dpdk/app/test-pmd/csumonly.c
<<
>>
Prefs
   1/* SPDX-License-Identifier: BSD-3-Clause
   2 * Copyright(c) 2010-2014 Intel Corporation.
   3 * Copyright 2014 6WIND S.A.
   4 */
   5
   6#include <stdarg.h>
   7#include <stdio.h>
   8#include <errno.h>
   9#include <stdint.h>
  10#include <unistd.h>
  11#include <inttypes.h>
  12
  13#include <sys/queue.h>
  14#include <sys/stat.h>
  15
  16#include <rte_common.h>
  17#include <rte_byteorder.h>
  18#include <rte_log.h>
  19#include <rte_debug.h>
  20#include <rte_cycles.h>
  21#include <rte_memory.h>
  22#include <rte_memcpy.h>
  23#include <rte_launch.h>
  24#include <rte_eal.h>
  25#include <rte_per_lcore.h>
  26#include <rte_lcore.h>
  27#include <rte_atomic.h>
  28#include <rte_branch_prediction.h>
  29#include <rte_mempool.h>
  30#include <rte_mbuf.h>
  31#include <rte_interrupts.h>
  32#include <rte_pci.h>
  33#include <rte_ether.h>
  34#include <rte_ethdev.h>
  35#include <rte_ip.h>
  36#include <rte_tcp.h>
  37#include <rte_udp.h>
  38#include <rte_vxlan.h>
  39#include <rte_sctp.h>
  40#include <rte_gtp.h>
  41#include <rte_prefetch.h>
  42#include <rte_string_fns.h>
  43#include <rte_flow.h>
  44#include <rte_gro.h>
  45#include <rte_gso.h>
  46#include <rte_geneve.h>
  47
  48#include "testpmd.h"
  49
  50#define IP_DEFTTL  64   /* from RFC 1340. */
  51
  52#define GRE_CHECKSUM_PRESENT    0x8000
  53#define GRE_KEY_PRESENT         0x2000
  54#define GRE_SEQUENCE_PRESENT    0x1000
  55#define GRE_EXT_LEN             4
  56#define GRE_SUPPORTED_FIELDS    (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
  57                                 GRE_SEQUENCE_PRESENT)
  58
  59/* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
  60#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
  61#define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
  62#else
  63#define _htons(x) (x)
  64#endif
  65
  66uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT;
  67uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT;
  68
  69/* structure that caches offload info for the current packet */
  70struct testpmd_offload_info {
  71        uint16_t ethertype;
  72        uint8_t gso_enable;
  73        uint16_t l2_len;
  74        uint16_t l3_len;
  75        uint16_t l4_len;
  76        uint8_t l4_proto;
  77        uint8_t is_tunnel;
  78        uint16_t outer_ethertype;
  79        uint16_t outer_l2_len;
  80        uint16_t outer_l3_len;
  81        uint8_t outer_l4_proto;
  82        uint16_t tso_segsz;
  83        uint16_t tunnel_tso_segsz;
  84        uint32_t pkt_len;
  85};
  86
  87/* simplified GRE header */
  88struct simple_gre_hdr {
  89        uint16_t flags;
  90        uint16_t proto;
  91} __rte_packed;
  92
  93static uint16_t
  94get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
  95{
  96        if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
  97                return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
  98        else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
  99                return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
 100}
 101
 102/* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
 103static void
 104parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
 105{
 106        struct rte_tcp_hdr *tcp_hdr;
 107
 108        info->l3_len = rte_ipv4_hdr_len(ipv4_hdr);
 109        info->l4_proto = ipv4_hdr->next_proto_id;
 110
 111        /* only fill l4_len for TCP, it's useful for TSO */
 112        if (info->l4_proto == IPPROTO_TCP) {
 113                tcp_hdr = (struct rte_tcp_hdr *)
 114                        ((char *)ipv4_hdr + info->l3_len);
 115                info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
 116        } else if (info->l4_proto == IPPROTO_UDP)
 117                info->l4_len = sizeof(struct rte_udp_hdr);
 118        else
 119                info->l4_len = 0;
 120}
 121
 122/* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
 123static void
 124parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
 125{
 126        struct rte_tcp_hdr *tcp_hdr;
 127
 128        info->l3_len = sizeof(struct rte_ipv6_hdr);
 129        info->l4_proto = ipv6_hdr->proto;
 130
 131        /* only fill l4_len for TCP, it's useful for TSO */
 132        if (info->l4_proto == IPPROTO_TCP) {
 133                tcp_hdr = (struct rte_tcp_hdr *)
 134                        ((char *)ipv6_hdr + info->l3_len);
 135                info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
 136        } else if (info->l4_proto == IPPROTO_UDP)
 137                info->l4_len = sizeof(struct rte_udp_hdr);
 138        else
 139                info->l4_len = 0;
 140}
 141
 142/*
 143 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
 144 * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN
 145 * headers. The l4_len argument is only set in case of TCP (useful for TSO).
