dpdk/drivers/net/ice/ice_rxtx_vec_avx512.c
<<
>>
Prefs
   1/* SPDX-License-Identifier: BSD-3-Clause
   2 * Copyright(c) 2019 Intel Corporation
   3 */
   4
   5#include "ice_rxtx_vec_common.h"
   6
   7#include <rte_vect.h>
   8
   9#ifndef __INTEL_COMPILER
  10#pragma GCC diagnostic ignored "-Wcast-qual"
  11#endif
  12
  13#define ICE_DESCS_PER_LOOP_AVX 8
  14
  15static __rte_always_inline void
  16ice_rxq_rearm(struct ice_rx_queue *rxq)
  17{
  18        int i;
  19        uint16_t rx_id;
  20        volatile union ice_rx_flex_desc *rxdp;
  21        struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
  22        struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp,
  23                        rte_lcore_id());
  24
  25        rxdp = rxq->rx_ring + rxq->rxrearm_start;
  26
  27        if (unlikely(!cache))
  28                return ice_rxq_rearm_common(rxq, true);
  29
  30        /* We need to pull 'n' more MBUFs into the software ring */
  31        if (cache->len < ICE_RXQ_REARM_THRESH) {
  32                uint32_t req = ICE_RXQ_REARM_THRESH + (cache->size -
  33                                cache->len);
  34
  35                int ret = rte_mempool_ops_dequeue_bulk(rxq->mp,
  36                                &cache->objs[cache->len], req);
  37                if (ret == 0) {
  38                        cache->len += req;
  39                } else {
  40                        if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
  41                            rxq->nb_rx_desc) {
  42                                __m128i dma_addr0;
  43
  44                                dma_addr0 = _mm_setzero_si128();
  45                                for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
  46                                        rxep[i].mbuf = &rxq->fake_mbuf;
  47                                        _mm_store_si128
  48                                                ((__m128i *)&rxdp[i].read,
  49                                                        dma_addr0);
  50                                }
  51                        }
  52                        rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
  53                                ICE_RXQ_REARM_THRESH;
  54                        return;
  55                }
  56        }
  57
  58        const __m512i iova_offsets =  _mm512_set1_epi64
  59                (offsetof(struct rte_mbuf, buf_iova));
  60        const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
  61
  62#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
  63        /* shuffle the iova into correct slots. Values 4-7 will contain
  64         * zeros, so use 7 for a zero-value.
  65         */
  66        const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
  67#else
  68        const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
  69#endif
  70
  71        /* fill up the rxd in vector, process 8 mbufs in one loop */
  72        for (i = 0; i < ICE_RXQ_REARM_THRESH / 8; i++) {
  73                const __m512i mbuf_ptrs = _mm512_loadu_si512
  74                        (&cache->objs[cache->len - 8]);
  75                _mm512_store_si512(rxep, mbuf_ptrs);
  76
  77                /* gather iova of mbuf0-7 into one zmm reg */
  78                const __m512i iova_base_addrs = _mm512_i64gather_epi64
  79                        (_mm512_add_epi64(mbuf_ptrs, iova_offsets),
  80                                0, /* base */
  81                                1  /* scale */);
  82                const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
  83                                headroom);
  84#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
  85                const __m512i iovas0 = _mm512_castsi256_si512
  86                        (_mm512_extracti64x4_epi64(iova_addrs, 0));
  87                const __m512i iovas1 = _mm512_castsi256_si512
  88                        (_mm512_extracti64x4_epi64(iova_addrs, 1));
  89
  90                /* permute leaves iova 2-3 in hdr_addr of desc 0-1
  91                 * but these are ignored by driver since header split not
  92                 * enabled. Similarly for desc 4 & 5.
  93                 */
  94                const __m512i desc0_1 = _mm512_permutexvar_epi64
  95                        (permute_idx, iovas0);
  96                const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
  97
  98                const __m512i desc4_5 = _mm512_permutexvar_epi64
  99                        (permute_idx, iovas1);
 100                const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
 101
 102                _mm512_store_si512((void *)rxdp, desc0_1);
 103                _mm512_store_si512((void *)(rxdp + 2), desc2_3);
 104                _mm512_store_si512((void *)(rxdp + 4), desc4_5);
 105                _mm512_store_si512((void *)(rxdp + 6), desc6_7);
 106#else
 107                /* permute leaves iova 4-7 in hdr_addr of desc 0-3
 108                 * but these are ignored by driver since header split not
 109                 * enabled.
