dpdk/drivers/net/i40e/i40e_rxtx_vec_avx2.c
<<
>>
Prefs
   1/* SPDX-License-Identifier: BSD-3-Clause
   2 * Copyright(c) 2017 Intel Corporation
   3 */
   4
   5#include <stdint.h>
   6#include <ethdev_driver.h>
   7#include <rte_malloc.h>
   8
   9#include "base/i40e_prototype.h"
  10#include "base/i40e_type.h"
  11#include "i40e_ethdev.h"
  12#include "i40e_rxtx.h"
  13#include "i40e_rxtx_vec_common.h"
  14
  15#include <rte_vect.h>
  16
  17#ifndef __INTEL_COMPILER
  18#pragma GCC diagnostic ignored "-Wcast-qual"
  19#endif
  20
  21static __rte_always_inline void
  22i40e_rxq_rearm(struct i40e_rx_queue *rxq)
  23{
  24        return i40e_rxq_rearm_common(rxq, false);
  25}
  26
  27#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
  28/* Handles 32B descriptor FDIR ID processing:
  29 * rxdp: receive descriptor ring, required to load 2nd 16B half of each desc
  30 * rx_pkts: required to store metadata back to mbufs
  31 * pkt_idx: offset into the burst, increments in vector widths
  32 * desc_idx: required to select the correct shift at compile time
  33 */
  34static inline __m256i
  35desc_fdir_processing_32b(volatile union i40e_rx_desc *rxdp,
  36                         struct rte_mbuf **rx_pkts,
  37                         const uint32_t pkt_idx,
  38                         const uint32_t desc_idx)
  39{
  40        /* 32B desc path: load rxdp.wb.qword2 for EXT_STATUS and FLEXBH_STAT */
  41        __m128i *rxdp_desc_0 = (void *)(&rxdp[desc_idx + 0].wb.qword2);
  42        __m128i *rxdp_desc_1 = (void *)(&rxdp[desc_idx + 1].wb.qword2);
  43        const __m128i desc_qw2_0 = _mm_load_si128(rxdp_desc_0);
  44        const __m128i desc_qw2_1 = _mm_load_si128(rxdp_desc_1);
  45
  46        /* Mask for FLEXBH_STAT, and the FDIR_ID value to compare against. The
  47         * remaining data is set to all 1's to pass through data.
  48         */
  49        const __m256i flexbh_mask = _mm256_set_epi32(-1, -1, -1, 3 << 4,
  50                                                     -1, -1, -1, 3 << 4);
  51        const __m256i flexbh_id   = _mm256_set_epi32(-1, -1, -1, 1 << 4,
  52                                                     -1, -1, -1, 1 << 4);
  53
  54        /* Load descriptor, check for FLEXBH bits, generate a mask for both
  55         * packets in the register.
  56         */
  57        __m256i desc_qw2_0_1 =
  58                _mm256_inserti128_si256(_mm256_castsi128_si256(desc_qw2_0),
  59                                        desc_qw2_1, 1);
  60        __m256i desc_tmp_msk = _mm256_and_si256(flexbh_mask, desc_qw2_0_1);
  61        __m256i fdir_mask = _mm256_cmpeq_epi32(flexbh_id, desc_tmp_msk);
  62        __m256i fdir_data = _mm256_alignr_epi8(desc_qw2_0_1, desc_qw2_0_1, 12);
  63        __m256i desc_fdir_data = _mm256_and_si256(fdir_mask, fdir_data);
  64
  65        /* Write data out to the mbuf. There is no store to this area of the
  66         * mbuf today, so we cannot combine it with another store.
  67         */
  68        const uint32_t idx_0 = pkt_idx + desc_idx;
  69        const uint32_t idx_1 = pkt_idx + desc_idx + 1;
  70        rx_pkts[idx_0]->hash.fdir.hi = _mm256_extract_epi32(desc_fdir_data, 0);
  71        rx_pkts[idx_1]->hash.fdir.hi = _mm256_extract_epi32(desc_fdir_data, 4);
  72
  73        /* Create mbuf flags as required for mbuf_flags layout
  74         *  (That's high lane [1,3,5,7, 0,2,4,6] as u32 lanes).