 146 */
 147static void
 148parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
 149{
 150        struct rte_ipv4_hdr *ipv4_hdr;
 151        struct rte_ipv6_hdr *ipv6_hdr;
 152        struct rte_vlan_hdr *vlan_hdr;
 153
 154        info->l2_len = sizeof(struct rte_ether_hdr);
 155        info->ethertype = eth_hdr->ether_type;
 156
 157        while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) ||
 158               info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) {
 159                vlan_hdr = (struct rte_vlan_hdr *)
 160                        ((char *)eth_hdr + info->l2_len);
 161                info->l2_len  += sizeof(struct rte_vlan_hdr);
 162                info->ethertype = vlan_hdr->eth_proto;
 163        }
 164
 165        switch (info->ethertype) {
 166        case _htons(RTE_ETHER_TYPE_IPV4):
 167                ipv4_hdr = (struct rte_ipv4_hdr *)
 168                        ((char *)eth_hdr + info->l2_len);
 169                parse_ipv4(ipv4_hdr, info);
 170                break;
 171        case _htons(RTE_ETHER_TYPE_IPV6):
 172                ipv6_hdr = (struct rte_ipv6_hdr *)
 173                        ((char *)eth_hdr + info->l2_len);
 174                parse_ipv6(ipv6_hdr, info);
 175                break;
 176        default:
 177                info->l4_len = 0;
 178                info->l3_len = 0;
 179                info->l4_proto = 0;
 180                break;
 181        }
 182}
 183
 184/* Fill in outer layers length */
 185static void
 186update_tunnel_outer(struct testpmd_offload_info *info)
 187{
 188        info->is_tunnel = 1;
 189        info->outer_ethertype = info->ethertype;
 190        info->outer_l2_len = info->l2_len;
 191        info->outer_l3_len = info->l3_len;
 192        info->outer_l4_proto = info->l4_proto;
 193}
 194
 195/*
 196 * Parse a GTP protocol header.
 197 * No optional fields and next extension header type.
 198 */
 199static void
 200parse_gtp(struct rte_udp_hdr *udp_hdr,
 201          struct testpmd_offload_info *info)
 202{
 203        struct rte_ipv4_hdr *ipv4_hdr;
 204        struct rte_ipv6_hdr *ipv6_hdr;
 205        struct rte_gtp_hdr *gtp_hdr;
 206        uint8_t gtp_len = sizeof(*gtp_hdr);
 207        uint8_t ip_ver;
 208
 209        /* Check udp destination port. */
 210        if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
 211            udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
 212            udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
 213                return;
 214
 215        update_tunnel_outer(info);
 216        info->l2_len = 0;
 217
 218        gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
 219                  sizeof(struct rte_udp_hdr));
 220
 221        /*
 222         * Check message type. If message type is 0xff, it is
 223         * a GTP data packet. If not, it is a GTP control packet
 224         */
 225        if (gtp_hdr->msg_type == 0xff) {
 226                ip_ver = *(uint8_t *)((char *)udp_hdr +
 227                         sizeof(struct rte_udp_hdr) +
 228                         sizeof(struct rte_gtp_hdr));
 229                ip_ver = (ip_ver) & 0xf0;
 230
 231                if (ip_ver == RTE_GTP_TYPE_IPV4) {
 232                        ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
 233                                   gtp_len);
 234                        info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
 235                        parse_ipv4(ipv4_hdr, info);
 236                } else if (ip_ver == RTE_GTP_TYPE_IPV6) {
 237                        ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
 238                                   gtp_len);
 239                        info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
 240                        parse_ipv6(ipv6_hdr, info);
 241                }
 242        } else {
 243                info->ethertype = 0;
 244                info->l4_len = 0;
 245                info->l3_len = 0;
 246                info->l4_proto = 0;
 247        }
 248
 249        info->l2_len += RTE_ETHER_GTP_HLEN;
 250}
 251
 252/* Parse a vxlan header */
 253static void
 254parse_vxlan(struct rte_udp_hdr *udp_hdr,
 255            struct testpmd_offload_info *info,
 256            uint32_t pkt_type)
 257{
 258        struct rte_ether_hdr *eth_hdr;
 259
 260        /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the
 261         * default vxlan port (rfc7348) or that the rx offload flag is set
 262         * (i40e only currently)
 263         */
 264        if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT) &&
 265                RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
 266                return;
 267
 268        update_tunnel_outer(info);
 269
 270        eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
 271                sizeof(struct rte_udp_hdr) +
 272                sizeof(struct rte_vxlan_hdr));
 273
 274        parse_ethernet(eth_hdr, info);
 275        info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
 276}
 277
 278/* Parse a vxlan-gpe header */
 279static void
 280parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
 281            struct testpmd_offload_info *info)
 282{
 283        struct rte_ether_hdr *eth_hdr;
 284        struct rte_ipv4_hdr *ipv4_hdr;
 285        struct rte_ipv6_hdr *ipv6_hdr;
 286        struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
 287        uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
 288
 289        /* Check udp destination port. */
 290        if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
 291                return;
 292
 293        vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
 294                                sizeof(struct rte_udp_hdr));
 295
 296        if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
 297            RTE_VXLAN_GPE_TYPE_IPV4) {
 298                update_tunnel_outer(info);
 299
 300                ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
 301                           vxlan_gpe_len);
 302
 303                parse_ipv4(ipv4_hdr, info);
 304                info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
 305                info->l2_len = 0;
 306
