181                        fcw->bypass_rm = 0;
1182                        fcw->cab = op->turbo_enc.tb_params.cab;
1183                        fcw->ea = op->turbo_enc.tb_params.ea;
1184                        fcw->eb = op->turbo_enc.tb_params.eb;
1185                } else {
1186                        /* E is set to the encoding output size when RM is
1187                         * bypassed.
1188                         */
1189                        fcw->bypass_rm = 1;
1190                        fcw->cab = fcw->c_neg;
1191                        fcw->ea = 3 * fcw->k_neg + 12;
1192                        fcw->eb = 3 * fcw->k_pos + 12;
1193                }
1194        } else { /* For CB mode */
1195                fcw->k_pos = op->turbo_enc.cb_params.k;
1196                fcw->ncb_pos = op->turbo_enc.cb_params.ncb;
1197
1198                if (check_bit(op->turbo_enc.op_flags,
1199                                RTE_BBDEV_TURBO_RATE_MATCH)) {
1200                        fcw->bypass_rm = 0;
1201                        fcw->eb = op->turbo_enc.cb_params.e;
1202                } else {
1203                        /* E is set to the encoding output size when RM is
1204                         * bypassed.
1205                         */
1206                        fcw->bypass_rm = 1;
1207                        fcw->eb = 3 * fcw->k_pos + 12;
1208                }
1209        }
1210
1211        fcw->bypass_rv_idx1 = check_bit(op->turbo_enc.op_flags,
1212                        RTE_BBDEV_TURBO_RV_INDEX_BYPASS);
1213        fcw->code_block_crc = check_bit(op->turbo_enc.op_flags,
1214                        RTE_BBDEV_TURBO_CRC_24B_ATTACH);
1215        fcw->rv_idx1 = op->turbo_enc.rv_index;
1216}
1217
1218/* Compute value of k0.
1219 * Based on 3GPP 38.212 Table 5.4.2.1-2
1220 * Starting position of different redundancy versions, k0
1221 */
1222static inline uint16_t
1223get_k0(uint16_t n_cb, uint16_t z_c, uint8_t bg, uint8_t rv_index)
1224{
1225        if (rv_index == 0)
1226                return 0;
1227        uint16_t n = (bg == 1 ? ACC100_N_ZC_1 : ACC100_N_ZC_2) * z_c;
1228        if (n_cb == n) {
1229                if (rv_index == 1)
1230                        return (bg == 1 ? ACC100_K0_1_1 : ACC100_K0_1_2) * z_c;
1231                else if (rv_index == 2)
1232                        return (bg == 1 ? ACC100_K0_2_1 : ACC100_K0_2_2) * z_c;
1233                else
1234                        return (bg == 1 ? ACC100_K0_3_1 : ACC100_K0_3_2) * z_c;
1235        }
1236        /* LBRM case - includes a division by N */
1237        if (rv_index == 1)
1238                return (((bg == 1 ? ACC100_K0_1_1 : ACC100_K0_1_2) * n_cb)
1239                                / n) * z_c;
1240        else if (rv_index == 2)
1241                return (((bg == 1 ? ACC100_K0_2_1 : ACC100_K0_2_2) * n_cb)
1242                                / n) * z_c;
1243        else
1244                return (((bg == 1 ? ACC100_K0_3_1 : ACC100_K0_3_2) * n_cb)
1245                                / n) * z_c;
1246}
1247
1248/* Fill in a frame control word for LDPC encoding. */
1249static inline void
1250acc100_fcw_le_fill(const struct rte_bbdev_enc_op *op,
1251                struct acc100_fcw_le *fcw, int num_cb)
1252{
1253        fcw->qm = op->ldpc_enc.q_m;
1254        fcw->nfiller = op->ldpc_enc.n_filler;
1255        fcw->BG = (op->ldpc_enc.basegraph - 1);
1256        fcw->Zc = op->ldpc_enc.z_c;
1257        fcw->ncb = op->ldpc_enc.n_cb;
1258        fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_enc.basegraph,
1259                        op->ldpc_enc.rv_index);
1260        fcw->rm_e = op->ldpc_enc.cb_params.e;
1261        fcw->crc_select = check_bit(op->ldpc_enc.op_flags,
1262                        RTE_BBDEV_LDPC_CRC_24B_ATTACH);
1263        fcw->bypass_intlv = check_bit(op->ldpc_enc.op_flags,
1264                        RTE_BBDEV_LDPC_INTERLEAVER_BYPASS);
1265        fcw->mcb_count = num_cb;
1266}
1267
1268/* Fill in a frame control word for turbo decoding. */
1269static inline void
1270acc100_fcw_td_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_td *fcw)
1271{
1272        /* Note : Early termination is always enabled for 4GUL */
1273        fcw->fcw_ver = 1;
1274        if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
1275                fcw->k_pos = op->turbo_dec.tb_params.k_pos;
1276        else
1277                fcw->k_pos = op->turbo_dec.cb_params.k;
1278        fcw->turbo_crc_type = check_bit(op->turbo_dec.op_flags,
1279                        RTE_BBDEV_TURBO_CRC_TYPE_24B);
1280        fcw->bypass_sb_deint = 0;
1281        fcw->raw_decoder_input_on = 0;
1282        fcw->max_iter = op->turbo_dec.iter_max;
1283        fcw->half_iter_on = !check_bit(op->turbo_dec.op_flags,
1284                        RTE_BBDEV_TURBO_HALF_ITERATION_EVEN);
1285}
1286
1287/* Fill in a frame control word for LDPC decoding. */
1288static inline void
1289acc100_fcw_ld_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_ld *fcw,
1290                union acc100_harq_layout_data *harq_layout)
1291{
1292        uint16_t harq_out_length, harq_in_length, ncb_p, k0_p, parity_offset;
1293        uint16_t harq_index;
1294        uint32_t l;
1295        bool harq_prun = false;
1296
1297        fcw->qm = op->ldpc_dec.q_m;
1298        fcw->nfiller = op->ldpc_dec.n_filler;
1299        fcw->BG = (op->ldpc_dec.basegraph - 1);
1300        fcw->Zc = op->ldpc_dec.z_c;
1301        fcw->ncb = op->ldpc_dec.n_cb;
1302        fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_dec.basegraph,
1303                        op->ldpc_dec.rv_index);
1304        if (op->ldpc_dec.code_block_mode == RTE_BBDEV_CODE_BLOCK)
1305                fcw->rm_e = op->ldpc_dec.cb_params.e;
1306        else
1307                fcw->rm_e = (op->ldpc_dec.tb_params.r <
1308                                op->ldpc_dec.tb_params.cab) ?
1309                                                op->ldpc_dec.tb_params.ea :
1310                                                op->ldpc_dec.tb_params.eb;
1311
1312        fcw->hcin_en = check_bit(op->ldpc_dec.op_flags,
1313                        RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
1314        fcw->hcout_en = check_bit(op->ldpc_dec.op_flags,
1315                        RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
1316        fcw->crc_select = check_bit(op->ldpc_dec.op_flags,
1317                        RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK);
1318        fcw->bypass_dec = check_bit(op->ldpc_dec.op_flags,
1319                        RTE_BBDEV_LDPC_DECODE_BYPASS);
1320        fcw->bypass_intlv = check_bit(op->ldpc_dec.op_flags,
1321                        RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS);
1322        if (op->ldpc_dec.q_m == 1) {
1323                fcw->bypass_intlv = 1;
1324                fcw->qm = 2;
1325        }
1326        fcw->hcin_decomp_mode = check_bit(op->ldpc_dec.op_flags,
1327                        RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
1328        fcw->hcout_comp_mode = check_bit(op->ldpc_dec.op_flags,
1329                        RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
1330        fcw->llr_pack_mode = check_bit(op->ldpc_dec.op_flags,
1331                        RTE_BBDEV_LDPC_LLR_COMPRESSION);
1332        harq_index = op->ldpc_dec.harq_combined_output.offset /
1333                        ACC100_HARQ_OFFSET;
1334#ifdef ACC100_EXT_MEM
1335        /* Limit cases when HARQ pruning is valid */
1336        harq_prun = ((op->ldpc_dec.harq_combined_output.offset %
1337                        ACC100_HARQ_OFFSET) == 0) &&
1338                        (op->ldpc_dec.harq_combined_output.offset <= UINT16_MAX
1339                        * ACC100_HARQ_OFFSET);
1340#endif
1341        if (fcw->hcin_en > 0) {
1342                harq_in_length = op->ldpc_dec.harq_combined_input.length;
1343                if (fcw->hcin_decomp_mode > 0)
1344                        harq_in_length = harq_in_length * 8 / 6;
1345                harq_in_length = RTE_ALIGN(harq_in_length, 64);
1346                if ((harq_layout[harq_index].offset > 0) & harq_prun) {
1347                        rte_bbdev_log_debug("HARQ IN offset unexpected for now\n");
1348                        fcw->hcin_size0 = harq_layout[harq_index].size0;
1349                        fcw->hcin_offset = harq_layout[harq_index].offset;
1350                        fcw->hcin_size1 = harq_in_length -
1351                                        harq_layout[harq_index].offset;
1352                } else {
1353                        fcw->hcin_size0 = harq_in_length;
1354                        fcw->hcin_offset = 0;
1355                        fcw->hcin_size1 = 0;
1356                }
1357        } else {
1358                fcw->hcin_size0 = 0;
1359                fcw->hcin_offset = 0;
1360                fcw->hcin_size1 = 0;
1361        }
1362
1363        fcw->itmax = op->ldpc_dec.iter_max;
1364        fcw->itstop = check_bit(op->ldpc_dec.op_flags,
1365                        RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
1366        fcw->synd_precoder = fcw->itstop;
1367        /*
1368         * These are all implicitly set
1369         * fcw->synd_post = 0;
1370         * fcw->so_en = 0;
1371         * fcw->so_bypass_rm = 0;
1372         * fcw->so_bypass_intlv = 0;
1373         * fcw->dec_convllr = 0;
1374         * fcw->hcout_convllr = 0;
1375         * fcw->hcout_size1 = 0;
1376         * fcw->so_it = 0;
1377         * fcw->hcout_offset = 0;
1378         * fcw->negstop_th = 0;
1379         * fcw->negstop_it = 0;
1380         * fcw->negstop_en = 0;
1381         * fcw->gain_i = 1;
1382         * fcw->gain_h = 1;
1383         */
1384        if (fcw->hcout_en > 0) {
1385                parity_offset = (op->ldpc_dec.basegraph == 1 ? 20 : 8)
1386                        * op->ldpc_dec.z_c - op->ldpc_dec.n_filler;
1387                k0_p = (fcw->k0 > parity_offset) ?
1388                                fcw->k0 - op->ldpc_dec.n_filler : fcw->k0;
1389                ncb_p = fcw->ncb - op->ldpc_dec.n_filler;
1390                l = k0_p + fcw->rm_e;
1391                harq_out_length = (uint16_t) fcw->hcin_size0;
1392                harq_out_length = RTE_MIN(RTE_MAX(harq_out_length, l), ncb_p);
1393                harq_out_length = (harq_out_length + 0x3F) & 0xFFC0;
1394                if ((k0_p > fcw->hcin_size0 + ACC100_HARQ_OFFSET_THRESHOLD) &&
1395                                harq_prun) {
1396                        fcw->hcout_size0 = (uint16_t) fcw->hcin_size0;
1397                        fcw->hcout_offset = k0_p & 0xFFC0;
1398                        fcw->hcout_size1 = harq_out_length - fcw->hcout_offset;
1399                } else {
1400                        fcw->hcout_size0 = harq_out_length;
1401                        fcw->hcout_size1 = 0;
1402                        fcw->hcout_offset = 0;
1403                }
1404                harq_layout[harq_index].offset = fcw->hcout_offset;
1405                harq_layout[harq_index].size0 = fcw->hcout_size0;
1406        } else {
1407                fcw->hcout_size0 = 0;
1408                fcw->hcout_size1 = 0;
1409                fcw->hcout_offset = 0;
1410        }
1411}
1412
1413/**
1414 * Fills descriptor with data pointers of one block type.
1415 *
1416 * @param desc
1417 *   Pointer to DMA descriptor.
1418 * @param input
1419 *   Pointer to pointer to input data which will be encoded. It can be changed
1420 *   and points to next segment in scatter-gather case.
1421 * @param offset
1422 *   Input offset in rte_mbuf structure. It is used for calculating the point
1423 *   where data is starting.
1424 * @param cb_len
1425 *   Length of currently processed Code Block
1426 * @param seg_total_left
1427 *   It indicates how many bytes still left in segment (mbuf) for further
1428 *   processing.
1429 * @param op_flags
1430 *   Store information about device capabilities
1431 * @param next_triplet
1432 *   Index for ACC100 DMA Descriptor triplet
1433 *
1434 * @return
1435 *   Returns index of next triplet on success, other value if lengths of
1436 *   pkt and processed cb do not match.
1437 *
1438 */
1439static inline int
1440acc100_dma_fill_blk_type_in(struct acc100_dma_req_desc *desc,
1441                struct rte_mbuf **input, uint32_t *offset, uint32_t cb_len,
1442                uint32_t *seg_total_left, int next_triplet)
1443{
1444        uint32_t part_len;
1445        struct rte_mbuf *m = *input;
1446
1447        part_len = (*seg_total_left < cb_len) ? *seg_total_left : cb_len;
1448        cb_len -= part_len;
1449        *seg_total_left -= part_len;
1450
1451        desc->data_ptrs[next_triplet].address =
1452                        rte_pktmbuf_iova_offset(m, *offset);
1453        desc->data_ptrs[next_triplet].blen = part_len;
1454        desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN;
1455        desc->data_ptrs[next_triplet].last = 0;
1456        desc->data_ptrs[next_triplet].dma_ext = 0;
1457        *offset += part_len;
1458        next_triplet++;
1459
1460        while (cb_len > 0) {
1461                if (next_triplet < ACC100_DMA_MAX_NUM_POINTERS &&
1462                                m->next != NULL) {
1463
1464                        m = m->next;
1465                        *seg_total_left = rte_pktmbuf_data_len(m);
1466                        part_len = (*seg_total_left < cb_len) ?
1467                                        *seg_total_left :
1468                                        cb_len;
1469                        desc->data_ptrs[next_triplet].address =
1470                                        rte_pktmbuf_iova_offset(m, 0);
1471                        desc->data_ptrs[next_triplet].blen = part_len;
1472                        desc->data_ptrs[next_triplet].blkid =
1473                                        ACC100_DMA_BLKID_IN;
1474                        desc->data_ptrs[next_triplet].last = 0;
1475                        desc->data_ptrs[next_triplet].dma_ext = 0;
1476                        cb_len -= part_len;
1477                        *seg_total_left -= part_len;
1478                        /* Initializing offset for next segment (mbuf) */
1479                        *offset = part_len;
1480                        next_triplet++;
1481                } else {
1482                        rte_bbdev_log(ERR,
1483                                "Some data still left for processing: "
1484                                "data_left: %u, next_triplet: %u, next_mbuf: %p",
1485                                cb_len, next_triplet, m->next);
1486                        return -EINVAL;
1487                }
1488        }
1489        /* Storing new mbuf as it could be changed in scatter-gather case*/
1490        *input = m;
1491
1492        return next_triplet;
1493}
1494
1495/* Fills descriptor with data pointers of one block type.
1496 * Returns index of next triplet on success, other value if lengths of
1497 * output data and processed mbuf do not match.