  75         * Approach:
  76         * - Mask away bits not required from the fdir_mask
  77         * - Leave the PKT_FDIR_ID bit (1 << 13)
  78         * - Position that bit correctly based on packet number
  79         * - OR in the resulting bit to mbuf_flags
  80         */
  81        RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
  82        __m256i mbuf_flag_mask = _mm256_set_epi32(0, 0, 0, 1 << 13,
  83                                                  0, 0, 0, 1 << 13);
  84        __m256i desc_flag_bit =  _mm256_and_si256(mbuf_flag_mask, fdir_mask);
  85
  86        /* For static-inline function, this will be stripped out
  87         * as the desc_idx is a hard-coded constant.
  88         */
  89        switch (desc_idx) {
  90        case 0:
  91                return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit,  4);
  92        case 2:
  93                return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit,  8);
  94        case 4:
  95                return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 12);
  96        case 6:
  97                return desc_flag_bit;
  98        default:
  99                break;
 100        }
 101
 102        /* NOT REACHED, see above switch returns */
 103        return _mm256_setzero_si256();
 104}
 105#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
 106
 107#define PKTLEN_SHIFT     10
 108
 109/* Force inline as some compilers will not inline by default. */
 110static __rte_always_inline uint16_t
 111_recv_raw_pkts_vec_avx2(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
 112                uint16_t nb_pkts, uint8_t *split_packet)
 113{
 114#define RTE_I40E_DESCS_PER_LOOP_AVX 8
 115
 116        const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
 117        const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
 118                        0, rxq->mbuf_initializer);
 119        struct i40e_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
 120        volatile union i40e_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
 121        const int avx_aligned = ((rxq->rx_tail & 1) == 0);
 122        rte_prefetch0(rxdp);
 123
 124        /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP_AVX */
 125        nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP_AVX);
 126
 127        /* See if we need to rearm the RX queue - gives the prefetch a bit
 128         * of time to act
 129         */
 130        if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
 131                i40e_rxq_rearm(rxq);
 132
 133        /* Before we start moving massive data around, check to see if
 134         * there is actually a packet available
 135         */
 136        if (!(rxdp->wb.qword1.status_error_len &
 137                        rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
 138                return 0;
 139
 140        /* constants used in processing loop */
 141        const __m256i crc_adjust = _mm256_set_epi16(
 142                        /* first descriptor */
 143                        0, 0, 0,       /* ignore non-length fields */
 144                        -rxq->crc_len, /* sub crc on data_len */
 145                        0,             /* ignore high-16bits of pkt_len */
 146                        -rxq->crc_len, /* sub crc on pkt_len */
 147                        0, 0,          /* ignore pkt_type field */
 148                        /* second descriptor */
 149                        0, 0, 0,       /* ignore non-length fields */
 150                        -rxq->crc_len, /* sub crc on data_len */
 151                        0,             /* ignore high-16bits of pkt_len */
 152                        -rxq->crc_len, /* sub crc on pkt_len */
 153                        0, 0           /* ignore pkt_type field */
 154        );
 155
 156        /* 8 packets DD mask, LSB in each 32-bit value */
 157        const __m256i dd_check = _mm256_set1_epi32(1);
 158
 159        /* 8 packets EOP mask, second-LSB in each 32-bit value */
 160        const __m256i eop_check = _mm256_slli_epi32(dd_check,
 161                        I40E_RX_DESC_STATUS_EOF_SHIFT);
 162
 163        /* mask to shuffle from desc. to mbuf (2 descriptors)*/
 164        const __m256i shuf_msk = _mm256_set_epi8(
 165                        /* first descriptor */
 166                        7, 6, 5, 4,  /* octet 4~7, 32bits rss */
 167                        3, 2,        /* octet 2~3, low 16 bits vlan_macip */
 168                        15, 14,      /* octet 15~14, 16 bits data_len */
 169                        0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
 170                        15, 14,      /* octet 15~14, low 16 bits pkt_len */
 171                        0xFF, 0xFF,  /* pkt_type set as unknown */
 172                        0xFF, 0xFF,  /*pkt_type set as unknown */
 173                        /* second descriptor */
 174                        7, 6, 5, 4,  /* octet 4~7, 32bits rss */
 175                        3, 2,        /* octet 2~3, low 16 bits vlan_macip */
 176                        15, 14,      /* octet 15~14, 16 bits data_len */
 177                        0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
 178                        15, 14,      /* octet 15~14, low 16 bits pkt_len */
 179                        0xFF, 0xFF,  /* pkt_type set as unknown */
 180                        0xFF, 0xFF   /*pkt_type set as unknown */
 181        );
 182        /*
 183         * compile-time check the above crc and shuffle layout is correct.
 184         * NOTE: the first field (lowest address) is given last in set_epi
 185         * calls above.
