dpdk/drivers/net/e1000/base/e1000_vf.c
<<
>>
Prefs
   1/* SPDX-License-Identifier: BSD-3-Clause
   2 * Copyright(c) 2001-2020 Intel Corporation
   3 */
   4
   5
   6#include "e1000_api.h"
   7
   8
   9STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
  10STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
  11STATIC void e1000_release_vf(struct e1000_hw *hw);
  12STATIC s32 e1000_acquire_vf(struct e1000_hw *hw);
  13STATIC s32 e1000_setup_link_vf(struct e1000_hw *hw);
  14STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
  15STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
  16STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw);
  17STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
  18                                     u16 *duplex);
  19STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw);
  20STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw);
  21STATIC void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
  22STATIC int  e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
  23STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *);
  24
  25/**
  26 *  e1000_init_phy_params_vf - Inits PHY params
  27 *  @hw: pointer to the HW structure
  28 *
  29 *  Doesn't do much - there's no PHY available to the VF.
  30 **/
  31STATIC s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
  32{
  33        DEBUGFUNC("e1000_init_phy_params_vf");
  34        hw->phy.type = e1000_phy_vf;
  35        hw->phy.ops.acquire = e1000_acquire_vf;
  36        hw->phy.ops.release = e1000_release_vf;
  37
  38        return E1000_SUCCESS;
  39}
  40
  41/**
  42 *  e1000_init_nvm_params_vf - Inits NVM params
  43 *  @hw: pointer to the HW structure
  44 *
  45 *  Doesn't do much - there's no NVM available to the VF.
  46 **/
  47STATIC s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
  48{
  49        DEBUGFUNC("e1000_init_nvm_params_vf");
  50        hw->nvm.type = e1000_nvm_none;
  51        hw->nvm.ops.acquire = e1000_acquire_vf;
  52        hw->nvm.ops.release = e1000_release_vf;
  53
  54        return E1000_SUCCESS;
  55}
  56
  57/**
  58 *  e1000_init_mac_params_vf - Inits MAC params
  59 *  @hw: pointer to the HW structure
  60 **/
  61STATIC s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
  62{
  63        struct e1000_mac_info *mac = &hw->mac;
  64
  65        DEBUGFUNC("e1000_init_mac_params_vf");
  66
  67        /* Set media type */
  68        /*
  69         * Virtual functions don't care what they're media type is as they
  70         * have no direct access to the PHY, or the media.  That is handled
  71         * by the physical function driver.
  72         */
  73        hw->phy.media_type = e1000_media_type_unknown;
  74
  75        /* No ASF features for the VF driver */
  76        mac->asf_firmware_present = false;
  77        /* ARC subsystem not supported */
  78        mac->arc_subsystem_valid = false;
  79        /* Disable adaptive IFS mode so the generic funcs don't do anything */
  80        mac->adaptive_ifs = false;
  81        /* VF's have no MTA Registers - PF feature only */
  82        mac->mta_reg_count = 128;
  83        /* VF's have no access to RAR entries  */
  84        mac->rar_entry_count = 1;
  85
  86        /* Function pointers */
  87        /* link setup */
  88        mac->ops.setup_link = e1000_setup_link_vf;
  89        /* bus type/speed/width */
  90        mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
  91        /* reset */
  92        mac->ops.reset_hw = e1000_reset_hw_vf;
  93        /* hw initialization */
  94        mac->ops.init_hw = e1000_init_hw_vf;
  95        /* check for link */
  96        mac->ops.check_for_link = e1000_check_for_link_vf;
  97        /* link info */
  98        mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
  99        /* multicast address update */
 100        mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
 101        /* set mac address */
 102        mac->ops.rar_set = e1000_rar_set_vf;
 103        /* read mac address */
 104        mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
 105
 106
 107        return E1000_SUCCESS;
 108}
 109
 110/**
 111 *  e1000_init_function_pointers_vf - Inits function pointers
 112 *  @hw: pointer to the HW structure
 113 **/
 114void e1000_init_function_pointers_vf(struct e1000_hw *hw)
 115{
 116        DEBUGFUNC("e1000_init_function_pointers_vf");
 117
 118        hw->mac.ops.init_params = e1000_init_mac_params_vf;
 119        hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
 120        hw->phy.ops.init_params = e1000_init_phy_params_vf;
 121        hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
 122}
 123
 124/**
 125 *  e1000_acquire_vf - Acquire rights to access PHY or NVM.
 126 *  @hw: pointer to the HW structure
 127 *
 128 *  There is no PHY or NVM so we want all attempts to acquire these to fail.
 129 *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
 130 *  even want any SW to attempt to use them.