 110                 */
 111                const __m512i desc0_3 = _mm512_permutexvar_epi64
 112                        (permute_idx, iova_addrs);
 113                const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
 114
 115                _mm512_store_si512((void *)rxdp, desc0_3);
 116                _mm512_store_si512((void *)(rxdp + 4), desc4_7);
 117#endif
 118                rxep += 8, rxdp += 8, cache->len -= 8;
 119        }
 120
 121        rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
 122        if (rxq->rxrearm_start >= rxq->nb_rx_desc)
 123                rxq->rxrearm_start = 0;
 124
 125        rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
 126
 127        rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
 128                             (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
 129
 130        /* Update the tail pointer on the NIC */
 131        ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
 132}
 133
 134static inline __m256i
 135ice_flex_rxd_to_fdir_flags_vec_avx512(const __m256i fdir_id0_7)
 136{
 137#define FDID_MIS_MAGIC 0xFFFFFFFF
 138        RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
 139        RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
 140        const __m256i pkt_fdir_bit = _mm256_set1_epi32(PKT_RX_FDIR |
 141                        PKT_RX_FDIR_ID);
 142        /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
 143        const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC);
 144        __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7,
 145                        fdir_mis_mask);
 146        /* this XOR op results to bit-reverse the fdir_mask */
 147        fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask);
 148        const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
 149
 150        return fdir_flags;
 151}
 152
 153static __rte_always_inline uint16_t
 154_ice_recv_raw_pkts_vec_avx512(struct ice_rx_queue *rxq,
 155                              struct rte_mbuf **rx_pkts,
 156                              uint16_t nb_pkts,
 157                              uint8_t *split_packet,
 158                              bool do_offload)
 159{
 160        const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
 161        const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
 162                        0, rxq->mbuf_initializer);
 163        struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
 164        volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
 165
 166        rte_prefetch0(rxdp);
 167
 168        /* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
 169        nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
 170
 171        /* See if we need to rearm the RX queue - gives the prefetch a bit
 172         * of time to act
 173         */
 174        if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
 175                ice_rxq_rearm(rxq);
 176
 177        /* Before we start moving massive data around, check to see if
 178         * there is actually a packet available
 179         */
 180        if (!(rxdp->wb.status_error0 &
 181                        rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
 182                return 0;
 183
 184        /* constants used in processing loop */
 185        const __m512i crc_adjust =
 186                _mm512_set4_epi32
 187                        (0,             /* ignore non-length fields */
 188                         -rxq->crc_len, /* sub crc on data_len */
 189                         -rxq->crc_len, /* sub crc on pkt_len */
 190                         0              /* ignore non-length fields */
 191                        );
 192
 193        /* 8 packets DD mask, LSB in each 32-bit value */
 194        const __m256i dd_check = _mm256_set1_epi32(1);
 195
 196        /* 8 packets EOP mask, second-LSB in each 32-bit value */
 197        const __m256i eop_check = _mm256_slli_epi32(dd_check,
 198                        ICE_RX_DESC_STATUS_EOF_S);
 199
 200        /* mask to shuffle from desc. to mbuf (4 descriptors)*/
 201        const __m512i shuf_msk =
 202                _mm512_set4_epi32
 203                        (/* rss hash parsed separately */
 204                         0xFFFFFFFF,
 205                         /* octet 10~11, 16 bits vlan_macip */
 206                         /* octet 4~5, 16 bits data_len */
 207                         11 << 24 | 10 << 16 | 5 << 8 | 4,
 208                         /* skip hi 16 bits pkt_len, zero out */
 209                         /* octet 4~5, 16 bits pkt_len */
 210                         0xFFFF << 16 | 5 << 8 | 4,
 211                         /* pkt_type set as unknown */
 212                         0xFFFFFFFF
 213                        );
 214
 215        /**
 216         * compile-time check the above crc and shuffle layout is correct.
 217         * NOTE: the first field (lowest address) is given last in set_epi
 218         * calls above.
 219         */
 220        RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
 221                        offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
 222        RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
 223                        offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
 224        RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
 225                        offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
 226        RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
 227                        offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
 228
 229        /* following code block is for Rx Checksum Offload */
 230        /* Status/Error flag masks */
 231        /**
 232         * mask everything except Checksum Reports, RSS indication
 233         * and VLAN indication.
 234         * bit6:4 for IP/L4 checksum errors.
 235         * bit12 is for RSS indication.
 236         * bit13 is for VLAN indication.
 237         */
 238        const __m256i flags_mask =
 239                 _mm256_set1_epi32((0xF << 4) | (1 << 12) | (1 << 13));
 240        /**
 241         * data to be shuffled by the result of the flags mask shifted by 4
 242         * bits.  This gives use the l3_l4 flags.
 243         */
 244        const __m256i l3_l4_flags_shuf =
 245                _mm256_set_epi8((PKT_RX_OUTER_L4_CKSUM_BAD >> 20 |
 246                 PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
 247                  PKT_RX_IP_CKSUM_BAD) >> 1,
 248                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 249                 PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
 250                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 251                 PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
 252                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 253                 PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
 254                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
 255                 PKT_RX_IP_CKSUM_BAD) >> 1,
 256                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
 257                 PKT_RX_IP_CKSUM_GOOD) >> 1,
 258                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
 259                 PKT_RX_IP_CKSUM_BAD) >> 1,
 260                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
 261                 PKT_RX_IP_CKSUM_GOOD) >> 1,
 262                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 263                 PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
 264                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 265                 PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
 266                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 267                 PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
 268                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 269                 PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
 270                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
 271                 PKT_RX_IP_CKSUM_BAD) >> 1,
 272                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
 273                 PKT_RX_IP_CKSUM_GOOD) >> 1,
 274                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
 275                 PKT_RX_IP_CKSUM_BAD) >> 1,
 276                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
 277                 PKT_RX_IP_CKSUM_GOOD) >> 1,
 278                /**
 279                 * second 128-bits
 280                 * shift right 20 bits to use the low two bits to indicate
 281                 * outer checksum status
 282                 * shift right 1 bit to make sure it not exceed 255
 283                 */
 284                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 285                 PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
 286                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 287                 PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
 288                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 289                 PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
 290                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 291                 PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
 292                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
 293                 PKT_RX_IP_CKSUM_BAD) >> 1,
 294                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD  |
 295                 PKT_RX_IP_CKSUM_GOOD) >> 1,
 296                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
 297                 PKT_RX_IP_CKSUM_BAD) >> 1,
 298                (PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
 299                 PKT_RX_IP_CKSUM_GOOD) >> 1,
 300                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 301                 PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
 302                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 303                 PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
 304                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 305                 PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
 306                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
 307                 PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
 308                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
 309                 PKT_RX_IP_CKSUM_BAD) >> 1,
 310                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
 311                 PKT_RX_IP_CKSUM_GOOD) >> 1,
 312                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
 313                 PKT_RX_IP_CKSUM_BAD) >> 1,
 314                (PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
 315                 PKT_RX_IP_CKSUM_GOOD) >> 1);
 316        const __m256i cksum_mask =
 317                 _mm256_set1_epi32(PKT_RX_IP_CKSUM_MASK |
 318                                   PKT_RX_L4_CKSUM_MASK |
 319                                   PKT_RX_OUTER_IP_CKSUM_BAD |
 320                                   PKT_RX_OUTER_L4_CKSUM_MASK);
 321        /**
 322         * data to be shuffled by result of flag mask, shifted down 12.
 323         * If RSS(bit12)/VLAN(bit13) are set,
 324         * shuffle moves appropriate flags in place.