 186         */
 187        RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
 188                        offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
 189        RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
 190                        offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
 191        RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
 192                        offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
 193        RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
 194                        offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
 195
 196        /* Status/Error flag masks */
 197        /*
 198         * mask everything except RSS, flow director and VLAN flags
 199         * bit2 is for VLAN tag, bit11 for flow director indication
 200         * bit13:12 for RSS indication. Bits 3-5 of error
 201         * field (bits 22-24) are for IP/L4 checksum errors
 202         */
 203        const __m256i flags_mask = _mm256_set1_epi32(
 204                        (1 << 2) | (1 << 11) | (3 << 12) | (7 << 22));
 205        /*
 206         * data to be shuffled by result of flag mask. If VLAN bit is set,
 207         * (bit 2), then position 4 in this array will be used in the
 208         * destination
 209         */
 210        const __m256i vlan_flags_shuf = _mm256_set_epi32(
 211                        0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
 212                        0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
 213        /*
 214         * data to be shuffled by result of flag mask, shifted down 11.
 215         * If RSS/FDIR bits are set, shuffle moves appropriate flags in
 216         * place.
 217         */
 218        const __m256i rss_flags_shuf = _mm256_set_epi8(
 219                        0, 0, 0, 0, 0, 0, 0, 0,
 220                        PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
 221                        0, 0, PKT_RX_FDIR, 0, /* end up 128-bits */
 222                        0, 0, 0, 0, 0, 0, 0, 0,
 223                        PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
 224                        0, 0, PKT_RX_FDIR, 0);
 225
 226        /*
 227         * data to be shuffled by the result of the flags mask shifted by 22
 228         * bits.  This gives use the l3_l4 flags.
 229         */
 230        const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
 231                        /* shift right 1 bit to make sure it not exceed 255 */
 232                        (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD  |
 233                         PKT_RX_IP_CKSUM_BAD) >> 1,
 234                        (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD  |
 235                         PKT_RX_IP_CKSUM_GOOD) >> 1,
 236                        (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
 237                         PKT_RX_IP_CKSUM_BAD) >> 1,
 238                        (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
 239                         PKT_RX_IP_CKSUM_GOOD) >> 1,
 240                        (PKT_RX_L4_CKSUM_BAD  | PKT_RX_IP_CKSUM_BAD) >> 1,
 241                        (PKT_RX_L4_CKSUM_BAD  | PKT_RX_IP_CKSUM_GOOD) >> 1,
 242                        (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
 243                        (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
 244                        /* second 128-bits */
 245                        0, 0, 0, 0, 0, 0, 0, 0,
 246                        (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD  |
 247                         PKT_RX_IP_CKSUM_BAD) >> 1,
 248                        (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD  |
 249                         PKT_RX_IP_CKSUM_GOOD) >> 1,
 250                        (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
 251                         PKT_RX_IP_CKSUM_BAD) >> 1,
 252                        (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
 253                         PKT_RX_IP_CKSUM_GOOD) >> 1,
 254                        (PKT_RX_L4_CKSUM_BAD  | PKT_RX_IP_CKSUM_BAD) >> 1,
 255                        (PKT_RX_L4_CKSUM_BAD  | PKT_RX_IP_CKSUM_GOOD) >> 1,
 256                        (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
 257                        (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
 258
 259        const __m256i cksum_mask = _mm256_set1_epi32(
 260                        PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
 261                        PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
 262                        PKT_RX_OUTER_IP_CKSUM_BAD);
 263
 264        RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
 265
 266        uint16_t i, received;
 267        for (i = 0, received = 0; i < nb_pkts;
 268                        i += RTE_I40E_DESCS_PER_LOOP_AVX,
 269                        rxdp += RTE_I40E_DESCS_PER_LOOP_AVX) {
 270                /* step 1, copy over 8 mbuf pointers to rx_pkts array */
 271                _mm256_storeu_si256((void *)&rx_pkts[i],
 272                                _mm256_loadu_si256((void *)&sw_ring[i]));
 273#ifdef RTE_ARCH_X86_64
 274                _mm256_storeu_si256((void *)&rx_pkts[i + 4],
 275                                _mm256_loadu_si256((void *)&sw_ring[i + 4]));
 276#endif
 277
 278                __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
 279#ifdef RTE_LIBRTE_I40E_16BYTE_RX_DESC
 280                /* for AVX we need alignment otherwise loads are not atomic */
 281                if (avx_aligned) {
 282                        /* load in descriptors, 2 at a time, in reverse order */
 283                        raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
 284                        rte_compiler_barrier();
 285                        raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
 286                        rte_compiler_barrier();
 287                        raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
 288                        rte_compiler_barrier();
 289                        raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
 290                } else
 291#endif
 292                do {
 293                        const __m128i raw_desc7 = _mm_load_si128((void *)(rxdp + 7));
 294                        rte_compiler_barrier();
 295                        const __m128i raw_desc6 = _mm_load_si128((void *)(rxdp + 6));
 296                        rte_compiler_barrier();
 297                        const __m128i raw_desc5 = _mm_load_si128((void *)(rxdp + 5));
 298                        rte_compiler_barrier();
 299                        const __m128i raw_desc4 = _mm_load_si128((void *)(rxdp + 4));
 300                        rte_compiler_barrier();
 301                        const __m128i raw_desc3 = _mm_load_si128((void *)(rxdp + 3));
 302                        rte_compiler_barrier();
 303                        const __m128i raw_desc2 = _mm_load_si128((void *)(rxdp + 2));
 304                        rte_compiler_barrier();
