dpdk/drivers/net/hns3/hns3_rxtx.c
<<
>>
Prefs
   1/* SPDX-License-Identifier: BSD-3-Clause
   2 * Copyright(c) 2018-2021 HiSilicon Limited.
   3 */
   4
   5#include <rte_bus_pci.h>
   6#include <rte_common.h>
   7#include <rte_cycles.h>
   8#include <rte_geneve.h>
   9#include <rte_vxlan.h>
  10#include <ethdev_driver.h>
  11#include <rte_io.h>
  12#include <rte_net.h>
  13#include <rte_malloc.h>
  14#if defined(RTE_ARCH_ARM64)
  15#include <rte_cpuflags.h>
  16#include <rte_vect.h>
  17#endif
  18
  19#include "hns3_ethdev.h"
  20#include "hns3_rxtx.h"
  21#include "hns3_regs.h"
  22#include "hns3_logs.h"
  23
  24#define HNS3_CFG_DESC_NUM(num)  ((num) / 8 - 1)
  25#define HNS3_RX_RING_PREFETCTH_MASK     3
  26
  27static void
  28hns3_rx_queue_release_mbufs(struct hns3_rx_queue *rxq)
  29{
  30        uint16_t i;
  31
  32        /* Note: Fake rx queue will not enter here */
  33        if (rxq->sw_ring == NULL)
  34                return;
  35
  36        if (rxq->rx_rearm_nb == 0) {
  37                for (i = 0; i < rxq->nb_rx_desc; i++) {
  38                        if (rxq->sw_ring[i].mbuf != NULL) {
  39                                rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
  40                                rxq->sw_ring[i].mbuf = NULL;
  41                        }
  42                }
  43        } else {
  44                for (i = rxq->next_to_use;
  45                     i != rxq->rx_rearm_start;
  46                     i = (i + 1) % rxq->nb_rx_desc) {
  47                        if (rxq->sw_ring[i].mbuf != NULL) {
  48                                rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
  49                                rxq->sw_ring[i].mbuf = NULL;
  50                        }
  51                }
  52        }
  53
  54        for (i = 0; i < rxq->bulk_mbuf_num; i++)
  55                rte_pktmbuf_free_seg(rxq->bulk_mbuf[i]);
  56        rxq->bulk_mbuf_num = 0;
  57
  58        if (rxq->pkt_first_seg) {
  59                rte_pktmbuf_free(rxq->pkt_first_seg);
  60                rxq->pkt_first_seg = NULL;
  61        }
  62}
  63
  64static void
  65hns3_tx_queue_release_mbufs(struct hns3_tx_queue *txq)
  66{
  67        uint16_t i;
  68
  69        /* Note: Fake tx queue will not enter here */
  70        if (txq->sw_ring) {
  71                for (i = 0; i < txq->nb_tx_desc; i++) {
  72                        if (txq->sw_ring[i].mbuf) {
  73                                rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
  74                                txq->sw_ring[i].mbuf = NULL;
  75                        }
  76                }
  77        }
  78}
  79
  80static void
  81hns3_rx_queue_release(void *queue)
  82{
  83        struct hns3_rx_queue *rxq = queue;
  84        if (rxq) {
  85                hns3_rx_queue_release_mbufs(rxq);
  86                if (rxq->mz)
  87                        rte_memzone_free(rxq->mz);
  88                if (rxq->sw_ring)
  89                        rte_free(rxq->sw_ring);
  90                rte_free(rxq);
  91        }
  92}
  93
  94static void
  95hns3_tx_queue_release(void *queue)
  96{
  97        struct hns3_tx_queue *txq = queue;
  98        if (txq) {
  99                hns3_tx_queue_release_mbufs(txq);
 100                if (txq->mz)
 101                        rte_memzone_free(txq->mz);
 102                if (txq->sw_ring)
 103                        rte_free(txq->sw_ring);
 104                if (txq->free)
 105                        rte_free(txq->free);
 106                rte_free(txq);
 107        }
 108}
 109
 110void
 111hns3_dev_rx_queue_release(void *queue)
 112{
 113        struct hns3_rx_queue *rxq = queue;
 114        struct hns3_adapter *hns;
 115
 116        if (rxq == NULL)
 117                return;
 118
 119        hns = rxq->hns;
 120        rte_spinlock_lock(&hns->hw.lock);
 121        hns3_rx_queue_release(queue);
 122        rte_spinlock_unlock(&hns->hw.lock);
 123}
 124
 125void
 126hns3_dev_tx_queue_release(void *queue)
 127{
 128        struct hns3_tx_queue *txq = queue;
 129        struct hns3_adapter *hns;
 130
 131        if (txq == NULL)
 132                return;
 133
 134        hns = txq->hns;
 135        rte_spinlock_lock(&hns->hw.lock);
 136        hns3_tx_queue_release(queue);
 137        rte_spinlock_unlock(&hns->hw.lock);
 138}
 139
 140static void
 141hns3_fake_rx_queue_release(struct hns3_rx_queue *queue)
 142{
 143        struct hns3_rx_queue *rxq = queue;
 144        struct hns3_adapter *hns;
 145        struct hns3_hw *hw;
 146        uint16_t idx;
 147
 148        if (rxq == NULL)
 149                return;
 150
 151        hns = rxq->hns;
 152        hw = &hns->hw;
 153        idx = rxq->queue_id;
 154        if (hw->fkq_data.rx_queues[idx]) {
 155                hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
 156                hw->fkq_data.rx_queues[idx] = NULL;
 157        }
 158
 159        /* free fake rx queue arrays */
 160        if (idx == (hw->fkq_data.nb_fake_rx_queues - 1)) {
 161                hw->fkq_data.nb_fake_rx_queues = 0;
 162                rte_free(hw->fkq_data.rx_queues);
 163                hw->fkq_data.rx_queues = NULL;
 164        }
 165}
 166
 167static void
 168hns3_fake_tx_queue_release(struct hns3_tx_queue *queue)
 169{
 170        struct hns3_tx_queue *txq = queue;
 171        struct hns3_adapter *hns;
 172        struct hns3_hw *hw;
 173        uint16_t idx;
 174
 175        if (txq == NULL)
 176                return;
 177
 178        hns = txq->hns;
 179        hw = &hns->hw;
 180        idx = txq->queue_id;
 181        if (hw->fkq_data.tx_queues[idx]) {
 182                hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
 183                hw->fkq_data.tx_queues[idx] = NULL;
 184        }
 185
 186        /* free fake tx queue arrays */
 187        if (idx == (hw->fkq_data.nb_fake_tx_queues - 1)) {
 188                hw->fkq_data.nb_fake_tx_queues = 0;
 189                rte_free(hw->fkq_data.tx_queues);
 190                hw->fkq_data.tx_queues = NULL;
 191        }
 192}
 193
 194static void
 195hns3_free_rx_queues(struct rte_eth_dev *dev)
 196{
 197        struct hns3_adapter *hns = dev->data->dev_private;
 198        struct hns3_fake_queue_data *fkq_data;
 199        struct hns3_hw *hw = &hns->hw;
 200        uint16_t nb_rx_q;
 201        uint16_t i;
 202
 203        nb_rx_q = hw->data->nb_rx_queues;
 204        for (i = 0; i < nb_rx_q; i++) {
 205                if (dev->data->rx_queues[i]) {
 206                        hns3_rx_queue_release(dev->data->rx_queues[i]);
 207                        dev->data->rx_queues[i] = NULL;
 208                }
 209        }
 210
 211        /* Free fake Rx queues */
 212        fkq_data = &hw->fkq_data;
 213        for (i = 0; i < fkq_data->nb_fake_rx_queues; i++) {
 214                if (fkq_data->rx_queues[i])
 215                        hns3_fake_rx_queue_release(fkq_data->rx_queues[i]);
 216        }
 217}
 218
 219static void
 220hns3_free_tx_queues(struct rte_eth_dev *dev)
 221{
 222        struct hns3_adapter *hns = dev->data->dev_private;
 223        struct hns3_fake_queue_data *fkq_data;
 224        struct hns3_hw *hw = &hns->hw;
 225        uint16_t nb_tx_q;
 226        uint16_t i;
 227
 228        nb_tx_q = hw->data->nb_tx_queues;
 229        for (i = 0; i < nb_tx_q; i++) {
 230                if (dev->data->tx_queues[i]) {
 231                        hns3_tx_queue_release(dev->data->tx_queues[i]);
 232                        dev->data->tx_queues[i] = NULL;
 233                }
 234        }
 235
 236        /* Free fake Tx queues */
 237        fkq_data = &hw->fkq_data;
 238        for (i = 0; i < fkq_data->nb_fake_tx_queues; i++) {
 239                if (fkq_data->tx_queues[i])
 240                        hns3_fake_tx_queue_release(fkq_data->tx_queues[i]);
 241        }
 242}
 243
 244void
 245hns3_free_all_queues(struct rte_eth_dev *dev)
 246{
 247        hns3_free_rx_queues(dev);
 248        hns3_free_tx_queues(dev);
 249}
 250
 251static int
 252hns3_alloc_rx_queue_mbufs(struct hns3_hw *hw, struct hns3_rx_queue *rxq)
 253{
 254        struct rte_mbuf *mbuf;
 255        uint64_t dma_addr;
 256        uint16_t i;
 257
 258        for (i = 0; i < rxq->nb_rx_desc; i++) {
 259                mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
 260                if (unlikely(mbuf == NULL)) {
 261                        hns3_err(hw, "Failed to allocate RXD[%u] for rx queue!",
 262                                 i);
 263                        hns3_rx_queue_release_mbufs(rxq);
 264                        return -ENOMEM;
 265                }
 266
 267                rte_mbuf_refcnt_set(mbuf, 1);
 268                mbuf->next = NULL;
 269                mbuf->data_off = RTE_PKTMBUF_HEADROOM;
 270                mbuf->nb_segs = 1;
 271                mbuf->port = rxq->port_id;
 272
 273                rxq->sw_ring[i].mbuf = mbuf;
 274                dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
 275                rxq->rx_ring[i].addr = dma_addr;
 276                rxq->rx_ring[i].rx.bd_base_info = 0;
 277        }
 278
 279        return 0;
 280}
 281
 282static int
 283hns3_buf_size2type(uint32_t buf_size)
 284{
 285        int bd_size_type;
 286
 287        switch (buf_size) {
 288        case 512:
 289                bd_size_type = HNS3_BD_SIZE_512_TYPE;
 290                break;
 291        case 1024:
 292                bd_size_type = HNS3_BD_SIZE_1024_TYPE;
 293                break;
 294        case 4096:
 295                bd_size_type = HNS3_BD_SIZE_4096_TYPE;
 296                break;
 297        default:
 298                bd_size_type = HNS3_BD_SIZE_2048_TYPE;
 299        }
 300
 301        return bd_size_type;
 302}
 303
 304static void
 305hns3_init_rx_queue_hw(struct hns3_rx_queue *rxq)
 306{
 307        uint32_t rx_buf_len = rxq->rx_buf_len;
 308        uint64_t dma_addr = rxq->rx_ring_phys_addr;
 309
 310        hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_L_REG, (uint32_t)dma_addr);
 311        hns3_write_dev(rxq, HNS3_RING_RX_BASEADDR_H_REG,
 312                       (uint32_t)((dma_addr >> 31) >> 1));
 313
 314        hns3_write_dev(rxq, HNS3_RING_RX_BD_LEN_REG,
 315                       hns3_buf_size2type(rx_buf_len));
 316        hns3_write_dev(rxq, HNS3_RING_RX_BD_NUM_REG,
 317                       HNS3_CFG_DESC_NUM(rxq->nb_rx_desc));
 318}
 319
 320static void
 321hns3_init_tx_queue_hw(struct hns3_tx_queue *txq)
 322{
 323        uint64_t dma_addr = txq->tx_ring_phys_addr;
 324
 325        hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_L_REG, (uint32_t)dma_addr);
 326        hns3_write_dev(txq, HNS3_RING_TX_BASEADDR_H_REG,
 327                       (uint32_t)((dma_addr >> 31) >> 1));
 328
 329        hns3_write_dev(txq, HNS3_RING_TX_BD_NUM_REG,
 330                       HNS3_CFG_DESC_NUM(txq->nb_tx_desc));
 331}
 332
 333void
 334hns3_update_all_queues_pvid_proc_en(struct hns3_hw *hw)
 335{
 336        uint16_t nb_rx_q = hw->data->nb_rx_queues;
 337        uint16_t nb_tx_q = hw->data->nb_tx_queues;
 338        struct hns3_rx_queue *rxq;
 339        struct hns3_tx_queue *txq;
 340        bool pvid_en;
 341        int i;
 342
 343        pvid_en = hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE;
 344        for (i = 0; i < hw->cfg_max_queues; i++) {
 345                if (i < nb_rx_q) {
 346                        rxq = hw->data->rx_queues[i];
 347                        if (rxq != NULL)
 348                                rxq->pvid_sw_discard_en = pvid_en;
 349                }
 350                if (i < nb_tx_q) {
 351                        txq = hw->data->tx_queues[i];
 352                        if (txq != NULL)
 353                                txq->pvid_sw_shift_en = pvid_en;
 354                }
 355        }
 356}
 357
 358static void
 359hns3_stop_unused_queue(void *tqp_base, enum hns3_ring_type queue_type)
 360{
 361        uint32_t reg_offset;
 362        uint32_t reg;
 363
 364        reg_offset = queue_type == HNS3_RING_TYPE_TX ?
 365                                   HNS3_RING_TX_EN_REG : HNS3_RING_RX_EN_REG;
 366        reg = hns3_read_reg(tqp_base, reg_offset);
 367        reg &= ~BIT(HNS3_RING_EN_B);
 368        hns3_write_reg(tqp_base, reg_offset, reg);
 369}
 370
 371void
 372hns3_enable_all_queues(struct hns3_hw *hw, bool en)
 373{
 374        uint16_t nb_rx_q = hw->data->nb_rx_queues;
 375        uint16_t nb_tx_q = hw->data->nb_tx_queues;
 376        struct hns3_rx_queue *rxq;
 377        struct hns3_tx_queue *txq;
 378        uint32_t rcb_reg;
 379        void *tqp_base;
 380        int i;
 381
 382        for (i = 0; i < hw->cfg_max_queues; i++) {
 383                if (hns3_dev_indep_txrx_supported(hw)) {
 384                        rxq = i < nb_rx_q ? hw->data->rx_queues[i] : NULL;
 385                        txq = i < nb_tx_q ? hw->data->tx_queues[i] : NULL;
 386
 387                        tqp_base = (void *)((char *)hw->io_base +
 388                                        hns3_get_tqp_reg_offset(i));
 389                        /*
 390                         * If queue struct is not initialized, it means the
 391                         * related HW ring has not been initialized yet.
 392                         * So, these queues should be disabled before enable
 393                         * the tqps to avoid a HW exception since the queues
 394                         * are enabled by default.
 395                         */
 396                        if (rxq == NULL)
 397                                hns3_stop_unused_queue(tqp_base,
 398                                                        HNS3_RING_TYPE_RX);
 399                        if (txq == NULL)
 400                                hns3_stop_unused_queue(tqp_base,
 401                                                        HNS3_RING_TYPE_TX);
 402                } else {
 403                        rxq = i < nb_rx_q ? hw->data->rx_queues[i] :
 404                              hw->fkq_data.rx_queues[i - nb_rx_q];
 405
 406                        tqp_base = rxq->io_base;
 407                }
 408                /*
 409                 * This is the master switch that used to control the enabling
 410                 * of a pair of Tx and Rx queues. Both the Rx and Tx point to
 411                 * the same register
 412                 */
 413                rcb_reg = hns3_read_reg(tqp_base, HNS3_RING_EN_REG);
 414                if (en)
 415                        rcb_reg |= BIT(HNS3_RING_EN_B);
 416                else
 417                        rcb_reg &= ~BIT(HNS3_RING_EN_B);
 418                hns3_write_reg(tqp_base, HNS3_RING_EN_REG, rcb_reg);
 419        }
 420}
 421
 422static void
 423hns3_enable_txq(struct hns3_tx_queue *txq, bool en)
 424{
 425        struct hns3_hw *hw = &txq->hns->hw;
 426        uint32_t reg;
 427
 428        if (hns3_dev_indep_txrx_supported(hw)) {
 429                reg = hns3_read_dev(txq, HNS3_RING_TX_EN_REG);
 430                if (en)
 431                        reg |= BIT(HNS3_RING_EN_B);
 432                else
 433                        reg &= ~BIT(HNS3_RING_EN_B);
 434                hns3_write_dev(txq, HNS3_RING_TX_EN_REG, reg);
 435        }
 436        txq->enabled = en;
 437}
 438
 439static void
 440hns3_enable_rxq(struct hns3_rx_queue *rxq, bool en)
 441{
 442        struct hns3_hw *hw = &rxq->hns->hw;
 443        uint32_t reg;
 444
 445        if (hns3_dev_indep_txrx_supported(hw)) {
 446                reg = hns3_read_dev(rxq, HNS3_RING_RX_EN_REG);
 447                if (en)
 448                        reg |= BIT(HNS3_RING_EN_B);
 449                else
 450                        reg &= ~BIT(HNS3_RING_EN_B);
 451                hns3_write_dev(rxq, HNS3_RING_RX_EN_REG, reg);
 452        }
 453        rxq->enabled = en;
 454}
 455
 456int
 457hns3_start_all_txqs(struct rte_eth_dev *dev)
 458{
 459        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
 460        struct hns3_tx_queue *txq;
 461        uint16_t i, j;
 462
 463        for (i = 0; i < dev->data->nb_tx_queues; i++) {
 464                txq = hw->data->tx_queues[i];
 465                if (!txq) {
 466                        hns3_err(hw, "Tx queue %u not available or setup.", i);
 467                        goto start_txqs_fail;
 468                }
 469                /*
 470                 * Tx queue is enabled by default. Therefore, the Tx queues
 471                 * needs to be disabled when deferred_start is set. There is
 472                 * another master switch used to control the enabling of a pair
 473                 * of Tx and Rx queues. And the master switch is disabled by
 474                 * default.
 475                 */
 476                if (txq->tx_deferred_start)
 477                        hns3_enable_txq(txq, false);
 478                else
 479                        hns3_enable_txq(txq, true);
 480        }
 481        return 0;
 482
 483start_txqs_fail:
 484        for (j = 0; j < i; j++) {
 485                txq = hw->data->tx_queues[j];
 486                hns3_enable_txq(txq, false);
 487        }
 488        return -EINVAL;
 489}
 490
 491int
 492hns3_start_all_rxqs(struct rte_eth_dev *dev)
 493{
 494        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
 495        struct hns3_rx_queue *rxq;
 496        uint16_t i, j;
 497
 498        for (i = 0; i < dev->data->nb_rx_queues; i++) {
 499                rxq = hw->data->rx_queues[i];
 500                if (!rxq) {
 501                        hns3_err(hw, "Rx queue %u not available or setup.", i);
 502                        goto start_rxqs_fail;
 503                }
 504                /*
 505                 * Rx queue is enabled by default. Therefore, the Rx queues
 506                 * needs to be disabled when deferred_start is set. There is
 507                 * another master switch used to control the enabling of a pair
 508                 * of Tx and Rx queues. And the master switch is disabled by
 509                 * default.
 510                 */
 511                if (rxq->rx_deferred_start)
 512                        hns3_enable_rxq(rxq, false);
 513                else
 514                        hns3_enable_rxq(rxq, true);
 515        }
 516        return 0;
 517
 518start_rxqs_fail:
 519        for (j = 0; j < i; j++) {
 520                rxq = hw->data->rx_queues[j];
 521                hns3_enable_rxq(rxq, false);
 522        }
 523        return -EINVAL;
 524}
 525
 526void
 527hns3_restore_tqp_enable_state(struct hns3_hw *hw)
 528{
 529        struct hns3_rx_queue *rxq;
 530        struct hns3_tx_queue *txq;
 531        uint16_t i;
 532
 533        for (i = 0; i < hw->data->nb_rx_queues; i++) {
 534                rxq = hw->data->rx_queues[i];
 535                if (rxq != NULL)
 536                        hns3_enable_rxq(rxq, rxq->enabled);
 537        }
 538
 539        for (i = 0; i < hw->data->nb_tx_queues; i++) {
 540                txq = hw->data->tx_queues[i];
 541                if (txq != NULL)
 542                        hns3_enable_txq(txq, txq->enabled);
 543        }
 544}
 545
 546void
 547hns3_stop_all_txqs(struct rte_eth_dev *dev)
 548{
 549        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
 550        struct hns3_tx_queue *txq;
 551        uint16_t i;
 552
 553        for (i = 0; i < dev->data->nb_tx_queues; i++) {
 554                txq = hw->data->tx_queues[i];
 555                if (!txq)
 556                        continue;
 557                hns3_enable_txq(txq, false);
 558        }
 559}
 560
 561static int
 562hns3_tqp_enable(struct hns3_hw *hw, uint16_t queue_id, bool enable)
 563{
 564        struct hns3_cfg_com_tqp_queue_cmd *req;
 565        struct hns3_cmd_desc desc;
 566        int ret;
 567
 568        req = (struct hns3_cfg_com_tqp_queue_cmd *)desc.data;
 569
 570        hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_COM_TQP_QUEUE, false);
 571        req->tqp_id = rte_cpu_to_le_16(queue_id);
 572        req->stream_id = 0;
 573        hns3_set_bit(req->enable, HNS3_TQP_ENABLE_B, enable ? 1 : 0);
 574
 575        ret = hns3_cmd_send(hw, &desc, 1);
 576        if (ret)
 577                hns3_err(hw, "TQP enable fail, ret = %d", ret);
 578
 579        return ret;
 580}
 581
 582static int
 583hns3_send_reset_tqp_cmd(struct hns3_hw *hw, uint16_t queue_id, bool enable)
 584{
 585        struct hns3_reset_tqp_queue_cmd *req;
 586        struct hns3_cmd_desc desc;
 587        int ret;
 588
 589        hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, false);
 590
 591        req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
 592        req->tqp_id = rte_cpu_to_le_16(queue_id);
 593        hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
 594        ret = hns3_cmd_send(hw, &desc, 1);
 595        if (ret)
 596                hns3_err(hw, "send tqp reset cmd error, queue_id = %u, "
 597                             "ret = %d", queue_id, ret);
 598
 599        return ret;
 600}
 601
 602static int
 603hns3_get_tqp_reset_status(struct hns3_hw *hw, uint16_t queue_id,
 604                          uint8_t *reset_status)
 605{
 606        struct hns3_reset_tqp_queue_cmd *req;
 607        struct hns3_cmd_desc desc;
 608        int ret;
 609
 610        hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE, true);
 611
 612        req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
 613        req->tqp_id = rte_cpu_to_le_16(queue_id);
 614
 615        ret = hns3_cmd_send(hw, &desc, 1);
 616        if (ret) {
 617                hns3_err(hw, "get tqp reset status error, queue_id = %u, "
 618                             "ret = %d.", queue_id, ret);
 619                return ret;
 620        }
 621        *reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
 622        return ret;
 623}
 624
 625static int
 626hns3pf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
 627{
 628#define HNS3_TQP_RESET_TRY_MS   200
 629        uint16_t wait_time = 0;
 630        uint8_t reset_status;
 631        int ret;
 632
 633        /*
 634         * In current version VF is not supported when PF is driven by DPDK
 635         * driver, all task queue pairs are mapped to PF function, so PF's queue
 636         * id is equals to the global queue id in PF range.
