dpdk/drivers/net/qede/qede_rxtx.c
<<
>>
Prefs
   1/* SPDX-License-Identifier: BSD-3-Clause
   2 * Copyright (c) 2016 - 2018 Cavium Inc.
   3 * All rights reserved.
   4 * www.cavium.com
   5 */
   6
   7#include <rte_net.h>
   8#include "qede_rxtx.h"
   9
  10static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
  11{
  12        struct rte_mbuf *new_mb = NULL;
  13        struct eth_rx_bd *rx_bd;
  14        dma_addr_t mapping;
  15        uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
  16
  17        new_mb = rte_mbuf_raw_alloc(rxq->mb_pool);
  18        if (unlikely(!new_mb)) {
  19                PMD_RX_LOG(ERR, rxq,
  20                           "Failed to allocate rx buffer "
  21                           "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
  22                           idx, rxq->sw_rx_cons & NUM_RX_BDS(rxq),
  23                           rte_mempool_avail_count(rxq->mb_pool),
  24                           rte_mempool_in_use_count(rxq->mb_pool));
  25                return -ENOMEM;
  26        }
  27        rxq->sw_rx_ring[idx] = new_mb;
  28        mapping = rte_mbuf_data_iova_default(new_mb);
  29        /* Advance PROD and get BD pointer */
  30        rx_bd = (struct eth_rx_bd *)ecore_chain_produce(&rxq->rx_bd_ring);
  31        rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
  32        rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
  33        rxq->sw_rx_prod++;
  34        return 0;
  35}
  36
  37#define QEDE_MAX_BULK_ALLOC_COUNT 512
  38
  39static inline int qede_alloc_rx_bulk_mbufs(struct qede_rx_queue *rxq, int count)
  40{
  41        struct rte_mbuf *mbuf = NULL;
  42        struct eth_rx_bd *rx_bd;
  43        dma_addr_t mapping;
  44        int i, ret = 0;
  45        uint16_t idx;
  46        uint16_t mask = NUM_RX_BDS(rxq);
  47
  48        if (count > QEDE_MAX_BULK_ALLOC_COUNT)
  49                count = QEDE_MAX_BULK_ALLOC_COUNT;
  50
  51        idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
  52
  53        if (count > mask - idx + 1)
  54                count = mask - idx + 1;
  55
  56        ret = rte_mempool_get_bulk(rxq->mb_pool, (void **)&rxq->sw_rx_ring[idx],
  57                                   count);
  58
  59        if (unlikely(ret)) {
  60                PMD_RX_LOG(ERR, rxq,
  61                           "Failed to allocate %d rx buffers "
  62                            "sw_rx_prod %u sw_rx_cons %u mp entries %u free %u",
  63                            count,
  64                            rxq->sw_rx_prod & NUM_RX_BDS(rxq),
  65                            rxq->sw_rx_cons & NUM_RX_BDS(rxq),
  66                            rte_mempool_avail_count(rxq->mb_pool),
  67                            rte_mempool_in_use_count(rxq->mb_pool));
  68                return -ENOMEM;
  69        }
  70
  71        for (i = 0; i < count; i++) {
  72                rte_prefetch0(rxq->sw_rx_ring[(idx + 1) & NUM_RX_BDS(rxq)]);
  73                mbuf = rxq->sw_rx_ring[idx & NUM_RX_BDS(rxq)];
  74
  75                mapping = rte_mbuf_data_iova_default(mbuf);
  76                rx_bd = (struct eth_rx_bd *)
  77                        ecore_chain_produce(&rxq->rx_bd_ring);
  78                rx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
  79                rx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
  80                idx++;
  81        }
  82        rxq->sw_rx_prod = idx;
  83
  84        return 0;
  85}
  86
  87/* Criterias for calculating Rx buffer size -
  88 * 1) rx_buf_size should not exceed the size of mbuf
  89 * 2) In scattered_rx mode - minimum rx_buf_size should be
  90 *    (MTU + Maximum L2 Header Size + 2) / ETH_RX_MAX_BUFF_PER_PKT
  91 * 3) In regular mode - minimum rx_buf_size should be
  92 *    (MTU + Maximum L2 Header Size + 2)
  93 *    In above cases +2 corrosponds to 2 bytes padding in front of L2
  94 *    header.
  95 * 4) rx_buf_size should be cacheline-size aligned. So considering
  96 *    criteria 1, we need to adjust the size to floor instead of ceil,
  97 *    so that we don't exceed mbuf size while ceiling rx_buf_size.
  98 */
  99int
 100qede_calc_rx_buf_size(struct rte_eth_dev *dev, uint16_t mbufsz,
 101                      uint16_t max_frame_size)
 102{
 103        struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
 104        struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
 105        int rx_buf_size;
 106
 107        if (dev->data->scattered_rx) {
 108                /* per HW limitation, only ETH_RX_MAX_BUFF_PER_PKT number of
 109                 * bufferes can be used for single packet. So need to make sure
 110                 * mbuf size is sufficient enough for this.
 111                 */
 112                if ((mbufsz * ETH_RX_MAX_BUFF_PER_PKT) <
 113                     (max_frame_size + QEDE_ETH_OVERHEAD)) {
 114                        DP_ERR(edev, "mbuf %d size is not enough to hold max fragments (%d) for max rx packet length (%d)\n",
 115                               mbufsz, ETH_RX_MAX_BUFF_PER_PKT, max_frame_size);
 116                        return -EINVAL;
 117                }
 118
 119                rx_buf_size = RTE_MAX(mbufsz,
 120                                      (max_frame_size + QEDE_ETH_OVERHEAD) /
 121                                       ETH_RX_MAX_BUFF_PER_PKT);
 122        } else {
 123                rx_buf_size = max_frame_size + QEDE_ETH_OVERHEAD;
 124        }
 125
 126        /* Align to cache-line size if needed */
 127        return QEDE_FLOOR_TO_CACHE_LINE_SIZE(rx_buf_size);
 128}
 129
 130static struct qede_rx_queue *
 131qede_alloc_rx_queue_mem(struct rte_eth_dev *dev,
 132                        uint16_t queue_idx,
 133                        uint16_t nb_desc,
 134                        unsigned int socket_id,
 135                        struct rte_mempool *mp,
 136                        uint16_t bufsz)
 137{
 138        struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
 139        struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
 140        struct qede_rx_queue *rxq;
 141        size_t size;
 142        int rc;
 143
 144        /* First allocate the rx queue data structure */
 145        rxq = rte_zmalloc_socket("qede_rx_queue", sizeof(struct qede_rx_queue),
 146                                 RTE_CACHE_LINE_SIZE, socket_id);
 147
 148        if (!rxq) {
 149                DP_ERR(edev, "Unable to allocate memory for rxq on socket %u",
 150                          socket_id);
 151                return NULL;
 152        }
 153
 154        rxq->qdev = qdev;
 155        rxq->mb_pool = mp;
 156        rxq->nb_rx_desc = nb_desc;
 157        rxq->queue_id = queue_idx;
 158        rxq->port_id = dev->data->port_id;
 159
 160
 161        rxq->rx_buf_size = bufsz;
 162
 163        DP_INFO(edev, "mtu %u mbufsz %u bd_max_bytes %u scatter_mode %d\n",
 164                qdev->mtu, bufsz, rxq->rx_buf_size, dev->data->scattered_rx);
 165
 166        /* Allocate the parallel driver ring for Rx buffers */
 167        size = sizeof(*rxq->sw_rx_ring) * rxq->nb_rx_desc;
 168        rxq->sw_rx_ring = rte_zmalloc_socket("sw_rx_ring", size,
 169                                             RTE_CACHE_LINE_SIZE, socket_id);
 170        if (!rxq->sw_rx_ring) {
 171                DP_ERR(edev, "Memory allocation fails for sw_rx_ring on"
 172                       " socket %u\n", socket_id);
 173                rte_free(rxq);
 174                return NULL;
 175        }
 176
 177        /* Allocate FW Rx ring  */
 178        rc = qdev->ops->common->chain_alloc(edev,
 179                                            ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
 180                                            ECORE_CHAIN_MODE_NEXT_PTR,
 181                                            ECORE_CHAIN_CNT_TYPE_U16,
 182                                            rxq->nb_rx_desc,
 183                                            sizeof(struct eth_rx_bd),
 184                                            &rxq->rx_bd_ring,
 185                                            NULL);
 186
 187        if (rc != ECORE_SUCCESS) {
 188                DP_ERR(edev, "Memory allocation fails for RX BD ring"
 189                       " on socket %u\n", socket_id);
 190                rte_free(rxq->sw_rx_ring);
 191                rte_free(rxq);
 192                return NULL;
 193        }
 194
 195        /* Allocate FW completion ring */
 196        rc = qdev->ops->common->chain_alloc(edev,
 197                                            ECORE_CHAIN_USE_TO_CONSUME,
 198                                            ECORE_CHAIN_MODE_PBL,
 199                                            ECORE_CHAIN_CNT_TYPE_U16,
 200                                            rxq->nb_rx_desc,
 201                                            sizeof(union eth_rx_cqe),
 202                                            &rxq->rx_comp_ring,
 203                                            NULL);
 204
 205        if (rc != ECORE_SUCCESS) {
 206                DP_ERR(edev, "Memory allocation fails for RX CQE ring"
 207                       " on socket %u\n", socket_id);
 208                qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
 209                rte_free(rxq->sw_rx_ring);
 210                rte_free(rxq);
 211                return NULL;
 212        }
 213
 214        return rxq;
 215}
 216
 217int
 218qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t qid,
 219                    uint16_t nb_desc, unsigned int socket_id,
 220                    __rte_unused const struct rte_eth_rxconf *rx_conf,
 221                    struct rte_mempool *mp)
 222{
 223        struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
 224        struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
 225        struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
 226        struct qede_rx_queue *rxq;
 227        uint16_t max_rx_pkt_len;
 228        uint16_t bufsz;
 229        int rc;
 230
 231        PMD_INIT_FUNC_TRACE(edev);
 232
 233        /* Note: Ring size/align is controlled by struct rte_eth_desc_lim */
 234        if (!rte_is_power_of_2(nb_desc)) {
 235                DP_ERR(edev, "Ring size %u is not power of 2\n",