 325         */
 326        const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
 327                        0, 0, 0, 0,
 328                        0, 0, 0, 0,
 329                        PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
 330                        PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
 331                        PKT_RX_RSS_HASH, 0,
 332                        /* 2nd 128-bits */
 333                        0, 0, 0, 0,
 334                        0, 0, 0, 0,
 335                        0, 0, 0, 0,
 336                        PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
 337                        PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
 338                        PKT_RX_RSS_HASH, 0);
 339
 340        uint16_t i, received;
 341
 342        for (i = 0, received = 0; i < nb_pkts;
 343             i += ICE_DESCS_PER_LOOP_AVX,
 344             rxdp += ICE_DESCS_PER_LOOP_AVX) {
 345                /* step 1, copy over 8 mbuf pointers to rx_pkts array */
 346                _mm256_storeu_si256((void *)&rx_pkts[i],
 347                                    _mm256_loadu_si256((void *)&sw_ring[i]));
 348#ifdef RTE_ARCH_X86_64
 349                _mm256_storeu_si256
 350                        ((void *)&rx_pkts[i + 4],
 351                         _mm256_loadu_si256((void *)&sw_ring[i + 4]));
 352#endif
 353
 354                __m512i raw_desc0_3, raw_desc4_7;
 355                __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
 356
 357                /* load in descriptors, in reverse order */
 358                const __m128i raw_desc7 =
 359                        _mm_load_si128((void *)(rxdp + 7));
 360                rte_compiler_barrier();
 361                const __m128i raw_desc6 =
 362                        _mm_load_si128((void *)(rxdp + 6));
 363                rte_compiler_barrier();
 364                const __m128i raw_desc5 =
 365                        _mm_load_si128((void *)(rxdp + 5));
 366                rte_compiler_barrier();
 367                const __m128i raw_desc4 =
 368                        _mm_load_si128((void *)(rxdp + 4));
 369                rte_compiler_barrier();
 370                const __m128i raw_desc3 =
 371                        _mm_load_si128((void *)(rxdp + 3));
 372                rte_compiler_barrier();
 373                const __m128i raw_desc2 =
 374                        _mm_load_si128((void *)(rxdp + 2));
 375                rte_compiler_barrier();
 376                const __m128i raw_desc1 =
 377                        _mm_load_si128((void *)(rxdp + 1));
 378                rte_compiler_barrier();
 379                const __m128i raw_desc0 =
 380                        _mm_load_si128((void *)(rxdp + 0));
 381
 382                raw_desc6_7 =
 383                        _mm256_inserti128_si256
 384                                (_mm256_castsi128_si256(raw_desc6),
 385                                 raw_desc7, 1);
 386                raw_desc4_5 =
 387                        _mm256_inserti128_si256
 388                                (_mm256_castsi128_si256(raw_desc4),
 389                                 raw_desc5, 1);
 390                raw_desc2_3 =
 391                        _mm256_inserti128_si256
 392                                (_mm256_castsi128_si256(raw_desc2),
 393                                 raw_desc3, 1);
 394                raw_desc0_1 =
 395                        _mm256_inserti128_si256
 396                                (_mm256_castsi128_si256(raw_desc0),
 397                                 raw_desc1, 1);
 398
 399                raw_desc4_7 =
 400                        _mm512_inserti64x4
 401                                (_mm512_castsi256_si512(raw_desc4_5),
 402                                 raw_desc6_7, 1);
 403                raw_desc0_3 =
 404                        _mm512_inserti64x4
 405                                (_mm512_castsi256_si512(raw_desc0_1),
 406                                 raw_desc2_3, 1);
 407
 408                if (split_packet) {
 409                        int j;
 410
 411                        for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
 412                                rte_mbuf_prefetch_part2(rx_pkts[i + j]);
 413                }
 414
 415                /**
 416                 * convert descriptors 0-7 into mbufs, re-arrange fields.
 417                 * Then write into the mbuf.
 418                 */
 419                __m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
 420                __m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
 421
 422                mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
 423                mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
 424
 425                /**
 426                 * to get packet types, ptype is located in bit16-25
 427                 * of each 128bits
 428                 */
 429                const __m512i ptype_mask =
 430                        _mm512_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
 431
 432                /**
 433                 * to get packet types, ptype is located in bit16-25
 434                 * of each 128bits
 435                 */
 436                const __m512i ptypes4_7 =
 437                        _mm512_and_si512(raw_desc4_7, ptype_mask);
 438                const __m512i ptypes0_3 =
 439                        _mm512_and_si512(raw_desc0_3, ptype_mask);
 440
 441                const __m256i ptypes6_7 =
 442                        _mm512_extracti64x4_epi64(ptypes4_7, 1);
 443                const __m256i ptypes4_5 =
 444                        _mm512_extracti64x4_epi64(ptypes4_7, 0);
 445                const __m256i ptypes2_3 =
 446                        _mm512_extracti64x4_epi64(ptypes0_3, 1);
 447                const __m256i ptypes0_1 =
 448                        _mm512_extracti64x4_epi64(ptypes0_3, 0);
 449                const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
 450                const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
 451                const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
 452                const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
 453                const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
 454                const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
 455                const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
 456                const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
 457
 458                const __m512i ptype4_7 = _mm512_set_epi32