 637         */
 638        ret = hns3_send_reset_tqp_cmd(hw, queue_id, true);
 639        if (ret) {
 640                hns3_err(hw, "Send reset tqp cmd fail, ret = %d", ret);
 641                return ret;
 642        }
 643
 644        do {
 645                /* Wait for tqp hw reset */
 646                rte_delay_ms(HNS3_POLL_RESPONE_MS);
 647                wait_time += HNS3_POLL_RESPONE_MS;
 648                ret = hns3_get_tqp_reset_status(hw, queue_id, &reset_status);
 649                if (ret)
 650                        goto tqp_reset_fail;
 651
 652                if (reset_status)
 653                        break;
 654        } while (wait_time < HNS3_TQP_RESET_TRY_MS);
 655
 656        if (!reset_status) {
 657                ret = -ETIMEDOUT;
 658                hns3_err(hw, "reset tqp timeout, queue_id = %u, ret = %d",
 659                             queue_id, ret);
 660                goto tqp_reset_fail;
 661        }
 662
 663        ret = hns3_send_reset_tqp_cmd(hw, queue_id, false);
 664        if (ret)
 665                hns3_err(hw, "Deassert the soft reset fail, ret = %d", ret);
 666
 667        return ret;
 668
 669tqp_reset_fail:
 670        hns3_send_reset_tqp_cmd(hw, queue_id, false);
 671        return ret;
 672}
 673
 674static int
 675hns3vf_reset_tqp(struct hns3_hw *hw, uint16_t queue_id)
 676{
 677        uint8_t msg_data[2];
 678        int ret;
 679
 680        memcpy(msg_data, &queue_id, sizeof(uint16_t));
 681
 682        ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data,
 683                                 sizeof(msg_data), true, NULL, 0);
 684        if (ret)
 685                hns3_err(hw, "fail to reset tqp, queue_id = %u, ret = %d.",
 686                         queue_id, ret);
 687        return ret;
 688}
 689
 690static int
 691hns3_reset_rcb_cmd(struct hns3_hw *hw, uint8_t *reset_status)
 692{
 693        struct hns3_reset_cmd *req;
 694        struct hns3_cmd_desc desc;
 695        int ret;
 696
 697        hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
 698        req = (struct hns3_reset_cmd *)desc.data;
 699        hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_RCB_B, 1);
 700
 701        /*
 702         * The start qid should be the global qid of the first tqp of the
 703         * function which should be reset in this port. Since our PF not
 704         * support take over of VFs, so we only need to reset function 0,
 705         * and its start qid is always 0.
 706         */
 707        req->fun_reset_rcb_vqid_start = rte_cpu_to_le_16(0);
 708        req->fun_reset_rcb_vqid_num = rte_cpu_to_le_16(hw->cfg_max_queues);
 709
 710        ret = hns3_cmd_send(hw, &desc, 1);
 711        if (ret) {
 712                hns3_err(hw, "fail to send rcb reset cmd, ret = %d.", ret);
 713                return ret;
 714        }
 715
 716        *reset_status = req->fun_reset_rcb_return_status;
 717        return 0;
 718}
 719
 720static int
 721hns3pf_reset_all_tqps(struct hns3_hw *hw)
 722{
 723#define HNS3_RESET_RCB_NOT_SUPPORT      0U
 724#define HNS3_RESET_ALL_TQP_SUCCESS      1U
 725        uint8_t reset_status;
 726        int ret;
 727        int i;
 728
 729        ret = hns3_reset_rcb_cmd(hw, &reset_status);
 730        if (ret)
 731                return ret;
 732
 733        /*
 734         * If the firmware version is low, it may not support the rcb reset
 735         * which means reset all the tqps at a time. In this case, we should
 736         * reset tqps one by one.
 737         */
 738        if (reset_status == HNS3_RESET_RCB_NOT_SUPPORT) {
 739                for (i = 0; i < hw->cfg_max_queues; i++) {
 740                        ret = hns3pf_reset_tqp(hw, i);
 741                        if (ret) {
 742                                hns3_err(hw,
 743                                  "fail to reset tqp, queue_id = %d, ret = %d.",
 744                                  i, ret);
 745                                return ret;
 746                        }
 747                }
 748        } else if (reset_status != HNS3_RESET_ALL_TQP_SUCCESS) {
 749                hns3_err(hw, "fail to reset all tqps, reset_status = %u.",
 750                                reset_status);
 751                return -EIO;
 752        }
 753
 754        return 0;
 755}
 756
 757static int
 758hns3vf_reset_all_tqps(struct hns3_hw *hw)
 759{
 760#define HNS3VF_RESET_ALL_TQP_DONE       1U
 761        uint8_t reset_status;
 762        uint8_t msg_data[2];
 763        int ret;
 764        int i;
 765
 766        memset(msg_data, 0, sizeof(uint16_t));
 767        ret = hns3_send_mbx_msg(hw, HNS3_MBX_QUEUE_RESET, 0, msg_data,
 768                                sizeof(msg_data), true, &reset_status,
 769                                sizeof(reset_status));
 770        if (ret) {
 771                hns3_err(hw, "fail to send rcb reset mbx, ret = %d.", ret);
 772                return ret;
 773        }
 774
 775        if (reset_status == HNS3VF_RESET_ALL_TQP_DONE)
 776                return 0;
 777
 778        /*
 779         * If the firmware version or kernel PF version is low, it may not
 780         * support the rcb reset which means reset all the tqps at a time.
 781         * In this case, we should reset tqps one by one.
 782         */
 783        for (i = 1; i < hw->cfg_max_queues; i++) {
 784                ret = hns3vf_reset_tqp(hw, i);
 785                if (ret)
 786                        return ret;
 787        }
 788
 789        return 0;
 790}
 791
 792int
 793hns3_reset_all_tqps(struct hns3_adapter *hns)
 794{
 795        struct hns3_hw *hw = &hns->hw;
 796        int ret, i;
 797
 798        /* Disable all queues before reset all queues */
 799        for (i = 0; i < hw->cfg_max_queues; i++) {
 800                ret = hns3_tqp_enable(hw, i, false);
 801                if (ret) {
 802                        hns3_err(hw,
 803                            "fail to disable tqps before tqps reset, ret = %d.",
 804                            ret);
 805                        return ret;
 806                }
 807        }
 808
 809        if (hns->is_vf)
 810                return hns3vf_reset_all_tqps(hw);
 811        else
 812                return hns3pf_reset_all_tqps(hw);
 813}
 814
 815static int
 816hns3_send_reset_queue_cmd(struct hns3_hw *hw, uint16_t queue_id,
 817                          enum hns3_ring_type queue_type, bool enable)
 818{
 819        struct hns3_reset_tqp_queue_cmd *req;
 820        struct hns3_cmd_desc desc;
 821        int queue_direction;
 822        int ret;
 823
 824        hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, false);
 825
 826        req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
 827        req->tqp_id = rte_cpu_to_le_16(queue_id);
 828        queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1;
 829        req->queue_direction = rte_cpu_to_le_16(queue_direction);
 830        hns3_set_bit(req->reset_req, HNS3_TQP_RESET_B, enable ? 1 : 0);
 831
 832        ret = hns3_cmd_send(hw, &desc, 1);
 833        if (ret)
 834                hns3_err(hw, "send queue reset cmd error, queue_id = %u, "
 835                         "queue_type = %s, ret = %d.", queue_id,
 836                         queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret);
 837        return ret;
 838}
 839
 840static int
 841hns3_get_queue_reset_status(struct hns3_hw *hw, uint16_t queue_id,
 842                            enum hns3_ring_type queue_type,
 843                            uint8_t *reset_status)
 844{
 845        struct hns3_reset_tqp_queue_cmd *req;
 846        struct hns3_cmd_desc desc;
 847        int queue_direction;
 848        int ret;
 849
 850        hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RESET_TQP_QUEUE_INDEP, true);
 851
 852        req = (struct hns3_reset_tqp_queue_cmd *)desc.data;
 853        req->tqp_id = rte_cpu_to_le_16(queue_id);
 854        queue_direction = queue_type == HNS3_RING_TYPE_TX ? 0 : 1;
 855        req->queue_direction = rte_cpu_to_le_16(queue_direction);
 856
 857        ret = hns3_cmd_send(hw, &desc, 1);
 858        if (ret) {
 859                hns3_err(hw, "get queue reset status error, queue_id = %u "
 860                         "queue_type = %s, ret = %d.", queue_id,
 861                         queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx", ret);
 862                return ret;
 863        }
 864
 865        *reset_status = hns3_get_bit(req->ready_to_reset, HNS3_TQP_RESET_B);
 866        return  ret;
 867}
 868
 869static int
 870hns3_reset_queue(struct hns3_hw *hw, uint16_t queue_id,
 871                 enum hns3_ring_type queue_type)
 872{
 873#define HNS3_QUEUE_RESET_TRY_MS 200
 874        struct hns3_tx_queue *txq;
 875        struct hns3_rx_queue *rxq;
 876        uint32_t reset_wait_times;
 877        uint32_t max_wait_times;
 878        uint8_t reset_status;
 879        int ret;
 880
 881        if (queue_type == HNS3_RING_TYPE_TX) {
 882                txq = hw->data->tx_queues[queue_id];
 883                hns3_enable_txq(txq, false);
 884        } else {
 885                rxq = hw->data->rx_queues[queue_id];
 886                hns3_enable_rxq(rxq, false);
 887        }
 888
 889        ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, true);
 890        if (ret) {
 891                hns3_err(hw, "send reset queue cmd fail, ret = %d.", ret);
 892                return ret;
 893        }
 894
 895        reset_wait_times = 0;
 896        max_wait_times = HNS3_QUEUE_RESET_TRY_MS / HNS3_POLL_RESPONE_MS;
 897        while (reset_wait_times < max_wait_times) {
 898                /* Wait for queue hw reset */
 899                rte_delay_ms(HNS3_POLL_RESPONE_MS);
 900                ret = hns3_get_queue_reset_status(hw, queue_id,
 901                                                queue_type, &reset_status);
 902                if (ret)
 903                        goto queue_reset_fail;
 904
 905                if (reset_status)
 906                        break;
 907                reset_wait_times++;
 908        }
 909
 910        if (!reset_status) {
 911                hns3_err(hw, "reset queue timeout, queue_id = %u, "
 912                             "queue_type = %s", queue_id,
 913                             queue_type == HNS3_RING_TYPE_TX ? "Tx" : "Rx");
 914                ret = -ETIMEDOUT;
 915                goto queue_reset_fail;
 916        }
 917
 918        ret = hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false);
 919        if (ret)
 920                hns3_err(hw, "deassert queue reset fail, ret = %d.", ret);
 921
 922        return ret;
 923
 924queue_reset_fail:
 925        hns3_send_reset_queue_cmd(hw, queue_id, queue_type, false);
 926        return ret;
 927}
 928
 929uint32_t
 930hns3_get_tqp_intr_reg_offset(uint16_t tqp_intr_id)
 931{
 932        uint32_t reg_offset;
 933
 934        /* Need an extend offset to config queues > 64 */
 935        if (tqp_intr_id < HNS3_MIN_EXT_TQP_INTR_ID)
 936                reg_offset = HNS3_TQP_INTR_REG_BASE +
 937                             tqp_intr_id * HNS3_TQP_INTR_LOW_ORDER_OFFSET;
 938        else
 939                reg_offset = HNS3_TQP_INTR_EXT_REG_BASE +
 940                             tqp_intr_id / HNS3_MIN_EXT_TQP_INTR_ID *
 941                             HNS3_TQP_INTR_HIGH_ORDER_OFFSET +
 942                             tqp_intr_id % HNS3_MIN_EXT_TQP_INTR_ID *
 943                             HNS3_TQP_INTR_LOW_ORDER_OFFSET;
 944
 945        return reg_offset;
 946}
 947
 948void
 949hns3_set_queue_intr_gl(struct hns3_hw *hw, uint16_t queue_id,
 950                       uint8_t gl_idx, uint16_t gl_value)
 951{
 952        uint32_t offset[] = {HNS3_TQP_INTR_GL0_REG,
 953                             HNS3_TQP_INTR_GL1_REG,
 954                             HNS3_TQP_INTR_GL2_REG};
 955        uint32_t addr, value;
 956
 957        if (gl_idx >= RTE_DIM(offset) || gl_value > HNS3_TQP_INTR_GL_MAX)
 958                return;
 959
 960        addr = offset[gl_idx] + hns3_get_tqp_intr_reg_offset(queue_id);
 961        if (hw->intr.gl_unit == HNS3_INTR_COALESCE_GL_UINT_1US)
 962                value = gl_value | HNS3_TQP_INTR_GL_UNIT_1US;
 963        else
 964                value = HNS3_GL_USEC_TO_REG(gl_value);
 965
 966        hns3_write_dev(hw, addr, value);
 967}
 968
 969void
 970hns3_set_queue_intr_rl(struct hns3_hw *hw, uint16_t queue_id, uint16_t rl_value)
 971{
 972        uint32_t addr, value;
 973
 974        if (rl_value > HNS3_TQP_INTR_RL_MAX)
 975                return;
 976
 977        addr = HNS3_TQP_INTR_RL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
 978        value = HNS3_RL_USEC_TO_REG(rl_value);
 979        if (value > 0)
 980                value |= HNS3_TQP_INTR_RL_ENABLE_MASK;
 981
 982        hns3_write_dev(hw, addr, value);
 983}
 984
 985void
 986hns3_set_queue_intr_ql(struct hns3_hw *hw, uint16_t queue_id, uint16_t ql_value)
 987{
 988        uint32_t addr;
 989
 990        /*
 991         * int_ql_max == 0 means the hardware does not support QL,
 992         * QL regs config is not permitted if QL is not supported,
 993         * here just return.
 994         */
 995        if (hw->intr.int_ql_max == HNS3_INTR_QL_NONE)
 996                return;
 997
 998        addr = HNS3_TQP_INTR_TX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
 999        hns3_write_dev(hw, addr, ql_value);
1000
1001        addr = HNS3_TQP_INTR_RX_QL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
1002        hns3_write_dev(hw, addr, ql_value);
1003}
1004
1005static void
1006hns3_queue_intr_enable(struct hns3_hw *hw, uint16_t queue_id, bool en)
1007{
1008        uint32_t addr, value;
1009
1010        addr = HNS3_TQP_INTR_CTRL_REG + hns3_get_tqp_intr_reg_offset(queue_id);
1011        value = en ? 1 : 0;
1012
1013        hns3_write_dev(hw, addr, value);
1014}
1015
1016/*
1017 * Enable all rx queue interrupt when in interrupt rx mode.
1018 * This api was called before enable queue rx&tx (in normal start or reset
1019 * recover scenes), used to fix hardware rx queue interrupt enable was clear
1020 * when FLR.
1021 */
1022void
1023hns3_dev_all_rx_queue_intr_enable(struct hns3_hw *hw, bool en)
1024{
1025        struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1026        uint16_t nb_rx_q = hw->data->nb_rx_queues;
1027        int i;
1028
1029        if (dev->data->dev_conf.intr_conf.rxq == 0)
1030                return;
1031
1032        for (i = 0; i < nb_rx_q; i++)
1033                hns3_queue_intr_enable(hw, i, en);
1034}
1035
1036int
1037hns3_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1038{
1039        struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1040        struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1041        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1042
1043        if (dev->data->dev_conf.intr_conf.rxq == 0)
1044                return -ENOTSUP;
1045
1046        hns3_queue_intr_enable(hw, queue_id, true);
1047
1048        return rte_intr_ack(intr_handle);
1049}
1050
1051int
1052hns3_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1053{
1054        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1055
1056        if (dev->data->dev_conf.intr_conf.rxq == 0)
1057                return -ENOTSUP;
1058
1059        hns3_queue_intr_enable(hw, queue_id, false);
1060
1061        return 0;
1062}
1063
1064static int
1065hns3_init_rxq(struct hns3_adapter *hns, uint16_t idx)
1066{
1067        struct hns3_hw *hw = &hns->hw;
1068        struct hns3_rx_queue *rxq;
1069        int ret;
1070
1071        PMD_INIT_FUNC_TRACE();
1072
1073        rxq = (struct hns3_rx_queue *)hw->data->rx_queues[idx];
1074        ret = hns3_alloc_rx_queue_mbufs(hw, rxq);
1075        if (ret) {
1076                hns3_err(hw, "fail to alloc mbuf for Rx queue %u, ret = %d.",
1077                         idx, ret);
1078                return ret;
1079        }
1080
1081        rxq->next_to_use = 0;
1082        rxq->rx_rearm_start = 0;
1083        rxq->rx_free_hold = 0;
1084        rxq->rx_rearm_nb = 0;
1085        rxq->pkt_first_seg = NULL;
1086        rxq->pkt_last_seg = NULL;
1087        hns3_init_rx_queue_hw(rxq);
1088        hns3_rxq_vec_setup(rxq);
1089
1090        return 0;
1091}
1092
1093static void
1094hns3_init_fake_rxq(struct hns3_adapter *hns, uint16_t idx)
1095{
1096        struct hns3_hw *hw = &hns->hw;
1097        struct hns3_rx_queue *rxq;
1098
1099        rxq = (struct hns3_rx_queue *)hw->fkq_data.rx_queues[idx];
1100        rxq->next_to_use = 0;
1101        rxq->rx_free_hold = 0;
1102        rxq->rx_rearm_start = 0;
1103        rxq->rx_rearm_nb = 0;
1104        hns3_init_rx_queue_hw(rxq);
1105}
1106
1107static void
1108hns3_init_txq(struct hns3_tx_queue *txq)
1109{
1110        struct hns3_desc *desc;
1111        int i;
1112
1113        /* Clear tx bd */
1114        desc = txq->tx_ring;
1115        for (i = 0; i < txq->nb_tx_desc; i++) {
1116                desc->tx.tp_fe_sc_vld_ra_ri = 0;
1117                desc++;
1118        }
1119
1120        txq->next_to_use = 0;
1121        txq->next_to_clean = 0;
1122        txq->tx_bd_ready = txq->nb_tx_desc - 1;
1123        hns3_init_tx_queue_hw(txq);
1124}
1125
1126static void
1127hns3_init_tx_ring_tc(struct hns3_adapter *hns)
1128{
1129        struct hns3_hw *hw = &hns->hw;
1130        struct hns3_tx_queue *txq;
1131        int i, num;
1132
1133        for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1134                struct hns3_tc_queue_info *tc_queue = &hw->tc_queue[i];
1135                int j;
1136
1137                if (!tc_queue->enable)
1138                        continue;
1139
1140                for (j = 0; j < tc_queue->tqp_count; j++) {
1141                        num = tc_queue->tqp_offset + j;
1142                        txq = (struct hns3_tx_queue *)hw->data->tx_queues[num];
1143                        if (txq == NULL)
1144                                continue;
1145
1146                        hns3_write_dev(txq, HNS3_RING_TX_TC_REG, tc_queue->tc);
1147                }
1148        }
1149}
1150
1151static int
1152hns3_init_rx_queues(struct hns3_adapter *hns)
1153{
1154        struct hns3_hw *hw = &hns->hw;
1155        struct hns3_rx_queue *rxq;
1156        uint16_t i, j;
1157        int ret;
1158
1159        /* Initialize RSS for queues */
1160        ret = hns3_config_rss(hns);
1161        if (ret) {
1162                hns3_err(hw, "failed to configure rss, ret = %d.", ret);
1163                return ret;
1164        }
1165
1166        for (i = 0; i < hw->data->nb_rx_queues; i++) {
1167                rxq = (struct hns3_rx_queue *)hw->data->rx_queues[i];
1168                if (!rxq) {
1169                        hns3_err(hw, "Rx queue %u not available or setup.", i);
1170                        goto out;
1171                }
1172
1173                if (rxq->rx_deferred_start)
1174                        continue;
1175
1176                ret = hns3_init_rxq(hns, i);
1177                if (ret) {
1178                        hns3_err(hw, "failed to init Rx queue %u, ret = %d.", i,
1179                                 ret);
1180                        goto out;
1181                }
1182        }
1183
1184        for (i = 0; i < hw->fkq_data.nb_fake_rx_queues; i++)
1185                hns3_init_fake_rxq(hns, i);
1186
1187        return 0;
1188
1189out:
1190        for (j = 0; j < i; j++) {
1191                rxq = (struct hns3_rx_queue *)hw->data->rx_queues[j];
1192                hns3_rx_queue_release_mbufs(rxq);
1193        }
1194
1195        return ret;
1196}
1197
1198static int
1199hns3_init_tx_queues(struct hns3_adapter *hns)
1200{
1201        struct hns3_hw *hw = &hns->hw;
1202        struct hns3_tx_queue *txq;
1203        uint16_t i;
1204
1205        for (i = 0; i < hw->data->nb_tx_queues; i++) {
1206                txq = (struct hns3_tx_queue *)hw->data->tx_queues[i];
1207                if (!txq) {
1208                        hns3_err(hw, "Tx queue %u not available or setup.", i);
1209                        return -EINVAL;
1210                }
1211
1212                if (txq->tx_deferred_start)
1213                        continue;
1214                hns3_init_txq(txq);
1215        }
1216
1217        for (i = 0; i < hw->fkq_data.nb_fake_tx_queues; i++) {
1218                txq = (struct hns3_tx_queue *)hw->fkq_data.tx_queues[i];
1219                hns3_init_txq(txq);
1220        }
1221        hns3_init_tx_ring_tc(hns);
1222
1223        return 0;
1224}
1225
1226/*
1227 * Init all queues.
1228 * Note: just init and setup queues, and don't enable tqps.
1229 */
1230int
1231hns3_init_queues(struct hns3_adapter *hns, bool reset_queue)
1232{
1233        struct hns3_hw *hw = &hns->hw;
1234        int ret;
1235
1236        if (reset_queue) {
1237                ret = hns3_reset_all_tqps(hns);
1238                if (ret) {
1239                        hns3_err(hw, "failed to reset all queues, ret = %d.",
1240                                 ret);
1241                        return ret;
1242                }
1243        }
1244
1245        ret = hns3_init_rx_queues(hns);
1246        if (ret) {
1247                hns3_err(hw, "failed to init rx queues, ret = %d.", ret);
1248                return ret;
1249        }
1250
1251        ret = hns3_init_tx_queues(hns);
1252        if (ret) {
1253                hns3_dev_release_mbufs(hns);
1254                hns3_err(hw, "failed to init tx queues, ret = %d.", ret);
1255        }
1256
1257        return ret;
1258}
1259
1260void
1261hns3_start_tqps(struct hns3_hw *hw)
1262{
1263        struct hns3_tx_queue *txq;
1264        struct hns3_rx_queue *rxq;
1265        uint16_t i;
1266
1267        hns3_enable_all_queues(hw, true);
1268
1269        for (i = 0; i < hw->data->nb_tx_queues; i++) {
1270                txq = hw->data->tx_queues[i];
1271                if (txq->enabled)
1272                        hw->data->tx_queue_state[i] =
1273                                RTE_ETH_QUEUE_STATE_STARTED;
1274        }
1275
1276        for (i = 0; i < hw->data->nb_rx_queues; i++) {
1277                rxq = hw->data->rx_queues[i];
1278                if (rxq->enabled)
1279                        hw->data->rx_queue_state[i] =
1280                                RTE_ETH_QUEUE_STATE_STARTED;
1281        }
1282}
1283
1284void
1285hns3_stop_tqps(struct hns3_hw *hw)
1286{
1287        uint16_t i;
1288
1289        hns3_enable_all_queues(hw, false);
1290
1291        for (i = 0; i < hw->data->nb_tx_queues; i++)
1292                hw->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1293
1294        for (i = 0; i < hw->data->nb_rx_queues; i++)
1295                hw->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
1296}
1297
1298/*
1299 * Iterate over all Rx Queue, and call the callback() function for each Rx
1300 * queue.