 307        } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
 308                update_tunnel_outer(info);
 309
 310                ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
 311                           vxlan_gpe_len);
 312
 313                info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
 314                parse_ipv6(ipv6_hdr, info);
 315                info->l2_len = 0;
 316
 317        } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
 318                update_tunnel_outer(info);
 319
 320                eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
 321                          vxlan_gpe_len);
 322
 323                parse_ethernet(eth_hdr, info);
 324        } else
 325                return;
 326
 327        info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
 328}
 329
 330/* Parse a geneve header */
 331static void
 332parse_geneve(struct rte_udp_hdr *udp_hdr,
 333            struct testpmd_offload_info *info)
 334{
 335        struct rte_ether_hdr *eth_hdr;
 336        struct rte_ipv4_hdr *ipv4_hdr;
 337        struct rte_ipv6_hdr *ipv6_hdr;
 338        struct rte_geneve_hdr *geneve_hdr;
 339        uint16_t geneve_len;
 340
 341        /* Check udp destination port. */
 342        if (udp_hdr->dst_port != _htons(geneve_udp_port))
 343                return;
 344
 345        geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr +
 346                                sizeof(struct rte_udp_hdr));
 347        geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4;
 348        if (!geneve_hdr->proto || geneve_hdr->proto ==
 349            _htons(RTE_ETHER_TYPE_IPV4)) {
 350                update_tunnel_outer(info);
 351                ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr +
 352                           geneve_len);
 353                parse_ipv4(ipv4_hdr, info);
 354                info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
 355                info->l2_len = 0;
 356        } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
 357                update_tunnel_outer(info);
 358                ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr +
 359                           geneve_len);
 360                info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
 361                parse_ipv6(ipv6_hdr, info);
 362                info->l2_len = 0;
 363
 364        } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) {
 365                update_tunnel_outer(info);
 366                eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr +
 367                          geneve_len);
 368                parse_ethernet(eth_hdr, info);
 369        } else
 370                return;
 371
 372        info->l2_len +=
 373                (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) +
 374                ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4);
 375}
 376
 377/* Parse a gre header */
 378static void
 379parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
 380{
 381        struct rte_ether_hdr *eth_hdr;
 382        struct rte_ipv4_hdr *ipv4_hdr;
 383        struct rte_ipv6_hdr *ipv6_hdr;
 384        uint8_t gre_len = 0;
 385
 386        gre_len += sizeof(struct simple_gre_hdr);
 387
 388        if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
 389                gre_len += GRE_EXT_LEN;
 390        if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
 391                gre_len += GRE_EXT_LEN;
 392        if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
 393                gre_len += GRE_EXT_LEN;
 394
 395        if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
 396                update_tunnel_outer(info);
 397
 398                ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
 399
 400                parse_ipv4(ipv4_hdr, info);
 401                info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
 402                info->l2_len = 0;
 403
 404        } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
 405                update_tunnel_outer(info);
 406
 407                ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
 408
 409                info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
 410                parse_ipv6(ipv6_hdr, info);
 411                info->l2_len = 0;
 412
 413        } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
 414                update_tunnel_outer(info);
 415
 416                eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
 417
 418                parse_ethernet(eth_hdr, info);
 419        } else
 420                return;
 421
 422        info->l2_len += gre_len;
 423}
 424
 425
 426/* Parse an encapsulated ip or ipv6 header */
 427static void
 428parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
 429{
 430        struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
 431        struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
 432        uint8_t ip_version;
 433
 434        ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
 435
 436        if (ip_version != 4 && ip_version != 6)
 437                return;
 438
 439        info->is_tunnel = 1;
 440        info->outer_ethertype = info->ethertype;
 441        info->outer_l2_len = info->l2_len;
 442        info->outer_l3_len = info->l3_len;
 443
 444        if (ip_version == 4) {
 445                parse_ipv4(ipv4_hdr, info);
 446                info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
 447        } else {
 448                parse_ipv6(ipv6_hdr, info);
 449                info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
 450        }
 451        info->l2_len = 0;
 452}
 453
 454/* if possible, calculate the checksum of a packet in hw or sw,
 455 * depending on the testpmd command line configuration */
 456static uint64_t
 457process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
 458        uint64_t tx_offloads)
 459{
 460        struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
 461        struct rte_udp_hdr *udp_hdr;
 462        struct rte_tcp_hdr *tcp_hdr;
 463        struct rte_sctp_hdr *sctp_hdr;
 464        uint64_t ol_flags = 0;
 465        uint32_t max_pkt_len, tso_segsz = 0;
 466
 467        /* ensure packet is large enough to require tso */