 459                        (0, 0, 0, ptype_tbl[ptype7],
 460                         0, 0, 0, ptype_tbl[ptype6],
 461                         0, 0, 0, ptype_tbl[ptype5],
 462                         0, 0, 0, ptype_tbl[ptype4]);
 463                const __m512i ptype0_3 = _mm512_set_epi32
 464                        (0, 0, 0, ptype_tbl[ptype3],
 465                         0, 0, 0, ptype_tbl[ptype2],
 466                         0, 0, 0, ptype_tbl[ptype1],
 467                         0, 0, 0, ptype_tbl[ptype0]);
 468
 469                mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
 470                mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
 471
 472                __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
 473                __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
 474                __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
 475                __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
 476
 477                /**
 478                 * use permute/extract to get status content
 479                 * After the operations, the packets status flags are in the
 480                 * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
 481                 */
 482                /* merge the status bits into one register */
 483                const __m512i status_permute_msk = _mm512_set_epi32
 484                        (0, 0, 0, 0,
 485                         0, 0, 0, 0,
 486                         22, 30, 6, 14,
 487                         18, 26, 2, 10);
 488                const __m512i raw_status0_7 = _mm512_permutex2var_epi32
 489                        (raw_desc4_7, status_permute_msk, raw_desc0_3);
 490                __m256i status0_7 = _mm512_extracti64x4_epi64
 491                        (raw_status0_7, 0);
 492
 493                __m256i mbuf_flags = _mm256_set1_epi32(0);
 494
 495                if (do_offload) {
 496                        /* now do flag manipulation */
 497
 498                        /* get only flag/error bits we want */
 499                        const __m256i flag_bits =
 500                                _mm256_and_si256(status0_7, flags_mask);
 501                        /**
 502                         * l3_l4_error flags, shuffle, then shift to correct adjustment
 503                         * of flags in flags_shuf, and finally mask out extra bits
 504                         */
 505                        __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
 506                                        _mm256_srli_epi32(flag_bits, 4));
 507                        l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
 508                        __m256i l4_outer_mask = _mm256_set1_epi32(0x6);
 509                        __m256i l4_outer_flags =
 510                                        _mm256_and_si256(l3_l4_flags, l4_outer_mask);
 511                        l4_outer_flags = _mm256_slli_epi32(l4_outer_flags, 20);
 512
 513                        __m256i l3_l4_mask = _mm256_set1_epi32(~0x6);
 514
 515                        l3_l4_flags = _mm256_and_si256(l3_l4_flags, l3_l4_mask);
 516                        l3_l4_flags = _mm256_or_si256(l3_l4_flags, l4_outer_flags);
 517                        l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
 518                        /* set rss and vlan flags */
 519                        const __m256i rss_vlan_flag_bits =
 520                                _mm256_srli_epi32(flag_bits, 12);
 521                        const __m256i rss_vlan_flags =
 522                                _mm256_shuffle_epi8(rss_vlan_flags_shuf,
 523                                                    rss_vlan_flag_bits);
 524
 525                        /* merge flags */
 526                        mbuf_flags = _mm256_or_si256(l3_l4_flags,
 527                                                     rss_vlan_flags);
 528                }
 529
 530                if (rxq->fdir_enabled) {
 531                        const __m256i fdir_id4_7 =
 532                                _mm256_unpackhi_epi32(raw_desc6_7, raw_desc4_5);
 533
 534                        const __m256i fdir_id0_3 =
 535                                _mm256_unpackhi_epi32(raw_desc2_3, raw_desc0_1);
 536
 537                        const __m256i fdir_id0_7 =
 538                                _mm256_unpackhi_epi64(fdir_id4_7, fdir_id0_3);
 539
 540                        if (do_offload) {
 541                                const __m256i fdir_flags =
 542                                        ice_flex_rxd_to_fdir_flags_vec_avx512
 543                                                (fdir_id0_7);
 544
 545                                /* merge with fdir_flags */
 546                                mbuf_flags = _mm256_or_si256
 547                                                (mbuf_flags, fdir_flags);
 548                        } else {
 549                                mbuf_flags =
 550                                        ice_flex_rxd_to_fdir_flags_vec_avx512
 551                                                (fdir_id0_7);
 552                        }
 553
 554                        /* write to mbuf: have to use scalar store here */
 555                        rx_pkts[i + 0]->hash.fdir.hi =
 556                                _mm256_extract_epi32(fdir_id0_7, 3);
 557
 558                        rx_pkts[i + 1]->hash.fdir.hi =
 559                                _mm256_extract_epi32(fdir_id0_7, 7);
 560
 561                        rx_pkts[i + 2]->hash.fdir.hi =
 562                                _mm256_extract_epi32(fdir_id0_7, 2);
 563
 564                        rx_pkts[i + 3]->hash.fdir.hi =
 565                                _mm256_extract_epi32(fdir_id0_7, 6);
 566
 567                        rx_pkts[i + 4]->hash.fdir.hi =
 568                                _mm256_extract_epi32(fdir_id0_7, 1);
 569
 570                        rx_pkts[i + 5]->hash.fdir.hi =
 571                                _mm256_extract_epi32(fdir_id0_7, 5);
 572
 573                        rx_pkts[i + 6]->hash.fdir.hi =
 574                                _mm256_extract_epi32(fdir_id0_7, 0);
 575
 576                        rx_pkts[i + 7]->hash.fdir.hi =
 577                                _mm256_extract_epi32(fdir_id0_7, 4);
 578                } /* if() on fdir_enabled */
 579
 580                if (do_offload) {
 581#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
 582                        /**
 583                         * needs to load 2nd 16B of each desc for RSS hash parsing,
 584                         * will cause performance drop to get into this context.