1301 *
1302 * @param[in] dev
1303 *   The target eth dev.
1304 * @param[in] callback
1305 *   The function to call for each queue.
1306 *   if callback function return nonzero will stop iterate and return it's value
1307 * @param[in] arg
1308 *   The arguments to provide the callback function with.
1309 *
1310 * @return
1311 *   0 on success, otherwise with errno set.
1312 */
1313int
1314hns3_rxq_iterate(struct rte_eth_dev *dev,
1315                 int (*callback)(struct hns3_rx_queue *, void *), void *arg)
1316{
1317        uint32_t i;
1318        int ret;
1319
1320        if (dev->data->rx_queues == NULL)
1321                return -EINVAL;
1322
1323        for (i = 0; i < dev->data->nb_rx_queues; i++) {
1324                ret = callback(dev->data->rx_queues[i], arg);
1325                if (ret != 0)
1326                        return ret;
1327        }
1328
1329        return 0;
1330}
1331
1332static void*
1333hns3_alloc_rxq_and_dma_zone(struct rte_eth_dev *dev,
1334                            struct hns3_queue_info *q_info)
1335{
1336        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1337        const struct rte_memzone *rx_mz;
1338        struct hns3_rx_queue *rxq;
1339        unsigned int rx_desc;
1340
1341        rxq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_rx_queue),
1342                                 RTE_CACHE_LINE_SIZE, q_info->socket_id);
1343        if (rxq == NULL) {
1344                hns3_err(hw, "Failed to allocate memory for No.%u rx ring!",
1345                         q_info->idx);
1346                return NULL;
1347        }
1348
1349        /* Allocate rx ring hardware descriptors. */
1350        rxq->queue_id = q_info->idx;
1351        rxq->nb_rx_desc = q_info->nb_desc;
1352
1353        /*
1354         * Allocate a litter more memory because rx vector functions
1355         * don't check boundaries each time.
1356         */
1357        rx_desc = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) *
1358                        sizeof(struct hns3_desc);
1359        rx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
1360                                         rx_desc, HNS3_RING_BASE_ALIGN,
1361                                         q_info->socket_id);
1362        if (rx_mz == NULL) {
1363                hns3_err(hw, "Failed to reserve DMA memory for No.%u rx ring!",
1364                         q_info->idx);
1365                hns3_rx_queue_release(rxq);
1366                return NULL;
1367        }
1368        rxq->mz = rx_mz;
1369        rxq->rx_ring = (struct hns3_desc *)rx_mz->addr;
1370        rxq->rx_ring_phys_addr = rx_mz->iova;
1371
1372        hns3_dbg(hw, "No.%u rx descriptors iova 0x%" PRIx64, q_info->idx,
1373                 rxq->rx_ring_phys_addr);
1374
1375        return rxq;
1376}
1377
1378static int
1379hns3_fake_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
1380                         uint16_t nb_desc, unsigned int socket_id)
1381{
1382        struct hns3_adapter *hns = dev->data->dev_private;
1383        struct hns3_hw *hw = &hns->hw;
1384        struct hns3_queue_info q_info;
1385        struct hns3_rx_queue *rxq;
1386        uint16_t nb_rx_q;
1387
1388        if (hw->fkq_data.rx_queues[idx]) {
1389                hns3_rx_queue_release(hw->fkq_data.rx_queues[idx]);
1390                hw->fkq_data.rx_queues[idx] = NULL;
1391        }
1392
1393        q_info.idx = idx;
1394        q_info.socket_id = socket_id;
1395        q_info.nb_desc = nb_desc;
1396        q_info.type = "hns3 fake RX queue";
1397        q_info.ring_name = "rx_fake_ring";
1398        rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
1399        if (rxq == NULL) {
1400                hns3_err(hw, "Failed to setup No.%u fake rx ring.", idx);
1401                return -ENOMEM;
1402        }
1403
1404        /* Don't need alloc sw_ring, because upper applications don't use it */
1405        rxq->sw_ring = NULL;
1406
1407        rxq->hns = hns;
1408        rxq->rx_deferred_start = false;
1409        rxq->port_id = dev->data->port_id;
1410        rxq->configured = true;
1411        nb_rx_q = dev->data->nb_rx_queues;
1412        rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1413                                (nb_rx_q + idx) * HNS3_TQP_REG_SIZE);
1414        rxq->rx_buf_len = HNS3_MIN_BD_BUF_SIZE;
1415
1416        rte_spinlock_lock(&hw->lock);
1417        hw->fkq_data.rx_queues[idx] = rxq;
1418        rte_spinlock_unlock(&hw->lock);
1419
1420        return 0;
1421}
1422
1423static void*
1424hns3_alloc_txq_and_dma_zone(struct rte_eth_dev *dev,
1425                            struct hns3_queue_info *q_info)
1426{
1427        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1428        const struct rte_memzone *tx_mz;
1429        struct hns3_tx_queue *txq;
1430        struct hns3_desc *desc;
1431        unsigned int tx_desc;
1432        int i;
1433
1434        txq = rte_zmalloc_socket(q_info->type, sizeof(struct hns3_tx_queue),
1435                                 RTE_CACHE_LINE_SIZE, q_info->socket_id);
1436        if (txq == NULL) {
1437                hns3_err(hw, "Failed to allocate memory for No.%u tx ring!",
1438                         q_info->idx);
1439                return NULL;
1440        }
1441
1442        /* Allocate tx ring hardware descriptors. */
1443        txq->queue_id = q_info->idx;
1444        txq->nb_tx_desc = q_info->nb_desc;
1445        tx_desc = txq->nb_tx_desc * sizeof(struct hns3_desc);
1446        tx_mz = rte_eth_dma_zone_reserve(dev, q_info->ring_name, q_info->idx,
1447                                         tx_desc, HNS3_RING_BASE_ALIGN,
1448                                         q_info->socket_id);
1449        if (tx_mz == NULL) {
1450                hns3_err(hw, "Failed to reserve DMA memory for No.%u tx ring!",
1451                         q_info->idx);
1452                hns3_tx_queue_release(txq);
1453                return NULL;
1454        }
1455        txq->mz = tx_mz;
1456        txq->tx_ring = (struct hns3_desc *)tx_mz->addr;
1457        txq->tx_ring_phys_addr = tx_mz->iova;
1458
1459        hns3_dbg(hw, "No.%u tx descriptors iova 0x%" PRIx64, q_info->idx,
1460                 txq->tx_ring_phys_addr);
1461
1462        /* Clear tx bd */
1463        desc = txq->tx_ring;
1464        for (i = 0; i < txq->nb_tx_desc; i++) {
1465                desc->tx.tp_fe_sc_vld_ra_ri = 0;
1466                desc++;
1467        }
1468
1469        return txq;
1470}
1471
1472static int
1473hns3_fake_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx,
1474                         uint16_t nb_desc, unsigned int socket_id)
1475{
1476        struct hns3_adapter *hns = dev->data->dev_private;
1477        struct hns3_hw *hw = &hns->hw;
1478        struct hns3_queue_info q_info;
1479        struct hns3_tx_queue *txq;
1480        uint16_t nb_tx_q;
1481
1482        if (hw->fkq_data.tx_queues[idx] != NULL) {
1483                hns3_tx_queue_release(hw->fkq_data.tx_queues[idx]);
1484                hw->fkq_data.tx_queues[idx] = NULL;
1485        }
1486
1487        q_info.idx = idx;
1488        q_info.socket_id = socket_id;
1489        q_info.nb_desc = nb_desc;
1490        q_info.type = "hns3 fake TX queue";
1491        q_info.ring_name = "tx_fake_ring";
1492        txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
1493        if (txq == NULL) {
1494                hns3_err(hw, "Failed to setup No.%u fake tx ring.", idx);
1495                return -ENOMEM;
1496        }
1497
1498        /* Don't need alloc sw_ring, because upper applications don't use it */
1499        txq->sw_ring = NULL;
1500        txq->free = NULL;
1501
1502        txq->hns = hns;
1503        txq->tx_deferred_start = false;
1504        txq->port_id = dev->data->port_id;
1505        txq->configured = true;
1506        nb_tx_q = dev->data->nb_tx_queues;
1507        txq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1508                                (nb_tx_q + idx) * HNS3_TQP_REG_SIZE);
1509
1510        rte_spinlock_lock(&hw->lock);
1511        hw->fkq_data.tx_queues[idx] = txq;
1512        rte_spinlock_unlock(&hw->lock);
1513
1514        return 0;
1515}
1516
1517static int
1518hns3_fake_rx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
1519{
1520        uint16_t old_nb_queues = hw->fkq_data.nb_fake_rx_queues;
1521        void **rxq;
1522        uint16_t i;
1523
1524        if (hw->fkq_data.rx_queues == NULL && nb_queues != 0) {
1525                /* first time configuration */
1526                uint32_t size;
1527                size = sizeof(hw->fkq_data.rx_queues[0]) * nb_queues;
1528                hw->fkq_data.rx_queues = rte_zmalloc("fake_rx_queues", size,
1529                                                     RTE_CACHE_LINE_SIZE);
1530                if (hw->fkq_data.rx_queues == NULL) {
1531                        hw->fkq_data.nb_fake_rx_queues = 0;
1532                        return -ENOMEM;
1533                }
1534        } else if (hw->fkq_data.rx_queues != NULL && nb_queues != 0) {
1535                /* re-configure */
1536                rxq = hw->fkq_data.rx_queues;
1537                for (i = nb_queues; i < old_nb_queues; i++)
1538                        hns3_dev_rx_queue_release(rxq[i]);
1539
1540                rxq = rte_realloc(rxq, sizeof(rxq[0]) * nb_queues,
1541                                  RTE_CACHE_LINE_SIZE);
1542                if (rxq == NULL)
1543                        return -ENOMEM;
1544                if (nb_queues > old_nb_queues) {
1545                        uint16_t new_qs = nb_queues - old_nb_queues;
1546                        memset(rxq + old_nb_queues, 0, sizeof(rxq[0]) * new_qs);
1547                }
1548
1549                hw->fkq_data.rx_queues = rxq;
1550        } else if (hw->fkq_data.rx_queues != NULL && nb_queues == 0) {
1551                rxq = hw->fkq_data.rx_queues;
1552                for (i = nb_queues; i < old_nb_queues; i++)
1553                        hns3_dev_rx_queue_release(rxq[i]);
1554
1555                rte_free(hw->fkq_data.rx_queues);
1556                hw->fkq_data.rx_queues = NULL;
1557        }
1558
1559        hw->fkq_data.nb_fake_rx_queues = nb_queues;
1560
1561        return 0;
1562}
1563
1564static int
1565hns3_fake_tx_queue_config(struct hns3_hw *hw, uint16_t nb_queues)
1566{
1567        uint16_t old_nb_queues = hw->fkq_data.nb_fake_tx_queues;
1568        void **txq;
1569        uint16_t i;
1570
1571        if (hw->fkq_data.tx_queues == NULL && nb_queues != 0) {
1572                /* first time configuration */
1573                uint32_t size;
1574                size = sizeof(hw->fkq_data.tx_queues[0]) * nb_queues;
1575                hw->fkq_data.tx_queues = rte_zmalloc("fake_tx_queues", size,
1576                                                     RTE_CACHE_LINE_SIZE);
1577                if (hw->fkq_data.tx_queues == NULL) {
1578                        hw->fkq_data.nb_fake_tx_queues = 0;
1579                        return -ENOMEM;
1580                }
1581        } else if (hw->fkq_data.tx_queues != NULL && nb_queues != 0) {
1582                /* re-configure */
1583                txq = hw->fkq_data.tx_queues;
1584                for (i = nb_queues; i < old_nb_queues; i++)
1585                        hns3_dev_tx_queue_release(txq[i]);
1586                txq = rte_realloc(txq, sizeof(txq[0]) * nb_queues,
1587                                  RTE_CACHE_LINE_SIZE);
1588                if (txq == NULL)
1589                        return -ENOMEM;
1590                if (nb_queues > old_nb_queues) {
1591                        uint16_t new_qs = nb_queues - old_nb_queues;
1592                        memset(txq + old_nb_queues, 0, sizeof(txq[0]) * new_qs);
1593                }
1594
1595                hw->fkq_data.tx_queues = txq;
1596        } else if (hw->fkq_data.tx_queues != NULL && nb_queues == 0) {
1597                txq = hw->fkq_data.tx_queues;
1598                for (i = nb_queues; i < old_nb_queues; i++)
1599                        hns3_dev_tx_queue_release(txq[i]);
1600
1601                rte_free(hw->fkq_data.tx_queues);
1602                hw->fkq_data.tx_queues = NULL;
1603        }
1604        hw->fkq_data.nb_fake_tx_queues = nb_queues;
1605
1606        return 0;
1607}
1608
1609int
1610hns3_set_fake_rx_or_tx_queues(struct rte_eth_dev *dev, uint16_t nb_rx_q,
1611                              uint16_t nb_tx_q)
1612{
1613        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1614        uint16_t rx_need_add_nb_q;
1615        uint16_t tx_need_add_nb_q;
1616        uint16_t port_id;
1617        uint16_t q;
1618        int ret;
1619
1620        if (hns3_dev_indep_txrx_supported(hw))
1621                return 0;
1622
1623        /* Setup new number of fake RX/TX queues and reconfigure device. */
1624        rx_need_add_nb_q = hw->cfg_max_queues - nb_rx_q;
1625        tx_need_add_nb_q = hw->cfg_max_queues - nb_tx_q;
1626        ret = hns3_fake_rx_queue_config(hw, rx_need_add_nb_q);
1627        if (ret) {
1628                hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
1629                return ret;
1630        }
1631
1632        ret = hns3_fake_tx_queue_config(hw, tx_need_add_nb_q);
1633        if (ret) {
1634                hns3_err(hw, "Fail to configure fake rx queues: %d", ret);
1635                goto cfg_fake_tx_q_fail;
1636        }
1637
1638        /* Allocate and set up fake RX queue per Ethernet port. */
1639        port_id = hw->data->port_id;
1640        for (q = 0; q < rx_need_add_nb_q; q++) {
1641                ret = hns3_fake_rx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
1642                                               rte_eth_dev_socket_id(port_id));
1643                if (ret)
1644                        goto setup_fake_rx_q_fail;
1645        }
1646
1647        /* Allocate and set up fake TX queue per Ethernet port. */
1648        for (q = 0; q < tx_need_add_nb_q; q++) {
1649                ret = hns3_fake_tx_queue_setup(dev, q, HNS3_MIN_RING_DESC,
1650                                               rte_eth_dev_socket_id(port_id));
1651                if (ret)
1652                        goto setup_fake_tx_q_fail;
1653        }
1654
1655        return 0;
1656
1657setup_fake_tx_q_fail:
1658setup_fake_rx_q_fail:
1659        (void)hns3_fake_tx_queue_config(hw, 0);
1660cfg_fake_tx_q_fail:
1661        (void)hns3_fake_rx_queue_config(hw, 0);
1662
1663        return ret;
1664}
1665
1666void
1667hns3_dev_release_mbufs(struct hns3_adapter *hns)
1668{
1669        struct rte_eth_dev_data *dev_data = hns->hw.data;
1670        struct hns3_rx_queue *rxq;
1671        struct hns3_tx_queue *txq;
1672        int i;
1673
1674        if (dev_data->rx_queues)
1675                for (i = 0; i < dev_data->nb_rx_queues; i++) {
1676                        rxq = dev_data->rx_queues[i];
1677                        if (rxq == NULL)
1678                                continue;
1679                        hns3_rx_queue_release_mbufs(rxq);
1680                }
1681
1682        if (dev_data->tx_queues)
1683                for (i = 0; i < dev_data->nb_tx_queues; i++) {
1684                        txq = dev_data->tx_queues[i];
1685                        if (txq == NULL)
1686                                continue;
1687                        hns3_tx_queue_release_mbufs(txq);
1688                }
1689}
1690
1691static int
1692hns3_rx_buf_len_calc(struct rte_mempool *mp, uint16_t *rx_buf_len)
1693{
1694        uint16_t vld_buf_size;
1695        uint16_t num_hw_specs;
1696        uint16_t i;
1697
1698        /*
1699         * hns3 network engine only support to set 4 typical specification, and
1700         * different buffer size will affect the max packet_len and the max
1701         * number of segmentation when hw gro is turned on in receive side. The
1702         * relationship between them is as follows:
1703         *      rx_buf_size     |  max_gro_pkt_len  |  max_gro_nb_seg
1704         * ---------------------|-------------------|----------------
1705         * HNS3_4K_BD_BUF_SIZE  |        60KB       |       15
1706         * HNS3_2K_BD_BUF_SIZE  |        62KB       |       31
1707         * HNS3_1K_BD_BUF_SIZE  |        63KB       |       63
1708         * HNS3_512_BD_BUF_SIZE |      31.5KB       |       63
1709         */
1710        static const uint16_t hw_rx_buf_size[] = {
1711                HNS3_4K_BD_BUF_SIZE,
1712                HNS3_2K_BD_BUF_SIZE,
1713                HNS3_1K_BD_BUF_SIZE,
1714                HNS3_512_BD_BUF_SIZE
1715        };
1716
1717        vld_buf_size = (uint16_t)(rte_pktmbuf_data_room_size(mp) -
1718                        RTE_PKTMBUF_HEADROOM);
1719        if (vld_buf_size < HNS3_MIN_BD_BUF_SIZE)
1720                return -EINVAL;
1721
1722        num_hw_specs = RTE_DIM(hw_rx_buf_size);
1723        for (i = 0; i < num_hw_specs; i++) {
1724                if (vld_buf_size >= hw_rx_buf_size[i]) {
1725                        *rx_buf_len = hw_rx_buf_size[i];
1726                        break;
1727                }
1728        }
1729        return 0;
1730}
1731
1732static int
1733hns3_rxq_conf_runtime_check(struct hns3_hw *hw, uint16_t buf_size,
1734                                uint16_t nb_desc)
1735{
1736        struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1737        struct rte_eth_rxmode *rxmode = &hw->data->dev_conf.rxmode;
1738        eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
1739        uint16_t min_vec_bds;
1740
1741        /*
1742         * HNS3 hardware network engine set scattered as default. If the driver
1743         * is not work in scattered mode and the pkts greater than buf_size
1744         * but smaller than max_rx_pkt_len will be distributed to multiple BDs.
1745         * Driver cannot handle this situation.
1746         */
1747        if (!hw->data->scattered_rx && rxmode->max_rx_pkt_len > buf_size) {
1748                hns3_err(hw, "max_rx_pkt_len is not allowed to be set greater "
1749                             "than rx_buf_len if scattered is off.");
1750                return -EINVAL;
1751        }
1752
1753        if (pkt_burst == hns3_recv_pkts_vec) {
1754                min_vec_bds = HNS3_DEFAULT_RXQ_REARM_THRESH +
1755                              HNS3_DEFAULT_RX_BURST;
1756                if (nb_desc < min_vec_bds ||
1757                    nb_desc % HNS3_DEFAULT_RXQ_REARM_THRESH) {
1758                        hns3_err(hw, "if Rx burst mode is vector, "
1759                                 "number of descriptor is required to be "
1760                                 "bigger than min vector bds:%u, and could be "
1761                                 "divided by rxq rearm thresh:%u.",
1762                                 min_vec_bds, HNS3_DEFAULT_RXQ_REARM_THRESH);
1763                        return -EINVAL;
1764                }
1765        }
1766        return 0;
1767}
1768
1769static int
1770hns3_rx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_rxconf *conf,
1771                         struct rte_mempool *mp, uint16_t nb_desc,
1772                         uint16_t *buf_size)
1773{
1774        int ret;
1775
1776        if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
1777            nb_desc % HNS3_ALIGN_RING_DESC) {
1778                hns3_err(hw, "Number (%u) of rx descriptors is invalid",
1779                         nb_desc);
1780                return -EINVAL;
1781        }
1782
1783        if (conf->rx_drop_en == 0)
1784                hns3_warn(hw, "if no descriptors available, packets are always "
1785                          "dropped and rx_drop_en (1) is fixed on");
1786
1787        if (hns3_rx_buf_len_calc(mp, buf_size)) {
1788                hns3_err(hw, "rxq mbufs' data room size (%u) is not enough! "
1789                                "minimal data room size (%u).",
1790                                rte_pktmbuf_data_room_size(mp),
1791                                HNS3_MIN_BD_BUF_SIZE + RTE_PKTMBUF_HEADROOM);
1792                return -EINVAL;
1793        }
1794
1795        if (hw->data->dev_started) {
1796                ret = hns3_rxq_conf_runtime_check(hw, *buf_size, nb_desc);
1797                if (ret) {
1798                        hns3_err(hw, "Rx queue runtime setup fail.");
1799                        return ret;
1800                }
1801        }
1802
1803        return 0;
1804}
1805
1806uint32_t
1807hns3_get_tqp_reg_offset(uint16_t queue_id)
1808{
1809        uint32_t reg_offset;
1810
1811        /* Need an extend offset to config queue > 1024 */
1812        if (queue_id < HNS3_MIN_EXTEND_QUEUE_ID)
1813                reg_offset = HNS3_TQP_REG_OFFSET + queue_id * HNS3_TQP_REG_SIZE;
1814        else
1815                reg_offset = HNS3_TQP_REG_OFFSET + HNS3_TQP_EXT_REG_OFFSET +
1816                             (queue_id - HNS3_MIN_EXTEND_QUEUE_ID) *
1817                             HNS3_TQP_REG_SIZE;
1818
1819        return reg_offset;
1820}
1821
1822int
1823hns3_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
1824                    unsigned int socket_id, const struct rte_eth_rxconf *conf,
1825                    struct rte_mempool *mp)
1826{
1827        struct hns3_adapter *hns = dev->data->dev_private;
1828        struct hns3_hw *hw = &hns->hw;
1829        struct hns3_queue_info q_info;
1830        struct hns3_rx_queue *rxq;
1831        uint16_t rx_buf_size;
1832        int rx_entry_len;
1833        int ret;
1834
1835        ret = hns3_rx_queue_conf_check(hw, conf, mp, nb_desc, &rx_buf_size);
1836        if (ret)
1837                return ret;
1838
1839        if (dev->data->rx_queues[idx]) {
1840                hns3_rx_queue_release(dev->data->rx_queues[idx]);
1841                dev->data->rx_queues[idx] = NULL;
1842        }
1843
1844        q_info.idx = idx;
1845        q_info.socket_id = socket_id;
1846        q_info.nb_desc = nb_desc;
1847        q_info.type = "hns3 RX queue";
1848        q_info.ring_name = "rx_ring";
1849
1850        rxq = hns3_alloc_rxq_and_dma_zone(dev, &q_info);
1851        if (rxq == NULL) {
1852                hns3_err(hw,
1853                         "Failed to alloc mem and reserve DMA mem for rx ring!");
1854                return -ENOMEM;
1855        }
1856
1857        rxq->hns = hns;
1858        rxq->ptype_tbl = &hns->ptype_tbl;
1859        rxq->mb_pool = mp;
1860        rxq->rx_free_thresh = (conf->rx_free_thresh > 0) ?