 468        if (!info->is_tunnel) {
 469                max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
 470                        info->tso_segsz;
 471                if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
 472                        tso_segsz = info->tso_segsz;
 473        } else {
 474                max_pkt_len = info->outer_l2_len + info->outer_l3_len +
 475                        info->l2_len + info->l3_len + info->l4_len +
 476                        info->tunnel_tso_segsz;
 477                if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
 478                        tso_segsz = info->tunnel_tso_segsz;
 479        }
 480
 481        if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
 482                ipv4_hdr = l3_hdr;
 483
 484                ol_flags |= PKT_TX_IPV4;
 485                if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
 486                        ol_flags |= PKT_TX_IP_CKSUM;
 487                } else {
 488                        if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM) {
 489                                ol_flags |= PKT_TX_IP_CKSUM;
 490                        } else {
 491                                ipv4_hdr->hdr_checksum = 0;
 492                                ipv4_hdr->hdr_checksum =
 493                                        rte_ipv4_cksum(ipv4_hdr);
 494                        }
 495                }
 496        } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
 497                ol_flags |= PKT_TX_IPV6;
 498        else
 499                return 0; /* packet type not supported, nothing to do */
 500
 501        if (info->l4_proto == IPPROTO_UDP) {
 502                udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
 503                /* do not recalculate udp cksum if it was 0 */
 504                if (udp_hdr->dgram_cksum != 0) {
 505                        if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM) {
 506                                ol_flags |= PKT_TX_UDP_CKSUM;
 507                        } else {
 508                                udp_hdr->dgram_cksum = 0;
 509                                udp_hdr->dgram_cksum =
 510                                        get_udptcp_checksum(l3_hdr, udp_hdr,
 511                                                info->ethertype);
 512                        }
 513                }
 514                if (info->gso_enable)
 515                        ol_flags |= PKT_TX_UDP_SEG;
 516        } else if (info->l4_proto == IPPROTO_TCP) {
 517                tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
 518                if (tso_segsz)
 519                        ol_flags |= PKT_TX_TCP_SEG;
 520                else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM) {
 521                        ol_flags |= PKT_TX_TCP_CKSUM;
 522                } else {
 523                        tcp_hdr->cksum = 0;
 524                        tcp_hdr->cksum =
 525                                get_udptcp_checksum(l3_hdr, tcp_hdr,
 526                                        info->ethertype);
 527                }
 528                if (info->gso_enable)
 529                        ol_flags |= PKT_TX_TCP_SEG;
 530        } else if (info->l4_proto == IPPROTO_SCTP) {
 531                sctp_hdr = (struct rte_sctp_hdr *)
 532                        ((char *)l3_hdr + info->l3_len);
 533                /* sctp payload must be a multiple of 4 to be
 534                 * offloaded */
 535                if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
 536                        ((ipv4_hdr->total_length & 0x3) == 0)) {
 537                        ol_flags |= PKT_TX_SCTP_CKSUM;
 538                } else {
 539                        sctp_hdr->cksum = 0;
 540                        /* XXX implement CRC32c, example available in
 541                         * RFC3309 */
 542                }
 543        }
 544
 545        return ol_flags;
 546}
 547
 548/* Calculate the checksum of outer header */
 549static uint64_t
 550process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
 551        uint64_t tx_offloads, int tso_enabled)
 552{
 553        struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
 554        struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
 555        struct rte_udp_hdr *udp_hdr;
 556        uint64_t ol_flags = 0;
 557
 558        if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
 559                ipv4_hdr->hdr_checksum = 0;
 560                ol_flags |= PKT_TX_OUTER_IPV4;
 561
 562                if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
 563                        ol_flags |= PKT_TX_OUTER_IP_CKSUM;
 564                else
 565                        ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
 566        } else
 567                ol_flags |= PKT_TX_OUTER_IPV6;
 568
 569        if (info->outer_l4_proto != IPPROTO_UDP)
 570                return ol_flags;
 571
 572        udp_hdr = (struct rte_udp_hdr *)
 573                ((char *)outer_l3_hdr + info->outer_l3_len);
 574
 575        if (tso_enabled)
 576                ol_flags |= PKT_TX_TCP_SEG;
 577
 578        /* Skip SW outer UDP checksum generation if HW supports it */
 579        if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
 580                if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
 581                        udp_hdr->dgram_cksum
 582                                = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
 583                else
 584                        udp_hdr->dgram_cksum
 585                                = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
 586
 587                ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
 588                return ol_flags;
 589        }
 590
 591        /* outer UDP checksum is done in software. In the other side, for
 592         * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
 593         * set to zero.
 594         *
 595         * If a packet will be TSOed into small packets by NIC, we cannot
 596         * set/calculate a non-zero checksum, because it will be a wrong
 597         * value after the packet be split into several small packets.