 131 **/
 132STATIC s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
 133{
 134        UNREFERENCED_1PARAMETER(hw);
 135        return -E1000_ERR_PHY;
 136}
 137
 138/**
 139 *  e1000_release_vf - Release PHY or NVM
 140 *  @hw: pointer to the HW structure
 141 *
 142 *  There is no PHY or NVM so we want all attempts to acquire these to fail.
 143 *  In addition, the MAC registers to access PHY/NVM don't exist so we don't
 144 *  even want any SW to attempt to use them.
 145 **/
 146STATIC void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
 147{
 148        UNREFERENCED_1PARAMETER(hw);
 149        return;
 150}
 151
 152/**
 153 *  e1000_setup_link_vf - Sets up link.
 154 *  @hw: pointer to the HW structure
 155 *
 156 *  Virtual functions cannot change link.
 157 **/
 158STATIC s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
 159{
 160        DEBUGFUNC("e1000_setup_link_vf");
 161        UNREFERENCED_1PARAMETER(hw);
 162
 163        return E1000_SUCCESS;
 164}
 165
 166/**
 167 *  e1000_get_bus_info_pcie_vf - Gets the bus info.
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Virtual functions are not really on their own bus.
 171 **/
 172STATIC s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
 173{
 174        struct e1000_bus_info *bus = &hw->bus;
 175
 176        DEBUGFUNC("e1000_get_bus_info_pcie_vf");
 177
 178        /* Do not set type PCI-E because we don't want disable master to run */
 179        bus->type = e1000_bus_type_reserved;
 180        bus->speed = e1000_bus_speed_2500;
 181
 182        return 0;
 183}
 184
 185/**
 186 *  e1000_get_link_up_info_vf - Gets link info.
 187 *  @hw: pointer to the HW structure
 188 *  @speed: pointer to 16 bit value to store link speed.
 189 *  @duplex: pointer to 16 bit value to store duplex.
 190 *
 191 *  Since we cannot read the PHY and get accurate link info, we must rely upon
 192 *  the status register's data which is often stale and inaccurate.
 193 **/
 194STATIC s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
 195                                     u16 *duplex)
 196{
 197        s32 status;
 198
 199        DEBUGFUNC("e1000_get_link_up_info_vf");
 200
 201        status = E1000_READ_REG(hw, E1000_STATUS);
 202        if (status & E1000_STATUS_SPEED_1000) {
 203                *speed = SPEED_1000;
 204                DEBUGOUT("1000 Mbs, ");
 205        } else if (status & E1000_STATUS_SPEED_100) {
 206                *speed = SPEED_100;
 207                DEBUGOUT("100 Mbs, ");
 208        } else {
 209                *speed = SPEED_10;
 210                DEBUGOUT("10 Mbs, ");
 211        }
 212
 213        if (status & E1000_STATUS_FD) {
 214                *duplex = FULL_DUPLEX;
 215                DEBUGOUT("Full Duplex\n");
 216        } else {
 217                *duplex = HALF_DUPLEX;
 218                DEBUGOUT("Half Duplex\n");
 219        }
 220
 221        return E1000_SUCCESS;
 222}
 223
 224/**
 225 *  e1000_reset_hw_vf - Resets the HW
 226 *  @hw: pointer to the HW structure
 227 *
 228 *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
 229 *  This is all the reset we can perform on a VF.
 230 **/
 231STATIC s32 e1000_reset_hw_vf(struct e1000_hw *hw)
 232{
 233        struct e1000_mbx_info *mbx = &hw->mbx;
 234        u32 timeout = E1000_VF_INIT_TIMEOUT;
 235        s32 ret_val = -E1000_ERR_MAC_INIT;
 236        u32 ctrl, msgbuf[3];
 237        u8 *addr = (u8 *)(&msgbuf[1]);
 238
 239        DEBUGFUNC("e1000_reset_hw_vf");
 240
 241        DEBUGOUT("Issuing a function level reset to MAC\n");
 242        ctrl = E1000_READ_REG(hw, E1000_CTRL);
 243        E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
 244
 245        /* we cannot reset while the RSTI / RSTD bits are asserted */
 246        while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
 247                timeout--;
 248                usec_delay(5);
 249        }
 250
 251        if (timeout) {
 252                /* mailbox timeout can now become active */
 253                mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
 254
 255                msgbuf[0] = E1000_VF_RESET;
 256                mbx->ops.write_posted(hw, msgbuf, 1, 0);
 257
 258                msec_delay(10);
 259
 260                /* set our "perm_addr" based on info provided by PF */
 261                ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
 262                if (!ret_val) {
 263                        if (msgbuf[0] == (E1000_VF_RESET |
 264                            E1000_VT_MSGTYPE_ACK))
 265                                memcpy(hw->mac.perm_addr, addr, 6);
 266                        else
 267                                ret_val = -E1000_ERR_MAC_INIT;
 268                }
 269        }
 270
 271        return ret_val;
 272}
 273
 274/**
 275 *  e1000_init_hw_vf - Inits the HW
 276 *  @hw: pointer to the HW structure
 277 *
 278 *  Not much to do here except clear the PF Reset indication if there is one.