1861                conf->rx_free_thresh : HNS3_DEFAULT_RX_FREE_THRESH;
1862
1863        rxq->rx_deferred_start = conf->rx_deferred_start;
1864        if (rxq->rx_deferred_start && !hns3_dev_indep_txrx_supported(hw)) {
1865                hns3_warn(hw, "deferred start is not supported.");
1866                rxq->rx_deferred_start = false;
1867        }
1868
1869        rx_entry_len = (rxq->nb_rx_desc + HNS3_DEFAULT_RX_BURST) *
1870                        sizeof(struct hns3_entry);
1871        rxq->sw_ring = rte_zmalloc_socket("hns3 RX sw ring", rx_entry_len,
1872                                          RTE_CACHE_LINE_SIZE, socket_id);
1873        if (rxq->sw_ring == NULL) {
1874                hns3_err(hw, "Failed to allocate memory for rx sw ring!");
1875                hns3_rx_queue_release(rxq);
1876                return -ENOMEM;
1877        }
1878
1879        rxq->next_to_use = 0;
1880        rxq->rx_free_hold = 0;
1881        rxq->rx_rearm_start = 0;
1882        rxq->rx_rearm_nb = 0;
1883        rxq->pkt_first_seg = NULL;
1884        rxq->pkt_last_seg = NULL;
1885        rxq->port_id = dev->data->port_id;
1886        /*
1887         * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE,
1888         * the pvid_sw_discard_en in the queue struct should not be changed,
1889         * because PVID-related operations do not need to be processed by PMD
1890         * driver. For hns3 VF device, whether it needs to process PVID depends
1891         * on the configuration of PF kernel mode netdevice driver. And the
1892         * related PF configuration is delivered through the mailbox and finally
1893         * reflectd in port_base_vlan_cfg.
1894         */
1895        if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1896                rxq->pvid_sw_discard_en = hw->port_base_vlan_cfg.state ==
1897                                       HNS3_PORT_BASE_VLAN_ENABLE;
1898        else
1899                rxq->pvid_sw_discard_en = false;
1900        rxq->ptype_en = hns3_dev_rxd_adv_layout_supported(hw) ? true : false;
1901        rxq->configured = true;
1902        rxq->io_base = (void *)((char *)hw->io_base + HNS3_TQP_REG_OFFSET +
1903                                idx * HNS3_TQP_REG_SIZE);
1904        rxq->io_base = (void *)((char *)hw->io_base +
1905                                        hns3_get_tqp_reg_offset(idx));
1906        rxq->io_head_reg = (volatile void *)((char *)rxq->io_base +
1907                           HNS3_RING_RX_HEAD_REG);
1908        rxq->rx_buf_len = rx_buf_size;
1909        memset(&rxq->basic_stats, 0, sizeof(struct hns3_rx_basic_stats));
1910        memset(&rxq->err_stats, 0, sizeof(struct hns3_rx_bd_errors_stats));
1911        memset(&rxq->dfx_stats, 0, sizeof(struct hns3_rx_dfx_stats));
1912
1913        /* CRC len set here is used for amending packet length */
1914        if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1915                rxq->crc_len = RTE_ETHER_CRC_LEN;
1916        else
1917                rxq->crc_len = 0;
1918
1919        rxq->bulk_mbuf_num = 0;
1920
1921        rte_spinlock_lock(&hw->lock);
1922        dev->data->rx_queues[idx] = rxq;
1923        rte_spinlock_unlock(&hw->lock);
1924
1925        return 0;
1926}
1927
1928void
1929hns3_rx_scattered_reset(struct rte_eth_dev *dev)
1930{
1931        struct hns3_adapter *hns = dev->data->dev_private;
1932        struct hns3_hw *hw = &hns->hw;
1933
1934        hw->rx_buf_len = 0;
1935        dev->data->scattered_rx = false;
1936}
1937
1938void
1939hns3_rx_scattered_calc(struct rte_eth_dev *dev)
1940{
1941        struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1942        struct hns3_adapter *hns = dev->data->dev_private;
1943        struct hns3_hw *hw = &hns->hw;
1944        struct hns3_rx_queue *rxq;
1945        uint32_t queue_id;
1946
1947        if (dev->data->rx_queues == NULL)
1948                return;
1949
1950        for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
1951                rxq = dev->data->rx_queues[queue_id];
1952                if (hw->rx_buf_len == 0)
1953                        hw->rx_buf_len = rxq->rx_buf_len;
1954                else
1955                        hw->rx_buf_len = RTE_MIN(hw->rx_buf_len,
1956                                                 rxq->rx_buf_len);
1957        }
1958
1959        if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_SCATTER ||
1960            dev_conf->rxmode.max_rx_pkt_len > hw->rx_buf_len)
1961                dev->data->scattered_rx = true;
1962}
1963
1964const uint32_t *
1965hns3_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1966{
1967        static const uint32_t ptypes[] = {
1968                RTE_PTYPE_L2_ETHER,
1969                RTE_PTYPE_L2_ETHER_LLDP,
1970                RTE_PTYPE_L2_ETHER_ARP,
1971                RTE_PTYPE_L3_IPV4,
1972                RTE_PTYPE_L3_IPV4_EXT,
1973                RTE_PTYPE_L3_IPV6,
1974                RTE_PTYPE_L3_IPV6_EXT,
1975                RTE_PTYPE_L4_IGMP,
1976                RTE_PTYPE_L4_ICMP,
1977                RTE_PTYPE_L4_SCTP,
1978                RTE_PTYPE_L4_TCP,
1979                RTE_PTYPE_L4_UDP,
1980                RTE_PTYPE_TUNNEL_GRE,
1981                RTE_PTYPE_INNER_L2_ETHER,
1982                RTE_PTYPE_INNER_L3_IPV4,
1983                RTE_PTYPE_INNER_L3_IPV6,
1984                RTE_PTYPE_INNER_L3_IPV4_EXT,
1985                RTE_PTYPE_INNER_L3_IPV6_EXT,
1986                RTE_PTYPE_INNER_L4_UDP,
1987                RTE_PTYPE_INNER_L4_TCP,
1988                RTE_PTYPE_INNER_L4_SCTP,
1989                RTE_PTYPE_INNER_L4_ICMP,
1990                RTE_PTYPE_TUNNEL_VXLAN,
1991                RTE_PTYPE_TUNNEL_NVGRE,
1992                RTE_PTYPE_UNKNOWN
1993        };
1994        static const uint32_t adv_layout_ptypes[] = {
1995                RTE_PTYPE_L2_ETHER,
1996                RTE_PTYPE_L2_ETHER_TIMESYNC,
1997                RTE_PTYPE_L2_ETHER_LLDP,
1998                RTE_PTYPE_L2_ETHER_ARP,
1999                RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
2000                RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
2001                RTE_PTYPE_L4_FRAG,
2002                RTE_PTYPE_L4_NONFRAG,
2003                RTE_PTYPE_L4_UDP,
2004                RTE_PTYPE_L4_TCP,
2005                RTE_PTYPE_L4_SCTP,
2006                RTE_PTYPE_L4_IGMP,
2007                RTE_PTYPE_L4_ICMP,
2008                RTE_PTYPE_TUNNEL_GRE,
2009                RTE_PTYPE_TUNNEL_GRENAT,
2010                RTE_PTYPE_INNER_L2_ETHER,
2011                RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
2012                RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
2013                RTE_PTYPE_INNER_L4_FRAG,
2014                RTE_PTYPE_INNER_L4_ICMP,
2015                RTE_PTYPE_INNER_L4_NONFRAG,
2016                RTE_PTYPE_INNER_L4_UDP,
2017                RTE_PTYPE_INNER_L4_TCP,
2018                RTE_PTYPE_INNER_L4_SCTP,
2019                RTE_PTYPE_INNER_L4_ICMP,
2020                RTE_PTYPE_UNKNOWN
2021        };
2022        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2023
2024        if (dev->rx_pkt_burst == hns3_recv_pkts_simple ||
2025            dev->rx_pkt_burst == hns3_recv_scattered_pkts ||
2026            dev->rx_pkt_burst == hns3_recv_pkts_vec ||
2027            dev->rx_pkt_burst == hns3_recv_pkts_vec_sve) {
2028                if (hns3_dev_rxd_adv_layout_supported(hw))
2029                        return adv_layout_ptypes;
2030                else
2031                        return ptypes;
2032        }
2033
2034        return NULL;
2035}
2036
2037static void
2038hns3_init_non_tunnel_ptype_tbl(struct hns3_ptype_table *tbl)
2039{
2040        tbl->l3table[0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4;
2041        tbl->l3table[1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6;
2042        tbl->l3table[2] = RTE_PTYPE_L2_ETHER_ARP;
2043        tbl->l3table[4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT;
2044        tbl->l3table[5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT;
2045        tbl->l3table[6] = RTE_PTYPE_L2_ETHER_LLDP;
2046
2047        tbl->l4table[0] = RTE_PTYPE_L4_UDP;
2048        tbl->l4table[1] = RTE_PTYPE_L4_TCP;
2049        tbl->l4table[2] = RTE_PTYPE_TUNNEL_GRE;
2050        tbl->l4table[3] = RTE_PTYPE_L4_SCTP;
2051        tbl->l4table[4] = RTE_PTYPE_L4_IGMP;
2052        tbl->l4table[5] = RTE_PTYPE_L4_ICMP;
2053}
2054
2055static void
2056hns3_init_tunnel_ptype_tbl(struct hns3_ptype_table *tbl)
2057{
2058        tbl->inner_l3table[0] = RTE_PTYPE_INNER_L2_ETHER |
2059                                RTE_PTYPE_INNER_L3_IPV4;
2060        tbl->inner_l3table[1] = RTE_PTYPE_INNER_L2_ETHER |
2061                                RTE_PTYPE_INNER_L3_IPV6;
2062        /* There is not a ptype for inner ARP/RARP */
2063        tbl->inner_l3table[2] = RTE_PTYPE_UNKNOWN;
2064        tbl->inner_l3table[3] = RTE_PTYPE_UNKNOWN;
2065        tbl->inner_l3table[4] = RTE_PTYPE_INNER_L2_ETHER |
2066                                RTE_PTYPE_INNER_L3_IPV4_EXT;
2067        tbl->inner_l3table[5] = RTE_PTYPE_INNER_L2_ETHER |
2068                                RTE_PTYPE_INNER_L3_IPV6_EXT;
2069
2070        tbl->inner_l4table[0] = RTE_PTYPE_INNER_L4_UDP;
2071        tbl->inner_l4table[1] = RTE_PTYPE_INNER_L4_TCP;
2072        /* There is not a ptype for inner GRE */
2073        tbl->inner_l4table[2] = RTE_PTYPE_UNKNOWN;
2074        tbl->inner_l4table[3] = RTE_PTYPE_INNER_L4_SCTP;
2075        /* There is not a ptype for inner IGMP */
2076        tbl->inner_l4table[4] = RTE_PTYPE_UNKNOWN;
2077        tbl->inner_l4table[5] = RTE_PTYPE_INNER_L4_ICMP;
2078
2079        tbl->ol3table[0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4;
2080        tbl->ol3table[1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6;
2081        tbl->ol3table[2] = RTE_PTYPE_UNKNOWN;
2082        tbl->ol3table[3] = RTE_PTYPE_UNKNOWN;
2083        tbl->ol3table[4] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT;
2084        tbl->ol3table[5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT;
2085
2086        tbl->ol4table[0] = RTE_PTYPE_UNKNOWN;
2087        tbl->ol4table[1] = RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN;
2088        tbl->ol4table[2] = RTE_PTYPE_TUNNEL_NVGRE;
2089}
2090
2091static void
2092hns3_init_adv_layout_ptype(struct hns3_ptype_table *tbl)
2093{
2094        uint32_t *ptype = tbl->ptype;
2095
2096        /* Non-tunnel L2 */
2097        ptype[1] = RTE_PTYPE_L2_ETHER_ARP;
2098        ptype[3] = RTE_PTYPE_L2_ETHER_LLDP;
2099        ptype[8] = RTE_PTYPE_L2_ETHER_TIMESYNC;
2100
2101        /* Non-tunnel IPv4 */
2102        ptype[17] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2103                    RTE_PTYPE_L4_FRAG;
2104        ptype[18] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2105                    RTE_PTYPE_L4_NONFRAG;
2106        ptype[19] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2107                    RTE_PTYPE_L4_UDP;
2108        ptype[20] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2109                    RTE_PTYPE_L4_TCP;
2110        ptype[21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2111                    RTE_PTYPE_TUNNEL_GRE;
2112        ptype[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2113                    RTE_PTYPE_L4_SCTP;
2114        ptype[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2115                    RTE_PTYPE_L4_IGMP;
2116        ptype[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2117                    RTE_PTYPE_L4_ICMP;
2118        /* The next ptype is PTP over IPv4 + UDP */
2119        ptype[25] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2120                    RTE_PTYPE_L4_UDP;
2121
2122        /* IPv4 --> GRE/Teredo/VXLAN */
2123        ptype[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2124                    RTE_PTYPE_TUNNEL_GRENAT;
2125        /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
2126        ptype[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2127                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER;
2128
2129        /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2130        ptype[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2131                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2132                    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2133                    RTE_PTYPE_INNER_L4_FRAG;
2134        ptype[32] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2135                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2136                    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2137                    RTE_PTYPE_INNER_L4_NONFRAG;
2138        ptype[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2139                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2140                    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2141                    RTE_PTYPE_INNER_L4_UDP;
2142        ptype[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2143                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2144                    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2145                    RTE_PTYPE_INNER_L4_TCP;
2146        ptype[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2147                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2148                    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2149                    RTE_PTYPE_INNER_L4_SCTP;
2150        /* The next ptype's inner L4 is IGMP */
2151        ptype[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2152                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2153                    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
2154        ptype[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2155                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2156                    RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2157                    RTE_PTYPE_INNER_L4_ICMP;
2158
2159        /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2160        ptype[39] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2161                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2162                    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2163                    RTE_PTYPE_INNER_L4_FRAG;
2164        ptype[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2165                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2166                    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2167                    RTE_PTYPE_INNER_L4_NONFRAG;
2168        ptype[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2169                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2170                    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2171                    RTE_PTYPE_INNER_L4_UDP;
2172        ptype[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2173                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2174                    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2175                    RTE_PTYPE_INNER_L4_TCP;
2176        ptype[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2177                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2178                    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2179                    RTE_PTYPE_INNER_L4_SCTP;
2180        /* The next ptype's inner L4 is IGMP */
2181        ptype[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2182                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2183                    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
2184        ptype[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
2185                    RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2186                    RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2187                    RTE_PTYPE_INNER_L4_ICMP;
2188
2189        /* Non-tunnel IPv6 */
2190        ptype[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2191                     RTE_PTYPE_L4_FRAG;
2192        ptype[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2193                     RTE_PTYPE_L4_NONFRAG;
2194        ptype[113] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2195                     RTE_PTYPE_L4_UDP;
2196        ptype[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2197                     RTE_PTYPE_L4_TCP;
2198        ptype[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2199                     RTE_PTYPE_TUNNEL_GRE;
2200        ptype[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2201                     RTE_PTYPE_L4_SCTP;
2202        ptype[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2203                     RTE_PTYPE_L4_IGMP;
2204        ptype[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2205                     RTE_PTYPE_L4_ICMP;
2206        /* Special for PTP over IPv6 + UDP */
2207        ptype[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2208                     RTE_PTYPE_L4_UDP;
2209
2210        /* IPv6 --> GRE/Teredo/VXLAN */
2211        ptype[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2212                     RTE_PTYPE_TUNNEL_GRENAT;
2213        /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
2214        ptype[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2215                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER;
2216
2217        /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
2218        ptype[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2219                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2220                     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2221                     RTE_PTYPE_INNER_L4_FRAG;
2222        ptype[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2223                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2224                     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2225                     RTE_PTYPE_INNER_L4_NONFRAG;
2226        ptype[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2227                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2228                     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2229                     RTE_PTYPE_INNER_L4_UDP;
2230        ptype[128] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2231                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2232                     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2233                     RTE_PTYPE_INNER_L4_TCP;
2234        ptype[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2235                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2236                     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2237                     RTE_PTYPE_INNER_L4_SCTP;
2238        /* The next ptype's inner L4 is IGMP */
2239        ptype[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2240                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2241                     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
2242        ptype[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2243                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2244                     RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
2245                     RTE_PTYPE_INNER_L4_ICMP;
2246
2247        /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
2248        ptype[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2249                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2250                     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2251                     RTE_PTYPE_INNER_L4_FRAG;
2252        ptype[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2253                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2254                     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2255                     RTE_PTYPE_INNER_L4_NONFRAG;
2256        ptype[135] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2257                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2258                     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2259                     RTE_PTYPE_INNER_L4_UDP;
2260        ptype[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2261                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2262                     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2263                     RTE_PTYPE_INNER_L4_TCP;
2264        ptype[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2265                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2266                     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2267                     RTE_PTYPE_INNER_L4_SCTP;
2268        /* The next ptype's inner L4 is IGMP */
2269        ptype[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2270                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2271                     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
2272        ptype[139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
2273                     RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
2274                     RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
2275                     RTE_PTYPE_INNER_L4_ICMP;
2276}
2277
2278void
2279hns3_init_rx_ptype_tble(struct rte_eth_dev *dev)
2280{
2281        struct hns3_adapter *hns = dev->data->dev_private;
2282        struct hns3_ptype_table *tbl = &hns->ptype_tbl;
2283
2284        memset(tbl, 0, sizeof(*tbl));
2285
2286        hns3_init_non_tunnel_ptype_tbl(tbl);
2287        hns3_init_tunnel_ptype_tbl(tbl);
2288        hns3_init_adv_layout_ptype(tbl);
2289}
2290
2291static inline void
2292hns3_rxd_to_vlan_tci(struct hns3_rx_queue *rxq, struct rte_mbuf *mb,
2293                     uint32_t l234_info, const struct hns3_desc *rxd)
2294{
2295#define HNS3_STRP_STATUS_NUM            0x4
2296
2297#define HNS3_NO_STRP_VLAN_VLD           0x0
2298#define HNS3_INNER_STRP_VLAN_VLD        0x1
2299#define HNS3_OUTER_STRP_VLAN_VLD        0x2
2300        uint32_t strip_status;
2301        uint32_t report_mode;
2302
2303        /*
2304         * Since HW limitation, the vlan tag will always be inserted into RX
2305         * descriptor when strip the tag from packet, driver needs to determine
2306         * reporting which tag to mbuf according to the PVID configuration
2307         * and vlan striped status.
2308         */
2309        static const uint32_t report_type[][HNS3_STRP_STATUS_NUM] = {
2310                {
2311                        HNS3_NO_STRP_VLAN_VLD,
2312                        HNS3_OUTER_STRP_VLAN_VLD,
2313                        HNS3_INNER_STRP_VLAN_VLD,
2314                        HNS3_OUTER_STRP_VLAN_VLD
2315                },
2316                {
2317                        HNS3_NO_STRP_VLAN_VLD,
2318                        HNS3_NO_STRP_VLAN_VLD,
2319                        HNS3_NO_STRP_VLAN_VLD,
2320                        HNS3_INNER_STRP_VLAN_VLD
2321                }
2322        };
2323        strip_status = hns3_get_field(l234_info, HNS3_RXD_STRP_TAGP_M,
2324                                      HNS3_RXD_STRP_TAGP_S);
2325        report_mode = report_type[rxq->pvid_sw_discard_en][strip_status];
2326        switch (report_mode) {
2327        case HNS3_NO_STRP_VLAN_VLD:
2328                mb->vlan_tci = 0;
2329                return;
2330        case HNS3_INNER_STRP_VLAN_VLD:
2331                mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
2332                mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.vlan_tag);
2333                return;
2334        case HNS3_OUTER_STRP_VLAN_VLD:
2335                mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
2336                mb->vlan_tci = rte_le_to_cpu_16(rxd->rx.ot_vlan_tag);
2337                return;
2338        default:
2339                mb->vlan_tci = 0;
2340                return;
2341        }
2342}
2343
2344static inline void
2345recalculate_data_len(struct rte_mbuf *first_seg, struct rte_mbuf *last_seg,
2346                    struct rte_mbuf *rxm, struct hns3_rx_queue *rxq,
2347                    uint16_t data_len)
2348{
2349        uint8_t crc_len = rxq->crc_len;
2350
2351        if (data_len <= crc_len) {
2352                rte_pktmbuf_free_seg(rxm);
2353                first_seg->nb_segs--;
2354                last_seg->data_len = (uint16_t)(last_seg->data_len -
2355                        (crc_len - data_len));
2356                last_seg->next = NULL;
2357        } else
2358                rxm->data_len = (uint16_t)(data_len - crc_len);
2359}
2360
2361static inline struct rte_mbuf *
2362hns3_rx_alloc_buffer(struct hns3_rx_queue *rxq)
2363{
2364        int ret;
2365
2366        if (likely(rxq->bulk_mbuf_num > 0))
2367                return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
2368
2369        ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)rxq->bulk_mbuf,
2370                                   HNS3_BULK_ALLOC_MBUF_NUM);
2371        if (likely(ret == 0)) {
2372                rxq->bulk_mbuf_num = HNS3_BULK_ALLOC_MBUF_NUM;
2373                return rxq->bulk_mbuf[--rxq->bulk_mbuf_num];
2374        } else
2375                return rte_mbuf_raw_alloc(rxq->mb_pool);
2376}
2377
2378static inline void
2379hns3_rx_ptp_timestamp_handle(struct hns3_rx_queue *rxq, struct rte_mbuf *mbuf,
2380                  volatile struct hns3_desc *rxd)
2381{
2382        struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(rxq->hns);
2383        uint64_t timestamp = rte_le_to_cpu_64(rxd->timestamp);
2384
2385        mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
2386        if (hns3_timestamp_rx_dynflag > 0) {
2387                *RTE_MBUF_DYNFIELD(mbuf, hns3_timestamp_dynfield_offset,
2388                        rte_mbuf_timestamp_t *) = timestamp;
2389                mbuf->ol_flags |= hns3_timestamp_rx_dynflag;
2390        }
2391
2392        pf->rx_timestamp = timestamp;
2393}
2394
2395uint16_t
2396hns3_recv_pkts_simple(void *rx_queue,
2397                      struct rte_mbuf **rx_pkts,
2398                      uint16_t nb_pkts)
2399{
2400        volatile struct hns3_desc *rx_ring;  /* RX ring (desc) */
2401        volatile struct hns3_desc *rxdp;     /* pointer of the current desc */
2402        struct hns3_rx_queue *rxq;      /* RX queue */
2403        struct hns3_entry *sw_ring;
2404        struct hns3_entry *rxe;
2405        struct hns3_desc rxd;
2406        struct rte_mbuf *nmb;           /* pointer of the new mbuf */
2407        struct rte_mbuf *rxm;
2408        uint32_t bd_base_info;
2409        uint32_t l234_info;
2410        uint32_t ol_info;
2411        uint64_t dma_addr;
2412        uint16_t nb_rx_bd;
2413        uint16_t nb_rx;
2414        uint16_t rx_id;
2415        int ret;
2416
2417        nb_rx = 0;
2418        nb_rx_bd = 0;
2419        rxq = rx_queue;
2420        rx_ring = rxq->rx_ring;
2421        sw_ring = rxq->sw_ring;
2422        rx_id = rxq->next_to_use;
2423
2424        while (nb_rx < nb_pkts) {
2425                rxdp = &rx_ring[rx_id];
2426                bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
2427                if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2428                        break;
2429
2430                rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
2431                           (1u << HNS3_RXD_VLD_B)];
2432
2433                nmb = hns3_rx_alloc_buffer(rxq);
2434                if (unlikely(nmb == NULL)) {
2435                        uint16_t port_id;
2436
2437                        port_id = rxq->port_id;
2438                        rte_eth_devices[port_id].data->rx_mbuf_alloc_failed++;
2439                        break;
2440                }
2441
2442                nb_rx_bd++;
2443                rxe = &sw_ring[rx_id];
2444                rx_id++;
2445                if (unlikely(rx_id == rxq->nb_rx_desc))
2446                        rx_id = 0;
2447
2448                rte_prefetch0(sw_ring[rx_id].mbuf);
2449                if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
2450                        rte_prefetch0(&rx_ring[rx_id]);
2451                        rte_prefetch0(&sw_ring[rx_id]);
2452                }
2453
2454                rxm = rxe->mbuf;
2455                rxm->ol_flags = 0;
2456                rxe->mbuf = nmb;
2457
2458                if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B)))
2459                        hns3_rx_ptp_timestamp_handle(rxq, rxm, rxdp);
2460
2461                dma_addr = rte_mbuf_data_iova_default(nmb);
2462                rxdp->addr = rte_cpu_to_le_64(dma_addr);
2463                rxdp->rx.bd_base_info = 0;
2464
2465                rxm->data_off = RTE_PKTMBUF_HEADROOM;
2466                rxm->pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.rx.pkt_len)) -
2467                                rxq->crc_len;
2468                rxm->data_len = rxm->pkt_len;
2469                rxm->port = rxq->port_id;
2470                rxm->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
2471                rxm->ol_flags |= PKT_RX_RSS_HASH;
2472                if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
2473                        rxm->hash.fdir.hi =
2474                                rte_le_to_cpu_16(rxd.rx.fd_id);
2475                        rxm->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
2476                }
2477                rxm->nb_segs = 1;
2478                rxm->next = NULL;
2479
2480                /* Load remained descriptor data and extract necessary fields */
2481                l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
2482                ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
2483                ret = hns3_handle_bdinfo(rxq, rxm, bd_base_info, l234_info);
2484                if (unlikely(ret))
2485                        goto pkt_err;
2486
2487                rxm->packet_type = hns3_rx_calc_ptype(rxq, l234_info, ol_info);
2488
2489                if (rxm->packet_type == RTE_PTYPE_L2_ETHER_TIMESYNC)
2490                        rxm->ol_flags |= PKT_RX_IEEE1588_PTP;
2491
2492                hns3_rxd_to_vlan_tci(rxq, rxm, l234_info, &rxd);
2493
2494                /* Increment bytes counter  */
2495                rxq->basic_stats.bytes += rxm->pkt_len;
2496
2497                rx_pkts[nb_rx++] = rxm;
2498                continue;
2499pkt_err:
2500                rte_pktmbuf_free(rxm);
2501        }
2502
2503        rxq->next_to_use = rx_id;
2504        rxq->rx_free_hold += nb_rx_bd;
2505        if (rxq->rx_free_hold > rxq->rx_free_thresh) {
2506                hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
2507                rxq->rx_free_hold = 0;
2508        }
2509
2510        return nb_rx;
2511}
2512
2513uint16_t
2514hns3_recv_scattered_pkts(void *rx_queue,
2515                         struct rte_mbuf **rx_pkts,
2516                         uint16_t nb_pkts)
2517{
2518        volatile struct hns3_desc *rx_ring;  /* RX ring (desc) */
2519        volatile struct hns3_desc *rxdp;     /* pointer of the current desc */
2520        struct hns3_rx_queue *rxq;      /* RX queue */
2521        struct hns3_entry *sw_ring;
2522        struct hns3_entry *rxe;
2523        struct rte_mbuf *first_seg;
2524        struct rte_mbuf *last_seg;
2525        struct hns3_desc rxd;
2526        struct rte_mbuf *nmb;           /* pointer of the new mbuf */
2527        struct rte_mbuf *rxm;
2528        struct rte_eth_dev *dev;
2529        uint32_t bd_base_info;
2530        uint32_t l234_info;
2531        uint32_t gro_size;
2532        uint32_t ol_info;
2533        uint64_t dma_addr;
2534        uint16_t nb_rx_bd;
2535        uint16_t nb_rx;
2536        uint16_t rx_id;
2537        int ret;
2538
2539        nb_rx = 0;
2540        nb_rx_bd = 0;
2541        rxq = rx_queue;
2542
2543        rx_id = rxq->next_to_use;
2544        rx_ring = rxq->rx_ring;
2545        sw_ring = rxq->sw_ring;
2546        first_seg = rxq->pkt_first_seg;
2547        last_seg = rxq->pkt_last_seg;
2548
2549        while (nb_rx < nb_pkts) {
2550                rxdp = &rx_ring[rx_id];
2551                bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
2552                if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2553                        break;
2554
2555                /*
2556                 * The interactive process between software and hardware of
2557                 * receiving a new packet in hns3 network engine:
2558                 * 1. Hardware network engine firstly writes the packet content
2559                 *    to the memory pointed by the 'addr' field of the Rx Buffer
2560                 *    Descriptor, secondly fills the result of parsing the
2561                 *    packet include the valid field into the Rx Buffer
2562                 *    Descriptor in one write operation.