 598         */
 599        if (tso_enabled)
 600                udp_hdr->dgram_cksum = 0;
 601
 602        /* do not recalculate udp cksum if it was 0 */
 603        if (udp_hdr->dgram_cksum != 0) {
 604                udp_hdr->dgram_cksum = 0;
 605                if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
 606                        udp_hdr->dgram_cksum =
 607                                rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
 608                else
 609                        udp_hdr->dgram_cksum =
 610                                rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
 611        }
 612
 613        return ol_flags;
 614}
 615
 616/*
 617 * Helper function.
 618 * Performs actual copying.
 619 * Returns number of segments in the destination mbuf on success,
 620 * or negative error code on failure.
 621 */
 622static int
 623mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
 624        uint16_t seglen[], uint8_t nb_seg)
 625{
 626        uint32_t dlen, slen, tlen;
 627        uint32_t i, len;
 628        const struct rte_mbuf *m;
 629        const uint8_t *src;
 630        uint8_t *dst;
 631
 632        dlen = 0;
 633        slen = 0;
 634        tlen = 0;
 635
 636        dst = NULL;
 637        src = NULL;
 638
 639        m = ms;
 640        i = 0;
 641        while (ms != NULL && i != nb_seg) {
 642
 643                if (slen == 0) {
 644                        slen = rte_pktmbuf_data_len(ms);
 645                        src = rte_pktmbuf_mtod(ms, const uint8_t *);
 646                }
 647
 648                if (dlen == 0) {
 649                        dlen = RTE_MIN(seglen[i], slen);
 650                        md[i]->data_len = dlen;
 651                        md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
 652                        dst = rte_pktmbuf_mtod(md[i], uint8_t *);
 653                }
 654
 655                len = RTE_MIN(slen, dlen);
 656                memcpy(dst, src, len);
 657                tlen += len;
 658                slen -= len;
 659                dlen -= len;
 660                src += len;
 661                dst += len;
 662
 663                if (slen == 0)
 664                        ms = ms->next;
 665                if (dlen == 0)
 666                        i++;
 667        }
 668
 669        if (ms != NULL)
 670                return -ENOBUFS;
 671        else if (tlen != m->pkt_len)
 672                return -EINVAL;
 673
 674        md[0]->nb_segs = nb_seg;
 675        md[0]->pkt_len = tlen;
 676        md[0]->vlan_tci = m->vlan_tci;
 677        md[0]->vlan_tci_outer = m->vlan_tci_outer;
 678        md[0]->ol_flags = m->ol_flags;
 679        md[0]->tx_offload = m->tx_offload;
 680
 681        return nb_seg;
 682}
 683
 684/*
 685 * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
 686 * Copy packet contents and offload information into the new segmented mbuf.
 687 */
 688static struct rte_mbuf *
 689pkt_copy_split(const struct rte_mbuf *pkt)
 690{
 691        int32_t n, rc;
 692        uint32_t i, len, nb_seg;
 693        struct rte_mempool *mp;
 694        uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
 695        struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
 696
 697        mp = current_fwd_lcore()->mbp;
 698
 699        if (tx_pkt_split == TX_PKT_SPLIT_RND)
 700                nb_seg = rte_rand() % tx_pkt_nb_segs + 1;
 701        else
 702                nb_seg = tx_pkt_nb_segs;
 703
 704        memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
 705
 706        /* calculate number of segments to use and their length. */
 707        len = 0;
 708        for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
 709                len += seglen[i];
 710                md[i] = NULL;
 711        }
 712
 713        n = pkt->pkt_len - len;
 714
 715        /* update size of the last segment to fit rest of the packet */
 716        if (n >= 0) {
 717                seglen[i - 1] += n;
 718                len += n;
 719        }
 720
 721        nb_seg = i;
 722        while (i != 0) {
 723                p = rte_pktmbuf_alloc(mp);
 724                if (p == NULL) {
 725                        TESTPMD_LOG(ERR,
 726                                "failed to allocate %u-th of %u mbuf "
 727                                "from mempool: %s\n",
 728                                nb_seg - i, nb_seg, mp->name);
 729                        break;
 730                }
 731
 732                md[--i] = p;
 733                if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
 734                        TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
 735                                "expected seglen: %u, "
 736                                "actual mbuf tailroom: %u\n",
 737                                mp->name, i, seglen[i],
 738                                rte_pktmbuf_tailroom(md[i]));
 739                        break;
 740                }
 741        }
 742
 743        /* all mbufs successfully allocated, do copy */
 744        if (i == 0) {
 745                rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
 746                if (rc < 0)
 747                        TESTPMD_LOG(ERR,
 748                                "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
 749                                "into %u segments failed with error code: %d\n",
 750                                pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
 751
 752                /* figure out how many mbufs to free. */
 753                i = RTE_MAX(rc, 0);
 754        }
 755
 756        /* free unused mbufs */
 757        for (; i != nb_seg; i++) {
 758                rte_pktmbuf_free_seg(md[i]);
 759                md[i] = NULL;
 760        }
 761
 762        return md[0];
 763}
 764
 765/*
 766 * Receive a burst of packets, and for each packet:
 767 *  - parse packet, and try to recognize a supported packet type (1)
 768 *  - if it's not a supported packet type, don't touch the packet, else:
 769 *  - reprocess the checksum of all supported layers. This is done in SW
 770 *    or HW, depending on testpmd command line configuration
 771 *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
 772 *    segmentation offload (this implies HW TCP checksum)
 773 * Then transmit packets on the output port.