 236                          nb_desc);
 237                return -EINVAL;
 238        }
 239
 240        /* Free memory prior to re-allocation if needed... */
 241        if (dev->data->rx_queues[qid] != NULL) {
 242                qede_rx_queue_release(dev->data->rx_queues[qid]);
 243                dev->data->rx_queues[qid] = NULL;
 244        }
 245
 246        max_rx_pkt_len = (uint16_t)rxmode->max_rx_pkt_len;
 247
 248        /* Fix up RX buffer size */
 249        bufsz = (uint16_t)rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
 250        /* cache align the mbuf size to simplfy rx_buf_size calculation */
 251        bufsz = QEDE_FLOOR_TO_CACHE_LINE_SIZE(bufsz);
 252        if ((rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
 253            (max_rx_pkt_len + QEDE_ETH_OVERHEAD) > bufsz) {
 254                if (!dev->data->scattered_rx) {
 255                        DP_INFO(edev, "Forcing scatter-gather mode\n");
 256                        dev->data->scattered_rx = 1;
 257                }
 258        }
 259
 260        rc = qede_calc_rx_buf_size(dev, bufsz, max_rx_pkt_len);
 261        if (rc < 0)
 262                return rc;
 263
 264        bufsz = rc;
 265
 266        if (ECORE_IS_CMT(edev)) {
 267                rxq = qede_alloc_rx_queue_mem(dev, qid * 2, nb_desc,
 268                                              socket_id, mp, bufsz);
 269                if (!rxq)
 270                        return -ENOMEM;
 271
 272                qdev->fp_array[qid * 2].rxq = rxq;
 273                rxq = qede_alloc_rx_queue_mem(dev, qid * 2 + 1, nb_desc,
 274                                              socket_id, mp, bufsz);
 275                if (!rxq)
 276                        return -ENOMEM;
 277
 278                qdev->fp_array[qid * 2 + 1].rxq = rxq;
 279                /* provide per engine fp struct as rx queue */
 280                dev->data->rx_queues[qid] = &qdev->fp_array_cmt[qid];
 281        } else {
 282                rxq = qede_alloc_rx_queue_mem(dev, qid, nb_desc,
 283                                              socket_id, mp, bufsz);
 284                if (!rxq)
 285                        return -ENOMEM;
 286
 287                dev->data->rx_queues[qid] = rxq;
 288                qdev->fp_array[qid].rxq = rxq;
 289        }
 290
 291        DP_INFO(edev, "rxq %d num_desc %u rx_buf_size=%u socket %u\n",
 292                  qid, nb_desc, rxq->rx_buf_size, socket_id);
 293
 294        return 0;
 295}
 296
 297static void
 298qede_rx_queue_reset(__rte_unused struct qede_dev *qdev,
 299                    struct qede_rx_queue *rxq)
 300{
 301        DP_INFO(&qdev->edev, "Reset RX queue %u\n", rxq->queue_id);
 302        ecore_chain_reset(&rxq->rx_bd_ring);
 303        ecore_chain_reset(&rxq->rx_comp_ring);
 304        rxq->sw_rx_prod = 0;
 305        rxq->sw_rx_cons = 0;
 306        *rxq->hw_cons_ptr = 0;
 307}
 308
 309static void qede_rx_queue_release_mbufs(struct qede_rx_queue *rxq)
 310{
 311        uint16_t i;
 312
 313        if (rxq->sw_rx_ring) {
 314                for (i = 0; i < rxq->nb_rx_desc; i++) {
 315                        if (rxq->sw_rx_ring[i]) {
 316                                rte_pktmbuf_free(rxq->sw_rx_ring[i]);
 317                                rxq->sw_rx_ring[i] = NULL;
 318                        }
 319                }
 320        }
 321}
 322
 323static void _qede_rx_queue_release(struct qede_dev *qdev,
 324                                   struct ecore_dev *edev,
 325                                   struct qede_rx_queue *rxq)
 326{
 327        qede_rx_queue_release_mbufs(rxq);
 328        qdev->ops->common->chain_free(edev, &rxq->rx_bd_ring);
 329        qdev->ops->common->chain_free(edev, &rxq->rx_comp_ring);
 330        rte_free(rxq->sw_rx_ring);
 331        rte_free(rxq);
 332}
 333
 334void qede_rx_queue_release(void *rx_queue)
 335{
 336        struct qede_rx_queue *rxq = rx_queue;
 337        struct qede_fastpath_cmt *fp_cmt;
 338        struct qede_dev *qdev;
 339        struct ecore_dev *edev;
 340
 341        if (rxq) {
 342                qdev = rxq->qdev;
 343                edev = QEDE_INIT_EDEV(qdev);
 344                PMD_INIT_FUNC_TRACE(edev);
 345                if (ECORE_IS_CMT(edev)) {
 346                        fp_cmt = rx_queue;
 347                        _qede_rx_queue_release(qdev, edev, fp_cmt->fp0->rxq);
 348                        _qede_rx_queue_release(qdev, edev, fp_cmt->fp1->rxq);
 349                } else {
 350                        _qede_rx_queue_release(qdev, edev, rxq);
 351                }
 352        }
 353}
 354
 355/* Stops a given RX queue in the HW */
 356static int qede_rx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
 357{
 358        struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
 359        struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
 360        struct ecore_hwfn *p_hwfn;
 361        struct qede_rx_queue *rxq;
 362        int hwfn_index;
 363        int rc;
 364
 365        if (rx_queue_id < qdev->num_rx_queues) {
 366                rxq = qdev->fp_array[rx_queue_id].rxq;
 367                hwfn_index = rx_queue_id % edev->num_hwfns;
 368                p_hwfn = &edev->hwfns[hwfn_index];
 369                rc = ecore_eth_rx_queue_stop(p_hwfn, rxq->handle,
 370                                true, false);
 371                if (rc != ECORE_SUCCESS) {
 372                        DP_ERR(edev, "RX queue %u stop fails\n", rx_queue_id);
 373                        return -1;
 374                }
 375                qede_rx_queue_release_mbufs(rxq);
 376                qede_rx_queue_reset(qdev, rxq);
 377                eth_dev->data->rx_queue_state[rx_queue_id] =
 378                        RTE_ETH_QUEUE_STATE_STOPPED;
 379                DP_INFO(edev, "RX queue %u stopped\n", rx_queue_id);
 380        } else {
 381                DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
 382                rc = -EINVAL;
 383        }
 384
 385        return rc;
 386}
 387
 388static struct qede_tx_queue *
 389qede_alloc_tx_queue_mem(struct rte_eth_dev *dev,
 390                        uint16_t queue_idx,
 391                        uint16_t nb_desc,
 392                        unsigned int socket_id,
 393                        const struct rte_eth_txconf *tx_conf)
 394{
 395        struct qede_dev *qdev = dev->data->dev_private;
 396        struct ecore_dev *edev = &qdev->edev;
 397        struct qede_tx_queue *txq;
 398        int rc;
 399        size_t sw_tx_ring_size;
 400
 401        txq = rte_zmalloc_socket("qede_tx_queue", sizeof(struct qede_tx_queue),
 402                                 RTE_CACHE_LINE_SIZE, socket_id);
 403
 404        if (txq == NULL) {
 405                DP_ERR(edev,
 406                       "Unable to allocate memory for txq on socket %u",
 407                       socket_id);
 408                return NULL;
 409        }
 410
 411        txq->nb_tx_desc = nb_desc;
 412        txq->qdev = qdev;
 413        txq->port_id = dev->data->port_id;
 414
 415        rc = qdev->ops->common->chain_alloc(edev,
 416                                            ECORE_CHAIN_USE_TO_CONSUME_PRODUCE,
 417                                            ECORE_CHAIN_MODE_PBL,
 418                                            ECORE_CHAIN_CNT_TYPE_U16,
 419                                            txq->nb_tx_desc,
 420                                            sizeof(union eth_tx_bd_types),
 421                                            &txq->tx_pbl,
 422                                            NULL);
 423        if (rc != ECORE_SUCCESS) {
 424                DP_ERR(edev,
 425                       "Unable to allocate memory for txbd ring on socket %u",
 426                       socket_id);
 427                qede_tx_queue_release(txq);
 428                return NULL;
 429        }
 430
 431        /* Allocate software ring */
 432        sw_tx_ring_size = sizeof(txq->sw_tx_ring) * txq->nb_tx_desc;
 433        txq->sw_tx_ring = rte_zmalloc_socket("txq->sw_tx_ring",
 434                                             sw_tx_ring_size,
 435                                             RTE_CACHE_LINE_SIZE, socket_id);
 436
 437        if (!txq->sw_tx_ring) {
 438                DP_ERR(edev,
 439                       "Unable to allocate memory for txbd ring on socket %u",
 440                       socket_id);
 441                qdev->ops->common->chain_free(edev, &txq->tx_pbl);
 442                qede_tx_queue_release(txq);
 443                return NULL;
 444        }
 445
 446        txq->queue_id = queue_idx;
 447
 448        txq->nb_tx_avail = txq->nb_tx_desc;
 449
 450        txq->tx_free_thresh =
 451            tx_conf->tx_free_thresh ? tx_conf->tx_free_thresh :
 452            (txq->nb_tx_desc - QEDE_DEFAULT_TX_FREE_THRESH);
 453
 454        DP_INFO(edev,
 455                  "txq %u num_desc %u tx_free_thresh %u socket %u\n",
 456                  queue_idx, nb_desc, txq->tx_free_thresh, socket_id);
 457        return txq;
 458}
 459
 460int
 461qede_tx_queue_setup(struct rte_eth_dev *dev,
 462                    uint16_t queue_idx,
 463                    uint16_t nb_desc,
 464                    unsigned int socket_id,
 465                    const struct rte_eth_txconf *tx_conf)
 466{
 467        struct qede_dev *qdev = dev->data->dev_private;
 468        struct ecore_dev *edev = &qdev->edev;
 469        struct qede_tx_queue *txq;
 470
 471        PMD_INIT_FUNC_TRACE(edev);
 472
 473        if (!rte_is_power_of_2(nb_desc)) {
 474                DP_ERR(edev, "Ring size %u is not power of 2\n",
 475                       nb_desc);
 476                return -EINVAL;
 477        }
 478
 479        /* Free memory prior to re-allocation if needed... */
 480        if (dev->data->tx_queues[queue_idx] != NULL) {
 481                qede_tx_queue_release(dev->data->tx_queues[queue_idx]);
 482                dev->data->tx_queues[queue_idx] = NULL;
 483        }
 484
 485        if (ECORE_IS_CMT(edev)) {
 486                txq = qede_alloc_tx_queue_mem(dev, queue_idx * 2, nb_desc,
 487                                              socket_id, tx_conf);
 488                if (!txq)
 489                        return -ENOMEM;