2563                 * 2. Driver reads the Rx BD's valid field in the loop to check
2564                 *    whether it's valid, if valid then assign a new address to
2565                 *    the addr field, clear the valid field, get the other
2566                 *    information of the packet by parsing Rx BD's other fields,
2567                 *    finally write back the number of Rx BDs processed by the
2568                 *    driver to the HNS3_RING_RX_HEAD_REG register to inform
2569                 *    hardware.
2570                 * In the above process, the ordering is very important. We must
2571                 * make sure that CPU read Rx BD's other fields only after the
2572                 * Rx BD is valid.
2573                 *
2574                 * There are two type of re-ordering: compiler re-ordering and
2575                 * CPU re-ordering under the ARMv8 architecture.
2576                 * 1. we use volatile to deal with compiler re-ordering, so you
2577                 *    can see that rx_ring/rxdp defined with volatile.
2578                 * 2. we commonly use memory barrier to deal with CPU
2579                 *    re-ordering, but the cost is high.
2580                 *
2581                 * In order to solve the high cost of using memory barrier, we
2582                 * use the data dependency order under the ARMv8 architecture,
2583                 * for example:
2584                 *      instr01: load A
2585                 *      instr02: load B <- A
2586                 * the instr02 will always execute after instr01.
2587                 *
2588                 * To construct the data dependency ordering, we use the
2589                 * following assignment:
2590                 *      rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
2591                 *                 (1u<<HNS3_RXD_VLD_B)]
2592                 * Using gcc compiler under the ARMv8 architecture, the related
2593                 * assembly code example as follows:
2594                 * note: (1u << HNS3_RXD_VLD_B) equal 0x10
2595                 *      instr01: ldr w26, [x22, #28]  --read bd_base_info
2596                 *      instr02: and w0, w26, #0x10   --calc bd_base_info & 0x10
2597                 *      instr03: sub w0, w0, #0x10    --calc (bd_base_info &
2598                 *                                            0x10) - 0x10
2599                 *      instr04: add x0, x22, x0, lsl #5 --calc copy source addr
2600                 *      instr05: ldp x2, x3, [x0]
2601                 *      instr06: stp x2, x3, [x29, #256] --copy BD's [0 ~ 15]B
2602                 *      instr07: ldp x4, x5, [x0, #16]
2603                 *      instr08: stp x4, x5, [x29, #272] --copy BD's [16 ~ 31]B
2604                 * the instr05~08 depend on x0's value, x0 depent on w26's
2605                 * value, the w26 is the bd_base_info, this form the data
2606                 * dependency ordering.
2607                 * note: if BD is valid, (bd_base_info & (1u<<HNS3_RXD_VLD_B)) -
2608                 *       (1u<<HNS3_RXD_VLD_B) will always zero, so the
2609                 *       assignment is correct.
2610                 *
2611                 * So we use the data dependency ordering instead of memory
2612                 * barrier to improve receive performance.
2613                 */
2614                rxd = rxdp[(bd_base_info & (1u << HNS3_RXD_VLD_B)) -
2615                           (1u << HNS3_RXD_VLD_B)];
2616
2617                nmb = hns3_rx_alloc_buffer(rxq);
2618                if (unlikely(nmb == NULL)) {
2619                        dev = &rte_eth_devices[rxq->port_id];
2620                        dev->data->rx_mbuf_alloc_failed++;
2621                        break;
2622                }
2623
2624                nb_rx_bd++;
2625                rxe = &sw_ring[rx_id];
2626                rx_id++;
2627                if (unlikely(rx_id == rxq->nb_rx_desc))
2628                        rx_id = 0;
2629
2630                rte_prefetch0(sw_ring[rx_id].mbuf);
2631                if ((rx_id & HNS3_RX_RING_PREFETCTH_MASK) == 0) {
2632                        rte_prefetch0(&rx_ring[rx_id]);
2633                        rte_prefetch0(&sw_ring[rx_id]);
2634                }
2635
2636                rxm = rxe->mbuf;
2637                rxe->mbuf = nmb;
2638
2639                dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
2640                rxdp->rx.bd_base_info = 0;
2641                rxdp->addr = dma_addr;
2642
2643                if (first_seg == NULL) {
2644                        first_seg = rxm;
2645                        first_seg->nb_segs = 1;
2646                } else {
2647                        first_seg->nb_segs++;
2648                        last_seg->next = rxm;
2649                }
2650
2651                rxm->data_off = RTE_PKTMBUF_HEADROOM;
2652                rxm->data_len = rte_le_to_cpu_16(rxd.rx.size);
2653
2654                if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2655                        last_seg = rxm;
2656                        rxm->next = NULL;
2657                        continue;
2658                }
2659
2660                if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B)))
2661                        hns3_rx_ptp_timestamp_handle(rxq, first_seg, rxdp);
2662
2663                /*
2664                 * The last buffer of the received packet. packet len from
2665                 * buffer description may contains CRC len, packet len should
2666                 * subtract it, same as data len.
2667                 */
2668                first_seg->pkt_len = rte_le_to_cpu_16(rxd.rx.pkt_len);
2669
2670                /*
2671                 * This is the last buffer of the received packet. If the CRC
2672                 * is not stripped by the hardware:
2673                 *  - Subtract the CRC length from the total packet length.
2674                 *  - If the last buffer only contains the whole CRC or a part
2675                 *  of it, free the mbuf associated to the last buffer. If part
2676                 *  of the CRC is also contained in the previous mbuf, subtract
2677                 *  the length of that CRC part from the data length of the
2678                 *  previous mbuf.
2679                 */
2680                rxm->next = NULL;
2681                if (unlikely(rxq->crc_len > 0)) {
2682                        first_seg->pkt_len -= rxq->crc_len;
2683                        recalculate_data_len(first_seg, last_seg, rxm, rxq,
2684                                rxm->data_len);
2685                }
2686
2687                first_seg->port = rxq->port_id;
2688                first_seg->hash.rss = rte_le_to_cpu_32(rxd.rx.rss_hash);
2689                first_seg->ol_flags = PKT_RX_RSS_HASH;
2690                if (unlikely(bd_base_info & BIT(HNS3_RXD_LUM_B))) {
2691                        first_seg->hash.fdir.hi =
2692                                rte_le_to_cpu_16(rxd.rx.fd_id);
2693                        first_seg->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
2694                }
2695
2696                gro_size = hns3_get_field(bd_base_info, HNS3_RXD_GRO_SIZE_M,
2697                                          HNS3_RXD_GRO_SIZE_S);
2698                if (gro_size != 0) {
2699                        first_seg->ol_flags |= PKT_RX_LRO;
2700                        first_seg->tso_segsz = gro_size;
2701                }
2702
2703                l234_info = rte_le_to_cpu_32(rxd.rx.l234_info);
2704                ol_info = rte_le_to_cpu_32(rxd.rx.ol_info);
2705                ret = hns3_handle_bdinfo(rxq, first_seg, bd_base_info,
2706                                         l234_info);
2707                if (unlikely(ret))
2708                        goto pkt_err;
2709
2710                first_seg->packet_type = hns3_rx_calc_ptype(rxq,
2711                                                l234_info, ol_info);
2712
2713                if (first_seg->packet_type == RTE_PTYPE_L2_ETHER_TIMESYNC)
2714                        rxm->ol_flags |= PKT_RX_IEEE1588_PTP;
2715
2716                hns3_rxd_to_vlan_tci(rxq, first_seg, l234_info, &rxd);
2717
2718                /* Increment bytes counter */
2719                rxq->basic_stats.bytes += first_seg->pkt_len;
2720
2721                rx_pkts[nb_rx++] = first_seg;
2722                first_seg = NULL;
2723                continue;
2724pkt_err:
2725                rte_pktmbuf_free(first_seg);
2726                first_seg = NULL;
2727        }
2728
2729        rxq->next_to_use = rx_id;
2730        rxq->pkt_first_seg = first_seg;
2731        rxq->pkt_last_seg = last_seg;
2732
2733        rxq->rx_free_hold += nb_rx_bd;
2734        if (rxq->rx_free_hold > rxq->rx_free_thresh) {
2735                hns3_write_reg_opt(rxq->io_head_reg, rxq->rx_free_hold);
2736                rxq->rx_free_hold = 0;
2737        }
2738
2739        return nb_rx;
2740}
2741
2742void __rte_weak
2743hns3_rxq_vec_setup(__rte_unused struct hns3_rx_queue *rxq)
2744{
2745}
2746
2747int __rte_weak
2748hns3_rx_check_vec_support(__rte_unused struct rte_eth_dev *dev)
2749{
2750        return -ENOTSUP;
2751}
2752
2753uint16_t __rte_weak
2754hns3_recv_pkts_vec(__rte_unused void *tx_queue,
2755                   __rte_unused struct rte_mbuf **rx_pkts,
2756                   __rte_unused uint16_t nb_pkts)
2757{
2758        return 0;
2759}
2760
2761uint16_t __rte_weak
2762hns3_recv_pkts_vec_sve(__rte_unused void *tx_queue,
2763                       __rte_unused struct rte_mbuf **rx_pkts,
2764                       __rte_unused uint16_t nb_pkts)
2765{
2766        return 0;
2767}
2768
2769int
2770hns3_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
2771                       struct rte_eth_burst_mode *mode)
2772{
2773        static const struct {
2774                eth_rx_burst_t pkt_burst;
2775                const char *info;
2776        } burst_infos[] = {
2777                { hns3_recv_pkts_simple,        "Scalar Simple" },
2778                { hns3_recv_scattered_pkts,     "Scalar Scattered" },
2779                { hns3_recv_pkts_vec,           "Vector Neon"   },
2780                { hns3_recv_pkts_vec_sve,       "Vector Sve"    },
2781        };
2782
2783        eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
2784        int ret = -EINVAL;
2785        unsigned int i;
2786
2787        for (i = 0; i < RTE_DIM(burst_infos); i++) {
2788                if (pkt_burst == burst_infos[i].pkt_burst) {
2789                        snprintf(mode->info, sizeof(mode->info), "%s",
2790                                 burst_infos[i].info);
2791                        ret = 0;
2792                        break;
2793                }
2794        }
2795
2796        return ret;
2797}
2798
2799static bool
2800hns3_get_default_vec_support(void)
2801{
2802#if defined(RTE_ARCH_ARM64)
2803        if (rte_vect_get_max_simd_bitwidth() < RTE_VECT_SIMD_128)
2804                return false;
2805        if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON))
2806                return true;
2807#endif
2808        return false;
2809}
2810
2811static bool
2812hns3_get_sve_support(void)
2813{
2814#if defined(RTE_HAS_SVE_ACLE)
2815        if (rte_vect_get_max_simd_bitwidth() < RTE_VECT_SIMD_256)
2816                return false;
2817        if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SVE))
2818                return true;
2819#endif
2820        return false;
2821}
2822
2823static eth_rx_burst_t
2824hns3_get_rx_function(struct rte_eth_dev *dev)
2825{
2826        struct hns3_adapter *hns = dev->data->dev_private;
2827        uint64_t offloads = dev->data->dev_conf.rxmode.offloads;
2828        bool vec_allowed, sve_allowed, simple_allowed;
2829        bool vec_support;
2830
2831        vec_support = hns3_rx_check_vec_support(dev) == 0;
2832        vec_allowed = vec_support && hns3_get_default_vec_support();
2833        sve_allowed = vec_support && hns3_get_sve_support();
2834        simple_allowed = !dev->data->scattered_rx &&
2835                         (offloads & DEV_RX_OFFLOAD_TCP_LRO) == 0;
2836
2837        if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_VEC && vec_allowed)
2838                return hns3_recv_pkts_vec;
2839        if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_SVE && sve_allowed)
2840                return hns3_recv_pkts_vec_sve;
2841        if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_SIMPLE && simple_allowed)
2842                return hns3_recv_pkts_simple;
2843        if (hns->rx_func_hint == HNS3_IO_FUNC_HINT_COMMON)
2844                return hns3_recv_scattered_pkts;
2845
2846        if (vec_allowed)
2847                return hns3_recv_pkts_vec;
2848        if (simple_allowed)
2849                return hns3_recv_pkts_simple;
2850
2851        return hns3_recv_scattered_pkts;
2852}
2853
2854static int
2855hns3_tx_queue_conf_check(struct hns3_hw *hw, const struct rte_eth_txconf *conf,
2856                         uint16_t nb_desc, uint16_t *tx_rs_thresh,
2857                         uint16_t *tx_free_thresh, uint16_t idx)
2858{
2859#define HNS3_TX_RS_FREE_THRESH_GAP      8
2860        uint16_t rs_thresh, free_thresh, fast_free_thresh;
2861
2862        if (nb_desc > HNS3_MAX_RING_DESC || nb_desc < HNS3_MIN_RING_DESC ||
2863            nb_desc % HNS3_ALIGN_RING_DESC) {
2864                hns3_err(hw, "number (%u) of tx descriptors is invalid",
2865                         nb_desc);
2866                return -EINVAL;
2867        }
2868
2869        rs_thresh = (conf->tx_rs_thresh > 0) ?
2870                        conf->tx_rs_thresh : HNS3_DEFAULT_TX_RS_THRESH;
2871        free_thresh = (conf->tx_free_thresh > 0) ?
2872                        conf->tx_free_thresh : HNS3_DEFAULT_TX_FREE_THRESH;
2873        if (rs_thresh + free_thresh > nb_desc || nb_desc % rs_thresh ||
2874            rs_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP ||
2875            free_thresh >= nb_desc - HNS3_TX_RS_FREE_THRESH_GAP) {
2876                hns3_err(hw, "tx_rs_thresh (%u) tx_free_thresh (%u) nb_desc "
2877                         "(%u) of tx descriptors for port=%u queue=%u check "
2878                         "fail!",
2879                         rs_thresh, free_thresh, nb_desc, hw->data->port_id,
2880                         idx);
2881                return -EINVAL;
2882        }
2883
2884        if (conf->tx_free_thresh == 0) {
2885                /* Fast free Tx memory buffer to improve cache hit rate */
2886                fast_free_thresh = nb_desc - rs_thresh;
2887                if (fast_free_thresh >=
2888                    HNS3_TX_FAST_FREE_AHEAD + HNS3_DEFAULT_TX_FREE_THRESH)
2889                        free_thresh = fast_free_thresh -
2890                                        HNS3_TX_FAST_FREE_AHEAD;
2891        }
2892
2893        *tx_rs_thresh = rs_thresh;
2894        *tx_free_thresh = free_thresh;
2895        return 0;
2896}
2897
2898static void *
2899hns3_tx_push_get_queue_tail_reg(struct rte_eth_dev *dev, uint16_t queue_id)
2900{
2901#define HNS3_TX_PUSH_TQP_REGION_SIZE            0x10000
2902#define HNS3_TX_PUSH_QUICK_DOORBELL_OFFSET      64
2903#define HNS3_TX_PUSH_PCI_BAR_INDEX              4
2904
2905        struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
2906        uint8_t bar_id = HNS3_TX_PUSH_PCI_BAR_INDEX;
2907
2908        /*
2909         * If device support Tx push then its PCIe bar45 must exist, and DPDK
2910         * framework will mmap the bar45 default in PCI probe stage.
2911         *
2912         * In the bar45, the first half is for RoCE (RDMA over Converged
2913         * Ethernet), and the second half is for NIC, every TQP occupy 64KB.
2914         *
2915         * The quick doorbell located at 64B offset in the TQP region.
2916         */
2917        return (char *)pci_dev->mem_resource[bar_id].addr +
2918                        (pci_dev->mem_resource[bar_id].len >> 1) +
2919                        HNS3_TX_PUSH_TQP_REGION_SIZE * queue_id +
2920                        HNS3_TX_PUSH_QUICK_DOORBELL_OFFSET;
2921}
2922
2923void
2924hns3_tx_push_init(struct rte_eth_dev *dev)
2925{
2926        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2927        volatile uint32_t *reg;
2928        uint32_t val;
2929
2930        if (!hns3_dev_tx_push_supported(hw))
2931                return;
2932
2933        reg = (volatile uint32_t *)hns3_tx_push_get_queue_tail_reg(dev, 0);
2934        /*
2935         * Because the size of bar45 is about 8GB size, it may take a long time
2936         * to do the page fault in Tx process when work with vfio-pci, so use
2937         * one read operation to make kernel setup page table mapping for bar45
2938         * in the init stage.
2939         * Note: the bar45 is readable but the result is all 1.
2940         */
2941        val = *reg;
2942        RTE_SET_USED(val);
2943}
2944
2945static void
2946hns3_tx_push_queue_init(struct rte_eth_dev *dev,
2947                        uint16_t queue_id,
2948                        struct hns3_tx_queue *txq)
2949{
2950        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2951        if (!hns3_dev_tx_push_supported(hw)) {
2952                txq->tx_push_enable = false;
2953                return;
2954        }
2955
2956        txq->io_tail_reg = (volatile void *)hns3_tx_push_get_queue_tail_reg(dev,
2957                                                queue_id);
2958        txq->tx_push_enable = true;
2959}
2960
2961int
2962hns3_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t nb_desc,
2963                    unsigned int socket_id, const struct rte_eth_txconf *conf)
2964{
2965        struct hns3_adapter *hns = dev->data->dev_private;
2966        uint16_t tx_rs_thresh, tx_free_thresh;
2967        struct hns3_hw *hw = &hns->hw;
2968        struct hns3_queue_info q_info;
2969        struct hns3_tx_queue *txq;
2970        int tx_entry_len;
2971        int ret;
2972
2973        ret = hns3_tx_queue_conf_check(hw, conf, nb_desc,
2974                                       &tx_rs_thresh, &tx_free_thresh, idx);
2975        if (ret)
2976                return ret;
2977
2978        if (dev->data->tx_queues[idx] != NULL) {
2979                hns3_tx_queue_release(dev->data->tx_queues[idx]);
2980                dev->data->tx_queues[idx] = NULL;
2981        }
2982
2983        q_info.idx = idx;
2984        q_info.socket_id = socket_id;
2985        q_info.nb_desc = nb_desc;
2986        q_info.type = "hns3 TX queue";
2987        q_info.ring_name = "tx_ring";
2988        txq = hns3_alloc_txq_and_dma_zone(dev, &q_info);
2989        if (txq == NULL) {
2990                hns3_err(hw,
2991                         "Failed to alloc mem and reserve DMA mem for tx ring!");
2992                return -ENOMEM;
2993        }
2994
2995        txq->tx_deferred_start = conf->tx_deferred_start;
2996        if (txq->tx_deferred_start && !hns3_dev_indep_txrx_supported(hw)) {
2997                hns3_warn(hw, "deferred start is not supported.");
2998                txq->tx_deferred_start = false;
2999        }
3000
3001        tx_entry_len = sizeof(struct hns3_entry) * txq->nb_tx_desc;
3002        txq->sw_ring = rte_zmalloc_socket("hns3 TX sw ring", tx_entry_len,
3003                                          RTE_CACHE_LINE_SIZE, socket_id);
3004        if (txq->sw_ring == NULL) {
3005                hns3_err(hw, "Failed to allocate memory for tx sw ring!");
3006                hns3_tx_queue_release(txq);
3007                return -ENOMEM;
3008        }
3009
3010        txq->hns = hns;
3011        txq->next_to_use = 0;
3012        txq->next_to_clean = 0;
3013        txq->tx_bd_ready = txq->nb_tx_desc - 1;
3014        txq->tx_free_thresh = tx_free_thresh;
3015        txq->tx_rs_thresh = tx_rs_thresh;
3016        txq->free = rte_zmalloc_socket("hns3 TX mbuf free array",
3017                                sizeof(struct rte_mbuf *) * txq->tx_rs_thresh,
3018                                RTE_CACHE_LINE_SIZE, socket_id);
3019        if (!txq->free) {
3020                hns3_err(hw, "failed to allocate tx mbuf free array!");
3021                hns3_tx_queue_release(txq);
3022                return -ENOMEM;
3023        }
3024
3025        txq->port_id = dev->data->port_id;
3026        /*
3027         * For hns3 PF device, if the VLAN mode is HW_SHIFT_AND_DISCARD_MODE,
3028         * the pvid_sw_shift_en in the queue struct should not be changed,
3029         * because PVID-related operations do not need to be processed by PMD
3030         * driver. For hns3 VF device, whether it needs to process PVID depends
3031         * on the configuration of PF kernel mode netdev driver. And the
3032         * related PF configuration is delivered through the mailbox and finally
3033         * reflectd in port_base_vlan_cfg.