 305                        const __m128i raw_desc1 = _mm_load_si128((void *)(rxdp + 1));
 306                        rte_compiler_barrier();
 307                        const __m128i raw_desc0 = _mm_load_si128((void *)(rxdp + 0));
 308
 309                        raw_desc6_7 = _mm256_inserti128_si256(
 310                                        _mm256_castsi128_si256(raw_desc6), raw_desc7, 1);
 311                        raw_desc4_5 = _mm256_inserti128_si256(
 312                                        _mm256_castsi128_si256(raw_desc4), raw_desc5, 1);
 313                        raw_desc2_3 = _mm256_inserti128_si256(
 314                                        _mm256_castsi128_si256(raw_desc2), raw_desc3, 1);
 315                        raw_desc0_1 = _mm256_inserti128_si256(
 316                                        _mm256_castsi128_si256(raw_desc0), raw_desc1, 1);
 317                } while (0);
 318
 319                if (split_packet) {
 320                        int j;
 321                        for (j = 0; j < RTE_I40E_DESCS_PER_LOOP_AVX; j++)
 322                                rte_mbuf_prefetch_part2(rx_pkts[i + j]);
 323                }
 324
 325                /*
 326                 * convert descriptors 4-7 into mbufs, adjusting length and
 327                 * re-arranging fields. Then write into the mbuf
 328                 */
 329                const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7, PKTLEN_SHIFT);
 330                const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5, PKTLEN_SHIFT);
 331                const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7, len6_7, 0x80);
 332                const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5, len4_5, 0x80);
 333                __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
 334                __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
 335                mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
 336                mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
 337                /*
 338                 * to get packet types, shift 64-bit values down 30 bits
 339                 * and so ptype is in lower 8-bits in each
 340                 */
 341                const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
 342                const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
 343                const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
 344                const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
 345                const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
 346                const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
 347                mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
 348                mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
 349                mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
 350                mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
 351                /* merge the status bits into one register */
 352                const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
 353                                desc4_5);
 354
 355                /*
 356                 * convert descriptors 0-3 into mbufs, adjusting length and
 357                 * re-arranging fields. Then write into the mbuf
 358                 */
 359                const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3, PKTLEN_SHIFT);
 360                const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1, PKTLEN_SHIFT);
 361                const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3, len2_3, 0x80);
 362                const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1, len0_1, 0x80);
 363                __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
 364                __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
 365                mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
 366                mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
 367                /* get the packet types */
 368                const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
 369                const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
 370                const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
 371                const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
 372                const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
 373                const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
 374                mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
 375                mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
 376                mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
 377                mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
 378                /* merge the status bits into one register */
 379                const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
 380                                desc0_1);
 381
 382                /*
 383                 * take the two sets of status bits and merge to one
 384                 * After merge, the packets status flags are in the
 385                 * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
 386                 */
 387                __m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
 388                                status0_3);
 389
 390                /* now do flag manipulation */
 391
 392                /* get only flag/error bits we want */
 393                const __m256i flag_bits = _mm256_and_si256(
 394                                status0_7, flags_mask);
 395                /* set vlan and rss flags */
 396                const __m256i vlan_flags = _mm256_shuffle_epi8(
 397                                vlan_flags_shuf, flag_bits);
 398                const __m256i rss_fdir_bits = _mm256_srli_epi32(flag_bits, 11);
 399                const __m256i rss_flags = _mm256_shuffle_epi8(rss_flags_shuf,
 400                                                              rss_fdir_bits);
 401
 402                /*
 403                 * l3_l4_error flags, shuffle, then shift to correct adjustment
 404                 * of flags in flags_shuf, and finally mask out extra bits
 405                 */
 406                __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
 407                                _mm256_srli_epi32(flag_bits, 22));
 408                l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
 409                l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
 410
 411                /* merge flags */
 412                __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
 413                                _mm256_or_si256(rss_flags, vlan_flags));
 414
 415                /* If the rxq has FDIR enabled, read and process the FDIR info
 416                 * from the descriptor. This can cause more loads/stores, so is
 417                 * not always performed. Branch over the code when not enabled.