 490
 491                qdev->fp_array[queue_idx * 2].txq = txq;
 492                txq = qede_alloc_tx_queue_mem(dev, (queue_idx * 2) + 1, nb_desc,
 493                                              socket_id, tx_conf);
 494                if (!txq)
 495                        return -ENOMEM;
 496
 497                qdev->fp_array[(queue_idx * 2) + 1].txq = txq;
 498                dev->data->tx_queues[queue_idx] =
 499                                        &qdev->fp_array_cmt[queue_idx];
 500        } else {
 501                txq = qede_alloc_tx_queue_mem(dev, queue_idx, nb_desc,
 502                                              socket_id, tx_conf);
 503                if (!txq)
 504                        return -ENOMEM;
 505
 506                dev->data->tx_queues[queue_idx] = txq;
 507                qdev->fp_array[queue_idx].txq = txq;
 508        }
 509
 510        return 0;
 511}
 512
 513static void
 514qede_tx_queue_reset(__rte_unused struct qede_dev *qdev,
 515                    struct qede_tx_queue *txq)
 516{
 517        DP_INFO(&qdev->edev, "Reset TX queue %u\n", txq->queue_id);
 518        ecore_chain_reset(&txq->tx_pbl);
 519        txq->sw_tx_cons = 0;
 520        txq->sw_tx_prod = 0;
 521        *txq->hw_cons_ptr = 0;
 522}
 523
 524static void qede_tx_queue_release_mbufs(struct qede_tx_queue *txq)
 525{
 526        uint16_t i;
 527
 528        if (txq->sw_tx_ring) {
 529                for (i = 0; i < txq->nb_tx_desc; i++) {
 530                        if (txq->sw_tx_ring[i]) {
 531                                rte_pktmbuf_free(txq->sw_tx_ring[i]);
 532                                txq->sw_tx_ring[i] = NULL;
 533                        }
 534                }
 535        }
 536}
 537
 538static void _qede_tx_queue_release(struct qede_dev *qdev,
 539                                   struct ecore_dev *edev,
 540                                   struct qede_tx_queue *txq)
 541{
 542        qede_tx_queue_release_mbufs(txq);
 543        qdev->ops->common->chain_free(edev, &txq->tx_pbl);
 544        rte_free(txq->sw_tx_ring);
 545        rte_free(txq);
 546}
 547
 548void qede_tx_queue_release(void *tx_queue)
 549{
 550        struct qede_tx_queue *txq = tx_queue;
 551        struct qede_fastpath_cmt *fp_cmt;
 552        struct qede_dev *qdev;
 553        struct ecore_dev *edev;
 554
 555        if (txq) {
 556                qdev = txq->qdev;
 557                edev = QEDE_INIT_EDEV(qdev);
 558                PMD_INIT_FUNC_TRACE(edev);
 559
 560                if (ECORE_IS_CMT(edev)) {
 561                        fp_cmt = tx_queue;
 562                        _qede_tx_queue_release(qdev, edev, fp_cmt->fp0->txq);
 563                        _qede_tx_queue_release(qdev, edev, fp_cmt->fp1->txq);
 564                } else {
 565                        _qede_tx_queue_release(qdev, edev, txq);
 566                }
 567        }
 568}
 569
 570/* This function allocates fast-path status block memory */
 571static int
 572qede_alloc_mem_sb(struct qede_dev *qdev, struct ecore_sb_info *sb_info,
 573                  uint16_t sb_id)
 574{
 575        struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
 576        struct status_block *sb_virt;
 577        dma_addr_t sb_phys;
 578        int rc;
 579
 580        sb_virt = OSAL_DMA_ALLOC_COHERENT(edev, &sb_phys,
 581                                          sizeof(struct status_block));
 582        if (!sb_virt) {
 583                DP_ERR(edev, "Status block allocation failed\n");
 584                return -ENOMEM;
 585        }
 586        rc = qdev->ops->common->sb_init(edev, sb_info, sb_virt,
 587                                        sb_phys, sb_id);
 588        if (rc) {
 589                DP_ERR(edev, "Status block initialization failed\n");
 590                OSAL_DMA_FREE_COHERENT(edev, sb_virt, sb_phys,
 591                                       sizeof(struct status_block));
 592                return rc;
 593        }
 594
 595        return 0;
 596}
 597
 598int qede_alloc_fp_resc(struct qede_dev *qdev)
 599{
 600        struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
 601        struct qede_fastpath *fp;
 602        uint32_t num_sbs;
 603        uint16_t sb_idx;
 604        int i;
 605
 606        PMD_INIT_FUNC_TRACE(edev);
 607
 608        if (IS_VF(edev))
 609                ecore_vf_get_num_sbs(ECORE_LEADING_HWFN(edev), &num_sbs);
 610        else
 611                num_sbs = ecore_cxt_get_proto_cid_count
 612                          (ECORE_LEADING_HWFN(edev), PROTOCOLID_ETH, NULL);
 613
 614        if (num_sbs == 0) {
 615                DP_ERR(edev, "No status blocks available\n");
 616                return -EINVAL;
 617        }
 618
 619        qdev->fp_array = rte_calloc("fp", QEDE_RXTX_MAX(qdev),
 620                                sizeof(*qdev->fp_array), RTE_CACHE_LINE_SIZE);
 621
 622        if (!qdev->fp_array) {
 623                DP_ERR(edev, "fp array allocation failed\n");
 624                return -ENOMEM;
 625        }
 626
 627        memset((void *)qdev->fp_array, 0, QEDE_RXTX_MAX(qdev) *
 628                        sizeof(*qdev->fp_array));
 629
 630        if (ECORE_IS_CMT(edev)) {
 631                qdev->fp_array_cmt = rte_calloc("fp_cmt",
 632                                                QEDE_RXTX_MAX(qdev) / 2,
 633                                                sizeof(*qdev->fp_array_cmt),
 634                                                RTE_CACHE_LINE_SIZE);
 635
 636                if (!qdev->fp_array_cmt) {
 637                        DP_ERR(edev, "fp array for CMT allocation failed\n");
 638                        return -ENOMEM;
 639                }
 640
 641                memset((void *)qdev->fp_array_cmt, 0,
 642                       (QEDE_RXTX_MAX(qdev) / 2) * sizeof(*qdev->fp_array_cmt));
 643
 644                /* Establish the mapping of fp_array with fp_array_cmt */
 645                for (i = 0; i < QEDE_RXTX_MAX(qdev) / 2; i++) {
 646                        qdev->fp_array_cmt[i].qdev = qdev;
 647                        qdev->fp_array_cmt[i].fp0 = &qdev->fp_array[i * 2];
 648                        qdev->fp_array_cmt[i].fp1 = &qdev->fp_array[i * 2 + 1];
 649                }
 650        }
 651
 652        for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
 653                fp = &qdev->fp_array[sb_idx];
 654                fp->sb_info = rte_calloc("sb", 1, sizeof(struct ecore_sb_info),
 655                                RTE_CACHE_LINE_SIZE);
 656                if (!fp->sb_info) {
 657                        DP_ERR(edev, "FP sb_info allocation fails\n");
 658                        return -1;
 659                }
 660                if (qede_alloc_mem_sb(qdev, fp->sb_info, sb_idx)) {
 661                        DP_ERR(edev, "FP status block allocation fails\n");
 662                        return -1;
 663                }
 664                DP_INFO(edev, "sb_info idx 0x%x initialized\n",
 665                                fp->sb_info->igu_sb_id);
 666        }
 667
 668        return 0;
 669}
 670
 671void qede_dealloc_fp_resc(struct rte_eth_dev *eth_dev)
 672{
 673        struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
 674        struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
 675        struct qede_fastpath *fp;
 676        uint16_t sb_idx;
 677        uint8_t i;
 678
 679        PMD_INIT_FUNC_TRACE(edev);
 680
 681        for (sb_idx = 0; sb_idx < QEDE_RXTX_MAX(qdev); sb_idx++) {
 682                fp = &qdev->fp_array[sb_idx];
 683                if (fp->sb_info) {
 684                        DP_INFO(edev, "Free sb_info index 0x%x\n",
 685                                        fp->sb_info->igu_sb_id);
 686                        OSAL_DMA_FREE_COHERENT(edev, fp->sb_info->sb_virt,
 687                                fp->sb_info->sb_phys,
 688                                sizeof(struct status_block));
 689                        rte_free(fp->sb_info);
 690                        fp->sb_info = NULL;
 691                }
 692        }
 693
 694        /* Free packet buffers and ring memories */
 695        for (i = 0; i < eth_dev->data->nb_rx_queues; i++) {
 696                if (eth_dev->data->rx_queues[i]) {
 697                        qede_rx_queue_release(eth_dev->data->rx_queues[i]);
 698                        eth_dev->data->rx_queues[i] = NULL;
 699                }
 700        }
 701
 702        for (i = 0; i < eth_dev->data->nb_tx_queues; i++) {
 703                if (eth_dev->data->tx_queues[i]) {
 704                        qede_tx_queue_release(eth_dev->data->tx_queues[i]);
 705                        eth_dev->data->tx_queues[i] = NULL;
 706                }
 707        }
 708
 709        if (qdev->fp_array)
 710                rte_free(qdev->fp_array);
 711        qdev->fp_array = NULL;
 712
 713        if (qdev->fp_array_cmt)
 714                rte_free(qdev->fp_array_cmt);
 715        qdev->fp_array_cmt = NULL;
 716}
 717
 718static inline void
 719qede_update_rx_prod(__rte_unused struct qede_dev *edev,
 720                    struct qede_rx_queue *rxq)
 721{
 722        uint16_t bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
 723        uint16_t cqe_prod = ecore_chain_get_prod_idx(&rxq->rx_comp_ring);
 724        struct eth_rx_prod_data rx_prods = { 0 };
 725
 726        /* Update producers */
 727        rx_prods.bd_prod = rte_cpu_to_le_16(bd_prod);
 728        rx_prods.cqe_prod = rte_cpu_to_le_16(cqe_prod);
 729
 730        /* Make sure that the BD and SGE data is updated before updating the
 731         * producers since FW might read the BD/SGE right after the producer
 732         * is updated.
 733         */
 734        rte_wmb();
 735
 736        internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
 737                        (uint32_t *)&rx_prods);
 738
 739        /* mmiowb is needed to synchronize doorbell writes from more than one
 740         * processor. It guarantees that the write arrives to the device before
 741         * the napi lock is released and another qede_poll is called (possibly
 742         * on another CPU). Without this barrier, the next doorbell can bypass
 743         * this doorbell. This is applicable to IA64/Altix systems.