 585                         */
 586                        if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads &
 587                                        DEV_RX_OFFLOAD_RSS_HASH) {
 588                                /* load bottom half of every 32B desc */
 589                                const __m128i raw_desc_bh7 =
 590                                        _mm_load_si128
 591                                                ((void *)(&rxdp[7].wb.status_error1));
 592                                rte_compiler_barrier();
 593                                const __m128i raw_desc_bh6 =
 594                                        _mm_load_si128
 595                                                ((void *)(&rxdp[6].wb.status_error1));
 596                                rte_compiler_barrier();
 597                                const __m128i raw_desc_bh5 =
 598                                        _mm_load_si128
 599                                                ((void *)(&rxdp[5].wb.status_error1));
 600                                rte_compiler_barrier();
 601                                const __m128i raw_desc_bh4 =
 602                                        _mm_load_si128
 603                                                ((void *)(&rxdp[4].wb.status_error1));
 604                                rte_compiler_barrier();
 605                                const __m128i raw_desc_bh3 =
 606                                        _mm_load_si128
 607                                                ((void *)(&rxdp[3].wb.status_error1));
 608                                rte_compiler_barrier();
 609                                const __m128i raw_desc_bh2 =
 610                                        _mm_load_si128
 611                                                ((void *)(&rxdp[2].wb.status_error1));
 612                                rte_compiler_barrier();
 613                                const __m128i raw_desc_bh1 =
 614                                        _mm_load_si128
 615                                                ((void *)(&rxdp[1].wb.status_error1));
 616                                rte_compiler_barrier();
 617                                const __m128i raw_desc_bh0 =
 618                                        _mm_load_si128
 619                                                ((void *)(&rxdp[0].wb.status_error1));
 620
 621                                __m256i raw_desc_bh6_7 =
 622                                        _mm256_inserti128_si256
 623                                                (_mm256_castsi128_si256(raw_desc_bh6),
 624                                                raw_desc_bh7, 1);
 625                                __m256i raw_desc_bh4_5 =
 626                                        _mm256_inserti128_si256
 627                                                (_mm256_castsi128_si256(raw_desc_bh4),
 628                                                raw_desc_bh5, 1);
 629                                __m256i raw_desc_bh2_3 =
 630                                        _mm256_inserti128_si256
 631                                                (_mm256_castsi128_si256(raw_desc_bh2),
 632                                                raw_desc_bh3, 1);
 633                                __m256i raw_desc_bh0_1 =
 634                                        _mm256_inserti128_si256
 635                                                (_mm256_castsi128_si256(raw_desc_bh0),
 636                                                raw_desc_bh1, 1);
 637
 638                                /**
 639                                 * to shift the 32b RSS hash value to the
 640                                 * highest 32b of each 128b before mask
 641                                 */
 642                                __m256i rss_hash6_7 =
 643                                        _mm256_slli_epi64(raw_desc_bh6_7, 32);
 644                                __m256i rss_hash4_5 =
 645                                        _mm256_slli_epi64(raw_desc_bh4_5, 32);
 646                                __m256i rss_hash2_3 =
 647                                        _mm256_slli_epi64(raw_desc_bh2_3, 32);
 648                                __m256i rss_hash0_1 =
 649                                        _mm256_slli_epi64(raw_desc_bh0_1, 32);
 650
 651                                __m256i rss_hash_msk =
 652                                        _mm256_set_epi32(0xFFFFFFFF, 0, 0, 0,
 653                                                         0xFFFFFFFF, 0, 0, 0);
 654
 655                                rss_hash6_7 = _mm256_and_si256
 656                                                (rss_hash6_7, rss_hash_msk);
 657                                rss_hash4_5 = _mm256_and_si256
 658                                                (rss_hash4_5, rss_hash_msk);
 659                                rss_hash2_3 = _mm256_and_si256
 660                                                (rss_hash2_3, rss_hash_msk);
 661                                rss_hash0_1 = _mm256_and_si256
 662                                                (rss_hash0_1, rss_hash_msk);
 663
 664                                mb6_7 = _mm256_or_si256(mb6_7, rss_hash6_7);
 665                                mb4_5 = _mm256_or_si256(mb4_5, rss_hash4_5);
 666                                mb2_3 = _mm256_or_si256(mb2_3, rss_hash2_3);
 667                                mb0_1 = _mm256_or_si256(mb0_1, rss_hash0_1);
 668                        } /* if() on RSS hash parsing */
 669#endif
 670                }
 671
 672                /**
 673                 * At this point, we have the 8 sets of flags in the low 16-bits
 674                 * of each 32-bit value in vlan0.
 675                 * We want to extract these, and merge them with the mbuf init
 676                 * data so we can do a single write to the mbuf to set the flags
 677                 * and all the other initialization fields. Extracting the
 678                 * appropriate flags means that we have to do a shift and blend
 679                 * for each mbuf before we do the write. However, we can also
 680                 * add in the previously computed rx_descriptor fields to
 681                 * make a single 256-bit write per mbuf
 682                 */
 683                /* check the structure matches expectations */
 684                RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
 685                                 offsetof(struct rte_mbuf, rearm_data) + 8);
 686                RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
 687                                 RTE_ALIGN(offsetof(struct rte_mbuf,
 688                                                    rearm_data),
 689                                           16));
 690                /* build up data and do writes */
 691                __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
 692                        rearm6, rearm7;
 693
 694                rearm6 = _mm256_blend_epi32(mbuf_init,
 695                                            _mm256_slli_si256(mbuf_flags, 8),
 696                                            0x04);
 697                rearm4 = _mm256_blend_epi32(mbuf_init,
 698                                            _mm256_slli_si256(mbuf_flags, 4),
 699                                            0x04);
 700                rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
 701                rearm0 = _mm256_blend_epi32(mbuf_init,
 702                                            _mm256_srli_si256(mbuf_flags, 4),
 703                                            0x04);
 704
 705                /* permute to add in the rx_descriptor e.g. rss fields */
 706                rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
 707                rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
 708                rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
 709                rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
 710
 711                /* write to mbuf */
 712                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
 713                                    rearm6);
 714                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
 715                                    rearm4);
 716                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
 717                                    rearm2);
 718                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
 719                                    rearm0);
 720
 721                /* repeat for the odd mbufs */
 722                const __m256i odd_flags =
 723                        _mm256_castsi128_si256
 724                                (_mm256_extracti128_si256(mbuf_flags, 1));
 725                rearm7 = _mm256_blend_epi32(mbuf_init,
 726                                            _mm256_slli_si256(odd_flags, 8),
 727                                            0x04);
 728                rearm5 = _mm256_blend_epi32(mbuf_init,
 729                                            _mm256_slli_si256(odd_flags, 4),
 730                                            0x04);
 731                rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
 732                rearm1 = _mm256_blend_epi32(mbuf_init,
 733                                            _mm256_srli_si256(odd_flags, 4),
 734                                            0x04);
 735
 736                /* since odd mbufs are already in hi 128-bits use blend */
 737                rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
 738                rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
 739                rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
 740                rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
 741                /* again write to mbufs */
 742                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
 743                                    rearm7);
 744                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
 745                                    rearm5);
 746                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
 747                                    rearm3);
 748                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
 749                                    rearm1);
 750
 751                /* extract and record EOP bit */
 752                if (split_packet) {
 753                        const __m128i eop_mask =
 754                                _mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
 755                        const __m256i eop_bits256 = _mm256_and_si256(status0_7,
 756                                                                     eop_check);
 757                        /* pack status bits into a single 128-bit register */
 758                        const __m128i eop_bits =
 759                                _mm_packus_epi32
 760                                        (_mm256_castsi256_si128(eop_bits256),
 761                                         _mm256_extractf128_si256(eop_bits256,
 762                                                                  1));
 763                        /**
 764                         * flip bits, and mask out the EOP bit, which is now
 765                         * a split-packet bit i.e. !EOP, rather than EOP one.