 418                 */
 419                if (rxq->fdir_enabled) {
 420#ifdef RTE_LIBRTE_I40E_16BYTE_RX_DESC
 421                        /* 16B descriptor code path:
 422                         * RSS and FDIR ID use the same offset in the desc, so
 423                         * only one can be present at a time. The code below
 424                         * identifies an FDIR ID match, and zeros the RSS value
 425                         * in the mbuf on FDIR match to keep mbuf data clean.
 426                         */
 427#define FDIR_BLEND_MASK ((1 << 3) | (1 << 7))
 428
 429                        /* Flags:
 430                         * - Take flags, shift bits to null out
 431                         * - CMPEQ with known FDIR ID, to get 0xFFFF or 0 mask
 432                         * - Strip bits from mask, leaving 0 or 1 for FDIR ID
 433                         * - Merge with mbuf_flags
 434                         */
 435                        /* FLM = 1, FLTSTAT = 0b01, (FLM | FLTSTAT) == 3.
 436                         * Shift left by 28 to avoid having to mask.
 437                         */
 438                        const __m256i fdir = _mm256_slli_epi32(rss_fdir_bits, 28);
 439                        const __m256i fdir_id = _mm256_set1_epi32(3 << 28);
 440
 441                        /* As above, the fdir_mask to packet mapping is this:
 442                         * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
 443                         * Then OR FDIR flags to mbuf_flags on FDIR ID hit.
 444                         */
 445                        RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
 446                        const __m256i pkt_fdir_bit = _mm256_set1_epi32(1 << 13);
 447                        const __m256i fdir_mask = _mm256_cmpeq_epi32(fdir, fdir_id);
 448                        __m256i fdir_bits = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
 449                        mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_bits);
 450
 451                        /* Based on FDIR_MASK, clear the RSS or FDIR value.
 452                         * The FDIR ID value is masked to zero if not a hit,
 453                         * otherwise the mb0_1 register RSS field is zeroed.
 454                         */
 455                        const __m256i fdir_zero_mask = _mm256_setzero_si256();
 456                        __m256i tmp0_1 = _mm256_blend_epi32(fdir_zero_mask,
 457                                                fdir_mask, FDIR_BLEND_MASK);
 458                        __m256i fdir_mb0_1 = _mm256_and_si256(mb0_1, fdir_mask);
 459                        mb0_1 = _mm256_andnot_si256(tmp0_1, mb0_1);
 460
 461                        /* Write to mbuf: no stores to combine with, so just a
 462                         * scalar store to push data here.
 463                         */
 464                        rx_pkts[i + 0]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb0_1, 3);
 465                        rx_pkts[i + 1]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb0_1, 7);
 466
 467                        /* Same as above, only shift the fdir_mask to align
 468                         * the packet FDIR mask with the FDIR_ID desc lane.
 469                         */
 470                        __m256i tmp2_3 = _mm256_alignr_epi8(fdir_mask, fdir_mask, 12);
 471                        __m256i fdir_mb2_3 = _mm256_and_si256(mb2_3, tmp2_3);
 472                        tmp2_3 = _mm256_blend_epi32(fdir_zero_mask, tmp2_3,
 473                                                    FDIR_BLEND_MASK);
 474                        mb2_3 = _mm256_andnot_si256(tmp2_3, mb2_3);
 475                        rx_pkts[i + 2]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb2_3, 3);
 476                        rx_pkts[i + 3]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb2_3, 7);
 477
 478                        __m256i tmp4_5 = _mm256_alignr_epi8(fdir_mask, fdir_mask, 8);
 479                        __m256i fdir_mb4_5 = _mm256_and_si256(mb4_5, tmp4_5);
 480                        tmp4_5 = _mm256_blend_epi32(fdir_zero_mask, tmp4_5,
 481                                                    FDIR_BLEND_MASK);
 482                        mb4_5 = _mm256_andnot_si256(tmp4_5, mb4_5);
 483                        rx_pkts[i + 4]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb4_5, 3);
 484                        rx_pkts[i + 5]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb4_5, 7);
 485
 486                        __m256i tmp6_7 = _mm256_alignr_epi8(fdir_mask, fdir_mask, 4);
 487                        __m256i fdir_mb6_7 = _mm256_and_si256(mb6_7, tmp6_7);
 488                        tmp6_7 = _mm256_blend_epi32(fdir_zero_mask, tmp6_7,
 489                                                    FDIR_BLEND_MASK);
 490                        mb6_7 = _mm256_andnot_si256(tmp6_7, mb6_7);
 491                        rx_pkts[i + 6]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb6_7, 3);
 492                        rx_pkts[i + 7]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb6_7, 7);
 493
 494                        /* End of 16B descriptor handling */
 495#else
 496                        /* 32B descriptor FDIR ID mark handling. Returns bits
 497                         * to be OR-ed into the mbuf olflags.