1498 */
1499static inline int
1500acc100_dma_fill_blk_type_out(struct acc100_dma_req_desc *desc,
1501                struct rte_mbuf *output, uint32_t out_offset,
1502                uint32_t output_len, int next_triplet, int blk_id)
1503{
1504        desc->data_ptrs[next_triplet].address =
1505                        rte_pktmbuf_iova_offset(output, out_offset);
1506        desc->data_ptrs[next_triplet].blen = output_len;
1507        desc->data_ptrs[next_triplet].blkid = blk_id;
1508        desc->data_ptrs[next_triplet].last = 0;
1509        desc->data_ptrs[next_triplet].dma_ext = 0;
1510        next_triplet++;
1511
1512        return next_triplet;
1513}
1514
1515static inline void
1516acc100_header_init(struct acc100_dma_req_desc *desc)
1517{
1518        desc->word0 = ACC100_DMA_DESC_TYPE;
1519        desc->word1 = 0; /**< Timestamp could be disabled */
1520        desc->word2 = 0;
1521        desc->word3 = 0;
1522        desc->numCBs = 1;
1523}
1524
1525#ifdef RTE_LIBRTE_BBDEV_DEBUG
1526/* Check if any input data is unexpectedly left for processing */
1527static inline int
1528check_mbuf_total_left(uint32_t mbuf_total_left)
1529{
1530        if (mbuf_total_left == 0)
1531                return 0;
1532        rte_bbdev_log(ERR,
1533                "Some date still left for processing: mbuf_total_left = %u",
1534                mbuf_total_left);
1535        return -EINVAL;
1536}
1537#endif
1538
1539static inline int
1540acc100_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
1541                struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
1542                struct rte_mbuf *output, uint32_t *in_offset,
1543                uint32_t *out_offset, uint32_t *out_length,
1544                uint32_t *mbuf_total_left, uint32_t *seg_total_left, uint8_t r)
1545{
1546        int next_triplet = 1; /* FCW already done */
1547        uint32_t e, ea, eb, length;
1548        uint16_t k, k_neg, k_pos;
1549        uint8_t cab, c_neg;
1550
1551        desc->word0 = ACC100_DMA_DESC_TYPE;
1552        desc->word1 = 0; /**< Timestamp could be disabled */
1553        desc->word2 = 0;
1554        desc->word3 = 0;
1555        desc->numCBs = 1;
1556
1557        if (op->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1558                ea = op->turbo_enc.tb_params.ea;
1559                eb = op->turbo_enc.tb_params.eb;
1560                cab = op->turbo_enc.tb_params.cab;
1561                k_neg = op->turbo_enc.tb_params.k_neg;
1562                k_pos = op->turbo_enc.tb_params.k_pos;
1563                c_neg = op->turbo_enc.tb_params.c_neg;
1564                e = (r < cab) ? ea : eb;
1565                k = (r < c_neg) ? k_neg : k_pos;
1566        } else {
1567                e = op->turbo_enc.cb_params.e;
1568                k = op->turbo_enc.cb_params.k;
1569        }
1570
1571        if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
1572                length = (k - 24) >> 3;
1573        else
1574                length = k >> 3;
1575
1576        if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < length))) {
1577                rte_bbdev_log(ERR,
1578                                "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1579                                *mbuf_total_left, length);
1580                return -1;
1581        }
1582
1583        next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset,
1584                        length, seg_total_left, next_triplet);
1585        if (unlikely(next_triplet < 0)) {
1586                rte_bbdev_log(ERR,
1587                                "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1588                                op);
1589                return -1;
1590        }
1591        desc->data_ptrs[next_triplet - 1].last = 1;
1592        desc->m2dlen = next_triplet;
1593        *mbuf_total_left -= length;
1594
1595        /* Set output length */
1596        if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH))
1597                /* Integer round up division by 8 */
1598                *out_length = (e + 7) >> 3;
1599        else
1600                *out_length = (k >> 3) * 3 + 2;
1601
1602        next_triplet = acc100_dma_fill_blk_type_out(desc, output, *out_offset,
1603                        *out_length, next_triplet, ACC100_DMA_BLKID_OUT_ENC);
1604        if (unlikely(next_triplet < 0)) {
1605                rte_bbdev_log(ERR,
1606                                "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1607                                op);
1608                return -1;
1609        }
1610        op->turbo_enc.output.length += *out_length;
1611        *out_offset += *out_length;
1612        desc->data_ptrs[next_triplet - 1].last = 1;
1613        desc->d2mlen = next_triplet - desc->m2dlen;
1614
1615        desc->op_addr = op;
1616
1617        return 0;
1618}
1619
1620static inline int
1621acc100_dma_desc_le_fill(struct rte_bbdev_enc_op *op,
1622                struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
1623                struct rte_mbuf *output, uint32_t *in_offset,
1624                uint32_t *out_offset, uint32_t *out_length,
1625                uint32_t *mbuf_total_left, uint32_t *seg_total_left)
1626{
1627        int next_triplet = 1; /* FCW already done */
1628        uint16_t K, in_length_in_bits, in_length_in_bytes;
1629        struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
1630
1631        acc100_header_init(desc);
1632
1633        K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
1634        in_length_in_bits = K - enc->n_filler;
1635        if ((enc->op_flags & RTE_BBDEV_LDPC_CRC_24A_ATTACH) ||
1636                        (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH))
1637                in_length_in_bits -= 24;
1638        in_length_in_bytes = in_length_in_bits >> 3;
1639
1640        if (unlikely((*mbuf_total_left == 0) ||
1641                        (*mbuf_total_left < in_length_in_bytes))) {
1642                rte_bbdev_log(ERR,
1643                                "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1644                                *mbuf_total_left, in_length_in_bytes);
1645                return -1;
1646        }
1647
1648        next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset,
1649                        in_length_in_bytes,
1650                        seg_total_left, next_triplet);
1651        if (unlikely(next_triplet < 0)) {
1652                rte_bbdev_log(ERR,
1653                                "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1654                                op);
1655                return -1;
1656        }
1657        desc->data_ptrs[next_triplet - 1].last = 1;
1658        desc->m2dlen = next_triplet;
1659        *mbuf_total_left -= in_length_in_bytes;
1660
1661        /* Set output length */
1662        /* Integer round up division by 8 */
1663        *out_length = (enc->cb_params.e + 7) >> 3;
1664
1665        next_triplet = acc100_dma_fill_blk_type_out(desc, output, *out_offset,
1666                        *out_length, next_triplet, ACC100_DMA_BLKID_OUT_ENC);
1667        op->ldpc_enc.output.length += *out_length;
1668        *out_offset += *out_length;
1669        desc->data_ptrs[next_triplet - 1].last = 1;
1670        desc->data_ptrs[next_triplet - 1].dma_ext = 0;
1671        desc->d2mlen = next_triplet - desc->m2dlen;
1672
1673        desc->op_addr = op;
1674
1675        return 0;
1676}
1677
1678static inline int
1679acc100_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
1680                struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
1681                struct rte_mbuf *h_output, struct rte_mbuf *s_output,
1682                uint32_t *in_offset, uint32_t *h_out_offset,
1683                uint32_t *s_out_offset, uint32_t *h_out_length,
1684                uint32_t *s_out_length, uint32_t *mbuf_total_left,
1685                uint32_t *seg_total_left, uint8_t r)
1686{
1687        int next_triplet = 1; /* FCW already done */
1688        uint16_t k;
1689        uint16_t crc24_overlap = 0;
1690        uint32_t e, kw;
1691
1692        desc->word0 = ACC100_DMA_DESC_TYPE;
1693        desc->word1 = 0; /**< Timestamp could be disabled */
1694        desc->word2 = 0;
1695        desc->word3 = 0;
1696        desc->numCBs = 1;
1697
1698        if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1699                k = (r < op->turbo_dec.tb_params.c_neg)
1700                        ? op->turbo_dec.tb_params.k_neg
1701                        : op->turbo_dec.tb_params.k_pos;
1702                e = (r < op->turbo_dec.tb_params.cab)
1703                        ? op->turbo_dec.tb_params.ea
1704                        : op->turbo_dec.tb_params.eb;
1705        } else {
1706                k = op->turbo_dec.cb_params.k;
1707                e = op->turbo_dec.cb_params.e;
1708        }
1709
1710        if ((op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
1711                && !check_bit(op->turbo_dec.op_flags,
1712                RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1713                crc24_overlap = 24;
1714
1715        /* Calculates circular buffer size.
1716         * According to 3gpp 36.212 section 5.1.4.2
1717         *   Kw = 3 * Kpi,
1718         * where:
1719         *   Kpi = nCol * nRow
1720         * where nCol is 32 and nRow can be calculated from:
1721         *   D =< nCol * nRow
1722         * where D is the size of each output from turbo encoder block (k + 4).
1723         */
1724        kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
1725
1726        if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < kw))) {
1727                rte_bbdev_log(ERR,
1728                                "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1729                                *mbuf_total_left, kw);
1730                return -1;
1731        }
1732
1733        next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset, kw,
1734                        seg_total_left, next_triplet);
1735        if (unlikely(next_triplet < 0)) {
1736                rte_bbdev_log(ERR,
1737                                "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1738                                op);
1739                return -1;
1740        }
1741        desc->data_ptrs[next_triplet - 1].last = 1;
1742        desc->m2dlen = next_triplet;
1743        *mbuf_total_left -= kw;
1744
1745        next_triplet = acc100_dma_fill_blk_type_out(
1746                        desc, h_output, *h_out_offset,
1747                        k >> 3, next_triplet, ACC100_DMA_BLKID_OUT_HARD);
1748        if (unlikely(next_triplet < 0)) {
1749                rte_bbdev_log(ERR,
1750                                "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1751                                op);
1752                return -1;
1753        }
1754
1755        *h_out_length = ((k - crc24_overlap) >> 3);
1756        op->turbo_dec.hard_output.length += *h_out_length;
1757        *h_out_offset += *h_out_length;
1758
1759        /* Soft output */
1760        if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
1761                if (check_bit(op->turbo_dec.op_flags,
1762                                RTE_BBDEV_TURBO_EQUALIZER))
1763                        *s_out_length = e;
1764                else
1765                        *s_out_length = (k * 3) + 12;
1766
1767                next_triplet = acc100_dma_fill_blk_type_out(desc, s_output,
1768                                *s_out_offset, *s_out_length, next_triplet,
1769                                ACC100_DMA_BLKID_OUT_SOFT);
1770                if (unlikely(next_triplet < 0)) {
1771                        rte_bbdev_log(ERR,
1772                                        "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1773                                        op);
1774                        return -1;
1775                }
1776
1777                op->turbo_dec.soft_output.length += *s_out_length;
1778                *s_out_offset += *s_out_length;
1779        }
1780
1781        desc->data_ptrs[next_triplet - 1].last = 1;
1782        desc->d2mlen = next_triplet - desc->m2dlen;
1783
1784        desc->op_addr = op;
1785
1786        return 0;
1787}
1788
1789static inline int
1790acc100_dma_desc_ld_fill(struct rte_bbdev_dec_op *op,
1791                struct acc100_dma_req_desc *desc,
1792                struct rte_mbuf **input, struct rte_mbuf *h_output,
1793                uint32_t *in_offset, uint32_t *h_out_offset,
1794                uint32_t *h_out_length, uint32_t *mbuf_total_left,
1795                uint32_t *seg_total_left,
1796                struct acc100_fcw_ld *fcw)
1797{
1798        struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
1799        int next_triplet = 1; /* FCW already done */
1800        uint32_t input_length;
1801        uint16_t output_length, crc24_overlap = 0;
1802        uint16_t sys_cols, K, h_p_size, h_np_size;
1803        bool h_comp = check_bit(dec->op_flags,
1804                        RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION);
1805
1806        acc100_header_init(desc);
1807
1808        if (check_bit(op->ldpc_dec.op_flags,
1809                        RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
1810                crc24_overlap = 24;
1811
1812        /* Compute some LDPC BG lengths */
1813        input_length = dec->cb_params.e;
1814        if (check_bit(op->ldpc_dec.op_flags,
1815                        RTE_BBDEV_LDPC_LLR_COMPRESSION))
1816                input_length = (input_length * 3 + 3) / 4;
1817        sys_cols = (dec->basegraph == 1) ? 22 : 10;
1818        K = sys_cols * dec->z_c;
1819        output_length = K - dec->n_filler - crc24_overlap;
1820
1821        if (unlikely((*mbuf_total_left == 0) ||
1822                        (*mbuf_total_left < input_length))) {
1823                rte_bbdev_log(ERR,
1824                                "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1825                                *mbuf_total_left, input_length);
1826                return -1;
1827        }
1828
1829        next_triplet = acc100_dma_fill_blk_type_in(desc, input,
1830                        in_offset, input_length,
1831                        seg_total_left, next_triplet);
1832
1833        if (unlikely(next_triplet < 0)) {
1834                rte_bbdev_log(ERR,
1835                                "Mismatch between data to process and mbuf data length in bbdev_op: %p",
1836                                op);
1837                return -1;
1838        }
1839
1840        if (check_bit(op->ldpc_dec.op_flags,
1841                                RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
1842                h_p_size = fcw->hcin_size0 + fcw->hcin_size1;
1843                if (h_comp)
1844                        h_p_size = (h_p_size * 3 + 3) / 4;
1845                desc->data_ptrs[next_triplet].address =
1846                                dec->harq_combined_input.offset;
1847                desc->data_ptrs[next_triplet].blen = h_p_size;
1848                desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN_HARQ;
1849                desc->data_ptrs[next_triplet].dma_ext = 1;
1850#ifndef ACC100_EXT_MEM
1851                acc100_dma_fill_blk_type_out(
1852                                desc,
1853                                op->ldpc_dec.harq_combined_input.data,
1854                                op->ldpc_dec.harq_combined_input.offset,
1855                                h_p_size,
1856                                next_triplet,
1857                                ACC100_DMA_BLKID_IN_HARQ);
1858#endif
1859                next_triplet++;
1860        }
1861
1862        desc->data_ptrs[next_triplet - 1].last = 1;
1863        desc->m2dlen = next_triplet;
1864        *mbuf_total_left -= input_length;
1865
1866        next_triplet = acc100_dma_fill_blk_type_out(desc, h_output,
1867                        *h_out_offset, output_length >> 3, next_triplet,
1868                        ACC100_DMA_BLKID_OUT_HARD);
1869
1870        if (check_bit(op->ldpc_dec.op_flags,
1871                                RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
1872                /* Pruned size of the HARQ */
1873                h_p_size = fcw->hcout_size0 + fcw->hcout_size1;
1874                /* Non-Pruned size of the HARQ */
1875                h_np_size = fcw->hcout_offset > 0 ?
1876                                fcw->hcout_offset + fcw->hcout_size1 :
1877                                h_p_size;
1878                if (h_comp) {
1879                        h_np_size = (h_np_size * 3 + 3) / 4;
1880                        h_p_size = (h_p_size * 3 + 3) / 4;
1881                }
1882                dec->harq_combined_output.length = h_np_size;
1883                desc->data_ptrs[next_triplet].address =
1884                                dec->harq_combined_output.offset;
1885                desc->data_ptrs[next_triplet].blen = h_p_size;
1886                desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_OUT_HARQ;
1887                desc->data_ptrs[next_triplet].dma_ext = 1;
1888#ifndef ACC100_EXT_MEM
1889                acc100_dma_fill_blk_type_out(
1890                                desc,
1891                                dec->harq_combined_output.data,
1892                                dec->harq_combined_output.offset,
1893                                h_p_size,
1894                                next_triplet,
1895                                ACC100_DMA_BLKID_OUT_HARQ);
1896#endif
1897                next_triplet++;
1898        }
1899
1900        *h_out_length = output_length >> 3;
1901        dec->hard_output.length += *h_out_length;
1902        *h_out_offset += *h_out_length;
1903        desc->data_ptrs[next_triplet - 1].last = 1;
1904        desc->d2mlen = next_triplet - desc->m2dlen;
1905
1906        desc->op_addr = op;
1907
1908        return 0;
1909}
1910
1911static inline void
1912acc100_dma_desc_ld_update(struct rte_bbdev_dec_op *op,
1913                struct acc100_dma_req_desc *desc,
1914                struct rte_mbuf *input, struct rte_mbuf *h_output,
1915                uint32_t *in_offset, uint32_t *h_out_offset,
1916                uint32_t *h_out_length,
1917                union acc100_harq_layout_data *harq_layout)
1918{
1919        int next_triplet = 1; /* FCW already done */
1920        desc->data_ptrs[next_triplet].address =
1921                        rte_pktmbuf_iova_offset(input, *in_offset);
1922        next_triplet++;
1923
1924        if (check_bit(op->ldpc_dec.op_flags,
1925                                RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
1926                struct rte_bbdev_op_data hi = op->ldpc_dec.harq_combined_input;
1927                desc->data_ptrs[next_triplet].address = hi.offset;
1928#ifndef ACC100_EXT_MEM
1929                desc->data_ptrs[next_triplet].address =
1930                                rte_pktmbuf_iova_offset(hi.data, hi.offset);
1931#endif
1932                next_triplet++;
1933        }
1934
1935        desc->data_ptrs[next_triplet].address =
1936                        rte_pktmbuf_iova_offset(h_output, *h_out_offset);
1937        *h_out_length = desc->data_ptrs[next_triplet].blen;
1938        next_triplet++;
1939
1940        if (check_bit(op->ldpc_dec.op_flags,
1941                                RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
1942                desc->data_ptrs[next_triplet].address =
1943                                op->ldpc_dec.harq_combined_output.offset;
1944                /* Adjust based on previous operation */