 766                         */
 767                        __m128i split_bits = _mm_andnot_si128(eop_bits,
 768                                        eop_mask);
 769                        /**
 770                         * eop bits are out of order, so we need to shuffle them
 771                         * back into order again. In doing so, only use low 8
 772                         * bits, which acts like another pack instruction
 773                         * The original order is (hi->lo): 1,3,5,7,0,2,4,6
 774                         * [Since we use epi8, the 16-bit positions are
 775                         * multiplied by 2 in the eop_shuffle value.]
 776                         */
 777                        __m128i eop_shuffle =
 778                                _mm_set_epi8(/* zero hi 64b */
 779                                             0xFF, 0xFF, 0xFF, 0xFF,
 780                                             0xFF, 0xFF, 0xFF, 0xFF,
 781                                             /* move values to lo 64b */
 782                                             8, 0, 10, 2,
 783                                             12, 4, 14, 6);
 784                        split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
 785                        *(uint64_t *)split_packet =
 786                                _mm_cvtsi128_si64(split_bits);
 787                        split_packet += ICE_DESCS_PER_LOOP_AVX;
 788                }
 789
 790                /* perform dd_check */
 791                status0_7 = _mm256_and_si256(status0_7, dd_check);
 792                status0_7 = _mm256_packs_epi32(status0_7,
 793                                               _mm256_setzero_si256());
 794
 795                uint64_t burst = __builtin_popcountll
 796                                        (_mm_cvtsi128_si64
 797                                                (_mm256_extracti128_si256
 798                                                        (status0_7, 1)));
 799                burst += __builtin_popcountll
 800                                (_mm_cvtsi128_si64
 801                                        (_mm256_castsi256_si128(status0_7)));
 802                received += burst;
 803                if (burst != ICE_DESCS_PER_LOOP_AVX)
 804                        break;
 805        }
 806
 807        /* update tail pointers */
 808        rxq->rx_tail += received;
 809        rxq->rx_tail &= (rxq->nb_rx_desc - 1);
 810        if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
 811                rxq->rx_tail--;
 812                received--;
 813        }
 814        rxq->rxrearm_nb += received;
 815        return received;
 816}
 817
 818/**
 819 * Notice:
 820 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
 821 */
 822uint16_t
 823ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
 824                         uint16_t nb_pkts)
 825{
 826        return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL, false);
 827}
 828
 829/**
 830 * Notice:
 831 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
 832 */
 833uint16_t
 834ice_recv_pkts_vec_avx512_offload(void *rx_queue, struct rte_mbuf **rx_pkts,
 835                                 uint16_t nb_pkts)
 836{
 837        return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts,
 838                                             nb_pkts, NULL, true);
 839}
 840
 841/**
 842 * vPMD receive routine that reassembles single burst of 32 scattered packets
 843 * Notice:
 844 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
 845 */
 846static uint16_t
 847ice_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
 848                                    uint16_t nb_pkts)
 849{
 850        struct ice_rx_queue *rxq = rx_queue;
 851        uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
 852
 853        /* get some new buffers */
 854        uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
 855                                                       split_flags, false);
 856        if (nb_bufs == 0)
 857                return 0;
 858
 859        /* happy day case, full burst + no packets to be joined */
 860        const uint64_t *split_fl64 = (uint64_t *)split_flags;
 861
 862        if (!rxq->pkt_first_seg &&
 863            split_fl64[0] == 0 && split_fl64[1] == 0 &&
 864            split_fl64[2] == 0 && split_fl64[3] == 0)
 865                return nb_bufs;
 866
 867        /* reassemble any packets that need reassembly */
 868        unsigned int i = 0;
 869
 870        if (!rxq->pkt_first_seg) {
 871                /* find the first split flag, and only reassemble then */
 872                while (i < nb_bufs && !split_flags[i])
 873                        i++;
 874                if (i == nb_bufs)
 875                        return nb_bufs;
 876                rxq->pkt_first_seg = rx_pkts[i];
 877        }
 878        return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
 879                                             &split_flags[i]);
 880}
 881
 882/**
 883 * vPMD receive routine that reassembles single burst of 32 scattered packets
 884 * Notice:
 885 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
 886 */
 887static uint16_t
 888ice_recv_scattered_burst_vec_avx512_offload(void *rx_queue,
 889                                            struct rte_mbuf **rx_pkts,
 890                                            uint16_t nb_pkts)
 891{
 892        struct ice_rx_queue *rxq = rx_queue;
 893        uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
 894
 895        /* get some new buffers */
 896        uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq,
 897                                rx_pkts, nb_pkts, split_flags, true);
 898        if (nb_bufs == 0)
 899                return 0;
 900
 901        /* happy day case, full burst + no packets to be joined */
 902        const uint64_t *split_fl64 = (uint64_t *)split_flags;
 903
 904        if (!rxq->pkt_first_seg &&
 905            split_fl64[0] == 0 && split_fl64[1] == 0 &&
 906            split_fl64[2] == 0 && split_fl64[3] == 0)
 907                return nb_bufs;
 908
 909        /* reassemble any packets that need reassembly */
 910        unsigned int i = 0;
 911
 912        if (!rxq->pkt_first_seg) {
 913                /* find the first split flag, and only reassemble then */
 914                while (i < nb_bufs && !split_flags[i])
 915                        i++;
 916                if (i == nb_bufs)
 917                        return nb_bufs;
 918                rxq->pkt_first_seg = rx_pkts[i];
 919        }
 920        return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
 921                                             &split_flags[i]);
 922}
 923
 924/**
 925 * vPMD receive routine that reassembles scattered packets.