 498                         */
 499                        __m256i fdir_add_flags;
 500                        fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 0);
 501                        mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags);
 502
 503                        fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 2);
 504                        mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags);
 505
 506                        fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 4);
 507                        mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags);
 508
 509                        fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 6);
 510                        mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags);
 511                        /* End 32B desc handling */
 512#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
 513
 514                } /* if() on FDIR enabled */
 515
 516                /*
 517                 * At this point, we have the 8 sets of flags in the low 16-bits
 518                 * of each 32-bit value in vlan0.
 519                 * We want to extract these, and merge them with the mbuf init data
 520                 * so we can do a single write to the mbuf to set the flags
 521                 * and all the other initialization fields. Extracting the
 522                 * appropriate flags means that we have to do a shift and blend for
 523                 * each mbuf before we do the write. However, we can also
 524                 * add in the previously computed rx_descriptor fields to
 525                 * make a single 256-bit write per mbuf
 526                 */
 527                /* check the structure matches expectations */
 528                RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
 529                                offsetof(struct rte_mbuf, rearm_data) + 8);
 530                RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
 531                                RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
 532                /* build up data and do writes */
 533                __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
 534                                rearm6, rearm7;
 535                rearm6 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 8), 0x04);
 536                rearm4 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 4), 0x04);
 537                rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
 538                rearm0 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(mbuf_flags, 4), 0x04);
 539                /* permute to add in the rx_descriptor e.g. rss fields */
 540                rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
 541                rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
 542                rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
 543                rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
 544                /* write to mbuf */
 545                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, rearm6);
 546                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, rearm4);
 547                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, rearm2);
 548                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, rearm0);
 549
 550                /* repeat for the odd mbufs */
 551                const __m256i odd_flags = _mm256_castsi128_si256(
 552                                _mm256_extracti128_si256(mbuf_flags, 1));
 553                rearm7 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 8), 0x04);
 554                rearm5 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 4), 0x04);
 555                rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
 556                rearm1 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(odd_flags, 4), 0x04);
 557                /* since odd mbufs are already in hi 128-bits use blend */
 558                rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
 559                rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
 560                rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
 561                rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
 562                /* again write to mbufs */
 563                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, rearm7);
 564                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, rearm5);
 565                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, rearm3);
 566                _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, rearm1);
 567
 568                /* extract and record EOP bit */
 569                if (split_packet) {
 570                        const __m128i eop_mask = _mm_set1_epi16(
 571                                        1 << I40E_RX_DESC_STATUS_EOF_SHIFT);
 572                        const __m256i eop_bits256 = _mm256_and_si256(status0_7,
 573                                        eop_check);
 574                        /* pack status bits into a single 128-bit register */
 575                        const __m128i eop_bits = _mm_packus_epi32(
 576                                        _mm256_castsi256_si128(eop_bits256),
 577                                        _mm256_extractf128_si256(eop_bits256, 1));
 578                        /*
 579                         * flip bits, and mask out the EOP bit, which is now
 580                         * a split-packet bit i.e. !EOP, rather than EOP one.
 581                         */
 582                        __m128i split_bits = _mm_andnot_si128(eop_bits,
 583                                        eop_mask);
 584                        /*
 585                         * eop bits are out of order, so we need to shuffle them
 586                         * back into order again. In doing so, only use low 8
 587                         * bits, which acts like another pack instruction
 588                         * The original order is (hi->lo): 1,3,5,7,0,2,4,6
 589                         * [Since we use epi8, the 16-bit positions are
 590                         * multiplied by 2 in the eop_shuffle value.]