 744         */
 745        rte_wmb();
 746
 747        PMD_RX_LOG(DEBUG, rxq, "bd_prod %u  cqe_prod %u", bd_prod, cqe_prod);
 748}
 749
 750/* Starts a given RX queue in HW */
 751static int
 752qede_rx_queue_start(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
 753{
 754        struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
 755        struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
 756        struct ecore_queue_start_common_params params;
 757        struct ecore_rxq_start_ret_params ret_params;
 758        struct qede_rx_queue *rxq;
 759        struct qede_fastpath *fp;
 760        struct ecore_hwfn *p_hwfn;
 761        dma_addr_t p_phys_table;
 762        uint16_t page_cnt;
 763        uint16_t j;
 764        int hwfn_index;
 765        int rc;
 766
 767        if (rx_queue_id < qdev->num_rx_queues) {
 768                fp = &qdev->fp_array[rx_queue_id];
 769                rxq = fp->rxq;
 770                /* Allocate buffers for the Rx ring */
 771                for (j = 0; j < rxq->nb_rx_desc; j++) {
 772                        rc = qede_alloc_rx_buffer(rxq);
 773                        if (rc) {
 774                                DP_ERR(edev, "RX buffer allocation failed"
 775                                                " for rxq = %u\n", rx_queue_id);
 776                                return -ENOMEM;
 777                        }
 778                }
 779                /* disable interrupts */
 780                ecore_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0);
 781                /* Prepare ramrod */
 782                memset(&params, 0, sizeof(params));
 783                params.queue_id = rx_queue_id / edev->num_hwfns;
 784                params.vport_id = 0;
 785                params.stats_id = params.vport_id;
 786                params.p_sb = fp->sb_info;
 787                DP_INFO(edev, "rxq %u igu_sb_id 0x%x\n",
 788                                fp->rxq->queue_id, fp->sb_info->igu_sb_id);
 789                params.sb_idx = RX_PI;
 790                hwfn_index = rx_queue_id % edev->num_hwfns;
 791                p_hwfn = &edev->hwfns[hwfn_index];
 792                p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
 793                page_cnt = ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
 794                memset(&ret_params, 0, sizeof(ret_params));
 795                rc = ecore_eth_rx_queue_start(p_hwfn,
 796                                p_hwfn->hw_info.opaque_fid,
 797                                &params, fp->rxq->rx_buf_size,
 798                                fp->rxq->rx_bd_ring.p_phys_addr,
 799                                p_phys_table, page_cnt,
 800                                &ret_params);
 801                if (rc) {
 802                        DP_ERR(edev, "RX queue %u could not be started, rc = %d\n",
 803                                        rx_queue_id, rc);
 804                        return -1;
 805                }
 806                /* Update with the returned parameters */
 807                fp->rxq->hw_rxq_prod_addr = ret_params.p_prod;
 808                fp->rxq->handle = ret_params.p_handle;
 809
 810                fp->rxq->hw_cons_ptr = &fp->sb_info->sb_pi_array[RX_PI];
 811                qede_update_rx_prod(qdev, fp->rxq);
 812                eth_dev->data->rx_queue_state[rx_queue_id] =
 813                        RTE_ETH_QUEUE_STATE_STARTED;
 814                DP_INFO(edev, "RX queue %u started\n", rx_queue_id);
 815        } else {
 816                DP_ERR(edev, "RX queue %u is not in range\n", rx_queue_id);
 817                rc = -EINVAL;
 818        }
 819
 820        return rc;
 821}
 822
 823static int
 824qede_tx_queue_start(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
 825{
 826        struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
 827        struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
 828        struct ecore_queue_start_common_params params;
 829        struct ecore_txq_start_ret_params ret_params;
 830        struct ecore_hwfn *p_hwfn;
 831        dma_addr_t p_phys_table;
 832        struct qede_tx_queue *txq;
 833        struct qede_fastpath *fp;
 834        uint16_t page_cnt;
 835        int hwfn_index;
 836        int rc;
 837
 838        if (tx_queue_id < qdev->num_tx_queues) {
 839                fp = &qdev->fp_array[tx_queue_id];
 840                txq = fp->txq;
 841                memset(&params, 0, sizeof(params));
 842                params.queue_id = tx_queue_id / edev->num_hwfns;
 843                params.vport_id = 0;
 844                params.stats_id = params.vport_id;
 845                params.p_sb = fp->sb_info;
 846                DP_INFO(edev, "txq %u igu_sb_id 0x%x\n",
 847                                fp->txq->queue_id, fp->sb_info->igu_sb_id);
 848                params.sb_idx = TX_PI(0); /* tc = 0 */
 849                p_phys_table = ecore_chain_get_pbl_phys(&txq->tx_pbl);
 850                page_cnt = ecore_chain_get_page_cnt(&txq->tx_pbl);
 851                hwfn_index = tx_queue_id % edev->num_hwfns;
 852                p_hwfn = &edev->hwfns[hwfn_index];
 853                if (qdev->dev_info.is_legacy)
 854                        fp->txq->is_legacy = true;
 855                rc = ecore_eth_tx_queue_start(p_hwfn,
 856                                p_hwfn->hw_info.opaque_fid,
 857                                &params, 0 /* tc */,
 858                                p_phys_table, page_cnt,
 859                                &ret_params);
 860                if (rc != ECORE_SUCCESS) {
 861                        DP_ERR(edev, "TX queue %u couldn't be started, rc=%d\n",
 862                                        tx_queue_id, rc);
 863                        return -1;
 864                }
 865                txq->doorbell_addr = ret_params.p_doorbell;
 866                txq->handle = ret_params.p_handle;
 867
 868                txq->hw_cons_ptr = &fp->sb_info->sb_pi_array[TX_PI(0)];
 869                SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST,
 870                                DB_DEST_XCM);
 871                SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
 872                                DB_AGG_CMD_SET);
 873                SET_FIELD(txq->tx_db.data.params,
 874                                ETH_DB_DATA_AGG_VAL_SEL,
 875                                DQ_XCM_ETH_TX_BD_PROD_CMD);
 876                txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
 877                eth_dev->data->tx_queue_state[tx_queue_id] =
 878                        RTE_ETH_QUEUE_STATE_STARTED;
 879                DP_INFO(edev, "TX queue %u started\n", tx_queue_id);
 880        } else {
 881                DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
 882                rc = -EINVAL;
 883        }
 884
 885        return rc;
 886}
 887
 888static inline void
 889qede_process_tx_compl(__rte_unused struct ecore_dev *edev,
 890                      struct qede_tx_queue *txq)
 891{
 892        uint16_t hw_bd_cons;
 893        uint16_t sw_tx_cons;
 894        uint16_t remaining;
 895        uint16_t mask;
 896        struct rte_mbuf *mbuf;
 897        uint16_t nb_segs;
 898        uint16_t idx;
 899        uint16_t first_idx;
 900
 901        rte_compiler_barrier();
 902        rte_prefetch0(txq->hw_cons_ptr);
 903        sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
 904        hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
 905#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
 906        PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
 907                   abs(hw_bd_cons - sw_tx_cons));
 908#endif
 909
 910        mask = NUM_TX_BDS(txq);
 911        idx = txq->sw_tx_cons & mask;
 912
 913        remaining = hw_bd_cons - sw_tx_cons;
 914        txq->nb_tx_avail += remaining;
 915        first_idx = idx;
 916
 917        while (remaining) {
 918                mbuf = txq->sw_tx_ring[idx];
 919                RTE_ASSERT(mbuf);
 920                nb_segs = mbuf->nb_segs;
 921                remaining -= nb_segs;
 922
 923                /* Prefetch the next mbuf. Note that at least the last 4 mbufs
 924                 * that are prefetched will not be used in the current call.
 925                 */
 926                rte_mbuf_prefetch_part1(txq->sw_tx_ring[(idx + 4) & mask]);
 927                rte_mbuf_prefetch_part2(txq->sw_tx_ring[(idx + 4) & mask]);
 928
 929                PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
 930
 931                while (nb_segs) {
 932                        ecore_chain_consume(&txq->tx_pbl);
 933                        nb_segs--;
 934                }
 935
 936                idx = (idx + 1) & mask;
 937                PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
 938        }
 939        txq->sw_tx_cons = idx;
 940
 941        if (first_idx > idx) {
 942                rte_pktmbuf_free_bulk(&txq->sw_tx_ring[first_idx],
 943                                                          mask - first_idx + 1);
 944                rte_pktmbuf_free_bulk(&txq->sw_tx_ring[0], idx);
 945        } else {
 946                rte_pktmbuf_free_bulk(&txq->sw_tx_ring[first_idx],
 947                                                          idx - first_idx);
 948        }
 949}
 950
 951static int qede_drain_txq(struct qede_dev *qdev,
 952                          struct qede_tx_queue *txq, bool allow_drain)
 953{
 954        struct ecore_dev *edev = &qdev->edev;
 955        int rc, cnt = 1000;
 956
 957        while (txq->sw_tx_cons != txq->sw_tx_prod) {
 958                qede_process_tx_compl(edev, txq);
 959                if (!cnt) {
 960                        if (allow_drain) {
 961                                DP_ERR(edev, "Tx queue[%u] is stuck,"
 962                                          "requesting MCP to drain\n",
 963                                          txq->queue_id);
 964                                rc = qdev->ops->common->drain(edev);
 965                                if (rc)
 966                                        return rc;
 967                                return qede_drain_txq(qdev, txq, false);
 968                        }
 969                        DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
 970                                  "PROD=%d, CONS=%d\n",
 971                                  txq->queue_id, txq->sw_tx_prod,
 972                                  txq->sw_tx_cons);
 973                        return -1;
 974                }
 975                cnt--;
 976                DELAY(1000);
 977                rte_compiler_barrier();
 978        }
 979
 980        /* FW finished processing, wait for HW to transmit all tx packets */
 981        DELAY(2000);
 982
 983        return 0;
 984}
 985
 986/* Stops a given TX queue in the HW */
 987static int qede_tx_queue_stop(struct rte_eth_dev *eth_dev, uint16_t tx_queue_id)
 988{
 989        struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
 990        struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
 991        struct ecore_hwfn *p_hwfn;
 992        struct qede_tx_queue *txq;
 993        int hwfn_index;
 994        int rc;
 995
 996        if (tx_queue_id < qdev->num_tx_queues) {
 997                txq = qdev->fp_array[tx_queue_id].txq;
 998                /* Drain txq */
 999                if (qede_drain_txq(qdev, txq, true))
1000                        return -1; /* For the lack of retcodes */
1001                /* Stop txq */
1002                hwfn_index = tx_queue_id % edev->num_hwfns;
1003                p_hwfn = &edev->hwfns[hwfn_index];
1004                rc = ecore_eth_tx_queue_stop(p_hwfn, txq->handle);
1005                if (rc != ECORE_SUCCESS) {
1006                        DP_ERR(edev, "TX queue %u stop fails\n", tx_queue_id);
1007                        return -1;
1008                }
1009                qede_tx_queue_release_mbufs(txq);
1010                qede_tx_queue_reset(qdev, txq);
1011                eth_dev->data->tx_queue_state[tx_queue_id] =
1012                        RTE_ETH_QUEUE_STATE_STOPPED;
1013                DP_INFO(edev, "TX queue %u stopped\n", tx_queue_id);
1014        } else {
1015                DP_ERR(edev, "TX queue %u is not in range\n", tx_queue_id);
1016                rc = -EINVAL;
1017        }
1018
1019        return rc;
1020}
1021
1022int qede_start_queues(struct rte_eth_dev *eth_dev)
1023{
1024        struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
1025        uint8_t id;
1026        int rc = -1;
1027
1028        for (id = 0; id < qdev->num_rx_queues; id++) {
1029                rc = qede_rx_queue_start(eth_dev, id);
1030                if (rc != ECORE_SUCCESS)
1031                        return -1;
1032        }
1033
1034        for (id = 0; id < qdev->num_tx_queues; id++) {
1035                rc = qede_tx_queue_start(eth_dev, id);
1036                if (rc != ECORE_SUCCESS)
1037                        return -1;
1038        }
1039
1040        return rc;
1041}
1042
1043void qede_stop_queues(struct rte_eth_dev *eth_dev)
1044{
1045        struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
1046        uint8_t id;
1047
1048        /* Stopping RX/TX queues */
1049        for (id = 0; id < qdev->num_tx_queues; id++)
1050                qede_tx_queue_stop(eth_dev, id);
1051
1052        for (id = 0; id < qdev->num_rx_queues; id++)
1053                qede_rx_queue_stop(eth_dev, id);
1054}
1055
1056static inline bool qede_tunn_exist(uint16_t flag)
1057{
1058        return !!((PARSING_AND_ERR_FLAGS_TUNNELEXIST_MASK <<
1059                    PARSING_AND_ERR_FLAGS_TUNNELEXIST_SHIFT) & flag);
1060}
1061
1062static inline uint8_t qede_check_tunn_csum_l3(uint16_t flag)
1063{
1064        return !!((PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_MASK <<
1065                PARSING_AND_ERR_FLAGS_TUNNELIPHDRERROR_SHIFT) & flag);
1066}
1067
1068/*
1069 * qede_check_tunn_csum_l4:
1070 * Returns:
1071 * 1 : If L4 csum is enabled AND if the validation has failed.