1945                struct rte_bbdev_dec_op *prev_op = desc->op_addr;
1946                op->ldpc_dec.harq_combined_output.length =
1947                                prev_op->ldpc_dec.harq_combined_output.length;
1948                int16_t hq_idx = op->ldpc_dec.harq_combined_output.offset /
1949                                ACC100_HARQ_OFFSET;
1950                int16_t prev_hq_idx =
1951                                prev_op->ldpc_dec.harq_combined_output.offset
1952                                / ACC100_HARQ_OFFSET;
1953                harq_layout[hq_idx].val = harq_layout[prev_hq_idx].val;
1954#ifndef ACC100_EXT_MEM
1955                struct rte_bbdev_op_data ho =
1956                                op->ldpc_dec.harq_combined_output;
1957                desc->data_ptrs[next_triplet].address =
1958                                rte_pktmbuf_iova_offset(ho.data, ho.offset);
1959#endif
1960                next_triplet++;
1961        }
1962
1963        op->ldpc_dec.hard_output.length += *h_out_length;
1964        desc->op_addr = op;
1965}
1966
1967
1968/* Enqueue a number of operations to HW and update software rings */
1969static inline void
1970acc100_dma_enqueue(struct acc100_queue *q, uint16_t n,
1971                struct rte_bbdev_stats *queue_stats)
1972{
1973        union acc100_enqueue_reg_fmt enq_req;
1974#ifdef RTE_BBDEV_OFFLOAD_COST
1975        uint64_t start_time = 0;
1976        queue_stats->acc_offload_cycles = 0;
1977#else
1978        RTE_SET_USED(queue_stats);
1979#endif
1980
1981        enq_req.val = 0;
1982        /* Setting offset, 100b for 256 DMA Desc */
1983        enq_req.addr_offset = ACC100_DESC_OFFSET;
1984
1985        /* Split ops into batches */
1986        do {
1987                union acc100_dma_desc *desc;
1988                uint16_t enq_batch_size;
1989                uint64_t offset;
1990                rte_iova_t req_elem_addr;
1991
1992                enq_batch_size = RTE_MIN(n, MAX_ENQ_BATCH_SIZE);
1993
1994                /* Set flag on last descriptor in a batch */
1995                desc = q->ring_addr + ((q->sw_ring_head + enq_batch_size - 1) &
1996                                q->sw_ring_wrap_mask);
1997                desc->req.last_desc_in_batch = 1;
1998
1999                /* Calculate the 1st descriptor's address */
2000                offset = ((q->sw_ring_head & q->sw_ring_wrap_mask) *
2001                                sizeof(union acc100_dma_desc));
2002                req_elem_addr = q->ring_addr_iova + offset;
2003
2004                /* Fill enqueue struct */
2005                enq_req.num_elem = enq_batch_size;
2006                /* low 6 bits are not needed */
2007                enq_req.req_elem_addr = (uint32_t)(req_elem_addr >> 6);
2008
2009#ifdef RTE_LIBRTE_BBDEV_DEBUG
2010                rte_memdump(stderr, "Req sdone", desc, sizeof(*desc));
2011#endif
2012                rte_bbdev_log_debug(
2013                                "Enqueue %u reqs (phys %#"PRIx64") to reg %p",
2014                                enq_batch_size,
2015                                req_elem_addr,
2016                                (void *)q->mmio_reg_enqueue);
2017
2018                rte_wmb();
2019
2020#ifdef RTE_BBDEV_OFFLOAD_COST
2021                /* Start time measurement for enqueue function offload. */
2022                start_time = rte_rdtsc_precise();
2023#endif
2024                rte_bbdev_log(DEBUG, "Debug : MMIO Enqueue");
2025                mmio_write(q->mmio_reg_enqueue, enq_req.val);
2026
2027#ifdef RTE_BBDEV_OFFLOAD_COST
2028                queue_stats->acc_offload_cycles +=
2029                                rte_rdtsc_precise() - start_time;
2030#endif
2031
2032                q->aq_enqueued++;
2033                q->sw_ring_head += enq_batch_size;
2034                n -= enq_batch_size;
2035
2036        } while (n);
2037
2038
2039}
2040
2041#ifdef RTE_LIBRTE_BBDEV_DEBUG
2042/* Validates turbo encoder parameters */
2043static inline int
2044validate_enc_op(struct rte_bbdev_enc_op *op)
2045{
2046        struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc;
2047        struct rte_bbdev_op_enc_turbo_cb_params *cb = NULL;
2048        struct rte_bbdev_op_enc_turbo_tb_params *tb = NULL;
2049        uint16_t kw, kw_neg, kw_pos;
2050
2051        if (op->mempool == NULL) {
2052                rte_bbdev_log(ERR, "Invalid mempool pointer");
2053                return -1;
2054        }
2055        if (turbo_enc->input.data == NULL) {
2056                rte_bbdev_log(ERR, "Invalid input pointer");
2057                return -1;
2058        }
2059        if (turbo_enc->output.data == NULL) {
2060                rte_bbdev_log(ERR, "Invalid output pointer");
2061                return -1;
2062        }
2063        if (turbo_enc->rv_index > 3) {
2064                rte_bbdev_log(ERR,
2065                                "rv_index (%u) is out of range 0 <= value <= 3",
2066                                turbo_enc->rv_index);
2067                return -1;
2068        }
2069        if (turbo_enc->code_block_mode != RTE_BBDEV_TRANSPORT_BLOCK &&
2070                        turbo_enc->code_block_mode != RTE_BBDEV_CODE_BLOCK) {
2071                rte_bbdev_log(ERR,
2072                                "code_block_mode (%u) is out of range 0 <= value <= 1",
2073                                turbo_enc->code_block_mode);
2074                return -1;
2075        }
2076
2077        if (turbo_enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
2078                tb = &turbo_enc->tb_params;
2079                if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
2080                                || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
2081                                && tb->c_neg > 0) {
2082                        rte_bbdev_log(ERR,
2083                                        "k_neg (%u) is out of range %u <= value <= %u",
2084                                        tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2085                                        RTE_BBDEV_TURBO_MAX_CB_SIZE);
2086                        return -1;
2087                }
2088                if (tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
2089                                || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
2090                        rte_bbdev_log(ERR,
2091                                        "k_pos (%u) is out of range %u <= value <= %u",
2092                                        tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2093                                        RTE_BBDEV_TURBO_MAX_CB_SIZE);
2094                        return -1;
2095                }
2096                if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
2097                        rte_bbdev_log(ERR,
2098                                        "c_neg (%u) is out of range 0 <= value <= %u",
2099                                        tb->c_neg,
2100                                        RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
2101                if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
2102                        rte_bbdev_log(ERR,
2103                                        "c (%u) is out of range 1 <= value <= %u",
2104                                        tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
2105                        return -1;
2106                }
2107                if (tb->cab > tb->c) {
2108                        rte_bbdev_log(ERR,
2109                                        "cab (%u) is greater than c (%u)",
2110                                        tb->cab, tb->c);
2111                        return -1;
2112                }
2113                if ((tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->ea % 2))
2114                                && tb->r < tb->cab) {
2115                        rte_bbdev_log(ERR,
2116                                        "ea (%u) is less than %u or it is not even",
2117                                        tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2118                        return -1;
2119                }
2120                if ((tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->eb % 2))
2121                                && tb->c > tb->cab) {
2122                        rte_bbdev_log(ERR,
2123                                        "eb (%u) is less than %u or it is not even",
2124                                        tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2125                        return -1;
2126                }
2127
2128                kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4,
2129                                        RTE_BBDEV_TURBO_C_SUBBLOCK);
2130                if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) {
2131                        rte_bbdev_log(ERR,
2132                                        "ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg",
2133                                        tb->ncb_neg, tb->k_neg, kw_neg);
2134                        return -1;
2135                }
2136
2137                kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4,
2138                                        RTE_BBDEV_TURBO_C_SUBBLOCK);
2139                if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) {
2140                        rte_bbdev_log(ERR,
2141                                        "ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos",
2142                                        tb->ncb_pos, tb->k_pos, kw_pos);
2143                        return -1;
2144                }
2145                if (tb->r > (tb->c - 1)) {
2146                        rte_bbdev_log(ERR,
2147                                        "r (%u) is greater than c - 1 (%u)",
2148                                        tb->r, tb->c - 1);
2149                        return -1;
2150                }
2151        } else {
2152                cb = &turbo_enc->cb_params;
2153                if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
2154                                || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
2155                        rte_bbdev_log(ERR,
2156                                        "k (%u) is out of range %u <= value <= %u",
2157                                        cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2158                                        RTE_BBDEV_TURBO_MAX_CB_SIZE);
2159                        return -1;
2160                }
2161
2162                if (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE || (cb->e % 2)) {
2163                        rte_bbdev_log(ERR,
2164                                        "e (%u) is less than %u or it is not even",
2165                                        cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2166                        return -1;
2167                }
2168
2169                kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
2170                if (cb->ncb < cb->k || cb->ncb > kw) {
2171                        rte_bbdev_log(ERR,
2172                                        "ncb (%u) is out of range (%u) k <= value <= (%u) kw",
2173                                        cb->ncb, cb->k, kw);
2174                        return -1;
2175                }
2176        }
2177
2178        return 0;
2179}
2180/* Validates LDPC encoder parameters */
2181static inline int
2182validate_ldpc_enc_op(struct rte_bbdev_enc_op *op)
2183{
2184        struct rte_bbdev_op_ldpc_enc *ldpc_enc = &op->ldpc_enc;
2185
2186        if (op->mempool == NULL) {
2187                rte_bbdev_log(ERR, "Invalid mempool pointer");
2188                return -1;
2189        }
2190        if (ldpc_enc->input.data == NULL) {
2191                rte_bbdev_log(ERR, "Invalid input pointer");
2192                return -1;
2193        }
2194        if (ldpc_enc->output.data == NULL) {
2195                rte_bbdev_log(ERR, "Invalid output pointer");
2196                return -1;
2197        }
2198        if (ldpc_enc->input.length >
2199                        RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) {
2200                rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
2201                                ldpc_enc->input.length,
2202                                RTE_BBDEV_LDPC_MAX_CB_SIZE);
2203                return -1;
2204        }
2205        if ((ldpc_enc->basegraph > 2) || (ldpc_enc->basegraph == 0)) {
2206                rte_bbdev_log(ERR,
2207                                "BG (%u) is out of range 1 <= value <= 2",
2208                                ldpc_enc->basegraph);
2209                return -1;
2210        }
2211        if (ldpc_enc->rv_index > 3) {
2212                rte_bbdev_log(ERR,
2213                                "rv_index (%u) is out of range 0 <= value <= 3",
2214                                ldpc_enc->rv_index);
2215                return -1;
2216        }
2217        if (ldpc_enc->code_block_mode > RTE_BBDEV_CODE_BLOCK) {
2218                rte_bbdev_log(ERR,
2219                                "code_block_mode (%u) is out of range 0 <= value <= 1",
2220                                ldpc_enc->code_block_mode);
2221                return -1;
2222        }
2223        int K = (ldpc_enc->basegraph == 1 ? 22 : 10) * ldpc_enc->z_c;
2224        if (ldpc_enc->n_filler >= K) {
2225                rte_bbdev_log(ERR,
2226                                "K and F are not compatible %u %u",
2227                                K, ldpc_enc->n_filler);
2228                return -1;
2229        }
2230        return 0;
2231}
2232
2233/* Validates LDPC decoder parameters */
2234static inline int
2235validate_ldpc_dec_op(struct rte_bbdev_dec_op *op)
2236{
2237        struct rte_bbdev_op_ldpc_dec *ldpc_dec = &op->ldpc_dec;
2238
2239        if (op->mempool == NULL) {
2240                rte_bbdev_log(ERR, "Invalid mempool pointer");
2241                return -1;
2242        }
2243        if ((ldpc_dec->basegraph > 2) || (ldpc_dec->basegraph == 0)) {
2244                rte_bbdev_log(ERR,
2245                                "BG (%u) is out of range 1 <= value <= 2",
2246                                ldpc_dec->basegraph);
2247                return -1;
2248        }
2249        if (ldpc_dec->iter_max == 0) {
2250                rte_bbdev_log(ERR,
2251                                "iter_max (%u) is equal to 0",
2252                                ldpc_dec->iter_max);
2253                return -1;
2254        }
2255        if (ldpc_dec->rv_index > 3) {
2256                rte_bbdev_log(ERR,
2257                                "rv_index (%u) is out of range 0 <= value <= 3",
2258                                ldpc_dec->rv_index);
2259                return -1;
2260        }
2261        if (ldpc_dec->code_block_mode > RTE_BBDEV_CODE_BLOCK) {
2262                rte_bbdev_log(ERR,
2263                                "code_block_mode (%u) is out of range 0 <= value <= 1",
2264                                ldpc_dec->code_block_mode);
2265                return -1;
2266        }
2267        int K = (ldpc_dec->basegraph == 1 ? 22 : 10) * ldpc_dec->z_c;
2268        if (ldpc_dec->n_filler >= K) {
2269                rte_bbdev_log(ERR,
2270                                "K and F are not compatible %u %u",
2271                                K, ldpc_dec->n_filler);
2272                return -1;
2273        }
2274        return 0;
2275}
2276#endif
2277
2278/* Enqueue one encode operations for ACC100 device in CB mode */
2279static inline int
2280enqueue_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
2281                uint16_t total_enqueued_cbs)
2282{
2283        union acc100_dma_desc *desc = NULL;
2284        int ret;
2285        uint32_t in_offset, out_offset, out_length, mbuf_total_left,
2286                seg_total_left;
2287        struct rte_mbuf *input, *output_head, *output;
2288
2289#ifdef RTE_LIBRTE_BBDEV_DEBUG
2290        /* Validate op structure */
2291        if (validate_enc_op(op) == -1) {
2292                rte_bbdev_log(ERR, "Turbo encoder validation failed");
2293                return -EINVAL;
2294        }
2295#endif
2296
2297        uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2298                        & q->sw_ring_wrap_mask);
2299        desc = q->ring_addr + desc_idx;
2300        acc100_fcw_te_fill(op, &desc->req.fcw_te);
2301
2302        input = op->turbo_enc.input.data;
2303        output_head = output = op->turbo_enc.output.data;
2304        in_offset = op->turbo_enc.input.offset;
2305        out_offset = op->turbo_enc.output.offset;
2306        out_length = 0;
2307        mbuf_total_left = op->turbo_enc.input.length;
2308        seg_total_left = rte_pktmbuf_data_len(op->turbo_enc.input.data)
2309                        - in_offset;
2310
2311        ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output,
2312                        &in_offset, &out_offset, &out_length, &mbuf_total_left,
2313                        &seg_total_left, 0);
2314
2315        if (unlikely(ret < 0))
2316                return ret;
2317
2318        mbuf_append(output_head, output, out_length);
2319
2320#ifdef RTE_LIBRTE_BBDEV_DEBUG
2321        rte_memdump(stderr, "FCW", &desc->req.fcw_te,
2322                        sizeof(desc->req.fcw_te) - 8);
2323        rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2324        if (check_mbuf_total_left(mbuf_total_left) != 0)
2325                return -EINVAL;
2326#endif
2327        /* One CB (one op) was successfully prepared to enqueue */
2328        return 1;
2329}
2330
2331/* Enqueue one encode operations for ACC100 device in CB mode */
2332static inline int
2333enqueue_ldpc_enc_n_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op **ops,
2334                uint16_t total_enqueued_cbs, int16_t num)
2335{
2336        union acc100_dma_desc *desc = NULL;
2337        uint32_t out_length;
2338        struct rte_mbuf *output_head, *output;
2339        int i, next_triplet;
2340        uint16_t  in_length_in_bytes;
2341        struct rte_bbdev_op_ldpc_enc *enc = &ops[0]->ldpc_enc;
2342
2343#ifdef RTE_LIBRTE_BBDEV_DEBUG
2344        /* Validate op structure */
2345        if (validate_ldpc_enc_op(ops[0]) == -1) {
2346                rte_bbdev_log(ERR, "LDPC encoder validation failed");
2347                return -EINVAL;
2348        }
2349#endif
2350
2351        uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2352                        & q->sw_ring_wrap_mask);
2353        desc = q->ring_addr + desc_idx;
2354        acc100_fcw_le_fill(ops[0], &desc->req.fcw_le, num);
2355
2356        /** This could be done at polling */
2357        acc100_header_init(&desc->req);
2358        desc->req.numCBs = num;
2359
2360        in_length_in_bytes = ops[0]->ldpc_enc.input.data->data_len;
2361        out_length = (enc->cb_params.e + 7) >> 3;
2362        desc->req.m2dlen = 1 + num;
2363        desc->req.d2mlen = num;
2364        next_triplet = 1;
2365
2366        for (i = 0; i < num; i++) {
2367                desc->req.data_ptrs[next_triplet].address =
2368                        rte_pktmbuf_iova_offset(ops[i]->ldpc_enc.input.data, 0);
2369                desc->req.data_ptrs[next_triplet].blen = in_length_in_bytes;
2370                next_triplet++;
2371                desc->req.data_ptrs[next_triplet].address =
2372                                rte_pktmbuf_iova_offset(
2373                                ops[i]->ldpc_enc.output.data, 0);
2374                desc->req.data_ptrs[next_triplet].blen = out_length;
2375                next_triplet++;
2376                ops[i]->ldpc_enc.output.length = out_length;
2377                output_head = output = ops[i]->ldpc_enc.output.data;