 279 **/
 280STATIC s32 e1000_init_hw_vf(struct e1000_hw *hw)
 281{
 282        DEBUGFUNC("e1000_init_hw_vf");
 283
 284        /* attempt to set and restore our mac address */
 285        e1000_rar_set_vf(hw, hw->mac.addr, 0);
 286
 287        return E1000_SUCCESS;
 288}
 289
 290/**
 291 *  e1000_rar_set_vf - set device MAC address
 292 *  @hw: pointer to the HW structure
 293 *  @addr: pointer to the receive address
 294 *  @index receive address array register
 295 **/
 296STATIC int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
 297                             u32 E1000_UNUSEDARG index)
 298{
 299        struct e1000_mbx_info *mbx = &hw->mbx;
 300        u32 msgbuf[3];
 301        u8 *msg_addr = (u8 *)(&msgbuf[1]);
 302        s32 ret_val;
 303
 304        UNREFERENCED_1PARAMETER(index);
 305        memset(msgbuf, 0, 12);
 306        msgbuf[0] = E1000_VF_SET_MAC_ADDR;
 307        memcpy(msg_addr, addr, 6);
 308        ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
 309
 310        if (!ret_val)
 311                ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
 312
 313        msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
 314
 315        /* if nacked the address was rejected, use "perm_addr" */
 316        if (!ret_val &&
 317            (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
 318                e1000_read_mac_addr_vf(hw);
 319
 320        return E1000_SUCCESS;
 321}
 322
 323/**
 324 *  e1000_hash_mc_addr_vf - Generate a multicast hash value
 325 *  @hw: pointer to the HW structure
 326 *  @mc_addr: pointer to a multicast address
 327 *
 328 *  Generates a multicast address hash value which is used to determine
 329 *  the multicast filter table array address and new table value.
 330 **/
 331STATIC u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
 332{
 333        u32 hash_value, hash_mask;
 334        u8 bit_shift = 0;
 335
 336        DEBUGFUNC("e1000_hash_mc_addr_generic");
 337
 338        /* Register count multiplied by bits per register */
 339        hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 340
 341        /*
 342         * The bit_shift is the number of left-shifts
 343         * where 0xFF would still fall within the hash mask.
 344         */
 345        while (hash_mask >> bit_shift != 0xFF)
 346                bit_shift++;
 347
 348        hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 349                                  (((u16) mc_addr[5]) << bit_shift)));
 350
 351        return hash_value;
 352}
 353
 354STATIC void e1000_write_msg_read_ack(struct e1000_hw *hw,
 355                                     u32 *msg, u16 size)
 356{
 357        struct e1000_mbx_info *mbx = &hw->mbx;
 358        u32 retmsg[E1000_VFMAILBOX_SIZE];
 359        s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
 360
 361        if (!retval)
 362                mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
 363}
 364
 365/**
 366 *  e1000_update_mc_addr_list_vf - Update Multicast addresses
 367 *  @hw: pointer to the HW structure
 368 *  @mc_addr_list: array of multicast addresses to program
 369 *  @mc_addr_count: number of multicast addresses to program
 370 *
 371 *  Updates the Multicast Table Array.
 372 *  The caller must have a packed mc_addr_list of multicast addresses.
 373 **/
 374void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
 375                                  u8 *mc_addr_list, u32 mc_addr_count)
 376{
 377        u32 msgbuf[E1000_VFMAILBOX_SIZE];
 378        u16 *hash_list = (u16 *)&msgbuf[1];
 379        u32 hash_value;
 380        u32 i;
 381
 382        DEBUGFUNC("e1000_update_mc_addr_list_vf");
 383
 384        /* Each entry in the list uses 1 16 bit word.  We have 30
 385         * 16 bit words available in our HW msg buffer (minus 1 for the
 386         * msg type).  That's 30 hash values if we pack 'em right.  If
 387         * there are more than 30 MC addresses to add then punt the
 388         * extras for now and then add code to handle more than 30 later.
 389         * It would be unusual for a server to request that many multi-cast
 390         * addresses except for in large enterprise network environments.