1072 * 0 : Otherwise
1073 */
1074static inline uint8_t qede_check_tunn_csum_l4(uint16_t flag)
1075{
1076        if ((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_MASK <<
1077             PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMWASCALCULATED_SHIFT) & flag)
1078                return !!((PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_MASK <<
1079                        PARSING_AND_ERR_FLAGS_TUNNELL4CHKSMERROR_SHIFT) & flag);
1080
1081        return 0;
1082}
1083
1084static inline uint8_t qede_check_notunn_csum_l4(uint16_t flag)
1085{
1086        if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1087             PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag)
1088                return !!((PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1089                           PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT) & flag);
1090
1091        return 0;
1092}
1093
1094/* Returns outer L2, L3 and L4 packet_type for tunneled packets */
1095static inline uint32_t qede_rx_cqe_to_pkt_type_outer(struct rte_mbuf *m)
1096{
1097        uint32_t packet_type = RTE_PTYPE_UNKNOWN;
1098        struct rte_ether_hdr *eth_hdr;
1099        struct rte_ipv4_hdr *ipv4_hdr;
1100        struct rte_ipv6_hdr *ipv6_hdr;
1101        struct rte_vlan_hdr *vlan_hdr;
1102        uint16_t ethertype;
1103        bool vlan_tagged = 0;
1104        uint16_t len;
1105
1106        eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
1107        len = sizeof(struct rte_ether_hdr);
1108        ethertype = rte_cpu_to_be_16(eth_hdr->ether_type);
1109
1110         /* Note: Valid only if VLAN stripping is disabled */
1111        if (ethertype == RTE_ETHER_TYPE_VLAN) {
1112                vlan_tagged = 1;
1113                vlan_hdr = (struct rte_vlan_hdr *)(eth_hdr + 1);
1114                len += sizeof(struct rte_vlan_hdr);
1115                ethertype = rte_cpu_to_be_16(vlan_hdr->eth_proto);
1116        }
1117
1118        if (ethertype == RTE_ETHER_TYPE_IPV4) {
1119                packet_type |= RTE_PTYPE_L3_IPV4;
1120                ipv4_hdr = rte_pktmbuf_mtod_offset(m,
1121                                        struct rte_ipv4_hdr *, len);
1122                if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
1123                        packet_type |= RTE_PTYPE_L4_TCP;
1124                else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
1125                        packet_type |= RTE_PTYPE_L4_UDP;
1126        } else if (ethertype == RTE_ETHER_TYPE_IPV6) {
1127                packet_type |= RTE_PTYPE_L3_IPV6;
1128                ipv6_hdr = rte_pktmbuf_mtod_offset(m,
1129                                                struct rte_ipv6_hdr *, len);
1130                if (ipv6_hdr->proto == IPPROTO_TCP)
1131                        packet_type |= RTE_PTYPE_L4_TCP;
1132                else if (ipv6_hdr->proto == IPPROTO_UDP)
1133                        packet_type |= RTE_PTYPE_L4_UDP;
1134        }
1135
1136        if (vlan_tagged)
1137                packet_type |= RTE_PTYPE_L2_ETHER_VLAN;
1138        else
1139                packet_type |= RTE_PTYPE_L2_ETHER;
1140
1141        return packet_type;
1142}
1143
1144static inline uint32_t qede_rx_cqe_to_pkt_type_inner(uint16_t flags)
1145{
1146        uint16_t val;
1147
1148        /* Lookup table */
1149        static const uint32_t
1150        ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
1151                [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_INNER_L3_IPV4          |
1152                                       RTE_PTYPE_INNER_L2_ETHER,
1153                [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_INNER_L3_IPV6          |
1154                                       RTE_PTYPE_INNER_L2_ETHER,
1155                [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_INNER_L3_IPV4      |
1156                                           RTE_PTYPE_INNER_L4_TCP       |
1157                                           RTE_PTYPE_INNER_L2_ETHER,
1158                [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_INNER_L3_IPV6      |
1159                                           RTE_PTYPE_INNER_L4_TCP       |
1160                                           RTE_PTYPE_INNER_L2_ETHER,
1161                [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_INNER_L3_IPV4      |
1162                                           RTE_PTYPE_INNER_L4_UDP       |
1163                                           RTE_PTYPE_INNER_L2_ETHER,
1164                [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_INNER_L3_IPV6      |
1165                                           RTE_PTYPE_INNER_L4_UDP       |
1166                                           RTE_PTYPE_INNER_L2_ETHER,
1167                /* Frags with no VLAN */
1168                [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_INNER_L3_IPV4     |
1169                                            RTE_PTYPE_INNER_L4_FRAG     |
1170                                            RTE_PTYPE_INNER_L2_ETHER,
1171                [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_INNER_L3_IPV6     |
1172                                            RTE_PTYPE_INNER_L4_FRAG     |
1173                                            RTE_PTYPE_INNER_L2_ETHER,
1174                /* VLANs */
1175                [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_INNER_L3_IPV4     |
1176                                            RTE_PTYPE_INNER_L2_ETHER_VLAN,
1177                [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_INNER_L3_IPV6     |
1178                                            RTE_PTYPE_INNER_L2_ETHER_VLAN,
1179                [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
1180                                                RTE_PTYPE_INNER_L4_TCP  |
1181                                                RTE_PTYPE_INNER_L2_ETHER_VLAN,
1182                [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
1183                                                RTE_PTYPE_INNER_L4_TCP  |
1184                                                RTE_PTYPE_INNER_L2_ETHER_VLAN,
1185                [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV4 |
1186                                                RTE_PTYPE_INNER_L4_UDP  |
1187                                                RTE_PTYPE_INNER_L2_ETHER_VLAN,
1188                [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_INNER_L3_IPV6 |
1189                                                RTE_PTYPE_INNER_L4_UDP  |
1190                                                RTE_PTYPE_INNER_L2_ETHER_VLAN,
1191                /* Frags with VLAN */
1192                [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV4 |
1193                                                 RTE_PTYPE_INNER_L4_FRAG |
1194                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1195                [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_INNER_L3_IPV6 |
1196                                                 RTE_PTYPE_INNER_L4_FRAG |
1197                                                 RTE_PTYPE_INNER_L2_ETHER_VLAN,
1198        };
1199
1200        /* Bits (0..3) provides L3/L4 protocol type */
1201        /* Bits (4,5) provides frag and VLAN info */
1202        val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1203               PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1204               (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1205                PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1206               (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1207                PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1208                (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1209                 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1210
1211        if (val < QEDE_PKT_TYPE_MAX)
1212                return ptype_lkup_tbl[val];
1213
1214        return RTE_PTYPE_UNKNOWN;
1215}
1216
1217static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
1218{
1219        uint16_t val;
1220
1221        /* Lookup table */
1222        static const uint32_t
1223        ptype_lkup_tbl[QEDE_PKT_TYPE_MAX] __rte_cache_aligned = {
1224                [QEDE_PKT_TYPE_IPV4] = RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L2_ETHER,
1225                [QEDE_PKT_TYPE_IPV6] = RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L2_ETHER,
1226                [QEDE_PKT_TYPE_IPV4_TCP] = RTE_PTYPE_L3_IPV4    |
1227                                           RTE_PTYPE_L4_TCP     |
1228                                           RTE_PTYPE_L2_ETHER,
1229                [QEDE_PKT_TYPE_IPV6_TCP] = RTE_PTYPE_L3_IPV6    |
1230                                           RTE_PTYPE_L4_TCP     |
1231                                           RTE_PTYPE_L2_ETHER,
1232                [QEDE_PKT_TYPE_IPV4_UDP] = RTE_PTYPE_L3_IPV4    |
1233                                           RTE_PTYPE_L4_UDP     |
1234                                           RTE_PTYPE_L2_ETHER,
1235                [QEDE_PKT_TYPE_IPV6_UDP] = RTE_PTYPE_L3_IPV6    |
1236                                           RTE_PTYPE_L4_UDP     |
1237                                           RTE_PTYPE_L2_ETHER,
1238                /* Frags with no VLAN */
1239                [QEDE_PKT_TYPE_IPV4_FRAG] = RTE_PTYPE_L3_IPV4   |
1240                                            RTE_PTYPE_L4_FRAG   |
1241                                            RTE_PTYPE_L2_ETHER,
1242                [QEDE_PKT_TYPE_IPV6_FRAG] = RTE_PTYPE_L3_IPV6   |
1243                                            RTE_PTYPE_L4_FRAG   |
1244                                            RTE_PTYPE_L2_ETHER,
1245                /* VLANs */
1246                [QEDE_PKT_TYPE_IPV4_VLAN] = RTE_PTYPE_L3_IPV4           |
1247                                            RTE_PTYPE_L2_ETHER_VLAN,
1248                [QEDE_PKT_TYPE_IPV6_VLAN] = RTE_PTYPE_L3_IPV6           |
1249                                            RTE_PTYPE_L2_ETHER_VLAN,
1250                [QEDE_PKT_TYPE_IPV4_TCP_VLAN] = RTE_PTYPE_L3_IPV4       |
1251                                                RTE_PTYPE_L4_TCP        |
1252                                                RTE_PTYPE_L2_ETHER_VLAN,
1253                [QEDE_PKT_TYPE_IPV6_TCP_VLAN] = RTE_PTYPE_L3_IPV6       |