 774 *
 775 * (1) Supported packets are:
 776 *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
 777 *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
 778 *           UDP|TCP|SCTP
 779 *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
 780 *           UDP|TCP|SCTP
 781 *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
 782 *           UDP|TCP|SCTP
 783 *   Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
 784 *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
 785 *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
 786 *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
 787 *
 788 * The testpmd command line for this forward engine sets the flags
 789 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
 790 * wether a checksum must be calculated in software or in hardware. The
 791 * IP, UDP, TCP and SCTP flags always concern the inner layer. The
 792 * OUTER_IP is only useful for tunnel packets.
 793 */
 794static void
 795pkt_burst_checksum_forward(struct fwd_stream *fs)
 796{
 797        struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
 798        struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
 799        struct rte_gso_ctx *gso_ctx;
 800        struct rte_mbuf **tx_pkts_burst;
 801        struct rte_port *txp;
 802        struct rte_mbuf *m, *p;
 803        struct rte_ether_hdr *eth_hdr;
 804        void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
 805        void **gro_ctx;
 806        uint16_t gro_pkts_num;
 807        uint8_t gro_enable;
 808        uint16_t nb_rx;
 809        uint16_t nb_tx;
 810        uint16_t nb_prep;
 811        uint16_t i;
 812        uint64_t rx_ol_flags, tx_ol_flags;
 813        uint64_t tx_offloads;
 814        uint32_t retry;
 815        uint32_t rx_bad_ip_csum;
 816        uint32_t rx_bad_l4_csum;
 817        uint32_t rx_bad_outer_l4_csum;
 818        uint32_t rx_bad_outer_ip_csum;
 819        struct testpmd_offload_info info;
 820        uint16_t nb_segments = 0;
 821        int ret;
 822
 823        uint64_t start_tsc = 0;
 824
 825        get_start_cycles(&start_tsc);
 826
 827        /* receive a burst of packet */
 828        nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
 829                                 nb_pkt_per_burst);
 830        inc_rx_burst_stats(fs, nb_rx);
 831        if (unlikely(nb_rx == 0))
 832                return;
 833
 834        fs->rx_packets += nb_rx;
 835        rx_bad_ip_csum = 0;
 836        rx_bad_l4_csum = 0;
 837        rx_bad_outer_l4_csum = 0;
 838        rx_bad_outer_ip_csum = 0;
 839        gro_enable = gro_ports[fs->rx_port].enable;
 840
 841        txp = &ports[fs->tx_port];
 842        tx_offloads = txp->dev_conf.txmode.offloads;
 843        memset(&info, 0, sizeof(info));
 844        info.tso_segsz = txp->tso_segsz;
 845        info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
 846        if (gso_ports[fs->tx_port].enable)
 847                info.gso_enable = 1;
 848
 849        for (i = 0; i < nb_rx; i++) {
 850                if (likely(i < nb_rx - 1))
 851                        rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
 852                                                       void *));
 853
 854                m = pkts_burst[i];
 855                info.is_tunnel = 0;
 856                info.pkt_len = rte_pktmbuf_pkt_len(m);
 857                tx_ol_flags = m->ol_flags &
 858                              (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
 859                rx_ol_flags = m->ol_flags;
 860
 861                /* Update the L3/L4 checksum error packet statistics */
 862                if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
 863                        rx_bad_ip_csum += 1;
 864                if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
 865                        rx_bad_l4_csum += 1;
 866                if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
 867                        rx_bad_outer_l4_csum += 1;
 868                if (rx_ol_flags & PKT_RX_OUTER_IP_CKSUM_BAD)
 869                        rx_bad_outer_ip_csum += 1;
 870
 871                /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
 872                 * and inner headers */
 873
 874                eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
 875                rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
 876                                &eth_hdr->d_addr);
 877                rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
 878                                &eth_hdr->s_addr);
 879                parse_ethernet(eth_hdr, &info);
 880                l3_hdr = (char *)eth_hdr + info.l2_len;
 881
 882                /* check if it's a supported tunnel */
 883                if (txp->parse_tunnel) {
 884                        if (info.l4_proto == IPPROTO_UDP) {
 885                                struct rte_udp_hdr *udp_hdr;
 886
 887                                udp_hdr = (struct rte_udp_hdr *)
 888                                        ((char *)l3_hdr + info.l3_len);
 889                                parse_gtp(udp_hdr, &info);
 890                                if (info.is_tunnel) {
 891                                        tx_ol_flags |= PKT_TX_TUNNEL_GTP;
 892                                        goto tunnel_update;
 893                                }
 894                                parse_vxlan_gpe(udp_hdr, &info);
 895                                if (info.is_tunnel) {
 896                                        tx_ol_flags |=
 897                                                PKT_TX_TUNNEL_VXLAN_GPE;
 898                                        goto tunnel_update;
 899                                }
 900                                parse_vxlan(udp_hdr, &info,
 901                                            m->packet_type);
 902                                if (info.is_tunnel) {
 903                                        tx_ol_flags |=
 904                                                PKT_TX_TUNNEL_VXLAN;
 905                                        goto tunnel_update;
 906                                }
 907                                parse_geneve(udp_hdr, &info);
 908                                if (info.is_tunnel) {
 909                                        tx_ol_flags |=
 910                                                PKT_TX_TUNNEL_GENEVE;
 911                                        goto tunnel_update;