2378                mbuf_append(output_head, output, out_length);
2379                output->data_len = out_length;
2380        }
2381
2382        desc->req.op_addr = ops[0];
2383
2384#ifdef RTE_LIBRTE_BBDEV_DEBUG
2385        rte_memdump(stderr, "FCW", &desc->req.fcw_le,
2386                        sizeof(desc->req.fcw_le) - 8);
2387        rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2388#endif
2389
2390        /* One CB (one op) was successfully prepared to enqueue */
2391        return num;
2392}
2393
2394/* Enqueue one encode operations for ACC100 device in CB mode */
2395static inline int
2396enqueue_ldpc_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
2397                uint16_t total_enqueued_cbs)
2398{
2399        union acc100_dma_desc *desc = NULL;
2400        int ret;
2401        uint32_t in_offset, out_offset, out_length, mbuf_total_left,
2402                seg_total_left;
2403        struct rte_mbuf *input, *output_head, *output;
2404
2405#ifdef RTE_LIBRTE_BBDEV_DEBUG
2406        /* Validate op structure */
2407        if (validate_ldpc_enc_op(op) == -1) {
2408                rte_bbdev_log(ERR, "LDPC encoder validation failed");
2409                return -EINVAL;
2410        }
2411#endif
2412
2413        uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2414                        & q->sw_ring_wrap_mask);
2415        desc = q->ring_addr + desc_idx;
2416        acc100_fcw_le_fill(op, &desc->req.fcw_le, 1);
2417
2418        input = op->ldpc_enc.input.data;
2419        output_head = output = op->ldpc_enc.output.data;
2420        in_offset = op->ldpc_enc.input.offset;
2421        out_offset = op->ldpc_enc.output.offset;
2422        out_length = 0;
2423        mbuf_total_left = op->ldpc_enc.input.length;
2424        seg_total_left = rte_pktmbuf_data_len(op->ldpc_enc.input.data)
2425                        - in_offset;
2426
2427        ret = acc100_dma_desc_le_fill(op, &desc->req, &input, output,
2428                        &in_offset, &out_offset, &out_length, &mbuf_total_left,
2429                        &seg_total_left);
2430
2431        if (unlikely(ret < 0))
2432                return ret;
2433
2434        mbuf_append(output_head, output, out_length);
2435
2436#ifdef RTE_LIBRTE_BBDEV_DEBUG
2437        rte_memdump(stderr, "FCW", &desc->req.fcw_le,
2438                        sizeof(desc->req.fcw_le) - 8);
2439        rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2440
2441        if (check_mbuf_total_left(mbuf_total_left) != 0)
2442                return -EINVAL;
2443#endif
2444        /* One CB (one op) was successfully prepared to enqueue */
2445        return 1;
2446}
2447
2448
2449/* Enqueue one encode operations for ACC100 device in TB mode. */
2450static inline int
2451enqueue_enc_one_op_tb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
2452                uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
2453{
2454        union acc100_dma_desc *desc = NULL;
2455        int ret;
2456        uint8_t r, c;
2457        uint32_t in_offset, out_offset, out_length, mbuf_total_left,
2458                seg_total_left;
2459        struct rte_mbuf *input, *output_head, *output;
2460        uint16_t current_enqueued_cbs = 0;
2461
2462#ifdef RTE_LIBRTE_BBDEV_DEBUG
2463        /* Validate op structure */
2464        if (validate_enc_op(op) == -1) {
2465                rte_bbdev_log(ERR, "Turbo encoder validation failed");
2466                return -EINVAL;
2467        }
2468#endif
2469
2470        uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2471                        & q->sw_ring_wrap_mask);
2472        desc = q->ring_addr + desc_idx;
2473        uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
2474        acc100_fcw_te_fill(op, &desc->req.fcw_te);
2475
2476        input = op->turbo_enc.input.data;
2477        output_head = output = op->turbo_enc.output.data;
2478        in_offset = op->turbo_enc.input.offset;
2479        out_offset = op->turbo_enc.output.offset;
2480        out_length = 0;
2481        mbuf_total_left = op->turbo_enc.input.length;
2482
2483        c = op->turbo_enc.tb_params.c;
2484        r = op->turbo_enc.tb_params.r;
2485
2486        while (mbuf_total_left > 0 && r < c) {
2487                seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
2488                /* Set up DMA descriptor */
2489                desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
2490                                & q->sw_ring_wrap_mask);
2491                desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
2492                desc->req.data_ptrs[0].blen = ACC100_FCW_TE_BLEN;
2493
2494                ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output,
2495                                &in_offset, &out_offset, &out_length,
2496                                &mbuf_total_left, &seg_total_left, r);
2497                if (unlikely(ret < 0))
2498                        return ret;
2499                mbuf_append(output_head, output, out_length);
2500
2501                /* Set total number of CBs in TB */
2502                desc->req.cbs_in_tb = cbs_in_tb;
2503#ifdef RTE_LIBRTE_BBDEV_DEBUG
2504                rte_memdump(stderr, "FCW", &desc->req.fcw_te,
2505                                sizeof(desc->req.fcw_te) - 8);
2506                rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2507#endif
2508
2509                if (seg_total_left == 0) {
2510                        /* Go to the next mbuf */
2511                        input = input->next;
2512                        in_offset = 0;
2513                        output = output->next;
2514                        out_offset = 0;
2515                }
2516
2517                total_enqueued_cbs++;
2518                current_enqueued_cbs++;
2519                r++;
2520        }
2521
2522#ifdef RTE_LIBRTE_BBDEV_DEBUG
2523        if (check_mbuf_total_left(mbuf_total_left) != 0)
2524                return -EINVAL;
2525#endif
2526
2527        /* Set SDone on last CB descriptor for TB mode. */
2528        desc->req.sdone_enable = 1;
2529        desc->req.irq_enable = q->irq_enable;
2530
2531        return current_enqueued_cbs;
2532}
2533
2534#ifdef RTE_LIBRTE_BBDEV_DEBUG
2535/* Validates turbo decoder parameters */
2536static inline int
2537validate_dec_op(struct rte_bbdev_dec_op *op)
2538{
2539        struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec;
2540        struct rte_bbdev_op_dec_turbo_cb_params *cb = NULL;
2541        struct rte_bbdev_op_dec_turbo_tb_params *tb = NULL;
2542
2543        if (op->mempool == NULL) {
2544                rte_bbdev_log(ERR, "Invalid mempool pointer");
2545                return -1;
2546        }
2547        if (turbo_dec->input.data == NULL) {
2548                rte_bbdev_log(ERR, "Invalid input pointer");
2549                return -1;
2550        }
2551        if (turbo_dec->hard_output.data == NULL) {
2552                rte_bbdev_log(ERR, "Invalid hard_output pointer");
2553                return -1;
2554        }
2555        if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT) &&
2556                        turbo_dec->soft_output.data == NULL) {
2557                rte_bbdev_log(ERR, "Invalid soft_output pointer");
2558                return -1;
2559        }
2560        if (turbo_dec->rv_index > 3) {
2561                rte_bbdev_log(ERR,
2562                                "rv_index (%u) is out of range 0 <= value <= 3",
2563                                turbo_dec->rv_index);
2564                return -1;
2565        }
2566        if (turbo_dec->iter_min < 1) {
2567                rte_bbdev_log(ERR,
2568                                "iter_min (%u) is less than 1",
2569                                turbo_dec->iter_min);
2570                return -1;
2571        }
2572        if (turbo_dec->iter_max <= 2) {
2573                rte_bbdev_log(ERR,
2574                                "iter_max (%u) is less than or equal to 2",
2575                                turbo_dec->iter_max);
2576                return -1;
2577        }
2578        if (turbo_dec->iter_min > turbo_dec->iter_max) {
2579                rte_bbdev_log(ERR,
2580                                "iter_min (%u) is greater than iter_max (%u)",
2581                                turbo_dec->iter_min, turbo_dec->iter_max);
2582                return -1;
2583        }
2584        if (turbo_dec->code_block_mode != RTE_BBDEV_TRANSPORT_BLOCK &&
2585                        turbo_dec->code_block_mode != RTE_BBDEV_CODE_BLOCK) {
2586                rte_bbdev_log(ERR,
2587                                "code_block_mode (%u) is out of range 0 <= value <= 1",
2588                                turbo_dec->code_block_mode);
2589                return -1;
2590        }
2591
2592        if (turbo_dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
2593                tb = &turbo_dec->tb_params;
2594                if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
2595                                || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
2596                                && tb->c_neg > 0) {
2597                        rte_bbdev_log(ERR,
2598                                        "k_neg (%u) is out of range %u <= value <= %u",
2599                                        tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2600                                        RTE_BBDEV_TURBO_MAX_CB_SIZE);
2601                        return -1;
2602                }
2603                if ((tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
2604                                || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE)
2605                                && tb->c > tb->c_neg) {
2606                        rte_bbdev_log(ERR,
2607                                        "k_pos (%u) is out of range %u <= value <= %u",
2608                                        tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2609                                        RTE_BBDEV_TURBO_MAX_CB_SIZE);
2610                        return -1;
2611                }
2612                if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
2613                        rte_bbdev_log(ERR,
2614                                        "c_neg (%u) is out of range 0 <= value <= %u",
2615                                        tb->c_neg,
2616                                        RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
2617                if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
2618                        rte_bbdev_log(ERR,
2619                                        "c (%u) is out of range 1 <= value <= %u",
2620                                        tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
2621                        return -1;
2622                }
2623                if (tb->cab > tb->c) {
2624                        rte_bbdev_log(ERR,
2625                                        "cab (%u) is greater than c (%u)",
2626                                        tb->cab, tb->c);
2627                        return -1;
2628                }
2629                if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
2630                                (tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE
2631                                                || (tb->ea % 2))
2632                                && tb->cab > 0) {
2633                        rte_bbdev_log(ERR,
2634                                        "ea (%u) is less than %u or it is not even",
2635                                        tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2636                        return -1;
2637                }
2638                if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
2639                                (tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE
2640                                                || (tb->eb % 2))
2641                                && tb->c > tb->cab) {
2642                        rte_bbdev_log(ERR,
2643                                        "eb (%u) is less than %u or it is not even",
2644                                        tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2645                }
2646        } else {
2647                cb = &turbo_dec->cb_params;
2648                if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
2649                                || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
2650                        rte_bbdev_log(ERR,
2651                                        "k (%u) is out of range %u <= value <= %u",
2652                                        cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
2653                                        RTE_BBDEV_TURBO_MAX_CB_SIZE);
2654                        return -1;
2655                }
2656                if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) &&
2657                                (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE ||
2658                                (cb->e % 2))) {
2659                        rte_bbdev_log(ERR,
2660                                        "e (%u) is less than %u or it is not even",
2661                                        cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
2662                        return -1;
2663                }
2664        }
2665
2666        return 0;
2667}
2668#endif
2669
2670/** Enqueue one decode operations for ACC100 device in CB mode */
2671static inline int
2672enqueue_dec_one_op_cb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
2673                uint16_t total_enqueued_cbs)
2674{
2675        union acc100_dma_desc *desc = NULL;
2676        int ret;
2677        uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
2678                h_out_length, mbuf_total_left, seg_total_left;
2679        struct rte_mbuf *input, *h_output_head, *h_output,
2680                *s_output_head, *s_output;
2681
2682#ifdef RTE_LIBRTE_BBDEV_DEBUG
2683        /* Validate op structure */
2684        if (validate_dec_op(op) == -1) {
2685                rte_bbdev_log(ERR, "Turbo decoder validation failed");
2686                return -EINVAL;
2687        }
2688#endif
2689
2690        uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2691                        & q->sw_ring_wrap_mask);
2692        desc = q->ring_addr + desc_idx;
2693        acc100_fcw_td_fill(op, &desc->req.fcw_td);
2694
2695        input = op->turbo_dec.input.data;
2696        h_output_head = h_output = op->turbo_dec.hard_output.data;
2697        s_output_head = s_output = op->turbo_dec.soft_output.data;
2698        in_offset = op->turbo_dec.input.offset;
2699        h_out_offset = op->turbo_dec.hard_output.offset;
2700        s_out_offset = op->turbo_dec.soft_output.offset;
2701        h_out_length = s_out_length = 0;
2702        mbuf_total_left = op->turbo_dec.input.length;
2703        seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
2704
2705#ifdef RTE_LIBRTE_BBDEV_DEBUG
2706        if (unlikely(input == NULL)) {
2707                rte_bbdev_log(ERR, "Invalid mbuf pointer");
2708                return -EFAULT;
2709        }
2710#endif
2711
2712        /* Set up DMA descriptor */
2713        desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
2714                        & q->sw_ring_wrap_mask);
2715
2716        ret = acc100_dma_desc_td_fill(op, &desc->req, &input, h_output,
2717                        s_output, &in_offset, &h_out_offset, &s_out_offset,
2718                        &h_out_length, &s_out_length, &mbuf_total_left,
2719                        &seg_total_left, 0);
2720
2721        if (unlikely(ret < 0))
2722                return ret;
2723
2724        /* Hard output */
2725        mbuf_append(h_output_head, h_output, h_out_length);
2726
2727        /* Soft output */
2728        if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT))
2729                mbuf_append(s_output_head, s_output, s_out_length);
2730
2731#ifdef RTE_LIBRTE_BBDEV_DEBUG
2732        rte_memdump(stderr, "FCW", &desc->req.fcw_td,
2733                        sizeof(desc->req.fcw_td) - 8);
2734        rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2735        if (check_mbuf_total_left(mbuf_total_left) != 0)
2736                return -EINVAL;
2737#endif
2738
2739        /* One CB (one op) was successfully prepared to enqueue */
2740        return 1;
2741}
2742
2743static inline int
2744harq_loopback(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
2745                uint16_t total_enqueued_cbs) {
2746        struct acc100_fcw_ld *fcw;
2747        union acc100_dma_desc *desc;
2748        int next_triplet = 1;
2749        struct rte_mbuf *hq_output_head, *hq_output;
2750        uint16_t harq_dma_length_in, harq_dma_length_out;
2751        uint16_t harq_in_length = op->ldpc_dec.harq_combined_input.length;
2752        if (harq_in_length == 0) {
2753                rte_bbdev_log(ERR, "Loopback of invalid null size\n");
2754                return -EINVAL;
2755        }
2756
2757        int h_comp = check_bit(op->ldpc_dec.op_flags,
2758                        RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION
2759                        ) ? 1 : 0;
2760        if (h_comp == 1) {
2761                harq_in_length = harq_in_length * 8 / 6;
2762                harq_in_length = RTE_ALIGN(harq_in_length, 64);
2763                harq_dma_length_in = harq_in_length * 6 / 8;
2764        } else {
2765                harq_in_length = RTE_ALIGN(harq_in_length, 64);
2766                harq_dma_length_in = harq_in_length;
2767        }
2768        harq_dma_length_out = harq_dma_length_in;
2769
2770        bool ddr_mem_in = check_bit(op->ldpc_dec.op_flags,
2771                        RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE);
2772        union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
2773        uint16_t harq_index = (ddr_mem_in ?
2774                        op->ldpc_dec.harq_combined_input.offset :
2775                        op->ldpc_dec.harq_combined_output.offset)
2776                        / ACC100_HARQ_OFFSET;
2777
2778        uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2779                        & q->sw_ring_wrap_mask);
2780        desc = q->ring_addr + desc_idx;
2781        fcw = &desc->req.fcw_ld;
2782        /* Set the FCW from loopback into DDR */
2783        memset(fcw, 0, sizeof(struct acc100_fcw_ld));
2784        fcw->FCWversion = ACC100_FCW_VER;
2785        fcw->qm = 2;
2786        fcw->Zc = 384;
2787        if (harq_in_length < 16 * ACC100_N_ZC_1)
2788                fcw->Zc = 16;
2789        fcw->ncb = fcw->Zc * ACC100_N_ZC_1;
2790        fcw->rm_e = 2;
2791        fcw->hcin_en = 1;
2792        fcw->hcout_en = 1;
2793
2794        rte_bbdev_log(DEBUG, "Loopback IN %d Index %d offset %d length %d %d\n",
2795                        ddr_mem_in, harq_index,
2796                        harq_layout[harq_index].offset, harq_in_length,
2797                        harq_dma_length_in);
2798
2799        if (ddr_mem_in && (harq_layout[harq_index].offset > 0)) {
2800                fcw->hcin_size0 = harq_layout[harq_index].size0;
2801                fcw->hcin_offset = harq_layout[harq_index].offset;
2802                fcw->hcin_size1 = harq_in_length - fcw->hcin_offset;
2803                harq_dma_length_in = (fcw->hcin_size0 + fcw->hcin_size1);
2804                if (h_comp == 1)
2805                        harq_dma_length_in = harq_dma_length_in * 6 / 8;
2806        } else {
2807                fcw->hcin_size0 = harq_in_length;
2808        }
2809        harq_layout[harq_index].val = 0;
2810        rte_bbdev_log(DEBUG, "Loopback FCW Config %d %d %d\n",