 926 * Main receive routine that can handle arbitrary burst sizes
 927 * Notice:
 928 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
 929 */
 930uint16_t
 931ice_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
 932                                   uint16_t nb_pkts)
 933{
 934        uint16_t retval = 0;
 935
 936        while (nb_pkts > ICE_VPMD_RX_BURST) {
 937                uint16_t burst = ice_recv_scattered_burst_vec_avx512(rx_queue,
 938                                rx_pkts + retval, ICE_VPMD_RX_BURST);
 939                retval += burst;
 940                nb_pkts -= burst;
 941                if (burst < ICE_VPMD_RX_BURST)
 942                        return retval;
 943        }
 944        return retval + ice_recv_scattered_burst_vec_avx512(rx_queue,
 945                                rx_pkts + retval, nb_pkts);
 946}
 947
 948/**
 949 * vPMD receive routine that reassembles scattered packets.
 950 * Main receive routine that can handle arbitrary burst sizes
 951 * Notice:
 952 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
 953 */
 954uint16_t
 955ice_recv_scattered_pkts_vec_avx512_offload(void *rx_queue,
 956                                           struct rte_mbuf **rx_pkts,
 957                                           uint16_t nb_pkts)
 958{
 959        uint16_t retval = 0;
 960
 961        while (nb_pkts > ICE_VPMD_RX_BURST) {
 962                uint16_t burst =
 963                        ice_recv_scattered_burst_vec_avx512_offload(rx_queue,
 964                                rx_pkts + retval, ICE_VPMD_RX_BURST);
 965                retval += burst;
 966                nb_pkts -= burst;
 967                if (burst < ICE_VPMD_RX_BURST)
 968                        return retval;
 969        }
 970        return retval + ice_recv_scattered_burst_vec_avx512_offload(rx_queue,
 971                                rx_pkts + retval, nb_pkts);
 972}
 973
 974static __rte_always_inline int
 975ice_tx_free_bufs_avx512(struct ice_tx_queue *txq)
 976{
 977        struct ice_vec_tx_entry *txep;
 978        uint32_t n;
 979        uint32_t i;
 980        int nb_free = 0;
 981        struct rte_mbuf *m, *free[ICE_TX_MAX_FREE_BUF_SZ];
 982
 983        /* check DD bits on threshold descriptor */
 984        if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
 985                        rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
 986                        rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
 987                return 0;
 988
 989        n = txq->tx_rs_thresh;
 990
 991        /* first buffer to free from S/W ring is at index
 992         * tx_next_dd - (tx_rs_thresh - 1)
 993         */
 994        txep = (void *)txq->sw_ring;
 995        txep += txq->tx_next_dd - (n - 1);
 996
 997        if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) {
 998                struct rte_mempool *mp = txep[0].mbuf->pool;
 999                void **cache_objs;
1000                struct rte_mempool_cache *cache = rte_mempool_default_cache(mp,
1001                                rte_lcore_id());
1002
1003                if (!cache || cache->len == 0)
1004                        goto normal;
1005
1006                cache_objs = &cache->objs[cache->len];
1007
1008                if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) {
1009                        rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n);
1010                        goto done;
1011                }
1012
1013                /* The cache follows the following algorithm
1014                 *   1. Add the objects to the cache
1015                 *   2. Anything greater than the cache min value (if it
1016                 *   crosses the cache flush threshold) is flushed to the ring.
1017                 */
1018                /* Add elements back into the cache */
1019                uint32_t copied = 0;
1020                /* n is multiple of 32 */
1021                while (copied < n) {
1022                        const __m512i a = _mm512_loadu_si512(&txep[copied]);
1023                        const __m512i b = _mm512_loadu_si512(&txep[copied + 8]);
1024                        const __m512i c = _mm512_loadu_si512(&txep[copied + 16]);
1025                        const __m512i d = _mm512_loadu_si512(&txep[copied + 24]);
1026
1027                        _mm512_storeu_si512(&cache_objs[copied], a);
1028                        _mm512_storeu_si512(&cache_objs[copied + 8], b);
1029                        _mm512_storeu_si512(&cache_objs[copied + 16], c);
1030                        _mm512_storeu_si512(&cache_objs[copied + 24], d);
1031                        copied += 32;
1032                }
1033                cache->len += n;
1034
1035                if (cache->len >= cache->flushthresh) {
1036                        rte_mempool_ops_enqueue_bulk
1037                                (mp, &cache->objs[cache->size],
1038                                 cache->len - cache->size);
1039                        cache->len = cache->size;
1040                }
1041                goto done;
1042        }
1043
1044normal:
1045        m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
1046        if (likely(m)) {
1047                free[0] = m;
1048                nb_free = 1;
1049                for (i = 1; i < n; i++) {
1050                        m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
1051                        if (likely(m)) {
1052                                if (likely(m->pool == free[0]->pool)) {
1053                                        free[nb_free++] = m;
1054                                } else {
1055                                        rte_mempool_put_bulk(free[0]->pool,
1056                                                             (void *)free,
1057                                                             nb_free);
1058                                        free[0] = m;
1059                                        nb_free = 1;
1060                                }
1061                        }
1062                }
1063                rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
1064        } else {
1065                for (i = 1; i < n; i++) {
1066                        m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
1067                        if (m)
1068                                rte_mempool_put(m->pool, m);
1069                }
1070        }
1071
1072done:
1073        /* buffers were freed, update counters */
1074        txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1075        txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1076        if (txq->tx_next_dd >= txq->nb_tx_desc)
1077                txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1078
1079        return txq->tx_rs_thresh;
1080}
1081
1082static __rte_always_inline void
1083ice_vtx1(volatile struct ice_tx_desc *txdp,
1084         struct rte_mbuf *pkt, uint64_t flags, bool do_offload)
1085{
1086        uint64_t high_qw =
1087                (ICE_TX_DESC_DTYPE_DATA |
1088                 ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