 912                                }
 913                        } else if (info.l4_proto == IPPROTO_GRE) {
 914                                struct simple_gre_hdr *gre_hdr;
 915
 916                                gre_hdr = (struct simple_gre_hdr *)
 917                                        ((char *)l3_hdr + info.l3_len);
 918                                parse_gre(gre_hdr, &info);
 919                                if (info.is_tunnel)
 920                                        tx_ol_flags |= PKT_TX_TUNNEL_GRE;
 921                        } else if (info.l4_proto == IPPROTO_IPIP) {
 922                                void *encap_ip_hdr;
 923
 924                                encap_ip_hdr = (char *)l3_hdr + info.l3_len;
 925                                parse_encap_ip(encap_ip_hdr, &info);
 926                                if (info.is_tunnel)
 927                                        tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
 928                        }
 929                }
 930
 931tunnel_update:
 932                /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
 933                if (info.is_tunnel) {
 934                        outer_l3_hdr = l3_hdr;
 935                        l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
 936                }
 937
 938                /* step 2: depending on user command line configuration,
 939                 * recompute checksum either in software or flag the
 940                 * mbuf to offload the calculation to the NIC. If TSO
 941                 * is configured, prepare the mbuf for TCP segmentation. */
 942
 943                /* process checksums of inner headers first */
 944                tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
 945                        tx_offloads);
 946
 947                /* Then process outer headers if any. Note that the software
 948                 * checksum will be wrong if one of the inner checksums is
 949                 * processed in hardware. */
 950                if (info.is_tunnel == 1) {
 951                        tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
 952                                        tx_offloads,
 953                                        !!(tx_ol_flags & PKT_TX_TCP_SEG));
 954                }
 955
 956                /* step 3: fill the mbuf meta data (flags and header lengths) */
 957
 958                m->tx_offload = 0;
 959                if (info.is_tunnel == 1) {
 960                        if (info.tunnel_tso_segsz ||
 961                            (tx_offloads &
 962                             DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
 963                            (tx_offloads &
 964                             DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
 965                            (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
 966                                m->outer_l2_len = info.outer_l2_len;
 967                                m->outer_l3_len = info.outer_l3_len;
 968                                m->l2_len = info.l2_len;
 969                                m->l3_len = info.l3_len;
 970                                m->l4_len = info.l4_len;
 971                                m->tso_segsz = info.tunnel_tso_segsz;
 972                        }
 973                        else {
 974                                /* if there is a outer UDP cksum
 975                                   processed in sw and the inner in hw,
 976                                   the outer checksum will be wrong as
 977                                   the payload will be modified by the
 978                                   hardware */
 979                                m->l2_len = info.outer_l2_len +
 980                                        info.outer_l3_len + info.l2_len;
 981                                m->l3_len = info.l3_len;
 982                                m->l4_len = info.l4_len;
 983                        }
 984                } else {
 985                        /* this is only useful if an offload flag is
 986                         * set, but it does not hurt to fill it in any
 987                         * case */
 988                        m->l2_len = info.l2_len;
 989                        m->l3_len = info.l3_len;
 990                        m->l4_len = info.l4_len;
 991                        m->tso_segsz = info.tso_segsz;
 992                }
 993                m->ol_flags = tx_ol_flags;
 994
 995                /* Do split & copy for the packet. */
 996                if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
 997                        p = pkt_copy_split(m);
 998                        if (p != NULL) {
 999                                rte_pktmbuf_free(m);
1000                                m = p;
1001                                pkts_burst[i] = m;
1002                        }
1003                }
1004
1005                /* if verbose mode is enabled, dump debug info */
1006                if (verbose_level > 0) {
1007                        char buf[256];
1008
1009                        printf("-----------------\n");
1010                        printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
1011                                fs->rx_port, m, m->pkt_len, m->nb_segs);
1012                        /* dump rx parsed packet info */
1013                        rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
1014                        printf("rx: l2_len=%d ethertype=%x l3_len=%d "
1015                                "l4_proto=%d l4_len=%d flags=%s\n",
1016                                info.l2_len, rte_be_to_cpu_16(info.ethertype),
1017                                info.l3_len, info.l4_proto, info.l4_len, buf);
1018                        if (rx_ol_flags & PKT_RX_LRO)
1019                                printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
1020                        if (info.is_tunnel == 1)
1021                                printf("rx: outer_l2_len=%d outer_ethertype=%x "
1022                                        "outer_l3_len=%d\n", info.outer_l2_len,
1023                                        rte_be_to_cpu_16(info.outer_ethertype),
1024                                        info.outer_l3_len);
1025                        /* dump tx packet info */
1026                        if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