2811                        fcw->hcin_size0, fcw->hcin_offset, fcw->hcin_size1);
2812        fcw->hcout_size0 = harq_in_length;
2813        fcw->hcin_decomp_mode = h_comp;
2814        fcw->hcout_comp_mode = h_comp;
2815        fcw->gain_i = 1;
2816        fcw->gain_h = 1;
2817
2818        /* Set the prefix of descriptor. This could be done at polling */
2819        acc100_header_init(&desc->req);
2820
2821        /* Null LLR input for Decoder */
2822        desc->req.data_ptrs[next_triplet].address =
2823                        q->lb_in_addr_iova;
2824        desc->req.data_ptrs[next_triplet].blen = 2;
2825        desc->req.data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN;
2826        desc->req.data_ptrs[next_triplet].last = 0;
2827        desc->req.data_ptrs[next_triplet].dma_ext = 0;
2828        next_triplet++;
2829
2830        /* HARQ Combine input from either Memory interface */
2831        if (!ddr_mem_in) {
2832                next_triplet = acc100_dma_fill_blk_type_out(&desc->req,
2833                                op->ldpc_dec.harq_combined_input.data,
2834                                op->ldpc_dec.harq_combined_input.offset,
2835                                harq_dma_length_in,
2836                                next_triplet,
2837                                ACC100_DMA_BLKID_IN_HARQ);
2838        } else {
2839                desc->req.data_ptrs[next_triplet].address =
2840                                op->ldpc_dec.harq_combined_input.offset;
2841                desc->req.data_ptrs[next_triplet].blen =
2842                                harq_dma_length_in;
2843                desc->req.data_ptrs[next_triplet].blkid =
2844                                ACC100_DMA_BLKID_IN_HARQ;
2845                desc->req.data_ptrs[next_triplet].dma_ext = 1;
2846                next_triplet++;
2847        }
2848        desc->req.data_ptrs[next_triplet - 1].last = 1;
2849        desc->req.m2dlen = next_triplet;
2850
2851        /* Dropped decoder hard output */
2852        desc->req.data_ptrs[next_triplet].address =
2853                        q->lb_out_addr_iova;
2854        desc->req.data_ptrs[next_triplet].blen = ACC100_BYTES_IN_WORD;
2855        desc->req.data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_OUT_HARD;
2856        desc->req.data_ptrs[next_triplet].last = 0;
2857        desc->req.data_ptrs[next_triplet].dma_ext = 0;
2858        next_triplet++;
2859
2860        /* HARQ Combine output to either Memory interface */
2861        if (check_bit(op->ldpc_dec.op_flags,
2862                        RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE
2863                        )) {
2864                desc->req.data_ptrs[next_triplet].address =
2865                                op->ldpc_dec.harq_combined_output.offset;
2866                desc->req.data_ptrs[next_triplet].blen =
2867                                harq_dma_length_out;
2868                desc->req.data_ptrs[next_triplet].blkid =
2869                                ACC100_DMA_BLKID_OUT_HARQ;
2870                desc->req.data_ptrs[next_triplet].dma_ext = 1;
2871                next_triplet++;
2872        } else {
2873                hq_output_head = op->ldpc_dec.harq_combined_output.data;
2874                hq_output = op->ldpc_dec.harq_combined_output.data;
2875                next_triplet = acc100_dma_fill_blk_type_out(
2876                                &desc->req,
2877                                op->ldpc_dec.harq_combined_output.data,
2878                                op->ldpc_dec.harq_combined_output.offset,
2879                                harq_dma_length_out,
2880                                next_triplet,
2881                                ACC100_DMA_BLKID_OUT_HARQ);
2882                /* HARQ output */
2883                mbuf_append(hq_output_head, hq_output, harq_dma_length_out);
2884                op->ldpc_dec.harq_combined_output.length =
2885                                harq_dma_length_out;
2886        }
2887        desc->req.data_ptrs[next_triplet - 1].last = 1;
2888        desc->req.d2mlen = next_triplet - desc->req.m2dlen;
2889        desc->req.op_addr = op;
2890
2891        /* One CB (one op) was successfully prepared to enqueue */
2892        return 1;
2893}
2894
2895/** Enqueue one decode operations for ACC100 device in CB mode */
2896static inline int
2897enqueue_ldpc_dec_one_op_cb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
2898                uint16_t total_enqueued_cbs, bool same_op)
2899{
2900        int ret;
2901        if (unlikely(check_bit(op->ldpc_dec.op_flags,
2902                        RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK))) {
2903                ret = harq_loopback(q, op, total_enqueued_cbs);
2904                return ret;
2905        }
2906
2907#ifdef RTE_LIBRTE_BBDEV_DEBUG
2908        /* Validate op structure */
2909        if (validate_ldpc_dec_op(op) == -1) {
2910                rte_bbdev_log(ERR, "LDPC decoder validation failed");
2911                return -EINVAL;
2912        }
2913#endif
2914        union acc100_dma_desc *desc;
2915        uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
2916                        & q->sw_ring_wrap_mask);
2917        desc = q->ring_addr + desc_idx;
2918        struct rte_mbuf *input, *h_output_head, *h_output;
2919        uint32_t in_offset, h_out_offset, mbuf_total_left, h_out_length = 0;
2920        input = op->ldpc_dec.input.data;
2921        h_output_head = h_output = op->ldpc_dec.hard_output.data;
2922        in_offset = op->ldpc_dec.input.offset;
2923        h_out_offset = op->ldpc_dec.hard_output.offset;
2924        mbuf_total_left = op->ldpc_dec.input.length;
2925#ifdef RTE_LIBRTE_BBDEV_DEBUG
2926        if (unlikely(input == NULL)) {
2927                rte_bbdev_log(ERR, "Invalid mbuf pointer");
2928                return -EFAULT;
2929        }
2930#endif
2931        union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
2932
2933        if (same_op) {
2934                union acc100_dma_desc *prev_desc;
2935                desc_idx = ((q->sw_ring_head + total_enqueued_cbs - 1)
2936                                & q->sw_ring_wrap_mask);
2937                prev_desc = q->ring_addr + desc_idx;
2938                uint8_t *prev_ptr = (uint8_t *) prev_desc;
2939                uint8_t *new_ptr = (uint8_t *) desc;
2940                /* Copy first 4 words and BDESCs */
2941                rte_memcpy(new_ptr, prev_ptr, ACC100_5GUL_SIZE_0);
2942                rte_memcpy(new_ptr + ACC100_5GUL_OFFSET_0,
2943                                prev_ptr + ACC100_5GUL_OFFSET_0,
2944                                ACC100_5GUL_SIZE_1);
2945                desc->req.op_addr = prev_desc->req.op_addr;
2946                /* Copy FCW */
2947                rte_memcpy(new_ptr + ACC100_DESC_FCW_OFFSET,
2948                                prev_ptr + ACC100_DESC_FCW_OFFSET,
2949                                ACC100_FCW_LD_BLEN);
2950                acc100_dma_desc_ld_update(op, &desc->req, input, h_output,
2951                                &in_offset, &h_out_offset,
2952                                &h_out_length, harq_layout);
2953        } else {
2954                struct acc100_fcw_ld *fcw;
2955                uint32_t seg_total_left;
2956                fcw = &desc->req.fcw_ld;
2957                acc100_fcw_ld_fill(op, fcw, harq_layout);
2958
2959                /* Special handling when overusing mbuf */
2960                if (fcw->rm_e < ACC100_MAX_E_MBUF)
2961                        seg_total_left = rte_pktmbuf_data_len(input)
2962                                        - in_offset;
2963                else
2964                        seg_total_left = fcw->rm_e;
2965
2966                ret = acc100_dma_desc_ld_fill(op, &desc->req, &input, h_output,
2967                                &in_offset, &h_out_offset,
2968                                &h_out_length, &mbuf_total_left,
2969                                &seg_total_left, fcw);
2970                if (unlikely(ret < 0))
2971                        return ret;
2972        }
2973
2974        /* Hard output */
2975        mbuf_append(h_output_head, h_output, h_out_length);
2976#ifndef ACC100_EXT_MEM
2977        if (op->ldpc_dec.harq_combined_output.length > 0) {
2978                /* Push the HARQ output into host memory */
2979                struct rte_mbuf *hq_output_head, *hq_output;
2980                hq_output_head = op->ldpc_dec.harq_combined_output.data;
2981                hq_output = op->ldpc_dec.harq_combined_output.data;
2982                mbuf_append(hq_output_head, hq_output,
2983                                op->ldpc_dec.harq_combined_output.length);
2984        }
2985#endif
2986
2987#ifdef RTE_LIBRTE_BBDEV_DEBUG
2988        rte_memdump(stderr, "FCW", &desc->req.fcw_ld,
2989                        sizeof(desc->req.fcw_ld) - 8);
2990        rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
2991#endif
2992
2993        /* One CB (one op) was successfully prepared to enqueue */
2994        return 1;
2995}
2996
2997
2998/* Enqueue one decode operations for ACC100 device in TB mode */
2999static inline int
3000enqueue_ldpc_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
3001                uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
3002{
3003        union acc100_dma_desc *desc = NULL;
3004        int ret;
3005        uint8_t r, c;
3006        uint32_t in_offset, h_out_offset,
3007                h_out_length, mbuf_total_left, seg_total_left;
3008        struct rte_mbuf *input, *h_output_head, *h_output;
3009        uint16_t current_enqueued_cbs = 0;
3010
3011#ifdef RTE_LIBRTE_BBDEV_DEBUG
3012        /* Validate op structure */
3013        if (validate_ldpc_dec_op(op) == -1) {
3014                rte_bbdev_log(ERR, "LDPC decoder validation failed");
3015                return -EINVAL;
3016        }
3017#endif
3018
3019        uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
3020                        & q->sw_ring_wrap_mask);
3021        desc = q->ring_addr + desc_idx;
3022        uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
3023        union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
3024        acc100_fcw_ld_fill(op, &desc->req.fcw_ld, harq_layout);
3025
3026        input = op->ldpc_dec.input.data;
3027        h_output_head = h_output = op->ldpc_dec.hard_output.data;
3028        in_offset = op->ldpc_dec.input.offset;
3029        h_out_offset = op->ldpc_dec.hard_output.offset;
3030        h_out_length = 0;
3031        mbuf_total_left = op->ldpc_dec.input.length;
3032        c = op->ldpc_dec.tb_params.c;
3033        r = op->ldpc_dec.tb_params.r;
3034
3035        while (mbuf_total_left > 0 && r < c) {
3036
3037                seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
3038
3039                /* Set up DMA descriptor */
3040                desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
3041                                & q->sw_ring_wrap_mask);
3042                desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
3043                desc->req.data_ptrs[0].blen = ACC100_FCW_LD_BLEN;
3044                ret = acc100_dma_desc_ld_fill(op, &desc->req, &input,
3045                                h_output, &in_offset, &h_out_offset,
3046                                &h_out_length,
3047                                &mbuf_total_left, &seg_total_left,
3048                                &desc->req.fcw_ld);
3049
3050                if (unlikely(ret < 0))
3051                        return ret;
3052
3053                /* Hard output */
3054                mbuf_append(h_output_head, h_output, h_out_length);
3055
3056                /* Set total number of CBs in TB */
3057                desc->req.cbs_in_tb = cbs_in_tb;
3058#ifdef RTE_LIBRTE_BBDEV_DEBUG
3059                rte_memdump(stderr, "FCW", &desc->req.fcw_td,
3060                                sizeof(desc->req.fcw_td) - 8);
3061                rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
3062#endif
3063
3064                if (seg_total_left == 0) {
3065                        /* Go to the next mbuf */
3066                        input = input->next;
3067                        in_offset = 0;
3068                        h_output = h_output->next;
3069                        h_out_offset = 0;
3070                }
3071                total_enqueued_cbs++;
3072                current_enqueued_cbs++;
3073                r++;
3074        }
3075
3076#ifdef RTE_LIBRTE_BBDEV_DEBUG
3077        if (check_mbuf_total_left(mbuf_total_left) != 0)
3078                return -EINVAL;
3079#endif
3080        /* Set SDone on last CB descriptor for TB mode */
3081        desc->req.sdone_enable = 1;
3082        desc->req.irq_enable = q->irq_enable;
3083
3084        return current_enqueued_cbs;
3085}
3086
3087/* Enqueue one decode operations for ACC100 device in TB mode */
3088static inline int
3089enqueue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
3090                uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
3091{
3092        union acc100_dma_desc *desc = NULL;
3093        int ret;
3094        uint8_t r, c;
3095        uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
3096                h_out_length, mbuf_total_left, seg_total_left;
3097        struct rte_mbuf *input, *h_output_head, *h_output,
3098                *s_output_head, *s_output;
3099        uint16_t current_enqueued_cbs = 0;
3100
3101#ifdef RTE_LIBRTE_BBDEV_DEBUG
3102        /* Validate op structure */
3103        if (validate_dec_op(op) == -1) {
3104                rte_bbdev_log(ERR, "Turbo decoder validation failed");
3105                return -EINVAL;
3106        }
3107#endif
3108
3109        uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
3110                        & q->sw_ring_wrap_mask);
3111        desc = q->ring_addr + desc_idx;
3112        uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
3113        acc100_fcw_td_fill(op, &desc->req.fcw_td);
3114
3115        input = op->turbo_dec.input.data;
3116        h_output_head = h_output = op->turbo_dec.hard_output.data;
3117        s_output_head = s_output = op->turbo_dec.soft_output.data;
3118        in_offset = op->turbo_dec.input.offset;
3119        h_out_offset = op->turbo_dec.hard_output.offset;
3120        s_out_offset = op->turbo_dec.soft_output.offset;
3121        h_out_length = s_out_length = 0;
3122        mbuf_total_left = op->turbo_dec.input.length;
3123        c = op->turbo_dec.tb_params.c;
3124        r = op->turbo_dec.tb_params.r;
3125
3126        while (mbuf_total_left > 0 && r < c) {
3127
3128                seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
3129
3130                /* Set up DMA descriptor */
3131                desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
3132                                & q->sw_ring_wrap_mask);
3133                desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
3134                desc->req.data_ptrs[0].blen = ACC100_FCW_TD_BLEN;
3135                ret = acc100_dma_desc_td_fill(op, &desc->req, &input,
3136                                h_output, s_output, &in_offset, &h_out_offset,
3137                                &s_out_offset, &h_out_length, &s_out_length,
3138                                &mbuf_total_left, &seg_total_left, r);
3139
3140                if (unlikely(ret < 0))
3141                        return ret;
3142
3143                /* Hard output */
3144                mbuf_append(h_output_head, h_output, h_out_length);
3145
3146                /* Soft output */
3147                if (check_bit(op->turbo_dec.op_flags,
3148                                RTE_BBDEV_TURBO_SOFT_OUTPUT))
3149                        mbuf_append(s_output_head, s_output, s_out_length);
3150
3151                /* Set total number of CBs in TB */
3152                desc->req.cbs_in_tb = cbs_in_tb;
3153#ifdef RTE_LIBRTE_BBDEV_DEBUG
3154                rte_memdump(stderr, "FCW", &desc->req.fcw_td,
3155                                sizeof(desc->req.fcw_td) - 8);
3156                rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
3157#endif
3158
3159                if (seg_total_left == 0) {
3160                        /* Go to the next mbuf */
3161                        input = input->next;
3162                        in_offset = 0;
3163                        h_output = h_output->next;
3164                        h_out_offset = 0;
3165
3166                        if (check_bit(op->turbo_dec.op_flags,
3167                                        RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
3168                                s_output = s_output->next;
3169                                s_out_offset = 0;
3170                        }
3171                }
3172
3173                total_enqueued_cbs++;
3174                current_enqueued_cbs++;
3175                r++;
3176        }
3177
3178#ifdef RTE_LIBRTE_BBDEV_DEBUG
3179        if (check_mbuf_total_left(mbuf_total_left) != 0)
3180                return -EINVAL;
3181#endif
3182        /* Set SDone on last CB descriptor for TB mode */
3183        desc->req.sdone_enable = 1;
3184        desc->req.irq_enable = q->irq_enable;
3185
3186        return current_enqueued_cbs;
3187}
3188
3189/* Calculates number of CBs in processed encoder TB based on 'r' and input
3190 * length.
3191 */
3192static inline uint8_t
3193get_num_cbs_in_tb_enc(struct rte_bbdev_op_turbo_enc *turbo_enc)
3194{
3195        uint8_t c, c_neg, r, crc24_bits = 0;
3196        uint16_t k, k_neg, k_pos;
3197        uint8_t cbs_in_tb = 0;
3198        int32_t length;
3199
3200        length = turbo_enc->input.length;
3201        r = turbo_enc->tb_params.r;
3202        c = turbo_enc->tb_params.c;
3203        c_neg = turbo_enc->tb_params.c_neg;
3204        k_neg = turbo_enc->tb_params.k_neg;
3205        k_pos = turbo_enc->tb_params.k_pos;
3206        crc24_bits = 0;
3207        if (check_bit(turbo_enc->op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
3208                crc24_bits = 24;
3209        while (length > 0 && r < c) {
3210                k = (r < c_neg) ? k_neg : k_pos;
3211                length -= (k - crc24_bits) >> 3;
3212                r++;
3213                cbs_in_tb++;
3214        }
3215
3216        return cbs_in_tb;
3217}
3218
3219/* Calculates number of CBs in processed decoder TB based on 'r' and input
3220 * length.
3221 */
3222static inline uint16_t
3223get_num_cbs_in_tb_dec(struct rte_bbdev_op_turbo_dec *turbo_dec)
3224{
3225        uint8_t c, c_neg, r = 0;
3226        uint16_t kw, k, k_neg, k_pos, cbs_in_tb = 0;
3227        int32_t length;
3228
3229        length = turbo_dec->input.length;
3230        r = turbo_dec->tb_params.r;
3231        c = turbo_dec->tb_params.c;
3232        c_neg = turbo_dec->tb_params.c_neg;
3233        k_neg = turbo_dec->tb_params.k_neg;
3234        k_pos = turbo_dec->tb_params.k_pos;
3235        while (length > 0 && r < c) {
3236                k = (r < c_neg) ? k_neg : k_pos;
3237                kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
3238                length -= kw;
3239                r++;
3240                cbs_in_tb++;
3241        }
3242
3243        return cbs_in_tb;
3244}
3245
3246/* Calculates number of CBs in processed decoder TB based on 'r' and input
3247 * length.
3248 */
3249static inline uint16_t
3250get_num_cbs_in_tb_ldpc_dec(struct rte_bbdev_op_ldpc_dec *ldpc_dec)
3251{
3252        uint16_t r, cbs_in_tb = 0;
3253        int32_t length = ldpc_dec->input.length;
3254        r = ldpc_dec->tb_params.r;
3255        while (length > 0 && r < ldpc_dec->tb_params.c) {
3256                length -=  (r < ldpc_dec->tb_params.cab) ?