1254                                                RTE_PTYPE_L4_TCP        |
1255                                                RTE_PTYPE_L2_ETHER_VLAN,
1256                [QEDE_PKT_TYPE_IPV4_UDP_VLAN] = RTE_PTYPE_L3_IPV4       |
1257                                                RTE_PTYPE_L4_UDP        |
1258                                                RTE_PTYPE_L2_ETHER_VLAN,
1259                [QEDE_PKT_TYPE_IPV6_UDP_VLAN] = RTE_PTYPE_L3_IPV6       |
1260                                                RTE_PTYPE_L4_UDP        |
1261                                                RTE_PTYPE_L2_ETHER_VLAN,
1262                /* Frags with VLAN */
1263                [QEDE_PKT_TYPE_IPV4_VLAN_FRAG] = RTE_PTYPE_L3_IPV4      |
1264                                                 RTE_PTYPE_L4_FRAG      |
1265                                                 RTE_PTYPE_L2_ETHER_VLAN,
1266                [QEDE_PKT_TYPE_IPV6_VLAN_FRAG] = RTE_PTYPE_L3_IPV6      |
1267                                                 RTE_PTYPE_L4_FRAG      |
1268                                                 RTE_PTYPE_L2_ETHER_VLAN,
1269        };
1270
1271        /* Bits (0..3) provides L3/L4 protocol type */
1272        /* Bits (4,5) provides frag and VLAN info */
1273        val = ((PARSING_AND_ERR_FLAGS_L3TYPE_MASK <<
1274               PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) |
1275               (PARSING_AND_ERR_FLAGS_L4PROTOCOL_MASK <<
1276                PARSING_AND_ERR_FLAGS_L4PROTOCOL_SHIFT) |
1277               (PARSING_AND_ERR_FLAGS_IPV4FRAG_MASK <<
1278                PARSING_AND_ERR_FLAGS_IPV4FRAG_SHIFT) |
1279                (PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK <<
1280                 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT)) & flags;
1281
1282        if (val < QEDE_PKT_TYPE_MAX)
1283                return ptype_lkup_tbl[val];
1284
1285        return RTE_PTYPE_UNKNOWN;
1286}
1287
1288static inline uint8_t
1289qede_check_notunn_csum_l3(struct rte_mbuf *m, uint16_t flag)
1290{
1291        struct rte_ipv4_hdr *ip;
1292        uint16_t pkt_csum;
1293        uint16_t calc_csum;
1294        uint16_t val;
1295
1296        val = ((PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1297                PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT) & flag);
1298
1299        if (unlikely(val)) {
1300                m->packet_type = qede_rx_cqe_to_pkt_type(flag);
1301                if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
1302                        ip = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
1303                                           sizeof(struct rte_ether_hdr));
1304                        pkt_csum = ip->hdr_checksum;
1305                        ip->hdr_checksum = 0;
1306                        calc_csum = rte_ipv4_cksum(ip);
1307                        ip->hdr_checksum = pkt_csum;
1308                        return (calc_csum != pkt_csum);
1309                } else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
1310                        return 1;
1311                }
1312        }
1313        return 0;
1314}
1315
1316static inline void qede_rx_bd_ring_consume(struct qede_rx_queue *rxq)
1317{
1318        ecore_chain_consume(&rxq->rx_bd_ring);
1319        rxq->sw_rx_cons++;
1320}
1321
1322static inline void
1323qede_reuse_page(__rte_unused struct qede_dev *qdev,
1324                struct qede_rx_queue *rxq, struct rte_mbuf *curr_cons)
1325{
1326        struct eth_rx_bd *rx_bd_prod = ecore_chain_produce(&rxq->rx_bd_ring);
1327        uint16_t idx = rxq->sw_rx_prod & NUM_RX_BDS(rxq);
1328        dma_addr_t new_mapping;
1329
1330        rxq->sw_rx_ring[idx] = curr_cons;
1331
1332        new_mapping = rte_mbuf_data_iova_default(curr_cons);
1333
1334        rx_bd_prod->addr.hi = rte_cpu_to_le_32(U64_HI(new_mapping));
1335        rx_bd_prod->addr.lo = rte_cpu_to_le_32(U64_LO(new_mapping));
1336
1337        rxq->sw_rx_prod++;
1338}
1339
1340static inline void
1341qede_recycle_rx_bd_ring(struct qede_rx_queue *rxq,
1342                        struct qede_dev *qdev, uint8_t count)
1343{
1344        struct rte_mbuf *curr_cons;
1345
1346        for (; count > 0; count--) {
1347                curr_cons = rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS(rxq)];
1348                qede_reuse_page(qdev, rxq, curr_cons);
1349                qede_rx_bd_ring_consume(rxq);
1350        }
1351}
1352
1353static inline void
1354qede_rx_process_tpa_cmn_cont_end_cqe(__rte_unused struct qede_dev *qdev,
1355                                     struct qede_rx_queue *rxq,
1356                                     uint8_t agg_index, uint16_t len)
1357{
1358        struct qede_agg_info *tpa_info;
1359        struct rte_mbuf *curr_frag; /* Pointer to currently filled TPA seg */
1360        uint16_t cons_idx;
1361
1362        /* Under certain conditions it is possible that FW may not consume
1363         * additional or new BD. So decision to consume the BD must be made
1364         * based on len_list[0].
1365         */
1366        if (rte_le_to_cpu_16(len)) {
1367                tpa_info = &rxq->tpa_info[agg_index];
1368                cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1369                curr_frag = rxq->sw_rx_ring[cons_idx];
1370                assert(curr_frag);
1371                curr_frag->nb_segs = 1;
1372                curr_frag->pkt_len = rte_le_to_cpu_16(len);
1373                curr_frag->data_len = curr_frag->pkt_len;
1374                tpa_info->tpa_tail->next = curr_frag;
1375                tpa_info->tpa_tail = curr_frag;
1376                qede_rx_bd_ring_consume(rxq);
1377                if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
1378                        PMD_RX_LOG(ERR, rxq, "mbuf allocation fails\n");
1379                        rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1380                        rxq->rx_alloc_errors++;
1381                }
1382        }
1383}
1384
1385static inline void
1386qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
1387                             struct qede_rx_queue *rxq,
1388                             struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1389{
1390        PMD_RX_LOG(INFO, rxq, "TPA cont[%d] - len [%d]\n",
1391                   cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]));
1392        /* only len_list[0] will have value */
1393        qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1394                                             cqe->len_list[0]);
1395}
1396
1397static inline void
1398qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
1399                            struct qede_rx_queue *rxq,
1400                            struct eth_fast_path_rx_tpa_end_cqe *cqe)
1401{
1402        struct rte_mbuf *rx_mb; /* Pointer to head of the chained agg */
1403
1404        qede_rx_process_tpa_cmn_cont_end_cqe(qdev, rxq, cqe->tpa_agg_index,
1405                                             cqe->len_list[0]);
1406        /* Update total length and frags based on end TPA */
1407        rx_mb = rxq->tpa_info[cqe->tpa_agg_index].tpa_head;
1408        /* TODO:  Add Sanity Checks */
1409        rx_mb->nb_segs = cqe->num_of_bds;
1410        rx_mb->pkt_len = cqe->total_packet_len;
1411
1412        PMD_RX_LOG(INFO, rxq, "TPA End[%d] reason %d cqe_len %d nb_segs %d"
1413                   " pkt_len %d\n", cqe->tpa_agg_index, cqe->end_reason,
1414                   rte_le_to_cpu_16(cqe->len_list[0]), rx_mb->nb_segs,
1415                   rx_mb->pkt_len);
1416}
1417
1418static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
1419{
1420        uint32_t val;
1421
1422        /* Lookup table */
1423        static const uint32_t
1424        ptype_tunn_lkup_tbl[QEDE_PKT_TYPE_TUNN_MAX_TYPE] __rte_cache_aligned = {
1425                [QEDE_PKT_TYPE_UNKNOWN] = RTE_PTYPE_UNKNOWN,
1426                [QEDE_PKT_TYPE_TUNN_GENEVE] = RTE_PTYPE_TUNNEL_GENEVE,
1427                [QEDE_PKT_TYPE_TUNN_GRE] = RTE_PTYPE_TUNNEL_GRE,
1428                [QEDE_PKT_TYPE_TUNN_VXLAN] = RTE_PTYPE_TUNNEL_VXLAN,
1429                [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GENEVE] =
1430                                RTE_PTYPE_TUNNEL_GENEVE,
1431                [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_GRE] =
1432                                RTE_PTYPE_TUNNEL_GRE,
1433                [QEDE_PKT_TYPE_TUNN_L2_TENID_NOEXIST_VXLAN] =
1434                                RTE_PTYPE_TUNNEL_VXLAN,
1435                [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GENEVE] =
1436                                RTE_PTYPE_TUNNEL_GENEVE,
1437                [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_GRE] =
1438                                RTE_PTYPE_TUNNEL_GRE,
1439                [QEDE_PKT_TYPE_TUNN_L2_TENID_EXIST_VXLAN] =
1440                                RTE_PTYPE_TUNNEL_VXLAN,
1441                [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GENEVE] =
1442                                RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1443                [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_GRE] =
1444                                RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1445                [QEDE_PKT_TYPE_TUNN_IPV4_TENID_NOEXIST_VXLAN] =
1446                                RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1447                [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GENEVE] =
1448                                RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV4,
1449                [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_GRE] =
1450                                RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV4,
1451                [QEDE_PKT_TYPE_TUNN_IPV4_TENID_EXIST_VXLAN] =
1452                                RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV4,
1453                [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GENEVE] =
1454                                RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1455                [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_GRE] =
1456                                RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1457                [QEDE_PKT_TYPE_TUNN_IPV6_TENID_NOEXIST_VXLAN] =