1027                                            DEV_TX_OFFLOAD_UDP_CKSUM |
1028                                            DEV_TX_OFFLOAD_TCP_CKSUM |
1029                                            DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
1030                                info.tso_segsz != 0)
1031                                printf("tx: m->l2_len=%d m->l3_len=%d "
1032                                        "m->l4_len=%d\n",
1033                                        m->l2_len, m->l3_len, m->l4_len);
1034                        if (info.is_tunnel == 1) {
1035                                if ((tx_offloads &
1036                                    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
1037                                    (tx_offloads &
1038                                    DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
1039                                    (tx_ol_flags & PKT_TX_OUTER_IPV6))
1040                                        printf("tx: m->outer_l2_len=%d "
1041                                                "m->outer_l3_len=%d\n",
1042                                                m->outer_l2_len,
1043                                                m->outer_l3_len);
1044                                if (info.tunnel_tso_segsz != 0 &&
1045                                                (m->ol_flags & PKT_TX_TCP_SEG))
1046                                        printf("tx: m->tso_segsz=%d\n",
1047                                                m->tso_segsz);
1048                        } else if (info.tso_segsz != 0 &&
1049                                        (m->ol_flags & PKT_TX_TCP_SEG))
1050                                printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
1051                        rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
1052                        printf("tx: flags=%s", buf);
1053                        printf("\n");
1054                }
1055        }
1056
1057        if (unlikely(gro_enable)) {
1058                if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
1059                        nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
1060                                        &(gro_ports[fs->rx_port].param));
1061                } else {
1062                        gro_ctx = current_fwd_lcore()->gro_ctx;
1063                        nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
1064
1065                        if (++fs->gro_times >= gro_flush_cycles) {
1066                                gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
1067                                if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
1068                                        gro_pkts_num = MAX_PKT_BURST - nb_rx;
1069
1070                                nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
1071                                                RTE_GRO_TCP_IPV4,
1072                                                &pkts_burst[nb_rx],
1073                                                gro_pkts_num);
1074                                fs->gro_times = 0;
1075                        }
1076                }
1077        }
1078
1079        if (gso_ports[fs->tx_port].enable == 0)
1080                tx_pkts_burst = pkts_burst;
1081        else {
1082                gso_ctx = &(current_fwd_lcore()->gso_ctx);
1083                gso_ctx->gso_size = gso_max_segment_size;
1084                for (i = 0; i < nb_rx; i++) {
1085                        ret = rte_gso_segment(pkts_burst[i], gso_ctx,
1086                                        &gso_segments[nb_segments],
1087                                        GSO_MAX_PKT_BURST - nb_segments);
1088                        if (ret >= 1) {
1089                                /* pkts_burst[i] can be freed safely here. */
1090                                rte_pktmbuf_free(pkts_burst[i]);
1091                                nb_segments += ret;
1092                        } else if (ret == 0) {
1093                                /* 0 means it can be transmitted directly
1094                                 * without gso.
1095                                 */
1096                                gso_segments[nb_segments] = pkts_burst[i];
1097                                nb_segments += 1;
1098                        } else {
1099                                TESTPMD_LOG(DEBUG, "Unable to segment packet");
1100                                rte_pktmbuf_free(pkts_burst[i]);
1101                        }
1102                }
1103
1104                tx_pkts_burst = gso_segments;
1105                nb_rx = nb_segments;
1106        }
1107
1108        nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
1109                        tx_pkts_burst, nb_rx);
1110        if (nb_prep != nb_rx)
1111                fprintf(stderr,
1112                        "Preparing packet burst to transmit failed: %s\n",
1113                        rte_strerror(rte_errno));
1114
1115        nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
1116                        nb_prep);
1117
1118        /*
1119         * Retry if necessary
1120         */
1121        if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
1122                retry = 0;
1123                while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
1124                        rte_delay_us(burst_tx_delay_time);
1125                        nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
1126                                        &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1127                }
1128        }
1129        fs->tx_packets += nb_tx;
1130        fs->rx_bad_ip_csum += rx_bad_ip_csum;
1131        fs->rx_bad_l4_csum += rx_bad_l4_csum;
1132        fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1133        fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum;
1134
1135        inc_tx_burst_stats(fs, nb_tx);
1136        if (unlikely(nb_tx < nb_rx)) {
1137                fs->fwd_dropped += (nb_rx - nb_tx);
1138                do {
1139                        rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1140                } while (++nb_tx < nb_rx);
1141        }
1142
1143        get_end_cycles(fs, start_tsc);
1144}
1145
1146struct fwd_engine csum_fwd_engine = {
1147        .fwd_mode_name  = "csum",
1148        .port_fwd_begin = NULL,
1149        .port_fwd_end   = NULL,
1150        .packet_fwd     = pkt_burst_checksum_forward,
1151};
1152