3257                                ldpc_dec->tb_params.ea :
3258                                ldpc_dec->tb_params.eb;
3259                r++;
3260                cbs_in_tb++;
3261        }
3262        return cbs_in_tb;
3263}
3264
3265/* Enqueue encode operations for ACC100 device in CB mode. */
3266static uint16_t
3267acc100_enqueue_enc_cb(struct rte_bbdev_queue_data *q_data,
3268                struct rte_bbdev_enc_op **ops, uint16_t num)
3269{
3270        struct acc100_queue *q = q_data->queue_private;
3271        int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3272        uint16_t i;
3273        union acc100_dma_desc *desc;
3274        int ret;
3275
3276        for (i = 0; i < num; ++i) {
3277                /* Check if there are available space for further processing */
3278                if (unlikely(avail - 1 < 0))
3279                        break;
3280                avail -= 1;
3281
3282                ret = enqueue_enc_one_op_cb(q, ops[i], i);
3283                if (ret < 0)
3284                        break;
3285        }
3286
3287        if (unlikely(i == 0))
3288                return 0; /* Nothing to enqueue */
3289
3290        /* Set SDone in last CB in enqueued ops for CB mode*/
3291        desc = q->ring_addr + ((q->sw_ring_head + i - 1)
3292                        & q->sw_ring_wrap_mask);
3293        desc->req.sdone_enable = 1;
3294        desc->req.irq_enable = q->irq_enable;
3295
3296        acc100_dma_enqueue(q, i, &q_data->queue_stats);
3297
3298        /* Update stats */
3299        q_data->queue_stats.enqueued_count += i;
3300        q_data->queue_stats.enqueue_err_count += num - i;
3301        return i;
3302}
3303
3304/* Check we can mux encode operations with common FCW */
3305static inline bool
3306check_mux(struct rte_bbdev_enc_op **ops, uint16_t num) {
3307        uint16_t i;
3308        if (num <= 1)
3309                return false;
3310        for (i = 1; i < num; ++i) {
3311                /* Only mux compatible code blocks */
3312                if (memcmp((uint8_t *)(&ops[i]->ldpc_enc) + ACC100_ENC_OFFSET,
3313                                (uint8_t *)(&ops[0]->ldpc_enc) +
3314                                ACC100_ENC_OFFSET,
3315                                ACC100_CMP_ENC_SIZE) != 0)
3316                        return false;
3317        }
3318        return true;
3319}
3320
3321/** Enqueue encode operations for ACC100 device in CB mode. */
3322static inline uint16_t
3323acc100_enqueue_ldpc_enc_cb(struct rte_bbdev_queue_data *q_data,
3324                struct rte_bbdev_enc_op **ops, uint16_t num)
3325{
3326        struct acc100_queue *q = q_data->queue_private;
3327        int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3328        uint16_t i = 0;
3329        union acc100_dma_desc *desc;
3330        int ret, desc_idx = 0;
3331        int16_t enq, left = num;
3332
3333        while (left > 0) {
3334                if (unlikely(avail < 1))
3335                        break;
3336                avail--;
3337                enq = RTE_MIN(left, ACC100_MUX_5GDL_DESC);
3338                if (check_mux(&ops[i], enq)) {
3339                        ret = enqueue_ldpc_enc_n_op_cb(q, &ops[i],
3340                                        desc_idx, enq);
3341                        if (ret < 0)
3342                                break;
3343                        i += enq;
3344                } else {
3345                        ret = enqueue_ldpc_enc_one_op_cb(q, ops[i], desc_idx);
3346                        if (ret < 0)
3347                                break;
3348                        i++;
3349                }
3350                desc_idx++;
3351                left = num - i;
3352        }
3353
3354        if (unlikely(i == 0))
3355                return 0; /* Nothing to enqueue */
3356
3357        /* Set SDone in last CB in enqueued ops for CB mode*/
3358        desc = q->ring_addr + ((q->sw_ring_head + desc_idx - 1)
3359                        & q->sw_ring_wrap_mask);
3360        desc->req.sdone_enable = 1;
3361        desc->req.irq_enable = q->irq_enable;
3362
3363        acc100_dma_enqueue(q, desc_idx, &q_data->queue_stats);
3364
3365        /* Update stats */
3366        q_data->queue_stats.enqueued_count += i;
3367        q_data->queue_stats.enqueue_err_count += num - i;
3368
3369        return i;
3370}
3371
3372/* Enqueue encode operations for ACC100 device in TB mode. */
3373static uint16_t
3374acc100_enqueue_enc_tb(struct rte_bbdev_queue_data *q_data,
3375                struct rte_bbdev_enc_op **ops, uint16_t num)
3376{
3377        struct acc100_queue *q = q_data->queue_private;
3378        int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3379        uint16_t i, enqueued_cbs = 0;
3380        uint8_t cbs_in_tb;
3381        int ret;
3382
3383        for (i = 0; i < num; ++i) {
3384                cbs_in_tb = get_num_cbs_in_tb_enc(&ops[i]->turbo_enc);
3385                /* Check if there are available space for further processing */
3386                if (unlikely(avail - cbs_in_tb < 0))
3387                        break;
3388                avail -= cbs_in_tb;
3389
3390                ret = enqueue_enc_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
3391                if (ret < 0)
3392                        break;
3393                enqueued_cbs += ret;
3394        }
3395        if (unlikely(enqueued_cbs == 0))
3396                return 0; /* Nothing to enqueue */
3397
3398        acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
3399
3400        /* Update stats */
3401        q_data->queue_stats.enqueued_count += i;
3402        q_data->queue_stats.enqueue_err_count += num - i;
3403
3404        return i;
3405}
3406
3407/* Enqueue encode operations for ACC100 device. */
3408static uint16_t
3409acc100_enqueue_enc(struct rte_bbdev_queue_data *q_data,
3410                struct rte_bbdev_enc_op **ops, uint16_t num)
3411{
3412        if (unlikely(num == 0))
3413                return 0;
3414        if (ops[0]->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3415                return acc100_enqueue_enc_tb(q_data, ops, num);
3416        else
3417                return acc100_enqueue_enc_cb(q_data, ops, num);
3418}
3419
3420/* Enqueue encode operations for ACC100 device. */
3421static uint16_t
3422acc100_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
3423                struct rte_bbdev_enc_op **ops, uint16_t num)
3424{
3425        if (unlikely(num == 0))
3426                return 0;
3427        if (ops[0]->ldpc_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3428                return acc100_enqueue_enc_tb(q_data, ops, num);
3429        else
3430                return acc100_enqueue_ldpc_enc_cb(q_data, ops, num);
3431}
3432
3433
3434/* Enqueue decode operations for ACC100 device in CB mode */
3435static uint16_t
3436acc100_enqueue_dec_cb(struct rte_bbdev_queue_data *q_data,
3437                struct rte_bbdev_dec_op **ops, uint16_t num)
3438{
3439        struct acc100_queue *q = q_data->queue_private;
3440        int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3441        uint16_t i;
3442        union acc100_dma_desc *desc;
3443        int ret;
3444
3445        for (i = 0; i < num; ++i) {
3446                /* Check if there are available space for further processing */
3447                if (unlikely(avail - 1 < 0))
3448                        break;
3449                avail -= 1;
3450
3451                ret = enqueue_dec_one_op_cb(q, ops[i], i);
3452                if (ret < 0)
3453                        break;
3454        }
3455
3456        if (unlikely(i == 0))
3457                return 0; /* Nothing to enqueue */
3458
3459        /* Set SDone in last CB in enqueued ops for CB mode*/
3460        desc = q->ring_addr + ((q->sw_ring_head + i - 1)
3461                        & q->sw_ring_wrap_mask);
3462        desc->req.sdone_enable = 1;
3463        desc->req.irq_enable = q->irq_enable;
3464
3465        acc100_dma_enqueue(q, i, &q_data->queue_stats);
3466
3467        /* Update stats */
3468        q_data->queue_stats.enqueued_count += i;
3469        q_data->queue_stats.enqueue_err_count += num - i;
3470
3471        return i;
3472}
3473
3474/* Check we can mux encode operations with common FCW */
3475static inline bool
3476cmp_ldpc_dec_op(struct rte_bbdev_dec_op **ops) {
3477        /* Only mux compatible code blocks */
3478        if (memcmp((uint8_t *)(&ops[0]->ldpc_dec) + ACC100_DEC_OFFSET,
3479                        (uint8_t *)(&ops[1]->ldpc_dec) +
3480                        ACC100_DEC_OFFSET, ACC100_CMP_DEC_SIZE) != 0) {
3481                return false;
3482        } else
3483                return true;
3484}
3485
3486
3487/* Enqueue decode operations for ACC100 device in TB mode */
3488static uint16_t
3489acc100_enqueue_ldpc_dec_tb(struct rte_bbdev_queue_data *q_data,
3490                struct rte_bbdev_dec_op **ops, uint16_t num)
3491{
3492        struct acc100_queue *q = q_data->queue_private;
3493        int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3494        uint16_t i, enqueued_cbs = 0;
3495        uint8_t cbs_in_tb;
3496        int ret;
3497
3498        for (i = 0; i < num; ++i) {
3499                cbs_in_tb = get_num_cbs_in_tb_ldpc_dec(&ops[i]->ldpc_dec);
3500                /* Check if there are available space for further processing */
3501                if (unlikely(avail - cbs_in_tb < 0))
3502                        break;
3503                avail -= cbs_in_tb;
3504
3505                ret = enqueue_ldpc_dec_one_op_tb(q, ops[i],
3506                                enqueued_cbs, cbs_in_tb);
3507                if (ret < 0)
3508                        break;
3509                enqueued_cbs += ret;
3510        }
3511
3512        acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
3513
3514        /* Update stats */
3515        q_data->queue_stats.enqueued_count += i;
3516        q_data->queue_stats.enqueue_err_count += num - i;
3517        return i;
3518}
3519
3520/* Enqueue decode operations for ACC100 device in CB mode */
3521static uint16_t
3522acc100_enqueue_ldpc_dec_cb(struct rte_bbdev_queue_data *q_data,
3523                struct rte_bbdev_dec_op **ops, uint16_t num)
3524{
3525        struct acc100_queue *q = q_data->queue_private;
3526        int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3527        uint16_t i;
3528        union acc100_dma_desc *desc;
3529        int ret;
3530        bool same_op = false;
3531        for (i = 0; i < num; ++i) {
3532                /* Check if there are available space for further processing */
3533                if (unlikely(avail < 1))
3534                        break;
3535                avail -= 1;
3536
3537                if (i > 0)
3538                        same_op = cmp_ldpc_dec_op(&ops[i-1]);
3539                rte_bbdev_log(INFO, "Op %d %d %d %d %d %d %d %d %d %d %d %d\n",
3540                        i, ops[i]->ldpc_dec.op_flags, ops[i]->ldpc_dec.rv_index,
3541                        ops[i]->ldpc_dec.iter_max, ops[i]->ldpc_dec.iter_count,
3542                        ops[i]->ldpc_dec.basegraph, ops[i]->ldpc_dec.z_c,
3543                        ops[i]->ldpc_dec.n_cb, ops[i]->ldpc_dec.q_m,
3544                        ops[i]->ldpc_dec.n_filler, ops[i]->ldpc_dec.cb_params.e,
3545                        same_op);
3546                ret = enqueue_ldpc_dec_one_op_cb(q, ops[i], i, same_op);
3547                if (ret < 0)
3548                        break;
3549        }
3550
3551        if (unlikely(i == 0))
3552                return 0; /* Nothing to enqueue */
3553
3554        /* Set SDone in last CB in enqueued ops for CB mode*/
3555        desc = q->ring_addr + ((q->sw_ring_head + i - 1)
3556                        & q->sw_ring_wrap_mask);
3557
3558        desc->req.sdone_enable = 1;
3559        desc->req.irq_enable = q->irq_enable;
3560
3561        acc100_dma_enqueue(q, i, &q_data->queue_stats);
3562
3563        /* Update stats */
3564        q_data->queue_stats.enqueued_count += i;
3565        q_data->queue_stats.enqueue_err_count += num - i;
3566        return i;
3567}
3568
3569
3570/* Enqueue decode operations for ACC100 device in TB mode */
3571static uint16_t
3572acc100_enqueue_dec_tb(struct rte_bbdev_queue_data *q_data,
3573                struct rte_bbdev_dec_op **ops, uint16_t num)
3574{
3575        struct acc100_queue *q = q_data->queue_private;
3576        int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
3577        uint16_t i, enqueued_cbs = 0;
3578        uint8_t cbs_in_tb;
3579        int ret;
3580
3581        for (i = 0; i < num; ++i) {
3582                cbs_in_tb = get_num_cbs_in_tb_dec(&ops[i]->turbo_dec);
3583                /* Check if there are available space for further processing */
3584                if (unlikely(avail - cbs_in_tb < 0))
3585                        break;
3586                avail -= cbs_in_tb;
3587
3588                ret = enqueue_dec_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
3589                if (ret < 0)
3590                        break;
3591                enqueued_cbs += ret;
3592        }
3593
3594        acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
3595
3596        /* Update stats */
3597        q_data->queue_stats.enqueued_count += i;
3598        q_data->queue_stats.enqueue_err_count += num - i;
3599
3600        return i;
3601}
3602
3603/* Enqueue decode operations for ACC100 device. */
3604static uint16_t
3605acc100_enqueue_dec(struct rte_bbdev_queue_data *q_data,
3606                struct rte_bbdev_dec_op **ops, uint16_t num)
3607{
3608        if (unlikely(num == 0))
3609                return 0;
3610        if (ops[0]->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3611                return acc100_enqueue_dec_tb(q_data, ops, num);
3612        else
3613                return acc100_enqueue_dec_cb(q_data, ops, num);
3614}
3615
3616/* Enqueue decode operations for ACC100 device. */
3617static uint16_t
3618acc100_enqueue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
3619                struct rte_bbdev_dec_op **ops, uint16_t num)
3620{
3621        struct acc100_queue *q = q_data->queue_private;
3622        int32_t aq_avail = q->aq_depth +
3623                        (q->aq_dequeued - q->aq_enqueued) / 128;
3624
3625        if (unlikely((aq_avail == 0) || (num == 0)))
3626                return 0;
3627
3628        if (ops[0]->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3629                return acc100_enqueue_ldpc_dec_tb(q_data, ops, num);
3630        else
3631                return acc100_enqueue_ldpc_dec_cb(q_data, ops, num);
3632}
3633
3634
3635/* Dequeue one encode operations from ACC100 device in CB mode */
3636static inline int
3637dequeue_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op **ref_op,
3638                uint16_t total_dequeued_cbs, uint32_t *aq_dequeued)
3639{
3640        union acc100_dma_desc *desc, atom_desc;
3641        union acc100_dma_rsp_desc rsp;
3642        struct rte_bbdev_enc_op *op;
3643        int i;
3644
3645        desc = q->ring_addr + ((q->sw_ring_tail + total_dequeued_cbs)
3646                        & q->sw_ring_wrap_mask);
3647        atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3648                        __ATOMIC_RELAXED);
3649
3650        /* Check fdone bit */
3651        if (!(atom_desc.rsp.val & ACC100_FDONE))
3652                return -1;
3653
3654        rsp.val = atom_desc.rsp.val;
3655        rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val);
3656
3657        /* Dequeue */
3658        op = desc->req.op_addr;
3659
3660        /* Clearing status, it will be set based on response */
3661        op->status = 0;
3662
3663        op->status |= ((rsp.input_err)
3664                        ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3665        op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3666        op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3667
3668        if (desc->req.last_desc_in_batch) {
3669                (*aq_dequeued)++;
3670                desc->req.last_desc_in_batch = 0;
3671        }
3672        desc->rsp.val = ACC100_DMA_DESC_TYPE;
3673        desc->rsp.add_info_0 = 0; /*Reserved bits */
3674        desc->rsp.add_info_1 = 0; /*Reserved bits */
3675
3676        /* Flag that the muxing cause loss of opaque data */
3677        op->opaque_data = (void *)-1;
3678        for (i = 0 ; i < desc->req.numCBs; i++)
3679                ref_op[i] = op;
3680
3681        /* One CB (op) was successfully dequeued */
3682        return desc->req.numCBs;
3683}
3684
3685/* Dequeue one encode operations from ACC100 device in TB mode */
3686static inline int
3687dequeue_enc_one_op_tb(struct acc100_queue *q, struct rte_bbdev_enc_op **ref_op,
3688                uint16_t total_dequeued_cbs, uint32_t *aq_dequeued)
3689{
3690        union acc100_dma_desc *desc, *last_desc, atom_desc;
3691        union acc100_dma_rsp_desc rsp;
3692        struct rte_bbdev_enc_op *op;
3693        uint8_t i = 0;
3694        uint16_t current_dequeued_cbs = 0, cbs_in_tb;
3695
3696        desc = q->ring_addr + ((q->sw_ring_tail + total_dequeued_cbs)
3697                        & q->sw_ring_wrap_mask);
3698        atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3699                        __ATOMIC_RELAXED);
3700
3701        /* Check fdone bit */
3702        if (!(atom_desc.rsp.val & ACC100_FDONE))
3703                return -1;
3704
3705        /* Get number of CBs in dequeued TB */
3706        cbs_in_tb = desc->req.cbs_in_tb;
3707        /* Get last CB */
3708        last_desc = q->ring_addr + ((q->sw_ring_tail
3709                        + total_dequeued_cbs + cbs_in_tb - 1)
3710                        & q->sw_ring_wrap_mask);
3711        /* Check if last CB in TB is ready to dequeue (and thus
3712         * the whole TB) - checking sdone bit. If not return.
3713         */
3714        atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc,
3715                        __ATOMIC_RELAXED);
3716        if (!(atom_desc.rsp.val & ACC100_SDONE))
3717                return -1;
3718
3719        /* Dequeue */
3720        op = desc->req.op_addr;
3721
3722        /* Clearing status, it will be set based on response */
3723        op->status = 0;
3724
3725        while (i < cbs_in_tb) {
3726                desc = q->ring_addr + ((q->sw_ring_tail
3727                                + total_dequeued_cbs)
3728                                & q->sw_ring_wrap_mask);
3729                atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3730                                __ATOMIC_RELAXED);
3731                rsp.val = atom_desc.rsp.val;
3732                rte_bbdev_log_debug("Resp. desc %p: %x", desc,
3733                                rsp.val);
3734
3735                op->status |= ((rsp.input_err)
3736                                ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3737                op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3738                op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3739
3740                if (desc->req.last_desc_in_batch) {
3741                        (*aq_dequeued)++;
3742                        desc->req.last_desc_in_batch = 0;
3743                }
3744                desc->rsp.val = ACC100_DMA_DESC_TYPE;
3745                desc->rsp.add_info_0 = 0;
3746                desc->rsp.add_info_1 = 0;
3747                total_dequeued_cbs++;
3748                current_dequeued_cbs++;
3749                i++;
3750        }
3751
3752        *ref_op = op;
3753
3754        return current_dequeued_cbs;
3755}
3756
3757/* Dequeue one decode operation from ACC100 device in CB mode */
3758static inline int
3759dequeue_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
3760                struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
3761                uint16_t dequeued_cbs, uint32_t *aq_dequeued)
3762{
3763        union acc100_dma_desc *desc, atom_desc;
3764        union acc100_dma_rsp_desc rsp;
3765        struct rte_bbdev_dec_op *op;
3766
3767        desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3768                        & q->sw_ring_wrap_mask);
3769        atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3770                        __ATOMIC_RELAXED);
3771
3772        /* Check fdone bit */
3773        if (!(atom_desc.rsp.val & ACC100_FDONE))
3774                return -1;
3775
3776        rsp.val = atom_desc.rsp.val;
3777        rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val);
3778
3779        /* Dequeue */
3780        op = desc->req.op_addr;
3781
3782        /* Clearing status, it will be set based on response */
3783        op->status = 0;
3784        op->status |= ((rsp.input_err)
3785                        ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3786        op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3787        op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3788        if (op->status != 0) {
3789                q_data->queue_stats.dequeue_err_count++;
3790                acc100_check_ir(q->d);
3791        }
3792
3793        /* CRC invalid if error exists */
3794        if (!op->status)
3795                op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
3796        op->turbo_dec.iter_count = (uint8_t) rsp.iter_cnt / 2;
3797        /* Check if this is the last desc in batch (Atomic Queue) */
3798        if (desc->req.last_desc_in_batch) {
3799                (*aq_dequeued)++;
3800                desc->req.last_desc_in_batch = 0;
3801        }
3802        desc->rsp.val = ACC100_DMA_DESC_TYPE;
3803        desc->rsp.add_info_0 = 0;
3804        desc->rsp.add_info_1 = 0;
3805        *ref_op = op;
3806
3807        /* One CB (op) was successfully dequeued */
3808        return 1;
3809}
3810
3811/* Dequeue one decode operations from ACC100 device in CB mode */
3812static inline int
3813dequeue_ldpc_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
3814                struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
3815                uint16_t dequeued_cbs, uint32_t *aq_dequeued)
3816{
3817        union acc100_dma_desc *desc, atom_desc;
3818        union acc100_dma_rsp_desc rsp;
3819        struct rte_bbdev_dec_op *op;
3820
3821        desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3822                        & q->sw_ring_wrap_mask);
3823        atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3824                        __ATOMIC_RELAXED);
3825
3826        /* Check fdone bit */
3827        if (!(atom_desc.rsp.val & ACC100_FDONE))
3828                return -1;
3829
3830        rsp.val = atom_desc.rsp.val;
3831
3832        /* Dequeue */
3833        op = desc->req.op_addr;
3834
3835        /* Clearing status, it will be set based on response */
3836        op->status = 0;
3837        op->status |= rsp.input_err << RTE_BBDEV_DATA_ERROR;
3838        op->status |= rsp.dma_err << RTE_BBDEV_DRV_ERROR;
3839        op->status |= rsp.fcw_err << RTE_BBDEV_DRV_ERROR;
3840        if (op->status != 0)
3841                q_data->queue_stats.dequeue_err_count++;
3842
3843        op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
3844        if (op->ldpc_dec.hard_output.length > 0 && !rsp.synd_ok)
3845                op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR;
3846        op->ldpc_dec.iter_count = (uint8_t) rsp.iter_cnt;
3847
3848        if (op->status & (1 << RTE_BBDEV_DRV_ERROR))
3849                acc100_check_ir(q->d);
3850
3851        /* Check if this is the last desc in batch (Atomic Queue) */
3852        if (desc->req.last_desc_in_batch) {
3853                (*aq_dequeued)++;
3854                desc->req.last_desc_in_batch = 0;
3855        }
3856
3857        desc->rsp.val = ACC100_DMA_DESC_TYPE;
3858        desc->rsp.add_info_0 = 0;
3859        desc->rsp.add_info_1 = 0;
3860
3861        *ref_op = op;
3862
3863        /* One CB (op) was successfully dequeued */
3864        return 1;
3865}
3866
3867/* Dequeue one decode operations from ACC100 device in TB mode. */
3868static inline int
3869dequeue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
3870                uint16_t dequeued_cbs, uint32_t *aq_dequeued)
3871{
3872        union acc100_dma_desc *desc, *last_desc, atom_desc;
3873        union acc100_dma_rsp_desc rsp;
3874        struct rte_bbdev_dec_op *op;
3875        uint8_t cbs_in_tb = 1, cb_idx = 0;
3876
3877        desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3878                        & q->sw_ring_wrap_mask);
3879        atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3880                        __ATOMIC_RELAXED);
3881
3882        /* Check fdone bit */
3883        if (!(atom_desc.rsp.val & ACC100_FDONE))
3884                return -1;
3885
3886        /* Dequeue */
3887        op = desc->req.op_addr;
3888
3889        /* Get number of CBs in dequeued TB */
3890        cbs_in_tb = desc->req.cbs_in_tb;
3891        /* Get last CB */
3892        last_desc = q->ring_addr + ((q->sw_ring_tail
3893                        + dequeued_cbs + cbs_in_tb - 1)
3894                        & q->sw_ring_wrap_mask);
3895        /* Check if last CB in TB is ready to dequeue (and thus
3896         * the whole TB) - checking sdone bit. If not return.