 391         */
 392
 393        DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
 394
 395        msgbuf[0] = E1000_VF_SET_MULTICAST;
 396
 397        if (mc_addr_count > 30) {
 398                msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
 399                mc_addr_count = 30;
 400        }
 401
 402        msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
 403
 404        for (i = 0; i < mc_addr_count; i++) {
 405                hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
 406                DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
 407                hash_list[i] = hash_value & 0x0FFF;
 408                mc_addr_list += ETH_ADDR_LEN;
 409        }
 410
 411        e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
 412}
 413
 414/**
 415 *  e1000_vfta_set_vf - Set/Unset vlan filter table address
 416 *  @hw: pointer to the HW structure
 417 *  @vid: determines the vfta register and bit to set/unset
 418 *  @set: if true then set bit, else clear bit
 419 **/
 420void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
 421{
 422        u32 msgbuf[2];
 423
 424        msgbuf[0] = E1000_VF_SET_VLAN;
 425        msgbuf[1] = vid;
 426        /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
 427        if (set)
 428                msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
 429
 430        e1000_write_msg_read_ack(hw, msgbuf, 2);
 431}
 432
 433/** e1000_rlpml_set_vf - Set the maximum receive packet length
 434 *  @hw: pointer to the HW structure
 435 *  @max_size: value to assign to max frame size
 436 **/
 437void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
 438{
 439        u32 msgbuf[2];
 440
 441        msgbuf[0] = E1000_VF_SET_LPE;
 442        msgbuf[1] = max_size;
 443
 444        e1000_write_msg_read_ack(hw, msgbuf, 2);
 445}
 446
 447/**
 448 *  e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
 449 *  @hw: pointer to the HW structure
 450 *  @uni: boolean indicating unicast promisc status
 451 *  @multi: boolean indicating multicast promisc status
 452 **/
 453s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
 454{
 455        struct e1000_mbx_info *mbx = &hw->mbx;
 456        u32 msgbuf = E1000_VF_SET_PROMISC;
 457        s32 ret_val;
 458
 459        switch (type) {
 460        case e1000_promisc_multicast:
 461                msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
 462                break;
 463        case e1000_promisc_enabled:
 464                msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
 465                /* fall-through */
 466        case e1000_promisc_unicast:
 467                msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
 468                /* fall-through */
 469        case e1000_promisc_disabled:
 470                break;
 471        default:
 472                return -E1000_ERR_MAC_INIT;
 473        }
 474
 475         ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
 476
 477        if (!ret_val)
 478                ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
 479
 480        if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
 481                ret_val = -E1000_ERR_MAC_INIT;
 482
 483        return ret_val;
 484}
 485
 486/**
 487 *  e1000_read_mac_addr_vf - Read device MAC address
 488 *  @hw: pointer to the HW structure
 489 **/
 490STATIC s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
 491{
 492        int i;
 493
 494        for (i = 0; i < ETH_ADDR_LEN; i++)
 495                hw->mac.addr[i] = hw->mac.perm_addr[i];
 496
 497        return E1000_SUCCESS;
 498}
 499
 500/**
 501 *  e1000_check_for_link_vf - Check for link for a virtual interface
 502 *  @hw: pointer to the HW structure
 503 *
 504 *  Checks to see if the underlying PF is still talking to the VF and
 505 *  if it is then it reports the link state to the hardware, otherwise
 506 *  it reports link down and returns an error.
 507 **/
 508STATIC s32 e1000_check_for_link_vf(struct e1000_hw *hw)
 509{
 510        struct e1000_mbx_info *mbx = &hw->mbx;
 511        struct e1000_mac_info *mac = &hw->mac;
 512        s32 ret_val = E1000_SUCCESS;
 513        u32 in_msg = 0;
 514
 515        DEBUGFUNC("e1000_check_for_link_vf");
 516
 517        /*
 518         * We only want to run this if there has been a rst asserted.
 519         * in this case that could mean a link change, device reset,
 520         * or a virtual function reset
 521         */
 522
 523        /* If we were hit with a reset or timeout drop the link */
 524        if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
 525                mac->get_link_status = true;
 526
 527        if (!mac->get_link_status)
 528                goto out;
 529
 530        /* if link status is down no point in checking to see if pf is up */
 531        if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
 532                goto out;
 533
 534        /* if the read failed it could just be a mailbox collision, best wait
 535         * until we are called again and don't report an error */
 536        if (mbx->ops.read(hw, &in_msg, 1, 0))
 537                goto out;
 538
 539        /* if incoming message isn't clear to send we are waiting on response */
 540        if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
 541                /* message is not CTS and is NACK we have lost CTS status */
 542                if (in_msg & E1000_VT_MSGTYPE_NACK)
 543                        ret_val = -E1000_ERR_MAC_INIT;
 544                goto out;
 545        }
 546
 547        /* at this point we know the PF is talking to us, check and see if
 548         * we are still accepting timeout or if we had a timeout failure.
 549         * if we failed then we will need to reinit */
 550        if (!mbx->timeout) {
 551                ret_val = -E1000_ERR_MAC_INIT;
 552                goto out;
 553        }
 554
 555        /* if we passed all the tests above then the link is up and we no
 556         * longer need to check for link */
 557        mac->get_link_status = false;
 558
 559out:
 560        return ret_val;
 561}
 562
 563