3034         */
3035        if (hns->is_vf || hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
3036                txq->pvid_sw_shift_en = hw->port_base_vlan_cfg.state ==
3037                                        HNS3_PORT_BASE_VLAN_ENABLE;
3038        else
3039                txq->pvid_sw_shift_en = false;
3040        txq->max_non_tso_bd_num = hw->max_non_tso_bd_num;
3041        txq->configured = true;
3042        txq->io_base = (void *)((char *)hw->io_base +
3043                                                hns3_get_tqp_reg_offset(idx));
3044        txq->io_tail_reg = (volatile void *)((char *)txq->io_base +
3045                                             HNS3_RING_TX_TAIL_REG);
3046        txq->min_tx_pkt_len = hw->min_tx_pkt_len;
3047        txq->tso_mode = hw->tso_mode;
3048        txq->udp_cksum_mode = hw->udp_cksum_mode;
3049        memset(&txq->basic_stats, 0, sizeof(struct hns3_tx_basic_stats));
3050        memset(&txq->dfx_stats, 0, sizeof(struct hns3_tx_dfx_stats));
3051
3052        /*
3053         * Call hns3_tx_push_queue_init after assigned io_tail_reg field because
3054         * it may overwrite the io_tail_reg field.
3055         */
3056        hns3_tx_push_queue_init(dev, idx, txq);
3057
3058        rte_spinlock_lock(&hw->lock);
3059        dev->data->tx_queues[idx] = txq;
3060        rte_spinlock_unlock(&hw->lock);
3061
3062        return 0;
3063}
3064
3065static void
3066hns3_tx_free_useless_buffer(struct hns3_tx_queue *txq)
3067{
3068        uint16_t tx_next_clean = txq->next_to_clean;
3069        uint16_t tx_next_use   = txq->next_to_use;
3070        uint16_t tx_bd_ready   = txq->tx_bd_ready;
3071        uint16_t tx_bd_max     = txq->nb_tx_desc;
3072        struct hns3_entry *tx_bak_pkt = &txq->sw_ring[tx_next_clean];
3073        struct hns3_desc *desc = &txq->tx_ring[tx_next_clean];
3074        struct rte_mbuf *mbuf;
3075
3076        while ((!(desc->tx.tp_fe_sc_vld_ra_ri &
3077                rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))) &&
3078                tx_next_use != tx_next_clean) {
3079                mbuf = tx_bak_pkt->mbuf;
3080                if (mbuf) {
3081                        rte_pktmbuf_free_seg(mbuf);
3082                        tx_bak_pkt->mbuf = NULL;
3083                }
3084
3085                desc++;
3086                tx_bak_pkt++;
3087                tx_next_clean++;
3088                tx_bd_ready++;
3089
3090                if (tx_next_clean >= tx_bd_max) {
3091                        tx_next_clean = 0;
3092                        desc = txq->tx_ring;
3093                        tx_bak_pkt = txq->sw_ring;
3094                }
3095        }
3096
3097        txq->next_to_clean = tx_next_clean;
3098        txq->tx_bd_ready   = tx_bd_ready;
3099}
3100
3101int
3102hns3_config_gro(struct hns3_hw *hw, bool en)
3103{
3104        struct hns3_cfg_gro_status_cmd *req;
3105        struct hns3_cmd_desc desc;
3106        int ret;
3107
3108        hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GRO_GENERIC_CONFIG, false);
3109        req = (struct hns3_cfg_gro_status_cmd *)desc.data;
3110
3111        req->gro_en = rte_cpu_to_le_16(en ? 1 : 0);
3112
3113        ret = hns3_cmd_send(hw, &desc, 1);
3114        if (ret)
3115                hns3_err(hw, "%s hardware GRO failed, ret = %d",
3116                         en ? "enable" : "disable", ret);
3117
3118        return ret;
3119}
3120
3121int
3122hns3_restore_gro_conf(struct hns3_hw *hw)
3123{
3124        uint64_t offloads;
3125        bool gro_en;
3126        int ret;
3127
3128        offloads = hw->data->dev_conf.rxmode.offloads;
3129        gro_en = offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
3130        ret = hns3_config_gro(hw, gro_en);
3131        if (ret)
3132                hns3_err(hw, "restore hardware GRO to %s failed, ret = %d",
3133                         gro_en ? "enabled" : "disabled", ret);
3134
3135        return ret;
3136}
3137
3138static inline bool
3139hns3_pkt_is_tso(struct rte_mbuf *m)
3140{
3141        return (m->tso_segsz != 0 && m->ol_flags & PKT_TX_TCP_SEG);
3142}
3143
3144static void
3145hns3_set_tso(struct hns3_desc *desc, uint32_t paylen, struct rte_mbuf *rxm)
3146{
3147        if (!hns3_pkt_is_tso(rxm))
3148                return;
3149
3150        if (paylen <= rxm->tso_segsz)
3151                return;
3152
3153        desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(BIT(HNS3_TXD_TSO_B));
3154        desc->tx.mss = rte_cpu_to_le_16(rxm->tso_segsz);
3155}
3156
3157static inline void
3158hns3_fill_per_desc(struct hns3_desc *desc, struct rte_mbuf *rxm)
3159{
3160        desc->addr = rte_mbuf_data_iova(rxm);
3161        desc->tx.send_size = rte_cpu_to_le_16(rte_pktmbuf_data_len(rxm));
3162        desc->tx.tp_fe_sc_vld_ra_ri |= rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B));
3163}
3164
3165static void
3166hns3_fill_first_desc(struct hns3_tx_queue *txq, struct hns3_desc *desc,
3167                     struct rte_mbuf *rxm)
3168{
3169        uint64_t ol_flags = rxm->ol_flags;
3170        uint32_t hdr_len;
3171        uint32_t paylen;
3172
3173        hdr_len = rxm->l2_len + rxm->l3_len + rxm->l4_len;
3174        hdr_len += (ol_flags & PKT_TX_TUNNEL_MASK) ?
3175                           rxm->outer_l2_len + rxm->outer_l3_len : 0;
3176        paylen = rxm->pkt_len - hdr_len;
3177        desc->tx.paylen_fd_dop_ol4cs |= rte_cpu_to_le_32(paylen);
3178        hns3_set_tso(desc, paylen, rxm);
3179
3180        /*
3181         * Currently, hardware doesn't support more than two layers VLAN offload
3182         * in Tx direction based on hns3 network engine. So when the number of
3183         * VLANs in the packets represented by rxm plus the number of VLAN
3184         * offload by hardware such as PVID etc, exceeds two, the packets will
3185         * be discarded or the original VLAN of the packets will be overwitted
3186         * by hardware. When the PF PVID is enabled by calling the API function
3187         * named rte_eth_dev_set_vlan_pvid or the VF PVID is enabled by the hns3
3188         * PF kernel ether driver, the outer VLAN tag will always be the PVID.
3189         * To avoid the VLAN of Tx descriptor is overwritten by PVID, it should
3190         * be added to the position close to the IP header when PVID is enabled.
3191         */
3192        if (!txq->pvid_sw_shift_en && ol_flags & (PKT_TX_VLAN_PKT |
3193                                PKT_TX_QINQ_PKT)) {
3194                desc->tx.ol_type_vlan_len_msec |=
3195                                rte_cpu_to_le_32(BIT(HNS3_TXD_OVLAN_B));
3196                if (ol_flags & PKT_TX_QINQ_PKT)
3197                        desc->tx.outer_vlan_tag =
3198                                        rte_cpu_to_le_16(rxm->vlan_tci_outer);
3199                else
3200                        desc->tx.outer_vlan_tag =
3201                                        rte_cpu_to_le_16(rxm->vlan_tci);
3202        }
3203
3204        if (ol_flags & PKT_TX_QINQ_PKT ||
3205            ((ol_flags & PKT_TX_VLAN_PKT) && txq->pvid_sw_shift_en)) {
3206                desc->tx.type_cs_vlan_tso_len |=
3207                                        rte_cpu_to_le_32(BIT(HNS3_TXD_VLAN_B));
3208                desc->tx.vlan_tag = rte_cpu_to_le_16(rxm->vlan_tci);
3209        }
3210
3211        if (ol_flags & PKT_TX_IEEE1588_TMST)
3212                desc->tx.tp_fe_sc_vld_ra_ri |=
3213                                rte_cpu_to_le_16(BIT(HNS3_TXD_TSYN_B));
3214}
3215
3216static inline int
3217hns3_tx_alloc_mbufs(struct rte_mempool *mb_pool, uint16_t nb_new_buf,
3218                        struct rte_mbuf **alloc_mbuf)
3219{
3220#define MAX_NON_TSO_BD_PER_PKT 18
3221        struct rte_mbuf *pkt_segs[MAX_NON_TSO_BD_PER_PKT];
3222        uint16_t i;
3223
3224        /* Allocate enough mbufs */
3225        if (rte_mempool_get_bulk(mb_pool, (void **)pkt_segs, nb_new_buf))
3226                return -ENOMEM;
3227
3228        for (i = 0; i < nb_new_buf - 1; i++)
3229                pkt_segs[i]->next = pkt_segs[i + 1];
3230
3231        pkt_segs[nb_new_buf - 1]->next = NULL;
3232        pkt_segs[0]->nb_segs = nb_new_buf;
3233        *alloc_mbuf = pkt_segs[0];
3234
3235        return 0;
3236}
3237
3238static inline void
3239hns3_pktmbuf_copy_hdr(struct rte_mbuf *new_pkt, struct rte_mbuf *old_pkt)
3240{
3241        new_pkt->ol_flags = old_pkt->ol_flags;
3242        new_pkt->pkt_len = rte_pktmbuf_pkt_len(old_pkt);
3243        new_pkt->outer_l2_len = old_pkt->outer_l2_len;
3244        new_pkt->outer_l3_len = old_pkt->outer_l3_len;
3245        new_pkt->l2_len = old_pkt->l2_len;
3246        new_pkt->l3_len = old_pkt->l3_len;
3247        new_pkt->l4_len = old_pkt->l4_len;
3248        new_pkt->vlan_tci_outer = old_pkt->vlan_tci_outer;
3249        new_pkt->vlan_tci = old_pkt->vlan_tci;
3250}
3251
3252static int
3253hns3_reassemble_tx_pkts(struct rte_mbuf *tx_pkt, struct rte_mbuf **new_pkt,
3254                                  uint8_t max_non_tso_bd_num)
3255{
3256        struct rte_mempool *mb_pool;
3257        struct rte_mbuf *new_mbuf;
3258        struct rte_mbuf *temp_new;
3259        struct rte_mbuf *temp;
3260        uint16_t last_buf_len;
3261        uint16_t nb_new_buf;
3262        uint16_t buf_size;
3263        uint16_t buf_len;
3264        uint16_t len_s;
3265        uint16_t len_d;
3266        uint16_t len;
3267        int ret;
3268        char *s;
3269        char *d;
3270
3271        mb_pool = tx_pkt->pool;
3272        buf_size = tx_pkt->buf_len - RTE_PKTMBUF_HEADROOM;
3273        nb_new_buf = (rte_pktmbuf_pkt_len(tx_pkt) - 1) / buf_size + 1;
3274        if (nb_new_buf > max_non_tso_bd_num)
3275                return -EINVAL;
3276
3277        last_buf_len = rte_pktmbuf_pkt_len(tx_pkt) % buf_size;
3278        if (last_buf_len == 0)
3279                last_buf_len = buf_size;
3280
3281        /* Allocate enough mbufs */
3282        ret = hns3_tx_alloc_mbufs(mb_pool, nb_new_buf, &new_mbuf);
3283        if (ret)
3284                return ret;
3285
3286        /* Copy the original packet content to the new mbufs */
3287        temp = tx_pkt;
3288        s = rte_pktmbuf_mtod(temp, char *);
3289        len_s = rte_pktmbuf_data_len(temp);
3290        temp_new = new_mbuf;
3291        while (temp != NULL && temp_new != NULL) {
3292                d = rte_pktmbuf_mtod(temp_new, char *);
3293                buf_len = temp_new->next == NULL ? last_buf_len : buf_size;
3294                len_d = buf_len;
3295
3296                while (len_d) {
3297                        len = RTE_MIN(len_s, len_d);
3298                        memcpy(d, s, len);
3299                        s = s + len;
3300                        d = d + len;
3301                        len_d = len_d - len;
3302                        len_s = len_s - len;
3303
3304                        if (len_s == 0) {
3305                                temp = temp->next;
3306                                if (temp == NULL)
3307                                        break;
3308                                s = rte_pktmbuf_mtod(temp, char *);
3309                                len_s = rte_pktmbuf_data_len(temp);
3310                        }
3311                }
3312
3313                temp_new->data_len = buf_len;
3314                temp_new = temp_new->next;
3315        }
3316        hns3_pktmbuf_copy_hdr(new_mbuf, tx_pkt);
3317
3318        /* free original mbufs */
3319        rte_pktmbuf_free(tx_pkt);
3320
3321        *new_pkt = new_mbuf;
3322
3323        return 0;
3324}
3325
3326static void
3327hns3_parse_outer_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec)
3328{
3329        uint32_t tmp = *ol_type_vlan_len_msec;
3330        uint64_t ol_flags = m->ol_flags;
3331
3332        /* (outer) IP header type */
3333        if (ol_flags & PKT_TX_OUTER_IPV4) {
3334                if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
3335                        tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M,
3336                                        HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_CSUM);
3337                else
3338                        tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M,
3339                                HNS3_TXD_OL3T_S, HNS3_OL3T_IPV4_NO_CSUM);
3340        } else if (ol_flags & PKT_TX_OUTER_IPV6) {
3341                tmp |= hns3_gen_field_val(HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
3342                                        HNS3_OL3T_IPV6);
3343        }
3344        /* OL3 header size, defined in 4 bytes */
3345        tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
3346                                m->outer_l3_len >> HNS3_L3_LEN_UNIT);
3347        *ol_type_vlan_len_msec = tmp;
3348}
3349
3350static int
3351hns3_parse_inner_params(struct rte_mbuf *m, uint32_t *ol_type_vlan_len_msec,
3352                        uint32_t *type_cs_vlan_tso_len)
3353{
3354#define HNS3_NVGRE_HLEN 8
3355        uint32_t tmp_outer = *ol_type_vlan_len_msec;
3356        uint32_t tmp_inner = *type_cs_vlan_tso_len;
3357        uint64_t ol_flags = m->ol_flags;
3358        uint16_t inner_l2_len;
3359
3360        switch (ol_flags & PKT_TX_TUNNEL_MASK) {
3361        case PKT_TX_TUNNEL_VXLAN_GPE:
3362        case PKT_TX_TUNNEL_GENEVE:
3363        case PKT_TX_TUNNEL_VXLAN:
3364                /* MAC in UDP tunnelling packet, include VxLAN and GENEVE */
3365                tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M,
3366                                HNS3_TXD_TUNTYPE_S, HNS3_TUN_MAC_IN_UDP);
3367                /*
3368                 * The inner l2 length of mbuf is the sum of outer l4 length,
3369                 * tunneling header length and inner l2 length for a tunnel
3370                 * packect. But in hns3 tx descriptor, the tunneling header
3371                 * length is contained in the field of outer L4 length.
3372                 * Therefore, driver need to calculate the outer L4 length and
3373                 * inner L2 length.
3374                 */
3375                tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M,
3376                                                HNS3_TXD_L4LEN_S,
3377                                                (uint8_t)RTE_ETHER_VXLAN_HLEN >>
3378                                                HNS3_L4_LEN_UNIT);
3379
3380                inner_l2_len = m->l2_len - RTE_ETHER_VXLAN_HLEN;
3381                break;
3382        case PKT_TX_TUNNEL_GRE:
3383                tmp_outer |= hns3_gen_field_val(HNS3_TXD_TUNTYPE_M,
3384                                        HNS3_TXD_TUNTYPE_S, HNS3_TUN_NVGRE);
3385                /*
3386                 * For NVGRE tunnel packect, the outer L4 is empty. So only
3387                 * fill the NVGRE header length to the outer L4 field.
3388                 */
3389                tmp_outer |= hns3_gen_field_val(HNS3_TXD_L4LEN_M,
3390                                HNS3_TXD_L4LEN_S,
3391                                (uint8_t)HNS3_NVGRE_HLEN >> HNS3_L4_LEN_UNIT);
3392
3393                inner_l2_len = m->l2_len - HNS3_NVGRE_HLEN;
3394                break;
3395        default:
3396                /* For non UDP / GRE tunneling, drop the tunnel packet */
3397                return -EINVAL;
3398        }
3399
3400        tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
3401                                        inner_l2_len >> HNS3_L2_LEN_UNIT);
3402        /* OL2 header size, defined in 2 bytes */
3403        tmp_outer |= hns3_gen_field_val(HNS3_TXD_L2LEN_M, HNS3_TXD_L2LEN_S,
3404                                        m->outer_l2_len >> HNS3_L2_LEN_UNIT);
3405
3406        *type_cs_vlan_tso_len = tmp_inner;
3407        *ol_type_vlan_len_msec = tmp_outer;
3408
3409        return 0;
3410}
3411
3412static int
3413hns3_parse_tunneling_params(struct hns3_tx_queue *txq, struct rte_mbuf *m,
3414                            uint16_t tx_desc_id)
3415{
3416        struct hns3_desc *tx_ring = txq->tx_ring;
3417        struct hns3_desc *desc = &tx_ring[tx_desc_id];
3418        uint64_t ol_flags = m->ol_flags;
3419        uint32_t tmp_outer = 0;
3420        uint32_t tmp_inner = 0;
3421        uint32_t tmp_ol4cs;
3422        int ret;
3423
3424        /*
3425         * The tunnel header is contained in the inner L2 header field of the
3426         * mbuf, but for hns3 descriptor, it is contained in the outer L4. So,
3427         * there is a need that switching between them. To avoid multiple
3428         * calculations, the length of the L2 header include the outer and
3429         * inner, will be filled during the parsing of tunnel packects.
3430         */
3431        if (!(ol_flags & PKT_TX_TUNNEL_MASK)) {
3432                /*
3433                 * For non tunnel type the tunnel type id is 0, so no need to
3434                 * assign a value to it. Only the inner(normal) L2 header length
3435                 * is assigned.
3436                 */
3437                tmp_inner |= hns3_gen_field_val(HNS3_TXD_L2LEN_M,
3438                               HNS3_TXD_L2LEN_S, m->l2_len >> HNS3_L2_LEN_UNIT);
3439        } else {
3440                /*
3441                 * If outer csum is not offload, the outer length may be filled
3442                 * with 0. And the length of the outer header is added to the
3443                 * inner l2_len. It would lead a cksum error. So driver has to
3444                 * calculate the header length.
3445                 */
3446                if (unlikely(!(ol_flags &
3447                        (PKT_TX_OUTER_IP_CKSUM | PKT_TX_OUTER_UDP_CKSUM)) &&
3448                                        m->outer_l2_len == 0)) {
3449                        struct rte_net_hdr_lens hdr_len;
3450                        (void)rte_net_get_ptype(m, &hdr_len,
3451                                        RTE_PTYPE_L2_MASK | RTE_PTYPE_L3_MASK);
3452                        m->outer_l3_len = hdr_len.l3_len;
3453                        m->outer_l2_len = hdr_len.l2_len;
3454                        m->l2_len = m->l2_len - hdr_len.l2_len - hdr_len.l3_len;
3455                }
3456                hns3_parse_outer_params(m, &tmp_outer);
3457                ret = hns3_parse_inner_params(m, &tmp_outer, &tmp_inner);
3458                if (ret)
3459                        return -EINVAL;
3460        }
3461
3462        desc->tx.ol_type_vlan_len_msec = rte_cpu_to_le_32(tmp_outer);
3463        desc->tx.type_cs_vlan_tso_len = rte_cpu_to_le_32(tmp_inner);
3464        tmp_ol4cs = ol_flags & PKT_TX_OUTER_UDP_CKSUM ?
3465                        BIT(HNS3_TXD_OL4CS_B) : 0;
3466        desc->tx.paylen_fd_dop_ol4cs = rte_cpu_to_le_32(tmp_ol4cs);
3467
3468        return 0;
3469}
3470
3471static void
3472hns3_parse_l3_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len)
3473{
3474        uint64_t ol_flags = m->ol_flags;
3475        uint32_t l3_type;
3476        uint32_t tmp;
3477
3478        tmp = *type_cs_vlan_tso_len;
3479        if (ol_flags & PKT_TX_IPV4)
3480                l3_type = HNS3_L3T_IPV4;
3481        else if (ol_flags & PKT_TX_IPV6)
3482                l3_type = HNS3_L3T_IPV6;
3483        else
3484                l3_type = HNS3_L3T_NONE;
3485
3486        /* inner(/normal) L3 header size, defined in 4 bytes */
3487        tmp |= hns3_gen_field_val(HNS3_TXD_L3LEN_M, HNS3_TXD_L3LEN_S,
3488                                        m->l3_len >> HNS3_L3_LEN_UNIT);
3489
3490        tmp |= hns3_gen_field_val(HNS3_TXD_L3T_M, HNS3_TXD_L3T_S, l3_type);
3491
3492        /* Enable L3 checksum offloads */
3493        if (ol_flags & PKT_TX_IP_CKSUM)
3494                tmp |= BIT(HNS3_TXD_L3CS_B);
3495        *type_cs_vlan_tso_len = tmp;
3496}
3497
3498static void
3499hns3_parse_l4_cksum_params(struct rte_mbuf *m, uint32_t *type_cs_vlan_tso_len)
3500{
3501        uint64_t ol_flags = m->ol_flags;
3502        uint32_t tmp;
3503        /* Enable L4 checksum offloads */
3504        switch (ol_flags & (PKT_TX_L4_MASK | PKT_TX_TCP_SEG)) {
3505        case PKT_TX_TCP_CKSUM | PKT_TX_TCP_SEG:
3506        case PKT_TX_TCP_CKSUM:
3507        case PKT_TX_TCP_SEG:
3508                tmp = *type_cs_vlan_tso_len;
3509                tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
3510                                        HNS3_L4T_TCP);
3511                break;
3512        case PKT_TX_UDP_CKSUM:
3513                tmp = *type_cs_vlan_tso_len;
3514                tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
3515                                        HNS3_L4T_UDP);
3516                break;
3517        case PKT_TX_SCTP_CKSUM:
3518                tmp = *type_cs_vlan_tso_len;
3519                tmp |= hns3_gen_field_val(HNS3_TXD_L4T_M, HNS3_TXD_L4T_S,
3520                                        HNS3_L4T_SCTP);
3521                break;
3522        default:
3523                return;
3524        }
3525        tmp |= BIT(HNS3_TXD_L4CS_B);
3526        tmp |= hns3_gen_field_val(HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
3527                                        m->l4_len >> HNS3_L4_LEN_UNIT);
3528        *type_cs_vlan_tso_len = tmp;
3529}
3530
3531static void
3532hns3_txd_enable_checksum(struct hns3_tx_queue *txq, struct rte_mbuf *m,
3533                         uint16_t tx_desc_id)
3534{
3535        struct hns3_desc *tx_ring = txq->tx_ring;
3536        struct hns3_desc *desc = &tx_ring[tx_desc_id];
3537        uint32_t value = 0;
3538
3539        hns3_parse_l3_cksum_params(m, &value);
3540        hns3_parse_l4_cksum_params(m, &value);
3541
3542        desc->tx.type_cs_vlan_tso_len |= rte_cpu_to_le_32(value);
3543}
3544
3545static bool
3546hns3_pkt_need_linearized(struct rte_mbuf *tx_pkts, uint32_t bd_num,
3547                                 uint32_t max_non_tso_bd_num)
3548{
3549        struct rte_mbuf *m_first = tx_pkts;
3550        struct rte_mbuf *m_last = tx_pkts;
3551        uint32_t tot_len = 0;
3552        uint32_t hdr_len;
3553        uint32_t i;
3554
3555        /*
3556         * Hardware requires that the sum of the data length of every 8
3557         * consecutive buffers is greater than MSS in hns3 network engine.