3897         */
3898        atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc,
3899                        __ATOMIC_RELAXED);
3900        if (!(atom_desc.rsp.val & ACC100_SDONE))
3901                return -1;
3902
3903        /* Clearing status, it will be set based on response */
3904        op->status = 0;
3905
3906        /* Read remaining CBs if exists */
3907        while (cb_idx < cbs_in_tb) {
3908                desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3909                                & q->sw_ring_wrap_mask);
3910                atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc,
3911                                __ATOMIC_RELAXED);
3912                rsp.val = atom_desc.rsp.val;
3913                rte_bbdev_log_debug("Resp. desc %p: %x", desc,
3914                                rsp.val);
3915
3916                op->status |= ((rsp.input_err)
3917                                ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
3918                op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3919                op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
3920
3921                /* CRC invalid if error exists */
3922                if (!op->status)
3923                        op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
3924                op->turbo_dec.iter_count = RTE_MAX((uint8_t) rsp.iter_cnt,
3925                                op->turbo_dec.iter_count);
3926
3927                /* Check if this is the last desc in batch (Atomic Queue) */
3928                if (desc->req.last_desc_in_batch) {
3929                        (*aq_dequeued)++;
3930                        desc->req.last_desc_in_batch = 0;
3931                }
3932                desc->rsp.val = ACC100_DMA_DESC_TYPE;
3933                desc->rsp.add_info_0 = 0;
3934                desc->rsp.add_info_1 = 0;
3935                dequeued_cbs++;
3936                cb_idx++;
3937        }
3938
3939        *ref_op = op;
3940
3941        return cb_idx;
3942}
3943
3944/* Dequeue encode operations from ACC100 device. */
3945static uint16_t
3946acc100_dequeue_enc(struct rte_bbdev_queue_data *q_data,
3947                struct rte_bbdev_enc_op **ops, uint16_t num)
3948{
3949        struct acc100_queue *q = q_data->queue_private;
3950        uint16_t dequeue_num;
3951        uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
3952        uint32_t aq_dequeued = 0;
3953        uint16_t i, dequeued_cbs = 0;
3954        struct rte_bbdev_enc_op *op;
3955        int ret;
3956
3957#ifdef RTE_LIBRTE_BBDEV_DEBUG
3958        if (unlikely(ops == NULL || q == NULL)) {
3959                rte_bbdev_log_debug("Unexpected undefined pointer");
3960                return 0;
3961        }
3962#endif
3963
3964        dequeue_num = (avail < num) ? avail : num;
3965
3966        for (i = 0; i < dequeue_num; ++i) {
3967                op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
3968                        & q->sw_ring_wrap_mask))->req.op_addr;
3969                if (op->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
3970                        ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs,
3971                                        &aq_dequeued);
3972                else
3973                        ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs,
3974                                        &aq_dequeued);
3975
3976                if (ret < 0)
3977                        break;
3978                dequeued_cbs += ret;
3979        }
3980
3981        q->aq_dequeued += aq_dequeued;
3982        q->sw_ring_tail += dequeued_cbs;
3983
3984        /* Update enqueue stats */
3985        q_data->queue_stats.dequeued_count += i;
3986
3987        return i;
3988}
3989
3990/* Dequeue LDPC encode operations from ACC100 device. */
3991static uint16_t
3992acc100_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
3993                struct rte_bbdev_enc_op **ops, uint16_t num)
3994{
3995        struct acc100_queue *q = q_data->queue_private;
3996        uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
3997        uint32_t aq_dequeued = 0;
3998        uint16_t dequeue_num, i, dequeued_cbs = 0, dequeued_descs = 0;
3999        int ret;
4000
4001#ifdef RTE_LIBRTE_BBDEV_DEBUG
4002        if (unlikely(ops == 0 && q == NULL))
4003                return 0;
4004#endif
4005
4006        dequeue_num = RTE_MIN(avail, num);
4007
4008        for (i = 0; i < dequeue_num; i++) {
4009                ret = dequeue_enc_one_op_cb(q, &ops[dequeued_cbs],
4010                                dequeued_descs, &aq_dequeued);
4011                if (ret < 0)
4012                        break;
4013                dequeued_cbs += ret;
4014                dequeued_descs++;
4015                if (dequeued_cbs >= num)
4016                        break;
4017        }
4018
4019        q->aq_dequeued += aq_dequeued;
4020        q->sw_ring_tail += dequeued_descs;
4021
4022        /* Update enqueue stats */
4023        q_data->queue_stats.dequeued_count += dequeued_cbs;
4024
4025        return dequeued_cbs;
4026}
4027
4028
4029/* Dequeue decode operations from ACC100 device. */
4030static uint16_t
4031acc100_dequeue_dec(struct rte_bbdev_queue_data *q_data,
4032                struct rte_bbdev_dec_op **ops, uint16_t num)
4033{
4034        struct acc100_queue *q = q_data->queue_private;
4035        uint16_t dequeue_num;
4036        uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
4037        uint32_t aq_dequeued = 0;
4038        uint16_t i;
4039        uint16_t dequeued_cbs = 0;
4040        struct rte_bbdev_dec_op *op;
4041        int ret;
4042
4043#ifdef RTE_LIBRTE_BBDEV_DEBUG
4044        if (unlikely(ops == 0 && q == NULL))
4045                return 0;
4046#endif
4047
4048        dequeue_num = (avail < num) ? avail : num;
4049
4050        for (i = 0; i < dequeue_num; ++i) {
4051                op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
4052                        & q->sw_ring_wrap_mask))->req.op_addr;
4053                if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
4054                        ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
4055                                        &aq_dequeued);
4056                else
4057                        ret = dequeue_dec_one_op_cb(q_data, q, &ops[i],
4058                                        dequeued_cbs, &aq_dequeued);
4059
4060                if (ret < 0)
4061                        break;
4062                dequeued_cbs += ret;
4063        }
4064
4065        q->aq_dequeued += aq_dequeued;
4066        q->sw_ring_tail += dequeued_cbs;
4067
4068        /* Update enqueue stats */
4069        q_data->queue_stats.dequeued_count += i;
4070
4071        return i;
4072}
4073
4074/* Dequeue decode operations from ACC100 device. */
4075static uint16_t
4076acc100_dequeue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
4077                struct rte_bbdev_dec_op **ops, uint16_t num)
4078{
4079        struct acc100_queue *q = q_data->queue_private;
4080        uint16_t dequeue_num;
4081        uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
4082        uint32_t aq_dequeued = 0;
4083        uint16_t i;
4084        uint16_t dequeued_cbs = 0;
4085        struct rte_bbdev_dec_op *op;
4086        int ret;
4087
4088#ifdef RTE_LIBRTE_BBDEV_DEBUG
4089        if (unlikely(ops == 0 && q == NULL))
4090                return 0;
4091#endif
4092
4093        dequeue_num = RTE_MIN(avail, num);
4094
4095        for (i = 0; i < dequeue_num; ++i) {
4096                op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
4097                        & q->sw_ring_wrap_mask))->req.op_addr;
4098                if (op->ldpc_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
4099                        ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
4100                                        &aq_dequeued);
4101                else
4102                        ret = dequeue_ldpc_dec_one_op_cb(
4103                                        q_data, q, &ops[i], dequeued_cbs,
4104                                        &aq_dequeued);
4105
4106                if (ret < 0)
4107                        break;
4108                dequeued_cbs += ret;
4109        }
4110
4111        q->aq_dequeued += aq_dequeued;
4112        q->sw_ring_tail += dequeued_cbs;
4113
4114        /* Update enqueue stats */
4115        q_data->queue_stats.dequeued_count += i;
4116
4117        return i;
4118}
4119
4120/* Initialization Function */
4121static void
4122acc100_bbdev_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
4123{
4124        struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
4125
4126        dev->dev_ops = &acc100_bbdev_ops;
4127        dev->enqueue_enc_ops = acc100_enqueue_enc;
4128        dev->enqueue_dec_ops = acc100_enqueue_dec;
4129        dev->dequeue_enc_ops = acc100_dequeue_enc;
4130        dev->dequeue_dec_ops = acc100_dequeue_dec;
4131        dev->enqueue_ldpc_enc_ops = acc100_enqueue_ldpc_enc;
4132        dev->enqueue_ldpc_dec_ops = acc100_enqueue_ldpc_dec;
4133        dev->dequeue_ldpc_enc_ops = acc100_dequeue_ldpc_enc;
4134        dev->dequeue_ldpc_dec_ops = acc100_dequeue_ldpc_dec;
4135
4136        ((struct acc100_device *) dev->data->dev_private)->pf_device =
4137                        !strcmp(drv->driver.name,
4138                                        RTE_STR(ACC100PF_DRIVER_NAME));
4139        ((struct acc100_device *) dev->data->dev_private)->mmio_base =
4140                        pci_dev->mem_resource[0].addr;
4141
4142        rte_bbdev_log_debug("Init device %s [%s] @ vaddr %p paddr %#"PRIx64"",
4143                        drv->driver.name, dev->data->name,
4144                        (void *)pci_dev->mem_resource[0].addr,
4145                        pci_dev->mem_resource[0].phys_addr);
4146}
4147
4148static int acc100_pci_probe(struct rte_pci_driver *pci_drv,
4149        struct rte_pci_device *pci_dev)
4150{
4151        struct rte_bbdev *bbdev = NULL;
4152        char dev_name[RTE_BBDEV_NAME_MAX_LEN];
4153
4154        if (pci_dev == NULL) {
4155                rte_bbdev_log(ERR, "NULL PCI device");
4156                return -EINVAL;
4157        }
4158
4159        rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
4160
4161        /* Allocate memory to be used privately by drivers */
4162        bbdev = rte_bbdev_allocate(pci_dev->device.name);
4163        if (bbdev == NULL)
4164                return -ENODEV;
4165
4166        /* allocate device private memory */
4167        bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
4168                        sizeof(struct acc100_device), RTE_CACHE_LINE_SIZE,
4169                        pci_dev->device.numa_node);
4170
4171        if (bbdev->data->dev_private == NULL) {
4172                rte_bbdev_log(CRIT,
4173                                "Allocate of %zu bytes for device \"%s\" failed",
4174                                sizeof(struct acc100_device), dev_name);
4175                                rte_bbdev_release(bbdev);
4176                        return -ENOMEM;
4177        }
4178
4179        /* Fill HW specific part of device structure */
4180        bbdev->device = &pci_dev->device;
4181        bbdev->intr_handle = &pci_dev->intr_handle;
4182        bbdev->data->socket_id = pci_dev->device.numa_node;
4183
4184        /* Invoke ACC100 device initialization function */
4185        acc100_bbdev_init(bbdev, pci_drv);
4186
4187        rte_bbdev_log_debug("Initialised bbdev %s (id = %u)",
4188                        dev_name, bbdev->data->dev_id);
4189        return 0;
4190}
4191
4192static int acc100_pci_remove(struct rte_pci_device *pci_dev)
4193{
4194        struct rte_bbdev *bbdev;
4195        int ret;
4196        uint8_t dev_id;
4197
4198        if (pci_dev == NULL)
4199                return -EINVAL;
4200
4201        /* Find device */
4202        bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
4203        if (bbdev == NULL) {
4204                rte_bbdev_log(CRIT,
4205                                "Couldn't find HW dev \"%s\" to uninitialise it",
4206                                pci_dev->device.name);
4207                return -ENODEV;
4208        }
4209        dev_id = bbdev->data->dev_id;
4210
4211        /* free device private memory before close */
4212        rte_free(bbdev->data->dev_private);
4213
4214        /* Close device */
4215        ret = rte_bbdev_close(dev_id);
4216        if (ret < 0)
4217                rte_bbdev_log(ERR,
4218                                "Device %i failed to close during uninit: %i",
4219                                dev_id, ret);
4220
4221        /* release bbdev from library */
4222        rte_bbdev_release(bbdev);
4223
4224        rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
4225
4226        return 0;
4227}
4228
4229static struct rte_pci_driver acc100_pci_pf_driver = {
4230                .probe = acc100_pci_probe,
4231                .remove = acc100_pci_remove,
4232                .id_table = pci_id_acc100_pf_map,
4233                .drv_flags = RTE_PCI_DRV_NEED_MAPPING
4234};
4235
4236static struct rte_pci_driver acc100_pci_vf_driver = {
4237                .probe = acc100_pci_probe,
4238                .remove = acc100_pci_remove,
4239                .id_table = pci_id_acc100_vf_map,
4240                .drv_flags = RTE_PCI_DRV_NEED_MAPPING
4241};
4242
4243RTE_PMD_REGISTER_PCI(ACC100PF_DRIVER_NAME, acc100_pci_pf_driver);
4244RTE_PMD_REGISTER_PCI_TABLE(ACC100PF_DRIVER_NAME, pci_id_acc100_pf_map);
4245RTE_PMD_REGISTER_PCI(ACC100VF_DRIVER_NAME, acc100_pci_vf_driver);
4246RTE_PMD_REGISTER_PCI_TABLE(ACC100VF_DRIVER_NAME, pci_id_acc100_vf_map);
4247
4248/*
4249 * Workaround implementation to fix the power on status of some 5GUL engines
4250 * This requires DMA permission if ported outside DPDK
4251 * It consists in resolving the state of these engines by running a
4252 * dummy operation and resetting the engines to ensure state are reliably
4253 * defined.