1458                                RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1459                [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GENEVE] =
1460                                RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L3_IPV6,
1461                [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_GRE] =
1462                                RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_L3_IPV6,
1463                [QEDE_PKT_TYPE_TUNN_IPV6_TENID_EXIST_VXLAN] =
1464                                RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L3_IPV6,
1465        };
1466
1467        /* Cover bits[4-0] to include tunn_type and next protocol */
1468        val = ((ETH_TUNNEL_PARSING_FLAGS_TYPE_MASK <<
1469                ETH_TUNNEL_PARSING_FLAGS_TYPE_SHIFT) |
1470                (ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_MASK <<
1471                ETH_TUNNEL_PARSING_FLAGS_NEXT_PROTOCOL_SHIFT)) & flags;
1472
1473        if (val < QEDE_PKT_TYPE_TUNN_MAX_TYPE)
1474                return ptype_tunn_lkup_tbl[val];
1475        else
1476                return RTE_PTYPE_UNKNOWN;
1477}
1478
1479static inline int
1480qede_process_sg_pkts(void *p_rxq,  struct rte_mbuf *rx_mb,
1481                     uint8_t num_segs, uint16_t pkt_len)
1482{
1483        struct qede_rx_queue *rxq = p_rxq;
1484        struct qede_dev *qdev = rxq->qdev;
1485        register struct rte_mbuf *seg1 = NULL;
1486        register struct rte_mbuf *seg2 = NULL;
1487        uint16_t sw_rx_index;
1488        uint16_t cur_size;
1489
1490        seg1 = rx_mb;
1491        while (num_segs) {
1492                cur_size = pkt_len > rxq->rx_buf_size ? rxq->rx_buf_size :
1493                                                        pkt_len;
1494                if (unlikely(!cur_size)) {
1495                        PMD_RX_LOG(ERR, rxq, "Length is 0 while %u BDs"
1496                                   " left for mapping jumbo\n", num_segs);
1497                        qede_recycle_rx_bd_ring(rxq, qdev, num_segs);
1498                        return -EINVAL;
1499                }
1500                sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1501                seg2 = rxq->sw_rx_ring[sw_rx_index];
1502                qede_rx_bd_ring_consume(rxq);
1503                pkt_len -= cur_size;
1504                seg2->data_len = cur_size;
1505                seg1->next = seg2;
1506                seg1 = seg1->next;
1507                num_segs--;
1508                rxq->rx_segs++;
1509        }
1510
1511        return 0;
1512}
1513
1514#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1515static inline void
1516print_rx_bd_info(struct rte_mbuf *m, struct qede_rx_queue *rxq,
1517                 uint8_t bitfield)
1518{
1519        PMD_RX_LOG(INFO, rxq,
1520                "len 0x%04x bf 0x%04x hash_val 0x%x"
1521                " ol_flags 0x%04lx l2=%s l3=%s l4=%s tunn=%s"
1522                " inner_l2=%s inner_l3=%s inner_l4=%s\n",
1523                m->data_len, bitfield, m->hash.rss,
1524                (unsigned long)m->ol_flags,
1525                rte_get_ptype_l2_name(m->packet_type),
1526                rte_get_ptype_l3_name(m->packet_type),
1527                rte_get_ptype_l4_name(m->packet_type),
1528                rte_get_ptype_tunnel_name(m->packet_type),
1529                rte_get_ptype_inner_l2_name(m->packet_type),
1530                rte_get_ptype_inner_l3_name(m->packet_type),
1531                rte_get_ptype_inner_l4_name(m->packet_type));
1532}
1533#endif
1534
1535uint16_t
1536qede_recv_pkts_regular(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1537{
1538        struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
1539        register struct rte_mbuf *rx_mb = NULL;
1540        struct qede_rx_queue *rxq = p_rxq;
1541        struct qede_dev *qdev = rxq->qdev;
1542        struct ecore_dev *edev = &qdev->edev;
1543        union eth_rx_cqe *cqe;
1544        uint64_t ol_flags;
1545        enum eth_rx_cqe_type cqe_type;
1546        int rss_enable = qdev->rss_enable;
1547        int rx_alloc_count = 0;
1548        uint32_t packet_type;
1549        uint32_t rss_hash;
1550        uint16_t vlan_tci, port_id;
1551        uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index, num_rx_bds;
1552        uint16_t rx_pkt = 0;
1553        uint16_t pkt_len = 0;
1554        uint16_t len; /* Length of first BD */
1555        uint16_t preload_idx;
1556        uint16_t parse_flag;
1557#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1558        uint8_t bitfield_val;
1559#endif
1560        uint8_t offset, flags, bd_num;
1561
1562
1563        /* Allocate buffers that we used in previous loop */
1564        if (rxq->rx_alloc_count) {
1565                if (unlikely(qede_alloc_rx_bulk_mbufs(rxq,
1566                             rxq->rx_alloc_count))) {
1567                        struct rte_eth_dev *dev;
1568
1569                        PMD_RX_LOG(ERR, rxq,
1570                                   "New buffer allocation failed,"
1571                                   "dropping incoming packetn");
1572                        dev = &rte_eth_devices[rxq->port_id];
1573                        dev->data->rx_mbuf_alloc_failed +=
1574                                                        rxq->rx_alloc_count;
1575                        rxq->rx_alloc_errors += rxq->rx_alloc_count;
1576                        return 0;
1577                }
1578                qede_update_rx_prod(qdev, rxq);
1579                rxq->rx_alloc_count = 0;
1580        }
1581
1582        hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
1583        sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1584
1585        rte_rmb();
1586
1587        if (hw_comp_cons == sw_comp_cons)
1588                return 0;
1589
1590        num_rx_bds =  NUM_RX_BDS(rxq);
1591        port_id = rxq->port_id;
1592
1593        while (sw_comp_cons != hw_comp_cons) {
1594                ol_flags = 0;
1595                packet_type = RTE_PTYPE_UNKNOWN;
1596                vlan_tci = 0;
1597                rss_hash = 0;
1598
1599                /* Get the CQE from the completion ring */
1600                cqe =
1601                    (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
1602                cqe_type = cqe->fast_path_regular.type;
1603                PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
1604
1605                if (likely(cqe_type == ETH_RX_CQE_TYPE_REGULAR)) {
1606                        fp_cqe = &cqe->fast_path_regular;
1607                } else {
1608                        if (cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH) {
1609                                PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
1610                                ecore_eth_cqe_completion
1611                                        (&edev->hwfns[rxq->queue_id %
1612                                                      edev->num_hwfns],
1613                                         (struct eth_slow_path_rx_cqe *)cqe);
1614                        }
1615                        goto next_cqe;
1616                }
1617
1618                /* Get the data from the SW ring */
1619                sw_rx_index = rxq->sw_rx_cons & num_rx_bds;
1620                rx_mb = rxq->sw_rx_ring[sw_rx_index];
1621                assert(rx_mb != NULL);
1622
1623                parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
1624                offset = fp_cqe->placement_offset;
1625                len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
1626                pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
1627                vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1628                rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
1629                bd_num = fp_cqe->bd_num;
1630#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1631                bitfield_val = fp_cqe->bitfields;
1632#endif
1633
1634                if (unlikely(qede_tunn_exist(parse_flag))) {
1635                        PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
1636                        if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
1637                                PMD_RX_LOG(ERR, rxq,
1638                                            "L4 csum failed, flags = 0x%x\n",
1639                                            parse_flag);
1640                                rxq->rx_hw_errors++;
1641                                ol_flags |= PKT_RX_L4_CKSUM_BAD;
1642                        } else {
1643                                ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1644                        }
1645
1646                        if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
1647                                PMD_RX_LOG(ERR, rxq,
1648                                        "Outer L3 csum failed, flags = 0x%x\n",
1649                                        parse_flag);
1650                                rxq->rx_hw_errors++;
1651                                ol_flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
1652                        } else {
1653                                ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1654                        }
1655
1656                        flags = fp_cqe->tunnel_pars_flags.flags;
1657
1658                        /* Tunnel_type */
1659                        packet_type =
1660                                qede_rx_cqe_to_tunn_pkt_type(flags);
1661
1662                        /* Inner header */
1663                        packet_type |=
1664                              qede_rx_cqe_to_pkt_type_inner(parse_flag);
1665
1666                        /* Outer L3/L4 types is not available in CQE */
1667                        packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1668
1669                        /* Outer L3/L4 types is not available in CQE.
1670                         * Need to add offset to parse correctly,
1671                         */
1672                        rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1673                        packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1674                } else {
1675                        packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
1676                }
1677
1678                /* Common handling for non-tunnel packets and for inner
1679                 * headers in the case of tunnel.