 591                         */
 592                        __m128i eop_shuffle = _mm_set_epi8(
 593                                        0xFF, 0xFF, 0xFF, 0xFF, /* zero hi 64b */
 594                                        0xFF, 0xFF, 0xFF, 0xFF,
 595                                        8, 0, 10, 2, /* move values to lo 64b */
 596                                        12, 4, 14, 6);
 597                        split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
 598                        *(uint64_t *)split_packet = _mm_cvtsi128_si64(split_bits);
 599                        split_packet += RTE_I40E_DESCS_PER_LOOP_AVX;
 600                }
 601
 602                /* perform dd_check */
 603                status0_7 = _mm256_and_si256(status0_7, dd_check);
 604                status0_7 = _mm256_packs_epi32(status0_7,
 605                                _mm256_setzero_si256());
 606
 607                uint64_t burst = __builtin_popcountll(_mm_cvtsi128_si64(
 608                                _mm256_extracti128_si256(status0_7, 1)));
 609                burst += __builtin_popcountll(_mm_cvtsi128_si64(
 610                                _mm256_castsi256_si128(status0_7)));
 611                received += burst;
 612                if (burst != RTE_I40E_DESCS_PER_LOOP_AVX)
 613                        break;
 614        }
 615
 616        /* update tail pointers */
 617        rxq->rx_tail += received;
 618        rxq->rx_tail &= (rxq->nb_rx_desc - 1);
 619        if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
 620                rxq->rx_tail--;
 621                received--;
 622        }
 623        rxq->rxrearm_nb += received;
 624        return received;
 625}
 626
 627/*
 628 * Notice:
 629 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
 630 */
 631uint16_t
 632i40e_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
 633                   uint16_t nb_pkts)
 634{
 635        return _recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
 636}
 637
 638/*
 639 * vPMD receive routine that reassembles single burst of 32 scattered packets
 640 * Notice:
 641 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
 642 */
 643static uint16_t
 644i40e_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
 645                             uint16_t nb_pkts)
 646{
 647        struct i40e_rx_queue *rxq = rx_queue;
 648        uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
 649
 650        /* get some new buffers */
 651        uint16_t nb_bufs = _recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
 652                        split_flags);
 653        if (nb_bufs == 0)
 654                return 0;
 655
 656        /* happy day case, full burst + no packets to be joined */
 657        const uint64_t *split_fl64 = (uint64_t *)split_flags;
 658
 659        if (rxq->pkt_first_seg == NULL &&
 660                        split_fl64[0] == 0 && split_fl64[1] == 0 &&
 661                        split_fl64[2] == 0 && split_fl64[3] == 0)
 662                return nb_bufs;
 663
 664        /* reassemble any packets that need reassembly*/
 665        unsigned int i = 0;
 666
 667        if (rxq->pkt_first_seg == NULL) {
 668                /* find the first split flag, and only reassemble then*/
 669                while (i < nb_bufs && !split_flags[i])
 670                        i++;
 671                if (i == nb_bufs)
 672                        return nb_bufs;
 673                rxq->pkt_first_seg = rx_pkts[i];
 674        }
 675        return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
 676                &split_flags[i]);
 677}
 678
 679/*
 680 * vPMD receive routine that reassembles scattered packets.