4254 */
4255static void
4256poweron_cleanup(struct rte_bbdev *bbdev, struct acc100_device *d,
4257                struct rte_acc100_conf *conf)
4258{
4259        int i, template_idx, qg_idx;
4260        uint32_t address, status, value;
4261        printf("Need to clear power-on 5GUL status in internal memory\n");
4262        /* Reset LDPC Cores */
4263        for (i = 0; i < ACC100_ENGINES_MAX; i++)
4264                acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4265                                ACC100_ENGINE_OFFSET * i, ACC100_RESET_HI);
4266        usleep(ACC100_LONG_WAIT);
4267        for (i = 0; i < ACC100_ENGINES_MAX; i++)
4268                acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4269                                ACC100_ENGINE_OFFSET * i, ACC100_RESET_LO);
4270        usleep(ACC100_LONG_WAIT);
4271        /* Prepare dummy workload */
4272        alloc_2x64mb_sw_rings_mem(bbdev, d, 0);
4273        /* Set base addresses */
4274        uint32_t phys_high = (uint32_t)(d->sw_rings_iova >> 32);
4275        uint32_t phys_low  = (uint32_t)(d->sw_rings_iova &
4276                        ~(ACC100_SIZE_64MBYTE-1));
4277        acc100_reg_write(d, HWPfDmaFec5GulDescBaseHiRegVf, phys_high);
4278        acc100_reg_write(d, HWPfDmaFec5GulDescBaseLoRegVf, phys_low);
4279
4280        /* Descriptor for a dummy 5GUL code block processing*/
4281        union acc100_dma_desc *desc = NULL;
4282        desc = d->sw_rings;
4283        desc->req.data_ptrs[0].address = d->sw_rings_iova +
4284                        ACC100_DESC_FCW_OFFSET;
4285        desc->req.data_ptrs[0].blen = ACC100_FCW_LD_BLEN;
4286        desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
4287        desc->req.data_ptrs[0].last = 0;
4288        desc->req.data_ptrs[0].dma_ext = 0;
4289        desc->req.data_ptrs[1].address = d->sw_rings_iova + 512;
4290        desc->req.data_ptrs[1].blkid = ACC100_DMA_BLKID_IN;
4291        desc->req.data_ptrs[1].last = 1;
4292        desc->req.data_ptrs[1].dma_ext = 0;
4293        desc->req.data_ptrs[1].blen = 44;
4294        desc->req.data_ptrs[2].address = d->sw_rings_iova + 1024;
4295        desc->req.data_ptrs[2].blkid = ACC100_DMA_BLKID_OUT_ENC;
4296        desc->req.data_ptrs[2].last = 1;
4297        desc->req.data_ptrs[2].dma_ext = 0;
4298        desc->req.data_ptrs[2].blen = 5;
4299        /* Dummy FCW */
4300        desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
4301        desc->req.fcw_ld.qm = 1;
4302        desc->req.fcw_ld.nfiller = 30;
4303        desc->req.fcw_ld.BG = 2 - 1;
4304        desc->req.fcw_ld.Zc = 7;
4305        desc->req.fcw_ld.ncb = 350;
4306        desc->req.fcw_ld.rm_e = 4;
4307        desc->req.fcw_ld.itmax = 10;
4308        desc->req.fcw_ld.gain_i = 1;
4309        desc->req.fcw_ld.gain_h = 1;
4310
4311        int engines_to_restart[ACC100_SIG_UL_5G_LAST + 1] = {0};
4312        int num_failed_engine = 0;
4313        /* Detect engines in undefined state */
4314        for (template_idx = ACC100_SIG_UL_5G;
4315                        template_idx <= ACC100_SIG_UL_5G_LAST;
4316                        template_idx++) {
4317                /* Check engine power-on status */
4318                address = HwPfFecUl5gIbDebugReg +
4319                                ACC100_ENGINE_OFFSET * template_idx;
4320                status = (acc100_reg_read(d, address) >> 4) & 0xF;
4321                if (status == 0) {
4322                        engines_to_restart[num_failed_engine] = template_idx;
4323                        num_failed_engine++;
4324                }
4325        }
4326
4327        int numQqsAcc = conf->q_ul_5g.num_qgroups;
4328        int numQgs = conf->q_ul_5g.num_qgroups;
4329        value = 0;
4330        for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4331                value |= (1 << qg_idx);
4332        /* Force each engine which is in unspecified state */
4333        for (i = 0; i < num_failed_engine; i++) {
4334                int failed_engine = engines_to_restart[i];
4335                printf("Force engine %d\n", failed_engine);
4336                for (template_idx = ACC100_SIG_UL_5G;
4337                                template_idx <= ACC100_SIG_UL_5G_LAST;
4338                                template_idx++) {
4339                        address = HWPfQmgrGrpTmplateReg4Indx
4340                                        + ACC100_BYTES_IN_WORD * template_idx;
4341                        if (template_idx == failed_engine)
4342                                acc100_reg_write(d, address, value);
4343                        else
4344                                acc100_reg_write(d, address, 0);
4345                }
4346                /* Reset descriptor header */
4347                desc->req.word0 = ACC100_DMA_DESC_TYPE;
4348                desc->req.word1 = 0;
4349                desc->req.word2 = 0;
4350                desc->req.word3 = 0;
4351                desc->req.numCBs = 1;
4352                desc->req.m2dlen = 2;
4353                desc->req.d2mlen = 1;
4354                /* Enqueue the code block for processing */
4355                union acc100_enqueue_reg_fmt enq_req;
4356                enq_req.val = 0;
4357                enq_req.addr_offset = ACC100_DESC_OFFSET;
4358                enq_req.num_elem = 1;
4359                enq_req.req_elem_addr = 0;
4360                rte_wmb();
4361                acc100_reg_write(d, HWPfQmgrIngressAq + 0x100, enq_req.val);
4362                usleep(ACC100_LONG_WAIT * 100);
4363                if (desc->req.word0 != 2)
4364                        printf("DMA Response %#"PRIx32"\n", desc->req.word0);
4365        }
4366
4367        /* Reset LDPC Cores */
4368        for (i = 0; i < ACC100_ENGINES_MAX; i++)
4369                acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4370                                ACC100_ENGINE_OFFSET * i,
4371                                ACC100_RESET_HI);
4372        usleep(ACC100_LONG_WAIT);
4373        for (i = 0; i < ACC100_ENGINES_MAX; i++)
4374                acc100_reg_write(d, HWPfFecUl5gCntrlReg +
4375                                ACC100_ENGINE_OFFSET * i,
4376                                ACC100_RESET_LO);
4377        usleep(ACC100_LONG_WAIT);
4378        acc100_reg_write(d, HWPfHi5GHardResetReg, ACC100_RESET_HARD);
4379        usleep(ACC100_LONG_WAIT);
4380        int numEngines = 0;
4381        /* Check engine power-on status again */
4382        for (template_idx = ACC100_SIG_UL_5G;
4383                        template_idx <= ACC100_SIG_UL_5G_LAST;
4384                        template_idx++) {
4385                address = HwPfFecUl5gIbDebugReg +
4386                                ACC100_ENGINE_OFFSET * template_idx;
4387                status = (acc100_reg_read(d, address) >> 4) & 0xF;
4388                address = HWPfQmgrGrpTmplateReg4Indx
4389                                + ACC100_BYTES_IN_WORD * template_idx;
4390                if (status == 1) {
4391                        acc100_reg_write(d, address, value);
4392                        numEngines++;
4393                } else
4394                        acc100_reg_write(d, address, 0);
4395        }
4396        printf("Number of 5GUL engines %d\n", numEngines);
4397
4398        if (d->sw_rings_base != NULL)
4399                rte_free(d->sw_rings_base);
4400        usleep(ACC100_LONG_WAIT);
4401}
4402
4403/* Initial configuration of a ACC100 device prior to running configure() */
4404int
4405rte_acc100_configure(const char *dev_name, struct rte_acc100_conf *conf)
4406{
4407        rte_bbdev_log(INFO, "rte_acc100_configure");
4408        uint32_t value, address, status;
4409        int qg_idx, template_idx, vf_idx, acc, i;
4410        struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
4411
4412        /* Compile time checks */
4413        RTE_BUILD_BUG_ON(sizeof(struct acc100_dma_req_desc) != 256);
4414        RTE_BUILD_BUG_ON(sizeof(union acc100_dma_desc) != 256);
4415        RTE_BUILD_BUG_ON(sizeof(struct acc100_fcw_td) != 24);
4416        RTE_BUILD_BUG_ON(sizeof(struct acc100_fcw_te) != 32);
4417
4418        if (bbdev == NULL) {
4419                rte_bbdev_log(ERR,
4420                "Invalid dev_name (%s), or device is not yet initialised",
4421                dev_name);
4422                return -ENODEV;
4423        }
4424        struct acc100_device *d = bbdev->data->dev_private;
4425
4426        /* Store configuration */
4427        rte_memcpy(&d->acc100_conf, conf, sizeof(d->acc100_conf));
4428
4429        /* PCIe Bridge configuration */
4430        acc100_reg_write(d, HwPfPcieGpexBridgeControl, ACC100_CFG_PCI_BRIDGE);
4431        for (i = 1; i < ACC100_GPEX_AXIMAP_NUM; i++)
4432                acc100_reg_write(d,
4433                                HwPfPcieGpexAxiAddrMappingWindowPexBaseHigh
4434                                + i * 16, 0);
4435
4436        /* Prevent blocking AXI read on BRESP for AXI Write */
4437        address = HwPfPcieGpexAxiPioControl;
4438        value = ACC100_CFG_PCI_AXI;
4439        acc100_reg_write(d, address, value);
4440
4441        /* 5GDL PLL phase shift */
4442        acc100_reg_write(d, HWPfChaDl5gPllPhshft0, 0x1);
4443
4444        /* Explicitly releasing AXI as this may be stopped after PF FLR/BME */
4445        address = HWPfDmaAxiControl;
4446        value = 1;
4447        acc100_reg_write(d, address, value);
4448
4449        /* DDR Configuration */
4450        address = HWPfDdrBcTim6;
4451        value = acc100_reg_read(d, address);
4452        value &= 0xFFFFFFFB; /* Bit 2 */
4453#ifdef ACC100_DDR_ECC_ENABLE
4454        value |= 0x4;
4455#endif
4456        acc100_reg_write(d, address, value);
4457        address = HWPfDdrPhyDqsCountNum;
4458#ifdef ACC100_DDR_ECC_ENABLE
4459        value = 9;
4460#else
4461        value = 8;
4462#endif
4463        acc100_reg_write(d, address, value);
4464
4465        /* Set default descriptor signature */
4466        address = HWPfDmaDescriptorSignatuture;
4467        value = 0;
4468        acc100_reg_write(d, address, value);
4469
4470        /* Enable the Error Detection in DMA */
4471        value = ACC100_CFG_DMA_ERROR;
4472        address = HWPfDmaErrorDetectionEn;
4473        acc100_reg_write(d, address, value);
4474
4475        /* AXI Cache configuration */
4476        value = ACC100_CFG_AXI_CACHE;
4477        address = HWPfDmaAxcacheReg;
4478        acc100_reg_write(d, address, value);
4479
4480        /* Default DMA Configuration (Qmgr Enabled) */
4481        address = HWPfDmaConfig0Reg;
4482        value = 0;
4483        acc100_reg_write(d, address, value);
4484        address = HWPfDmaQmanen;
4485        value = 0;
4486        acc100_reg_write(d, address, value);
4487
4488        /* Default RLIM/ALEN configuration */
4489        address = HWPfDmaConfig1Reg;
4490        value = (1 << 31) + (23 << 8) + (1 << 6) + 7;
4491        acc100_reg_write(d, address, value);
4492
4493        /* Configure DMA Qmanager addresses */
4494        address = HWPfDmaQmgrAddrReg;
4495        value = HWPfQmgrEgressQueuesTemplate;
4496        acc100_reg_write(d, address, value);
4497
4498        /* ===== Qmgr Configuration ===== */
4499        /* Configuration of the AQueue Depth QMGR_GRP_0_DEPTH_LOG2 for UL */
4500        int totalQgs = conf->q_ul_4g.num_qgroups +
4501                        conf->q_ul_5g.num_qgroups +
4502                        conf->q_dl_4g.num_qgroups +
4503                        conf->q_dl_5g.num_qgroups;
4504        for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
4505                address = HWPfQmgrDepthLog2Grp +
4506                ACC100_BYTES_IN_WORD * qg_idx;
4507                value = aqDepth(qg_idx, conf);
4508                acc100_reg_write(d, address, value);
4509                address = HWPfQmgrTholdGrp +
4510                ACC100_BYTES_IN_WORD * qg_idx;
4511                value = (1 << 16) + (1 << (aqDepth(qg_idx, conf) - 1));
4512                acc100_reg_write(d, address, value);
4513        }
4514
4515        /* Template Priority in incremental order */
4516        for (template_idx = 0; template_idx < ACC100_NUM_TMPL;
4517                        template_idx++) {
4518                address = HWPfQmgrGrpTmplateReg0Indx +
4519                ACC100_BYTES_IN_WORD * (template_idx % 8);
4520                value = ACC100_TMPL_PRI_0;
4521                acc100_reg_write(d, address, value);
4522                address = HWPfQmgrGrpTmplateReg1Indx +
4523                ACC100_BYTES_IN_WORD * (template_idx % 8);
4524                value = ACC100_TMPL_PRI_1;
4525                acc100_reg_write(d, address, value);
4526                address = HWPfQmgrGrpTmplateReg2indx +
4527                ACC100_BYTES_IN_WORD * (template_idx % 8);
4528                value = ACC100_TMPL_PRI_2;
4529                acc100_reg_write(d, address, value);
4530                address = HWPfQmgrGrpTmplateReg3Indx +
4531                ACC100_BYTES_IN_WORD * (template_idx % 8);
4532                value = ACC100_TMPL_PRI_3;
4533                acc100_reg_write(d, address, value);
4534        }
4535
4536        address = HWPfQmgrGrpPriority;
4537        value = ACC100_CFG_QMGR_HI_P;
4538        acc100_reg_write(d, address, value);
4539
4540        /* Template Configuration */
4541        for (template_idx = 0; template_idx < ACC100_NUM_TMPL;
4542                        template_idx++) {
4543                value = 0;
4544                address = HWPfQmgrGrpTmplateReg4Indx
4545                                + ACC100_BYTES_IN_WORD * template_idx;
4546                acc100_reg_write(d, address, value);
4547        }
4548        /* 4GUL */
4549        int numQgs = conf->q_ul_4g.num_qgroups;
4550        int numQqsAcc = 0;
4551        value = 0;
4552        for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4553                value |= (1 << qg_idx);
4554        for (template_idx = ACC100_SIG_UL_4G;
4555                        template_idx <= ACC100_SIG_UL_4G_LAST;
4556                        template_idx++) {
4557                address = HWPfQmgrGrpTmplateReg4Indx
4558                                + ACC100_BYTES_IN_WORD * template_idx;
4559                acc100_reg_write(d, address, value);
4560        }
4561        /* 5GUL */
4562        numQqsAcc += numQgs;
4563        numQgs  = conf->q_ul_5g.num_qgroups;
4564        value = 0;
4565        int numEngines = 0;
4566        for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4567                value |= (1 << qg_idx);
4568        for (template_idx = ACC100_SIG_UL_5G;
4569                        template_idx <= ACC100_SIG_UL_5G_LAST;
4570                        template_idx++) {
4571                /* Check engine power-on status */
4572                address = HwPfFecUl5gIbDebugReg +
4573                                ACC100_ENGINE_OFFSET * template_idx;
4574                status = (acc100_reg_read(d, address) >> 4) & 0xF;
4575                address = HWPfQmgrGrpTmplateReg4Indx
4576                                + ACC100_BYTES_IN_WORD * template_idx;
4577                if (status == 1) {
4578                        acc100_reg_write(d, address, value);
4579                        numEngines++;
4580                } else
4581                        acc100_reg_write(d, address, 0);
4582#if RTE_ACC100_SINGLE_FEC == 1
4583                value = 0;
4584#endif
4585        }
4586        printf("Number of 5GUL engines %d\n", numEngines);
4587        /* 4GDL */
4588        numQqsAcc += numQgs;
4589        numQgs  = conf->q_dl_4g.num_qgroups;
4590        value = 0;
4591        for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4592                value |= (1 << qg_idx);
4593        for (template_idx = ACC100_SIG_DL_4G;
4594                        template_idx <= ACC100_SIG_DL_4G_LAST;
4595                        template_idx++) {
4596                address = HWPfQmgrGrpTmplateReg4Indx
4597                                + ACC100_BYTES_IN_WORD * template_idx;
4598                acc100_reg_write(d, address, value);
4599#if RTE_ACC100_SINGLE_FEC == 1
4600                        value = 0;
4601#endif
4602        }
4603        /* 5GDL */
4604        numQqsAcc += numQgs;
4605        numQgs  = conf->q_dl_5g.num_qgroups;
4606        value = 0;
4607        for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++)
4608                value |= (1 << qg_idx);
4609        for (template_idx = ACC100_SIG_DL_5G;
4610                        template_idx <= ACC100_SIG_DL_5G_LAST;
4611                        template_idx++) {
4612                address = HWPfQmgrGrpTmplateReg4Indx
4613                                + ACC100_BYTES_IN_WORD * template_idx;
4614                acc100_reg_write(d, address, value);
4615#if RTE_ACC100_SINGLE_FEC == 1
4616                value = 0;
4617#endif
4618        }
4619
4620        /* Queue Group Function mapping */
4621        int qman_func_id[5] = {0, 2, 1, 3, 4};
4622        address = HWPfQmgrGrpFunction0;
4623        value = 0;
4624        for (qg_idx = 0; qg_idx < 8; qg_idx++) {
4625                acc = accFromQgid(qg_idx, conf);
4626                value |= qman_func_id[acc]<<(qg_idx * 4);
4627        }
4628        acc100_reg_write(d, address, value);
4629
4630        /* Configuration of the Arbitration QGroup depth to 1 */
4631        for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
4632                address = HWPfQmgrArbQDepthGrp +
4633                ACC100_BYTES_IN_WORD * qg_idx;
4634                value = 0;
4635                acc100_reg_write(d, address, value);
4636        }
4637
4638        /* Enabling AQueues through the Queue hierarchy*/
4639        for (vf_idx = 0; vf_idx < ACC100_NUM_VFS; vf_idx++) {
4640                for (qg_idx = 0; qg_idx < ACC100_NUM_QGRPS; qg_idx++) {
4641                        value = 0;
4642                        if (vf_idx < conf->num_vf_bundles &&
4643                                        qg_idx < totalQgs)
4644                                value = (1 << aqNum(qg_idx, conf)) - 1;
4645                        address = HWPfQmgrAqEnableVf
4646                                        + vf_idx * ACC100_BYTES_IN_WORD;
4647                        value += (qg_idx << 16);
4648                        acc100_reg_write(d, address, value);
4649                }
4650        }
4651
4652        /* This pointer to ARAM (256kB) is shifted by 2 (4B per register) */
4653        uint32_t aram_address = 0;
4654        for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) {
4655                for (vf_idx = 0; vf_idx < conf->num_vf_bundles; vf_idx++) {
4656                        address = HWPfQmgrVfBaseAddr + vf_idx
4657                                        * ACC100_BYTES_IN_WORD + qg_idx
4658                                        * ACC100_BYTES_IN_WORD * 64;
4659                        value = aram_address;
4660                        acc100_reg_write(d, address, value);
4661                        /* Offset ARAM Address for next memory bank
4662                         * - increment of 4B
4663                         */
4664                        aram_address += aqNum(qg_idx, conf) *
4665                                        (1 << aqDepth(qg_idx, conf));
4666                }
4667        }
4668
4669        if (aram_address > ACC100_WORDS_IN_ARAM_SIZE) {
4670                rte_bbdev_log(ERR, "ARAM Configuration not fitting %d %d\n",
4671                                aram_address, ACC100_WORDS_IN_ARAM_SIZE);
4672                return -EINVAL;
4673        }
4674
4675        /* ==== HI Configuration ==== */
4676
4677        /* Prevent Block on Transmit Error */
4678        address = HWPfHiBlockTransmitOnErrorEn;
4679        value = 0;
4680        acc100_reg_write(d, address, value);
4681        /* Prevents to drop MSI */
4682        address = HWPfHiMsiDropEnableReg;
4683        value = 0;
4684        acc100_reg_write(d, address, value);
4685        /* Set the PF Mode register */
4686        address = HWPfHiPfMode;
4687        value = (conf->pf_mode_en) ? ACC100_PF_VAL : 0;
4688        acc100_reg_write(d, address, value);
4689        /* Enable Error Detection in HW */
4690        address = HWPfDmaErrorDetectionEn;
4691        value = 0x3D7;
4692        acc100_reg_write(d, address, value);
4693
4694        /* QoS overflow init */
4695        value = 1;
4696        address = HWPfQosmonAEvalOverflow0;
4697        acc100_reg_write(d, address, value);
4698        address = HWPfQosmonBEvalOverflow0;
4699        acc100_reg_write(d, address, value);
4700
4701        /* HARQ DDR Configuration */
4702        unsigned int ddrSizeInMb = 512; /* Fixed to 512 MB per VF for now */
4703        for (vf_idx = 0; vf_idx < conf->num_vf_bundles; vf_idx++) {
4704                address = HWPfDmaVfDdrBaseRw + vf_idx
4705                                * 0x10;
4706                value = ((vf_idx * (ddrSizeInMb / 64)) << 16) +
4707                                (ddrSizeInMb - 1);
4708                acc100_reg_write(d, address, value);
4709        }
4710        usleep(ACC100_LONG_WAIT);
4711
4712        /* Workaround in case some 5GUL engines are in an unexpected state */
4713        if (numEngines < (ACC100_SIG_UL_5G_LAST + 1))
4714                poweron_cleanup(bbdev, d, conf);
4715
4716        rte_bbdev_log_debug("PF Tip configuration complete for %s", dev_name);
4717        return 0;
4718}
4719