1089                 ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
1090
1091        if (do_offload)
1092                ice_txd_enable_offload(pkt, &high_qw);
1093
1094        __m128i descriptor = _mm_set_epi64x(high_qw,
1095                                pkt->buf_iova + pkt->data_off);
1096        _mm_store_si128((__m128i *)txdp, descriptor);
1097}
1098
1099static __rte_always_inline void
1100ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt,
1101        uint16_t nb_pkts,  uint64_t flags, bool do_offload)
1102{
1103        const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
1104                        ((uint64_t)flags  << ICE_TXD_QW1_CMD_S));
1105
1106        for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
1107                uint64_t hi_qw3 =
1108                        hi_qw_tmpl |
1109                        ((uint64_t)pkt[3]->data_len <<
1110                         ICE_TXD_QW1_TX_BUF_SZ_S);
1111                if (do_offload)
1112                        ice_txd_enable_offload(pkt[3], &hi_qw3);
1113                uint64_t hi_qw2 =
1114                        hi_qw_tmpl |
1115                        ((uint64_t)pkt[2]->data_len <<
1116                         ICE_TXD_QW1_TX_BUF_SZ_S);
1117                if (do_offload)
1118                        ice_txd_enable_offload(pkt[2], &hi_qw2);
1119                uint64_t hi_qw1 =
1120                        hi_qw_tmpl |
1121                        ((uint64_t)pkt[1]->data_len <<
1122                         ICE_TXD_QW1_TX_BUF_SZ_S);
1123                if (do_offload)
1124                        ice_txd_enable_offload(pkt[1], &hi_qw1);
1125                uint64_t hi_qw0 =
1126                        hi_qw_tmpl |
1127                        ((uint64_t)pkt[0]->data_len <<
1128                         ICE_TXD_QW1_TX_BUF_SZ_S);
1129                if (do_offload)
1130                        ice_txd_enable_offload(pkt[0], &hi_qw0);
1131
1132                __m512i desc0_3 =
1133                        _mm512_set_epi64
1134                                (hi_qw3,
1135                                 pkt[3]->buf_iova + pkt[3]->data_off,
1136                                 hi_qw2,
1137                                 pkt[2]->buf_iova + pkt[2]->data_off,
1138                                 hi_qw1,
1139                                 pkt[1]->buf_iova + pkt[1]->data_off,
1140                                 hi_qw0,
1141                                 pkt[0]->buf_iova + pkt[0]->data_off);
1142                _mm512_storeu_si512((void *)txdp, desc0_3);
1143        }
1144
1145        /* do any last ones */
1146        while (nb_pkts) {
1147                ice_vtx1(txdp, *pkt, flags, do_offload);
1148                txdp++, pkt++, nb_pkts--;
1149        }
1150}
1151
1152static __rte_always_inline void
1153ice_tx_backlog_entry_avx512(struct ice_vec_tx_entry *txep,
1154                            struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1155{
1156        int i;
1157
1158        for (i = 0; i < (int)nb_pkts; ++i)
1159                txep[i].mbuf = tx_pkts[i];
1160}
1161
1162static __rte_always_inline uint16_t
1163ice_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1164                                uint16_t nb_pkts, bool do_offload)
1165{
1166        struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1167        volatile struct ice_tx_desc *txdp;
1168        struct ice_vec_tx_entry *txep;
1169        uint16_t n, nb_commit, tx_id;
1170        uint64_t flags = ICE_TD_CMD;
1171        uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
1172
1173        /* cross rx_thresh boundary is not allowed */
1174        nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1175
1176        if (txq->nb_tx_free < txq->tx_free_thresh)
1177                ice_tx_free_bufs_avx512(txq);
1178
1179        nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1180        if (unlikely(nb_pkts == 0))
1181                return 0;
1182
1183        tx_id = txq->tx_tail;
1184        txdp = &txq->tx_ring[tx_id];
1185        txep = (void *)txq->sw_ring;
1186        txep += tx_id;
1187
1188        txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1189
1190        n = (uint16_t)(txq->nb_tx_desc - tx_id);
1191        if (nb_commit >= n) {
1192                ice_tx_backlog_entry_avx512(txep, tx_pkts, n);
1193
1194                ice_vtx(txdp, tx_pkts, n - 1, flags, do_offload);
1195                tx_pkts += (n - 1);
1196                txdp += (n - 1);
1197
1198                ice_vtx1(txdp, *tx_pkts++, rs, do_offload);
1199
1200                nb_commit = (uint16_t)(nb_commit - n);
1201
1202                tx_id = 0;
1203                txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1204
1205                /* avoid reach the end of ring */
1206                txdp = txq->tx_ring;
1207                txep = (void *)txq->sw_ring;
1208        }
1209
1210        ice_tx_backlog_entry_avx512(txep, tx_pkts, nb_commit);
1211
1212        ice_vtx(txdp, tx_pkts, nb_commit, flags, do_offload);
1213
1214        tx_id = (uint16_t)(tx_id + nb_commit);
1215        if (tx_id > txq->tx_next_rs) {
1216                txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
1217                        rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
1218                                         ICE_TXD_QW1_CMD_S);
1219                txq->tx_next_rs =
1220                        (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1221        }
1222
1223        txq->tx_tail = tx_id;
1224
1225        ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1226
1227        return nb_pkts;
1228}
1229
1230uint16_t
1231ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
1232                         uint16_t nb_pkts)
1233{
1234        uint16_t nb_tx = 0;
1235        struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1236
1237        while (nb_pkts) {
1238                uint16_t ret, num;
1239
1240                num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1241                ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
1242                                &tx_pkts[nb_tx], num, false);
1243                nb_tx += ret;
1244                nb_pkts -= ret;
1245                if (ret < num)
1246                        break;
1247        }
1248
1249        return nb_tx;
1250}
1251
1252uint16_t
1253ice_xmit_pkts_vec_avx512_offload(void *tx_queue, struct rte_mbuf **tx_pkts,
1254                                 uint16_t nb_pkts)
1255{
1256        uint16_t nb_tx = 0;
1257        struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
1258
1259        while (nb_pkts) {
1260                uint16_t ret, num;
1261
1262                num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1263                ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
1264                                &tx_pkts[nb_tx], num, true);
1265
1266                nb_tx += ret;
1267                nb_pkts -= ret;
1268                if (ret < num)
1269                        break;
1270        }
1271
1272        return nb_tx;
1273}
1274