 681 * Main receive routine that can handle arbitrary burst sizes
 682 * Notice:
 683 * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
 684 */
 685uint16_t
 686i40e_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
 687                             uint16_t nb_pkts)
 688{
 689        uint16_t retval = 0;
 690        while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
 691                uint16_t burst = i40e_recv_scattered_burst_vec_avx2(rx_queue,
 692                                rx_pkts + retval, RTE_I40E_VPMD_RX_BURST);
 693                retval += burst;
 694                nb_pkts -= burst;
 695                if (burst < RTE_I40E_VPMD_RX_BURST)
 696                        return retval;
 697        }
 698        return retval + i40e_recv_scattered_burst_vec_avx2(rx_queue,
 699                                rx_pkts + retval, nb_pkts);
 700}
 701
 702
 703static inline void
 704vtx1(volatile struct i40e_tx_desc *txdp,
 705                struct rte_mbuf *pkt, uint64_t flags)
 706{
 707        uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
 708                        ((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
 709                        ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
 710
 711        __m128i descriptor = _mm_set_epi64x(high_qw,
 712                                pkt->buf_iova + pkt->data_off);
 713        _mm_store_si128((__m128i *)txdp, descriptor);
 714}
 715
 716static inline void
 717vtx(volatile struct i40e_tx_desc *txdp,
 718                struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
 719{
 720        const uint64_t hi_qw_tmpl = (I40E_TX_DESC_DTYPE_DATA |
 721                        ((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT));
 722
 723        /* if unaligned on 32-bit boundary, do one to align */
 724        if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
 725                vtx1(txdp, *pkt, flags);
 726                nb_pkts--, txdp++, pkt++;
 727        }
 728
 729        /* do two at a time while possible, in bursts */
 730        for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
 731                uint64_t hi_qw3 = hi_qw_tmpl |
 732                                ((uint64_t)pkt[3]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
 733                uint64_t hi_qw2 = hi_qw_tmpl |
 734                                ((uint64_t)pkt[2]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
 735                uint64_t hi_qw1 = hi_qw_tmpl |
 736                                ((uint64_t)pkt[1]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
 737                uint64_t hi_qw0 = hi_qw_tmpl |
 738                                ((uint64_t)pkt[0]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
 739
 740                __m256i desc2_3 = _mm256_set_epi64x(
 741                                hi_qw3, pkt[3]->buf_iova + pkt[3]->data_off,
 742                                hi_qw2, pkt[2]->buf_iova + pkt[2]->data_off);
 743                __m256i desc0_1 = _mm256_set_epi64x(
 744                                hi_qw1, pkt[1]->buf_iova + pkt[1]->data_off,
 745                                hi_qw0, pkt[0]->buf_iova + pkt[0]->data_off);
 746                _mm256_store_si256((void *)(txdp + 2), desc2_3);
 747                _mm256_store_si256((void *)txdp, desc0_1);
 748        }
 749
 750        /* do any last ones */
 751        while (nb_pkts) {
 752                vtx1(txdp, *pkt, flags);
 753                txdp++, pkt++, nb_pkts--;
 754        }
 755}
 756
 757static inline uint16_t
 758i40e_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
 759                          uint16_t nb_pkts)
 760{
 761        struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
 762        volatile struct i40e_tx_desc *txdp;
 763        struct i40e_tx_entry *txep;
 764        uint16_t n, nb_commit, tx_id;
 765        uint64_t flags = I40E_TD_CMD;
 766        uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
 767
 768        /* cross rx_thresh boundary is not allowed */
 769        nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
 770
 771        if (txq->nb_tx_free < txq->tx_free_thresh)
 772                i40e_tx_free_bufs(txq);
 773
 774        nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
 775        if (unlikely(nb_pkts == 0))
 776                return 0;
 777
 778        tx_id = txq->tx_tail;
 779        txdp = &txq->tx_ring[tx_id];
 780        txep = &txq->sw_ring[tx_id];
 781
 782        txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
 783
 784        n = (uint16_t)(txq->nb_tx_desc - tx_id);
 785        if (nb_commit >= n) {
 786                tx_backlog_entry(txep, tx_pkts, n);
 787
 788                vtx(txdp, tx_pkts, n - 1, flags);
 789                tx_pkts += (n - 1);
 790                txdp += (n - 1);
 791
 792                vtx1(txdp, *tx_pkts++, rs);
 793
 794                nb_commit = (uint16_t)(nb_commit - n);
 795
 796                tx_id = 0;
 797                txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
 798
 799                /* avoid reach the end of ring */
 800                txdp = &txq->tx_ring[tx_id];
 801                txep = &txq->sw_ring[tx_id];
 802        }
 803
 804        tx_backlog_entry(txep, tx_pkts, nb_commit);
 805
 806        vtx(txdp, tx_pkts, nb_commit, flags);
 807
 808        tx_id = (uint16_t)(tx_id + nb_commit);
 809        if (tx_id > txq->tx_next_rs) {
 810                txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
 811                        rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
 812                                                I40E_TXD_QW1_CMD_SHIFT);
 813                txq->tx_next_rs =
 814                        (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
 815        }
 816
 817        txq->tx_tail = tx_id;
 818
 819        I40E_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
 820
 821        return nb_pkts;
 822}
 823
 824uint16_t
 825i40e_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
 826                   uint16_t nb_pkts)
 827{
 828        uint16_t nb_tx = 0;
 829        struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
 830
 831        while (nb_pkts) {
 832                uint16_t ret, num;
 833
 834                num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
 835                ret = i40e_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
 836                                                num);
 837                nb_tx += ret;
 838                nb_pkts -= ret;
 839                if (ret < num)
 840                        break;
 841        }
 842
 843        return nb_tx;
 844}
 845