3558         * We simplify it by ensuring pkt_headlen + the first 8 consecutive
3559         * frags greater than gso header len + mss, and the remaining 7
3560         * consecutive frags greater than MSS except the last 7 frags.
3561         */
3562        if (bd_num <= max_non_tso_bd_num)
3563                return false;
3564
3565        for (i = 0; m_last && i < max_non_tso_bd_num - 1;
3566             i++, m_last = m_last->next)
3567                tot_len += m_last->data_len;
3568
3569        if (!m_last)
3570                return true;
3571
3572        /* ensure the first 8 frags is greater than mss + header */
3573        hdr_len = tx_pkts->l2_len + tx_pkts->l3_len + tx_pkts->l4_len;
3574        hdr_len += (tx_pkts->ol_flags & PKT_TX_TUNNEL_MASK) ?
3575                   tx_pkts->outer_l2_len + tx_pkts->outer_l3_len : 0;
3576        if (tot_len + m_last->data_len < tx_pkts->tso_segsz + hdr_len)
3577                return true;
3578
3579        /*
3580         * ensure the sum of the data length of every 7 consecutive buffer
3581         * is greater than mss except the last one.
3582         */
3583        for (i = 0; m_last && i < bd_num - max_non_tso_bd_num; i++) {
3584                tot_len -= m_first->data_len;
3585                tot_len += m_last->data_len;
3586
3587                if (tot_len < tx_pkts->tso_segsz)
3588                        return true;
3589
3590                m_first = m_first->next;
3591                m_last = m_last->next;
3592        }
3593
3594        return false;
3595}
3596
3597static bool
3598hns3_outer_ipv4_cksum_prepared(struct rte_mbuf *m, uint64_t ol_flags,
3599                                uint32_t *l4_proto)
3600{
3601        struct rte_ipv4_hdr *ipv4_hdr;
3602        ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
3603                                           m->outer_l2_len);
3604        if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
3605                ipv4_hdr->hdr_checksum = 0;
3606        if (ol_flags & PKT_TX_OUTER_UDP_CKSUM) {
3607                struct rte_udp_hdr *udp_hdr;
3608                /*
3609                 * If OUTER_UDP_CKSUM is support, HW can caclulate the pseudo
3610                 * header for TSO packets
3611                 */
3612                if (ol_flags & PKT_TX_TCP_SEG)
3613                        return true;
3614                udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3615                                m->outer_l2_len + m->outer_l3_len);
3616                udp_hdr->dgram_cksum = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
3617
3618                return true;
3619        }
3620        *l4_proto = ipv4_hdr->next_proto_id;
3621        return false;
3622}
3623
3624static bool
3625hns3_outer_ipv6_cksum_prepared(struct rte_mbuf *m, uint64_t ol_flags,
3626                                uint32_t *l4_proto)
3627{
3628        struct rte_ipv6_hdr *ipv6_hdr;
3629        ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
3630                                           m->outer_l2_len);
3631        if (ol_flags & PKT_TX_OUTER_UDP_CKSUM) {
3632                struct rte_udp_hdr *udp_hdr;
3633                /*
3634                 * If OUTER_UDP_CKSUM is support, HW can caclulate the pseudo
3635                 * header for TSO packets
3636                 */
3637                if (ol_flags & PKT_TX_TCP_SEG)
3638                        return true;
3639                udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3640                                m->outer_l2_len + m->outer_l3_len);
3641                udp_hdr->dgram_cksum = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
3642
3643                return true;
3644        }
3645        *l4_proto = ipv6_hdr->proto;
3646        return false;
3647}
3648
3649static void
3650hns3_outer_header_cksum_prepare(struct rte_mbuf *m)
3651{
3652        uint64_t ol_flags = m->ol_flags;
3653        uint32_t paylen, hdr_len, l4_proto;
3654        struct rte_udp_hdr *udp_hdr;
3655
3656        if (!(ol_flags & (PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6)))
3657                return;
3658
3659        if (ol_flags & PKT_TX_OUTER_IPV4) {
3660                if (hns3_outer_ipv4_cksum_prepared(m, ol_flags, &l4_proto))
3661                        return;
3662        } else {
3663                if (hns3_outer_ipv6_cksum_prepared(m, ol_flags, &l4_proto))
3664                        return;
3665        }
3666
3667        /* driver should ensure the outer udp cksum is 0 for TUNNEL TSO */
3668        if (l4_proto == IPPROTO_UDP && (ol_flags & PKT_TX_TCP_SEG)) {
3669                hdr_len = m->l2_len + m->l3_len + m->l4_len;
3670                hdr_len += m->outer_l2_len + m->outer_l3_len;
3671                paylen = m->pkt_len - hdr_len;
3672                if (paylen <= m->tso_segsz)
3673                        return;
3674                udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3675                                                  m->outer_l2_len +
3676                                                  m->outer_l3_len);
3677                udp_hdr->dgram_cksum = 0;
3678        }
3679}
3680
3681static int
3682hns3_check_tso_pkt_valid(struct rte_mbuf *m)
3683{
3684        uint32_t tmp_data_len_sum = 0;
3685        uint16_t nb_buf = m->nb_segs;
3686        uint32_t paylen, hdr_len;
3687        struct rte_mbuf *m_seg;
3688        int i;
3689
3690        if (nb_buf > HNS3_MAX_TSO_BD_PER_PKT)
3691                return -EINVAL;
3692
3693        hdr_len = m->l2_len + m->l3_len + m->l4_len;
3694        hdr_len += (m->ol_flags & PKT_TX_TUNNEL_MASK) ?
3695                        m->outer_l2_len + m->outer_l3_len : 0;
3696        if (hdr_len > HNS3_MAX_TSO_HDR_SIZE)
3697                return -EINVAL;
3698
3699        paylen = m->pkt_len - hdr_len;
3700        if (paylen > HNS3_MAX_BD_PAYLEN)
3701                return -EINVAL;
3702
3703        /*
3704         * The TSO header (include outer and inner L2, L3 and L4 header)
3705         * should be provided by three descriptors in maximum in hns3 network
3706         * engine.
3707         */
3708        m_seg = m;
3709        for (i = 0; m_seg != NULL && i < HNS3_MAX_TSO_HDR_BD_NUM && i < nb_buf;
3710             i++, m_seg = m_seg->next) {
3711                tmp_data_len_sum += m_seg->data_len;
3712        }
3713
3714        if (hdr_len > tmp_data_len_sum)
3715                return -EINVAL;
3716
3717        return 0;
3718}
3719
3720#ifdef RTE_LIBRTE_ETHDEV_DEBUG
3721static inline int
3722hns3_vld_vlan_chk(struct hns3_tx_queue *txq, struct rte_mbuf *m)
3723{
3724        struct rte_ether_hdr *eh;
3725        struct rte_vlan_hdr *vh;
3726
3727        if (!txq->pvid_sw_shift_en)
3728                return 0;
3729
3730        /*
3731         * Due to hardware limitations, we only support two-layer VLAN hardware
3732         * offload in Tx direction based on hns3 network engine, so when PVID is
3733         * enabled, QinQ insert is no longer supported.
3734         * And when PVID is enabled, in the following two cases:
3735         *  i) packets with more than two VLAN tags.
3736         *  ii) packets with one VLAN tag while the hardware VLAN insert is
3737         *      enabled.
3738         * The packets will be regarded as abnormal packets and discarded by
3739         * hardware in Tx direction. For debugging purposes, a validation check
3740         * for these types of packets is added to the '.tx_pkt_prepare' ops
3741         * implementation function named hns3_prep_pkts to inform users that
3742         * these packets will be discarded.
3743         */
3744        if (m->ol_flags & PKT_TX_QINQ_PKT)
3745                return -EINVAL;
3746
3747        eh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
3748        if (eh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN)) {
3749                if (m->ol_flags & PKT_TX_VLAN_PKT)
3750                        return -EINVAL;
3751
3752                /* Ensure the incoming packet is not a QinQ packet */
3753                vh = (struct rte_vlan_hdr *)(eh + 1);
3754                if (vh->eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN))
3755                        return -EINVAL;
3756        }
3757
3758        return 0;
3759}
3760#endif
3761
3762static uint16_t
3763hns3_udp_cksum_help(struct rte_mbuf *m)
3764{
3765        uint64_t ol_flags = m->ol_flags;
3766        uint16_t cksum = 0;
3767        uint32_t l4_len;
3768
3769        if (ol_flags & PKT_TX_IPV4) {
3770                struct rte_ipv4_hdr *ipv4_hdr = rte_pktmbuf_mtod_offset(m,
3771                                struct rte_ipv4_hdr *, m->l2_len);
3772                l4_len = rte_be_to_cpu_16(ipv4_hdr->total_length) - m->l3_len;
3773        } else {
3774                struct rte_ipv6_hdr *ipv6_hdr = rte_pktmbuf_mtod_offset(m,
3775                                struct rte_ipv6_hdr *, m->l2_len);
3776                l4_len = rte_be_to_cpu_16(ipv6_hdr->payload_len);
3777        }
3778
3779        rte_raw_cksum_mbuf(m, m->l2_len + m->l3_len, l4_len, &cksum);
3780
3781        cksum = ~cksum;
3782        /*
3783         * RFC 768:If the computed checksum is zero for UDP, it is transmitted
3784         * as all ones
3785         */
3786        if (cksum == 0)
3787                cksum = 0xffff;
3788
3789        return (uint16_t)cksum;
3790}
3791
3792static bool
3793hns3_validate_tunnel_cksum(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m)
3794{
3795        uint64_t ol_flags = m->ol_flags;
3796        struct rte_udp_hdr *udp_hdr;
3797        uint16_t dst_port;
3798
3799        if (tx_queue->udp_cksum_mode == HNS3_SPECIAL_PORT_HW_CKSUM_MODE ||
3800            ol_flags & PKT_TX_TUNNEL_MASK ||
3801            (ol_flags & PKT_TX_L4_MASK) != PKT_TX_UDP_CKSUM)
3802                return true;
3803        /*
3804         * A UDP packet with the same dst_port as VXLAN\VXLAN_GPE\GENEVE will
3805         * be recognized as a tunnel packet in HW. In this case, if UDP CKSUM
3806         * offload is set and the tunnel mask has not been set, the CKSUM will
3807         * be wrong since the header length is wrong and driver should complete
3808         * the CKSUM to avoid CKSUM error.
3809         */
3810        udp_hdr = rte_pktmbuf_mtod_offset(m, struct rte_udp_hdr *,
3811                                                m->l2_len + m->l3_len);
3812        dst_port = rte_be_to_cpu_16(udp_hdr->dst_port);
3813        switch (dst_port) {
3814        case RTE_VXLAN_DEFAULT_PORT:
3815        case RTE_VXLAN_GPE_DEFAULT_PORT:
3816        case RTE_GENEVE_DEFAULT_PORT:
3817                udp_hdr->dgram_cksum = hns3_udp_cksum_help(m);
3818                m->ol_flags = ol_flags & ~PKT_TX_L4_MASK;
3819                return false;
3820        default:
3821                return true;
3822        }
3823}
3824
3825static int
3826hns3_prep_pkt_proc(struct hns3_tx_queue *tx_queue, struct rte_mbuf *m)
3827{
3828        int ret;
3829
3830#ifdef RTE_LIBRTE_ETHDEV_DEBUG
3831        ret = rte_validate_tx_offload(m);
3832        if (ret != 0) {
3833                rte_errno = -ret;
3834                return ret;
3835        }
3836
3837        ret = hns3_vld_vlan_chk(tx_queue, m);
3838        if (ret != 0) {
3839                rte_errno = EINVAL;
3840                return ret;
3841        }
3842#endif
3843        if (hns3_pkt_is_tso(m)) {
3844                if (hns3_pkt_need_linearized(m, m->nb_segs,
3845                                             tx_queue->max_non_tso_bd_num) ||
3846                    hns3_check_tso_pkt_valid(m)) {
3847                        rte_errno = EINVAL;
3848                        return -EINVAL;
3849                }
3850
3851                if (tx_queue->tso_mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) {
3852                        /*
3853                         * (tso mode != HNS3_TSO_SW_CAL_PSEUDO_H_CSUM) means
3854                         * hardware support recalculate the TCP pseudo header
3855                         * checksum of packets that need TSO, so network driver
3856                         * software not need to recalculate it.
3857                         */
3858                        hns3_outer_header_cksum_prepare(m);
3859                        return 0;
3860                }
3861        }
3862
3863        ret = rte_net_intel_cksum_prepare(m);
3864        if (ret != 0) {
3865                rte_errno = -ret;
3866                return ret;
3867        }
3868
3869        if (!hns3_validate_tunnel_cksum(tx_queue, m))
3870                return 0;
3871
3872        hns3_outer_header_cksum_prepare(m);
3873
3874        return 0;
3875}
3876
3877uint16_t
3878hns3_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
3879               uint16_t nb_pkts)
3880{
3881        struct rte_mbuf *m;
3882        uint16_t i;
3883
3884        for (i = 0; i < nb_pkts; i++) {
3885                m = tx_pkts[i];
3886                if (hns3_prep_pkt_proc(tx_queue, m))
3887                        return i;
3888        }
3889
3890        return i;
3891}
3892
3893static int
3894hns3_parse_cksum(struct hns3_tx_queue *txq, uint16_t tx_desc_id,
3895                 struct rte_mbuf *m)
3896{
3897        struct hns3_desc *tx_ring = txq->tx_ring;
3898        struct hns3_desc *desc = &tx_ring[tx_desc_id];
3899
3900        /* Enable checksum offloading */
3901        if (m->ol_flags & HNS3_TX_CKSUM_OFFLOAD_MASK) {
3902                /* Fill in tunneling parameters if necessary */
3903                if (hns3_parse_tunneling_params(txq, m, tx_desc_id)) {
3904                        txq->dfx_stats.unsupported_tunnel_pkt_cnt++;
3905                                return -EINVAL;
3906                }
3907
3908                hns3_txd_enable_checksum(txq, m, tx_desc_id);
3909        } else {
3910                /* clear the control bit */
3911                desc->tx.type_cs_vlan_tso_len  = 0;
3912                desc->tx.ol_type_vlan_len_msec = 0;
3913        }
3914
3915        return 0;
3916}
3917
3918static int
3919hns3_check_non_tso_pkt(uint16_t nb_buf, struct rte_mbuf **m_seg,
3920                      struct rte_mbuf *tx_pkt, struct hns3_tx_queue *txq)
3921{
3922        uint8_t max_non_tso_bd_num;
3923        struct rte_mbuf *new_pkt;
3924        int ret;
3925
3926        if (hns3_pkt_is_tso(*m_seg))
3927                return 0;
3928
3929        /*
3930         * If packet length is greater than HNS3_MAX_FRAME_LEN
3931         * driver support, the packet will be ignored.
3932         */
3933        if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) > HNS3_MAX_FRAME_LEN)) {
3934                txq->dfx_stats.over_length_pkt_cnt++;
3935                return -EINVAL;
3936        }
3937
3938        max_non_tso_bd_num = txq->max_non_tso_bd_num;
3939        if (unlikely(nb_buf > max_non_tso_bd_num)) {
3940                txq->dfx_stats.exceed_limit_bd_pkt_cnt++;
3941                ret = hns3_reassemble_tx_pkts(tx_pkt, &new_pkt,
3942                                              max_non_tso_bd_num);
3943                if (ret) {
3944                        txq->dfx_stats.exceed_limit_bd_reassem_fail++;
3945                        return ret;
3946                }
3947                *m_seg = new_pkt;
3948        }
3949
3950        return 0;
3951}
3952
3953static inline void
3954hns3_tx_free_buffer_simple(struct hns3_tx_queue *txq)
3955{
3956        struct hns3_entry *tx_entry;
3957        struct hns3_desc *desc;
3958        uint16_t tx_next_clean;
3959        int i;
3960
3961        while (1) {
3962                if (HNS3_GET_TX_QUEUE_PEND_BD_NUM(txq) < txq->tx_rs_thresh)
3963                        break;
3964
3965                /*
3966                 * All mbufs can be released only when the VLD bits of all
3967                 * descriptors in a batch are cleared.
3968                 */
3969                tx_next_clean = (txq->next_to_clean + txq->tx_rs_thresh - 1) %
3970                                txq->nb_tx_desc;
3971                desc = &txq->tx_ring[tx_next_clean];
3972                for (i = 0; i < txq->tx_rs_thresh; i++) {
3973                        if (rte_le_to_cpu_16(desc->tx.tp_fe_sc_vld_ra_ri) &
3974                                        BIT(HNS3_TXD_VLD_B))
3975                                return;
3976                        desc--;
3977                }
3978
3979                tx_entry = &txq->sw_ring[txq->next_to_clean];
3980
3981                for (i = 0; i < txq->tx_rs_thresh; i++)
3982                        rte_prefetch0((tx_entry + i)->mbuf);
3983                for (i = 0; i < txq->tx_rs_thresh; i++, tx_entry++) {
3984                        rte_mempool_put(tx_entry->mbuf->pool, tx_entry->mbuf);
3985                        tx_entry->mbuf = NULL;
3986                }
3987
3988                txq->next_to_clean = (tx_next_clean + 1) % txq->nb_tx_desc;
3989                txq->tx_bd_ready += txq->tx_rs_thresh;
3990        }
3991}
3992
3993static inline void
3994hns3_tx_backup_1mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts)
3995{
3996        tx_entry->mbuf = pkts[0];
3997}
3998
3999static inline void
4000hns3_tx_backup_4mbuf(struct hns3_entry *tx_entry, struct rte_mbuf **pkts)
4001{
4002        hns3_tx_backup_1mbuf(&tx_entry[0], &pkts[0]);
4003        hns3_tx_backup_1mbuf(&tx_entry[1], &pkts[1]);
4004        hns3_tx_backup_1mbuf(&tx_entry[2], &pkts[2]);
4005        hns3_tx_backup_1mbuf(&tx_entry[3], &pkts[3]);
4006}
4007
4008static inline void
4009hns3_tx_setup_4bd(struct hns3_desc *txdp, struct rte_mbuf **pkts)
4010{
4011#define PER_LOOP_NUM    4
4012        const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B);
4013        uint64_t dma_addr;
4014        uint32_t i;
4015
4016        for (i = 0; i < PER_LOOP_NUM; i++, txdp++, pkts++) {
4017                dma_addr = rte_mbuf_data_iova(*pkts);
4018                txdp->addr = rte_cpu_to_le_64(dma_addr);
4019                txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len);
4020                txdp->tx.paylen_fd_dop_ol4cs = 0;
4021                txdp->tx.type_cs_vlan_tso_len = 0;
4022                txdp->tx.ol_type_vlan_len_msec = 0;
4023                txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag);
4024        }
4025}
4026
4027static inline void
4028hns3_tx_setup_1bd(struct hns3_desc *txdp, struct rte_mbuf **pkts)
4029{
4030        const uint16_t bd_flag = BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B);
4031        uint64_t dma_addr;
4032
4033        dma_addr = rte_mbuf_data_iova(*pkts);
4034        txdp->addr = rte_cpu_to_le_64(dma_addr);
4035        txdp->tx.send_size = rte_cpu_to_le_16((*pkts)->data_len);
4036        txdp->tx.paylen_fd_dop_ol4cs = 0;
4037        txdp->tx.type_cs_vlan_tso_len = 0;
4038        txdp->tx.ol_type_vlan_len_msec = 0;
4039        txdp->tx.tp_fe_sc_vld_ra_ri = rte_cpu_to_le_16(bd_flag);
4040}
4041
4042static inline void
4043hns3_tx_fill_hw_ring(struct hns3_tx_queue *txq,
4044                     struct rte_mbuf **pkts,
4045                     uint16_t nb_pkts)
4046{
4047#define PER_LOOP_NUM    4
4048#define PER_LOOP_MASK   (PER_LOOP_NUM - 1)
4049        struct hns3_desc *txdp = &txq->tx_ring[txq->next_to_use];
4050        struct hns3_entry *tx_entry = &txq->sw_ring[txq->next_to_use];
4051        const uint32_t mainpart = (nb_pkts & ((uint32_t)~PER_LOOP_MASK));
4052        const uint32_t leftover = (nb_pkts & ((uint32_t)PER_LOOP_MASK));
4053        uint32_t i;
4054
4055        for (i = 0; i < mainpart; i += PER_LOOP_NUM) {
4056                hns3_tx_backup_4mbuf(tx_entry + i, pkts + i);
4057                hns3_tx_setup_4bd(txdp + i, pkts + i);
4058
4059                /* Increment bytes counter */
4060                uint32_t j;
4061                for (j = 0; j < PER_LOOP_NUM; j++)
4062                        txq->basic_stats.bytes += pkts[i + j]->pkt_len;
4063        }
4064        if (unlikely(leftover > 0)) {
4065                for (i = 0; i < leftover; i++) {
4066                        hns3_tx_backup_1mbuf(tx_entry + mainpart + i,
4067                                             pkts + mainpart + i);
4068                        hns3_tx_setup_1bd(txdp + mainpart + i,
4069                                          pkts + mainpart + i);
4070
4071                        /* Increment bytes counter */
4072                        txq->basic_stats.bytes += pkts[mainpart + i]->pkt_len;
4073                }
4074        }
4075}
4076
4077uint16_t
4078hns3_xmit_pkts_simple(void *tx_queue,
4079                      struct rte_mbuf **tx_pkts,
4080                      uint16_t nb_pkts)
4081{
4082        struct hns3_tx_queue *txq = tx_queue;
4083        uint16_t nb_tx = 0;
4084
4085        hns3_tx_free_buffer_simple(txq);
4086
4087        nb_pkts = RTE_MIN(txq->tx_bd_ready, nb_pkts);
4088        if (unlikely(nb_pkts == 0)) {
4089                if (txq->tx_bd_ready == 0)
4090                        txq->dfx_stats.queue_full_cnt++;
4091                return 0;
4092        }
4093
4094        txq->tx_bd_ready -= nb_pkts;
4095        if (txq->next_to_use + nb_pkts > txq->nb_tx_desc) {
4096                nb_tx = txq->nb_tx_desc - txq->next_to_use;
4097                hns3_tx_fill_hw_ring(txq, tx_pkts, nb_tx);
4098                txq->next_to_use = 0;
4099        }
4100
4101        hns3_tx_fill_hw_ring(txq, tx_pkts + nb_tx, nb_pkts - nb_tx);
4102        txq->next_to_use += nb_pkts - nb_tx;
4103
4104        hns3_write_txq_tail_reg(txq, nb_pkts);
4105
4106        return nb_pkts;
4107}
4108
4109uint16_t
4110hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
4111{
4112        struct hns3_tx_queue *txq = tx_queue;
4113        struct hns3_entry *tx_bak_pkt;
4114        struct hns3_desc *tx_ring;
4115        struct rte_mbuf *tx_pkt;
4116        struct rte_mbuf *m_seg;
4117        struct hns3_desc *desc;
4118        uint32_t nb_hold = 0;
4119        uint16_t tx_next_use;
4120        uint16_t tx_pkt_num;
4121        uint16_t tx_bd_max;
4122        uint16_t nb_buf;
4123        uint16_t nb_tx;
4124        uint16_t i;
4125
4126        /* free useless buffer */
4127        hns3_tx_free_useless_buffer(txq);
4128
4129        tx_next_use   = txq->next_to_use;
4130        tx_bd_max     = txq->nb_tx_desc;
4131        tx_pkt_num = nb_pkts;
4132        tx_ring = txq->tx_ring;
4133
4134        /* send packets */
4135        tx_bak_pkt = &txq->sw_ring[tx_next_use];
4136        for (nb_tx = 0; nb_tx < tx_pkt_num; nb_tx++) {
4137                tx_pkt = *tx_pkts++;
4138
4139                nb_buf = tx_pkt->nb_segs;
4140
4141                if (nb_buf > txq->tx_bd_ready) {
4142                        txq->dfx_stats.queue_full_cnt++;
4143                        if (nb_tx == 0)
4144                                return 0;
4145
4146                        goto end_of_tx;
4147                }
4148
4149                /*
4150                 * If packet length is less than minimum packet length supported
4151                 * by hardware in Tx direction, driver need to pad it to avoid
4152                 * error.
4153                 */
4154                if (unlikely(rte_pktmbuf_pkt_len(tx_pkt) <
4155                                                txq->min_tx_pkt_len)) {
4156                        uint16_t add_len;
4157                        char *appended;
4158
4159                        add_len = txq->min_tx_pkt_len -
4160                                         rte_pktmbuf_pkt_len(tx_pkt);
4161                        appended = rte_pktmbuf_append(tx_pkt, add_len);
4162                        if (appended == NULL) {
4163                                txq->dfx_stats.pkt_padding_fail_cnt++;
4164                                break;
4165                        }
4166
4167                        memset(appended, 0, add_len);
4168                }
4169
4170                m_seg = tx_pkt;
4171
4172                if (hns3_check_non_tso_pkt(nb_buf, &m_seg, tx_pkt, txq))
4173                        goto end_of_tx;
4174
4175                if (hns3_parse_cksum(txq, tx_next_use, m_seg))
4176                        goto end_of_tx;
4177
4178                i = 0;
4179                desc = &tx_ring[tx_next_use];
4180
4181                /*
4182                 * If the packet is divided into multiple Tx Buffer Descriptors,
4183                 * only need to fill vlan, paylen and tso into the first Tx
4184                 * Buffer Descriptor.
4185                 */
4186                hns3_fill_first_desc(txq, desc, m_seg);
4187
4188                do {
4189                        desc = &tx_ring[tx_next_use];
4190                        /*
4191                         * Fill valid bits, DMA address and data length for each
4192                         * Tx Buffer Descriptor.
4193                         */
4194                        hns3_fill_per_desc(desc, m_seg);
4195                        tx_bak_pkt->mbuf = m_seg;
4196                        m_seg = m_seg->next;
4197                        tx_next_use++;
4198                        tx_bak_pkt++;
4199                        if (tx_next_use >= tx_bd_max) {
4200                                tx_next_use = 0;
4201                                tx_bak_pkt = txq->sw_ring;
4202                        }
4203
4204                        i++;
4205                } while (m_seg != NULL);
4206
4207                /* Add end flag for the last Tx Buffer Descriptor */
4208                desc->tx.tp_fe_sc_vld_ra_ri |=
4209                                 rte_cpu_to_le_16(BIT(HNS3_TXD_FE_B));
4210
4211                /* Increment bytes counter */
4212                txq->basic_stats.bytes += tx_pkt->pkt_len;
4213                nb_hold += i;
4214                txq->next_to_use = tx_next_use;
4215                txq->tx_bd_ready -= i;
4216        }
4217
4218end_of_tx:
4219
4220        if (likely(nb_tx))
4221                hns3_write_txq_tail_reg(txq, nb_hold);
4222
4223        return nb_tx;
4224}
4225
4226int __rte_weak
4227hns3_tx_check_vec_support(__rte_unused struct rte_eth_dev *dev)
4228{
4229        return -ENOTSUP;
4230}
4231
4232uint16_t __rte_weak
4233hns3_xmit_pkts_vec(__rte_unused void *tx_queue,
4234                   __rte_unused struct rte_mbuf **tx_pkts,
4235                   __rte_unused uint16_t nb_pkts)
4236{
4237        return 0;
4238}
4239
4240uint16_t __rte_weak
4241hns3_xmit_pkts_vec_sve(void __rte_unused * tx_queue,
4242                       struct rte_mbuf __rte_unused **tx_pkts,
4243                       uint16_t __rte_unused nb_pkts)
4244{
4245        return 0;
4246}
4247
4248int
4249hns3_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
4250                       struct rte_eth_burst_mode *mode)
4251{
4252        eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
4253        const char *info = NULL;
4254
4255        if (pkt_burst == hns3_xmit_pkts_simple)
4256                info = "Scalar Simple";
4257        else if (pkt_burst == hns3_xmit_pkts)
4258                info = "Scalar";
4259        else if (pkt_burst == hns3_xmit_pkts_vec)
4260                info = "Vector Neon";
4261        else if (pkt_burst == hns3_xmit_pkts_vec_sve)
4262                info = "Vector Sve";
4263
4264        if (info == NULL)
4265                return -EINVAL;
4266
4267        snprintf(mode->info, sizeof(mode->info), "%s", info);
4268
4269        return 0;
4270}
4271
4272static bool
4273hns3_tx_check_simple_support(struct rte_eth_dev *dev)
4274{
4275        uint64_t offloads = dev->data->dev_conf.txmode.offloads;
4276
4277        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4278        if (hns3_dev_ptp_supported(hw))
4279                return false;
4280
4281        return (offloads == (offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE));
4282}
4283
4284static bool
4285hns3_get_tx_prep_needed(struct rte_eth_dev *dev)
4286{
4287#ifdef RTE_LIBRTE_ETHDEV_DEBUG
4288        RTE_SET_USED(dev);
4289        /* always perform tx_prepare when debug */
4290        return true;
4291#else
4292#define HNS3_DEV_TX_CSKUM_TSO_OFFLOAD_MASK (\
4293                DEV_TX_OFFLOAD_IPV4_CKSUM | \
4294                DEV_TX_OFFLOAD_TCP_CKSUM | \
4295                DEV_TX_OFFLOAD_UDP_CKSUM | \
4296                DEV_TX_OFFLOAD_SCTP_CKSUM | \
4297                DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM | \
4298                DEV_TX_OFFLOAD_OUTER_UDP_CKSUM | \
4299                DEV_TX_OFFLOAD_TCP_TSO | \
4300                DEV_TX_OFFLOAD_VXLAN_TNL_TSO | \
4301                DEV_TX_OFFLOAD_GRE_TNL_TSO | \
4302                DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
4303
4304        uint64_t tx_offload = dev->data->dev_conf.txmode.offloads;
4305        if (tx_offload & HNS3_DEV_TX_CSKUM_TSO_OFFLOAD_MASK)
4306                return true;
4307
4308        return false;
4309#endif
4310}
4311
4312static eth_tx_burst_t
4313hns3_get_tx_function(struct rte_eth_dev *dev, eth_tx_prep_t *prep)
4314{
4315        struct hns3_adapter *hns = dev->data->dev_private;
4316        bool vec_allowed, sve_allowed, simple_allowed;
4317        bool vec_support, tx_prepare_needed;
4318
4319        vec_support = hns3_tx_check_vec_support(dev) == 0;
4320        vec_allowed = vec_support && hns3_get_default_vec_support();
4321        sve_allowed = vec_support && hns3_get_sve_support();
4322        simple_allowed = hns3_tx_check_simple_support(dev);
4323        tx_prepare_needed = hns3_get_tx_prep_needed(dev);
4324
4325        *prep = NULL;
4326
4327        if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_VEC && vec_allowed)
4328                return hns3_xmit_pkts_vec;
4329        if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_SVE && sve_allowed)
4330                return hns3_xmit_pkts_vec_sve;
4331        if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_SIMPLE && simple_allowed)
4332                return hns3_xmit_pkts_simple;
4333        if (hns->tx_func_hint == HNS3_IO_FUNC_HINT_COMMON) {
4334                if (tx_prepare_needed)
4335                        *prep = hns3_prep_pkts;
4336                return hns3_xmit_pkts;
4337        }
4338
4339        if (vec_allowed)
4340                return hns3_xmit_pkts_vec;
4341        if (simple_allowed)
4342                return hns3_xmit_pkts_simple;
4343
4344        if (tx_prepare_needed)
4345                *prep = hns3_prep_pkts;
4346        return hns3_xmit_pkts;
4347}
4348
4349static uint16_t
4350hns3_dummy_rxtx_burst(void *dpdk_txq __rte_unused,
4351                      struct rte_mbuf **pkts __rte_unused,
4352                      uint16_t pkts_n __rte_unused)
4353{
4354        return 0;
4355}
4356
4357static void
4358hns3_trace_rxtx_function(struct rte_eth_dev *dev)
4359{
4360        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4361        struct rte_eth_burst_mode rx_mode;
4362        struct rte_eth_burst_mode tx_mode;
4363
4364        memset(&rx_mode, 0, sizeof(rx_mode));
4365        memset(&tx_mode, 0, sizeof(tx_mode));
4366        (void)hns3_rx_burst_mode_get(dev, 0, &rx_mode);
4367        (void)hns3_tx_burst_mode_get(dev, 0, &tx_mode);
4368
4369        hns3_dbg(hw, "using rx_pkt_burst: %s, tx_pkt_burst: %s.",
4370                 rx_mode.info, tx_mode.info);
4371}
4372
4373void hns3_set_rxtx_function(struct rte_eth_dev *eth_dev)
4374{
4375        struct hns3_adapter *hns = eth_dev->data->dev_private;
4376        eth_tx_prep_t prep = NULL;
4377
4378        if (hns->hw.adapter_state == HNS3_NIC_STARTED &&
4379            __atomic_load_n(&hns->hw.reset.resetting, __ATOMIC_RELAXED) == 0) {
4380                eth_dev->rx_pkt_burst = hns3_get_rx_function(eth_dev);
4381                eth_dev->rx_descriptor_status = hns3_dev_rx_descriptor_status;
4382                eth_dev->tx_pkt_burst = hns3_get_tx_function(eth_dev, &prep);
4383                eth_dev->tx_pkt_prepare = prep;
4384                eth_dev->tx_descriptor_status = hns3_dev_tx_descriptor_status;
4385                hns3_trace_rxtx_function(eth_dev);
4386        } else {
4387                eth_dev->rx_pkt_burst = hns3_dummy_rxtx_burst;
4388                eth_dev->tx_pkt_burst = hns3_dummy_rxtx_burst;
4389                eth_dev->tx_pkt_prepare = NULL;
4390        }
4391}
4392
4393void
4394hns3_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
4395                  struct rte_eth_rxq_info *qinfo)
4396{
4397        struct hns3_rx_queue *rxq = dev->data->rx_queues[queue_id];
4398
4399        qinfo->mp = rxq->mb_pool;
4400        qinfo->nb_desc = rxq->nb_rx_desc;
4401        qinfo->scattered_rx = dev->data->scattered_rx;
4402        /* Report the HW Rx buffer length to user */
4403        qinfo->rx_buf_size = rxq->rx_buf_len;
4404
4405        /*
4406         * If there are no available Rx buffer descriptors, incoming packets
4407         * are always dropped by hardware based on hns3 network engine.
4408         */
4409        qinfo->conf.rx_drop_en = 1;
4410        qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
4411        qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
4412        qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
4413}
4414
4415void
4416hns3_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
4417                  struct rte_eth_txq_info *qinfo)
4418{
4419        struct hns3_tx_queue *txq = dev->data->tx_queues[queue_id];
4420
4421        qinfo->nb_desc = txq->nb_tx_desc;
4422        qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
4423        qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
4424        qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
4425        qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
4426}
4427
4428int
4429hns3_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
4430{
4431        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4432        struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
4433        struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4434        int ret;
4435
4436        if (!hns3_dev_indep_txrx_supported(hw))
4437                return -ENOTSUP;
4438
4439        rte_spinlock_lock(&hw->lock);
4440        ret = hns3_reset_queue(hw, rx_queue_id, HNS3_RING_TYPE_RX);
4441        if (ret) {
4442                hns3_err(hw, "fail to reset Rx queue %u, ret = %d.",
4443                         rx_queue_id, ret);
4444                rte_spinlock_unlock(&hw->lock);
4445                return ret;
4446        }
4447
4448        ret = hns3_init_rxq(hns, rx_queue_id);
4449        if (ret) {
4450                hns3_err(hw, "fail to init Rx queue %u, ret = %d.",
4451                         rx_queue_id, ret);
4452                rte_spinlock_unlock(&hw->lock);
4453                return ret;
4454        }
4455
4456        hns3_enable_rxq(rxq, true);
4457        dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
4458        rte_spinlock_unlock(&hw->lock);
4459
4460        return ret;
4461}
4462
4463static void
4464hns3_reset_sw_rxq(struct hns3_rx_queue *rxq)
4465{
4466        rxq->next_to_use = 0;
4467        rxq->rx_rearm_start = 0;
4468        rxq->rx_free_hold = 0;
4469        rxq->rx_rearm_nb = 0;
4470        rxq->pkt_first_seg = NULL;
4471        rxq->pkt_last_seg = NULL;
4472        memset(&rxq->rx_ring[0], 0, rxq->nb_rx_desc * sizeof(struct hns3_desc));
4473        hns3_rxq_vec_setup(rxq);
4474}
4475
4476int
4477hns3_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
4478{
4479        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4480        struct hns3_rx_queue *rxq = dev->data->rx_queues[rx_queue_id];
4481
4482        if (!hns3_dev_indep_txrx_supported(hw))
4483                return -ENOTSUP;
4484
4485        rte_spinlock_lock(&hw->lock);
4486        hns3_enable_rxq(rxq, false);
4487
4488        hns3_rx_queue_release_mbufs(rxq);
4489
4490        hns3_reset_sw_rxq(rxq);
4491        dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
4492        rte_spinlock_unlock(&hw->lock);
4493
4494        return 0;
4495}
4496
4497int
4498hns3_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
4499{
4500        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4501        struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id];
4502        int ret;
4503
4504        if (!hns3_dev_indep_txrx_supported(hw))
4505                return -ENOTSUP;
4506
4507        rte_spinlock_lock(&hw->lock);
4508        ret = hns3_reset_queue(hw, tx_queue_id, HNS3_RING_TYPE_TX);
4509        if (ret) {
4510                hns3_err(hw, "fail to reset Tx queue %u, ret = %d.",
4511                         tx_queue_id, ret);
4512                rte_spinlock_unlock(&hw->lock);
4513                return ret;
4514        }
4515
4516        hns3_init_txq(txq);
4517        hns3_enable_txq(txq, true);
4518        dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
4519        rte_spinlock_unlock(&hw->lock);
4520
4521        return ret;
4522}
4523
4524int
4525hns3_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
4526{
4527        struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4528        struct hns3_tx_queue *txq = dev->data->tx_queues[tx_queue_id];
4529
4530        if (!hns3_dev_indep_txrx_supported(hw))
4531                return -ENOTSUP;
4532
4533        rte_spinlock_lock(&hw->lock);
4534        hns3_enable_txq(txq, false);
4535        hns3_tx_queue_release_mbufs(txq);
4536        /*
4537         * All the mbufs in sw_ring are released and all the pointers in sw_ring
4538         * are set to NULL. If this queue is still called by upper layer,
4539         * residual SW status of this txq may cause these pointers in sw_ring
4540         * which have been set to NULL to be released again. To avoid it,
4541         * reinit the txq.
4542         */
4543        hns3_init_txq(txq);
4544        dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
4545        rte_spinlock_unlock(&hw->lock);
4546
4547        return 0;
4548}
4549
4550static int
4551hns3_tx_done_cleanup_full(struct hns3_tx_queue *txq, uint32_t free_cnt)
4552{
4553        uint16_t next_to_clean = txq->next_to_clean;
4554        uint16_t next_to_use   = txq->next_to_use;
4555        uint16_t tx_bd_ready   = txq->tx_bd_ready;
4556        struct hns3_entry *tx_pkt = &txq->sw_ring[next_to_clean];
4557        struct hns3_desc *desc = &txq->tx_ring[next_to_clean];
4558        uint32_t idx;
4559
4560        if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
4561                free_cnt = txq->nb_tx_desc;
4562
4563        for (idx = 0; idx < free_cnt; idx++) {
4564                if (next_to_clean == next_to_use)
4565                        break;
4566
4567                if (desc->tx.tp_fe_sc_vld_ra_ri &
4568                    rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))
4569                        break;
4570
4571                if (tx_pkt->mbuf != NULL) {
4572                        rte_pktmbuf_free_seg(tx_pkt->mbuf);
4573                        tx_pkt->mbuf = NULL;
4574                }
4575
4576                next_to_clean++;
4577                tx_bd_ready++;
4578                tx_pkt++;
4579                desc++;
4580                if (next_to_clean == txq->nb_tx_desc) {
4581                        tx_pkt = txq->sw_ring;
4582                        desc = txq->tx_ring;
4583                        next_to_clean = 0;
4584                }
4585        }
4586
4587        if (idx > 0) {
4588                txq->next_to_clean = next_to_clean;
4589                txq->tx_bd_ready = tx_bd_ready;
4590        }
4591
4592        return (int)idx;
4593}
4594
4595int
4596hns3_tx_done_cleanup(void *txq, uint32_t free_cnt)
4597{
4598        struct hns3_tx_queue *q = (struct hns3_tx_queue *)txq;
4599        struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
4600
4601        if (dev->tx_pkt_burst == hns3_xmit_pkts)
4602                return hns3_tx_done_cleanup_full(q, free_cnt);
4603        else if (dev->tx_pkt_burst == hns3_dummy_rxtx_burst)
4604                return 0;
4605        else
4606                return -ENOTSUP;
4607}
4608
4609int
4610hns3_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
4611{
4612        volatile struct hns3_desc *rxdp;
4613        struct hns3_rx_queue *rxq;
4614        struct rte_eth_dev *dev;
4615        uint32_t bd_base_info;
4616        uint16_t desc_id;
4617
4618        rxq = (struct hns3_rx_queue *)rx_queue;
4619        if (offset >= rxq->nb_rx_desc)
4620                return -EINVAL;
4621
4622        desc_id = (rxq->next_to_use + offset) % rxq->nb_rx_desc;
4623        rxdp = &rxq->rx_ring[desc_id];
4624        bd_base_info = rte_le_to_cpu_32(rxdp->rx.bd_base_info);
4625        dev = &rte_eth_devices[rxq->port_id];
4626        if (dev->rx_pkt_burst == hns3_recv_pkts_simple ||
4627            dev->rx_pkt_burst == hns3_recv_scattered_pkts) {
4628                if (offset >= rxq->nb_rx_desc - rxq->rx_free_hold)
4629                        return RTE_ETH_RX_DESC_UNAVAIL;
4630        } else if (dev->rx_pkt_burst == hns3_recv_pkts_vec ||
4631                   dev->rx_pkt_burst == hns3_recv_pkts_vec_sve) {
4632                if (offset >= rxq->nb_rx_desc - rxq->rx_rearm_nb)
4633                        return RTE_ETH_RX_DESC_UNAVAIL;
4634        } else {
4635                return RTE_ETH_RX_DESC_UNAVAIL;
4636        }
4637
4638        if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
4639                return RTE_ETH_RX_DESC_AVAIL;
4640        else
4641                return RTE_ETH_RX_DESC_DONE;
4642}
4643
4644int
4645hns3_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
4646{
4647        volatile struct hns3_desc *txdp;
4648        struct hns3_tx_queue *txq;
4649        struct rte_eth_dev *dev;
4650        uint16_t desc_id;
4651
4652        txq = (struct hns3_tx_queue *)tx_queue;
4653        if (offset >= txq->nb_tx_desc)
4654                return -EINVAL;
4655
4656        dev = &rte_eth_devices[txq->port_id];
4657        if (dev->tx_pkt_burst != hns3_xmit_pkts_simple &&
4658            dev->tx_pkt_burst != hns3_xmit_pkts &&
4659            dev->tx_pkt_burst != hns3_xmit_pkts_vec_sve &&
4660            dev->tx_pkt_burst != hns3_xmit_pkts_vec)
4661                return RTE_ETH_TX_DESC_UNAVAIL;
4662
4663        desc_id = (txq->next_to_use + offset) % txq->nb_tx_desc;
4664        txdp = &txq->tx_ring[desc_id];
4665        if (txdp->tx.tp_fe_sc_vld_ra_ri & rte_cpu_to_le_16(BIT(HNS3_TXD_VLD_B)))
4666                return RTE_ETH_TX_DESC_FULL;
4667        else
4668                return RTE_ETH_TX_DESC_DONE;
4669}
4670
4671uint32_t
4672hns3_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
4673{
4674        /*
4675         * Number of BDs that have been processed by the driver
4676         * but have not been notified to the hardware.
4677         */
4678        uint32_t driver_hold_bd_num;
4679        struct hns3_rx_queue *rxq;
4680        uint32_t fbd_num;
4681
4682        rxq = dev->data->rx_queues[rx_queue_id];
4683        fbd_num = hns3_read_dev(rxq, HNS3_RING_RX_FBDNUM_REG);
4684        if (dev->rx_pkt_burst == hns3_recv_pkts_vec ||
4685            dev->rx_pkt_burst == hns3_recv_pkts_vec_sve)
4686                driver_hold_bd_num = rxq->rx_rearm_nb;
4687        else
4688                driver_hold_bd_num = rxq->rx_free_hold;
4689
4690        if (fbd_num <= driver_hold_bd_num)
4691                return 0;
4692        else
4693                return fbd_num - driver_hold_bd_num;
4694}
4695
4696void
4697hns3_enable_rxd_adv_layout(struct hns3_hw *hw)
4698{
4699        /*
4700         * If the hardware support rxd advanced layout, then driver enable it
4701         * default.
4702         */
4703        if (hns3_dev_rxd_adv_layout_supported(hw))
4704                hns3_write_dev(hw, HNS3_RXD_ADV_LAYOUT_EN_REG, 1);
4705}
4706