1680                 */
1681                if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
1682                        PMD_RX_LOG(ERR, rxq,
1683                                    "L4 csum failed, flags = 0x%x\n",
1684                                    parse_flag);
1685                        rxq->rx_hw_errors++;
1686                        ol_flags |= PKT_RX_L4_CKSUM_BAD;
1687                } else {
1688                        ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1689                }
1690                if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
1691                        PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
1692                                   parse_flag);
1693                        rxq->rx_hw_errors++;
1694                        ol_flags |= PKT_RX_IP_CKSUM_BAD;
1695                } else {
1696                        ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1697                }
1698
1699                if (unlikely(CQE_HAS_VLAN(parse_flag) ||
1700                             CQE_HAS_OUTER_VLAN(parse_flag))) {
1701                        /* Note: FW doesn't indicate Q-in-Q packet */
1702                        ol_flags |= PKT_RX_VLAN;
1703                        if (qdev->vlan_strip_flg) {
1704                                ol_flags |= PKT_RX_VLAN_STRIPPED;
1705                                rx_mb->vlan_tci = vlan_tci;
1706                        }
1707                }
1708
1709                if (rss_enable) {
1710                        ol_flags |= PKT_RX_RSS_HASH;
1711                        rx_mb->hash.rss = rss_hash;
1712                }
1713
1714                rx_alloc_count++;
1715                qede_rx_bd_ring_consume(rxq);
1716
1717                /* Prefetch next mbuf while processing current one. */
1718                preload_idx = rxq->sw_rx_cons & num_rx_bds;
1719                rte_prefetch0(rxq->sw_rx_ring[preload_idx]);
1720
1721                /* Update rest of the MBUF fields */
1722                rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1723                rx_mb->port = port_id;
1724                rx_mb->ol_flags = ol_flags;
1725                rx_mb->data_len = len;
1726                rx_mb->packet_type = packet_type;
1727#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1728                print_rx_bd_info(rx_mb, rxq, bitfield_val);
1729#endif
1730                rx_mb->nb_segs = bd_num;
1731                rx_mb->pkt_len = pkt_len;
1732
1733                rx_pkts[rx_pkt] = rx_mb;
1734                rx_pkt++;
1735
1736next_cqe:
1737                ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
1738                sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1739                if (rx_pkt == nb_pkts) {
1740                        PMD_RX_LOG(DEBUG, rxq,
1741                                   "Budget reached nb_pkts=%u received=%u",
1742                                   rx_pkt, nb_pkts);
1743                        break;
1744                }
1745        }
1746
1747        /* Request number of bufferes to be allocated in next loop */
1748        rxq->rx_alloc_count = rx_alloc_count;
1749
1750        rxq->rcv_pkts += rx_pkt;
1751        rxq->rx_segs += rx_pkt;
1752        PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
1753
1754        return rx_pkt;
1755}
1756
1757uint16_t
1758qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
1759{
1760        struct qede_rx_queue *rxq = p_rxq;
1761        struct qede_dev *qdev = rxq->qdev;
1762        struct ecore_dev *edev = &qdev->edev;
1763        uint16_t hw_comp_cons, sw_comp_cons, sw_rx_index;
1764        uint16_t rx_pkt = 0;
1765        union eth_rx_cqe *cqe;
1766        struct eth_fast_path_rx_reg_cqe *fp_cqe = NULL;
1767        register struct rte_mbuf *rx_mb = NULL;
1768        register struct rte_mbuf *seg1 = NULL;
1769        enum eth_rx_cqe_type cqe_type;
1770        uint16_t pkt_len = 0; /* Sum of all BD segments */
1771        uint16_t len; /* Length of first BD */
1772        uint8_t num_segs = 1;
1773        uint16_t preload_idx;
1774        uint16_t parse_flag;
1775#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1776        uint8_t bitfield_val;
1777#endif
1778        uint8_t tunn_parse_flag;
1779        struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
1780        uint64_t ol_flags;
1781        uint32_t packet_type;
1782        uint16_t vlan_tci;
1783        bool tpa_start_flg;
1784        uint8_t offset, tpa_agg_idx, flags;
1785        struct qede_agg_info *tpa_info = NULL;
1786        uint32_t rss_hash;
1787        int rx_alloc_count = 0;
1788
1789
1790        /* Allocate buffers that we used in previous loop */
1791        if (rxq->rx_alloc_count) {
1792                if (unlikely(qede_alloc_rx_bulk_mbufs(rxq,
1793                             rxq->rx_alloc_count))) {
1794                        struct rte_eth_dev *dev;
1795
1796                        PMD_RX_LOG(ERR, rxq,
1797                                   "New buffer allocation failed,"
1798                                   "dropping incoming packetn");
1799                        dev = &rte_eth_devices[rxq->port_id];
1800                        dev->data->rx_mbuf_alloc_failed +=
1801                                                        rxq->rx_alloc_count;
1802                        rxq->rx_alloc_errors += rxq->rx_alloc_count;
1803                        return 0;
1804                }
1805                qede_update_rx_prod(qdev, rxq);
1806                rxq->rx_alloc_count = 0;
1807        }
1808
1809        hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
1810        sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
1811
1812        rte_rmb();
1813
1814        if (hw_comp_cons == sw_comp_cons)
1815                return 0;
1816
1817        while (sw_comp_cons != hw_comp_cons) {
1818                ol_flags = 0;
1819                packet_type = RTE_PTYPE_UNKNOWN;
1820                vlan_tci = 0;
1821                tpa_start_flg = false;
1822                rss_hash = 0;
1823
1824                /* Get the CQE from the completion ring */
1825                cqe =
1826                    (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
1827                cqe_type = cqe->fast_path_regular.type;
1828                PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
1829
1830                switch (cqe_type) {
1831                case ETH_RX_CQE_TYPE_REGULAR:
1832                        fp_cqe = &cqe->fast_path_regular;
1833                break;
1834                case ETH_RX_CQE_TYPE_TPA_START:
1835                        cqe_start_tpa = &cqe->fast_path_tpa_start;
1836                        tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
1837                        tpa_start_flg = true;
1838                        /* Mark it as LRO packet */
1839                        ol_flags |= PKT_RX_LRO;
1840                        /* In split mode,  seg_len is same as len_on_first_bd
1841                         * and bw_ext_bd_len_list will be empty since there are
1842                         * no additional buffers
1843                         */
1844                        PMD_RX_LOG(INFO, rxq,
1845                         "TPA start[%d] - len_on_first_bd %d header %d"
1846                         " [bd_list[0] %d], [seg_len %d]\n",
1847                         cqe_start_tpa->tpa_agg_index,
1848                         rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
1849                         cqe_start_tpa->header_len,
1850                         rte_le_to_cpu_16(cqe_start_tpa->bw_ext_bd_len_list[0]),
1851                         rte_le_to_cpu_16(cqe_start_tpa->seg_len));
1852
1853                break;
1854                case ETH_RX_CQE_TYPE_TPA_CONT:
1855                        qede_rx_process_tpa_cont_cqe(qdev, rxq,
1856                                                     &cqe->fast_path_tpa_cont);
1857                        goto next_cqe;
1858                case ETH_RX_CQE_TYPE_TPA_END:
1859                        qede_rx_process_tpa_end_cqe(qdev, rxq,
1860                                                    &cqe->fast_path_tpa_end);
1861                        tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
1862                        tpa_info = &rxq->tpa_info[tpa_agg_idx];
1863                        rx_mb = rxq->tpa_info[tpa_agg_idx].tpa_head;
1864                        goto tpa_end;
1865                case ETH_RX_CQE_TYPE_SLOW_PATH:
1866                        PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
1867                        ecore_eth_cqe_completion(
1868                                &edev->hwfns[rxq->queue_id % edev->num_hwfns],
1869                                (struct eth_slow_path_rx_cqe *)cqe);
1870                        /* fall-thru */
1871                default:
1872                        goto next_cqe;
1873                }
1874
1875                /* Get the data from the SW ring */
1876                sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
1877                rx_mb = rxq->sw_rx_ring[sw_rx_index];
1878                assert(rx_mb != NULL);
1879
1880                /* Handle regular CQE or TPA start CQE */
1881                if (!tpa_start_flg) {
1882                        parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
1883                        offset = fp_cqe->placement_offset;
1884                        len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
1885                        pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
1886                        vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
1887                        rss_hash = rte_le_to_cpu_32(fp_cqe->rss_hash);
1888#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1889                        bitfield_val = fp_cqe->bitfields;
1890#endif
1891                } else {
1892                        parse_flag =
1893                            rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
1894                        offset = cqe_start_tpa->placement_offset;
1895                        /* seg_len = len_on_first_bd */
1896                        len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
1897                        vlan_tci = rte_le_to_cpu_16(cqe_start_tpa->vlan_tag);
1898#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
1899                        bitfield_val = cqe_start_tpa->bitfields;
1900#endif
1901                        rss_hash = rte_le_to_cpu_32(cqe_start_tpa->rss_hash);
1902                }
1903                if (qede_tunn_exist(parse_flag)) {
1904                        PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
1905                        if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
1906                                PMD_RX_LOG(ERR, rxq,
1907                                            "L4 csum failed, flags = 0x%x\n",
1908                                            parse_flag);
1909                                rxq->rx_hw_errors++;
1910                                ol_flags |= PKT_RX_L4_CKSUM_BAD;
1911                        } else {
1912                                ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1913                        }
1914
1915                        if (unlikely(qede_check_tunn_csum_l3(parse_flag))) {
1916                                PMD_RX_LOG(ERR, rxq,
1917                                        "Outer L3 csum failed, flags = 0x%x\n",
1918                                        parse_flag);
1919                                  rxq->rx_hw_errors++;
1920                                  ol_flags |= PKT_RX_OUTER_IP_CKSUM_BAD;
1921                        } else {
1922                                  ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1923                        }
1924
1925                        if (tpa_start_flg)
1926                                flags = cqe_start_tpa->tunnel_pars_flags.flags;
1927                        else
1928                                flags = fp_cqe->tunnel_pars_flags.flags;
1929                        tunn_parse_flag = flags;
1930
1931                        /* Tunnel_type */
1932                        packet_type =
1933                                qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);
1934
1935                        /* Inner header */
1936                        packet_type |=
1937                              qede_rx_cqe_to_pkt_type_inner(parse_flag);
1938
1939                        /* Outer L3/L4 types is not available in CQE */
1940                        packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1941
1942                        /* Outer L3/L4 types is not available in CQE.
1943                         * Need to add offset to parse correctly,
1944                         */
1945                        rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
1946                        packet_type |= qede_rx_cqe_to_pkt_type_outer(rx_mb);
1947                } else {
1948                        packet_type |= qede_rx_cqe_to_pkt_type(parse_flag);
1949                }
1950
1951                /* Common handling for non-tunnel packets and for inner
1952                 * headers in the case of tunnel.
1953                 */
1954                if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
1955                        PMD_RX_LOG(ERR, rxq,
1956                                    "L4 csum failed, flags = 0x%x\n",
1957                                    parse_flag);
1958                        rxq->rx_hw_errors++;
1959                        ol_flags |= PKT_RX_L4_CKSUM_BAD;
1960                } else {
1961                        ol_flags |= PKT_RX_L4_CKSUM_GOOD;
1962                }
1963                if (unlikely(qede_check_notunn_csum_l3(rx_mb, parse_flag))) {
1964                        PMD_RX_LOG(ERR, rxq, "IP csum failed, flags = 0x%x\n",
1965                                   parse_flag);
1966                        rxq->rx_hw_errors++;
1967                        ol_flags |= PKT_RX_IP_CKSUM_BAD;
1968                } else {
1969                        ol_flags |= PKT_RX_IP_CKSUM_GOOD;
1970                }
1971
1972                if (CQE_HAS_VLAN(parse_flag) ||
1973                    CQE_HAS_OUTER_VLAN(parse_flag)) {
1974                        /* Note: FW doesn't indicate Q-in-Q packet */
1975                        ol_flags |= PKT_RX_VLAN;
1976                        if (qdev->vlan_strip_flg) {
1977                                ol_flags |= PKT_RX_VLAN_STRIPPED;
1978                                rx_mb->vlan_tci = vlan_tci;
1979                        }
1980                }
1981
1982                /* RSS Hash */
1983                if (qdev->rss_enable) {
1984                        ol_flags |= PKT_RX_RSS_HASH;
1985                        rx_mb->hash.rss = rss_hash;
1986                }
1987
1988                rx_alloc_count++;
1989                qede_rx_bd_ring_consume(rxq);
1990
1991                if (!tpa_start_flg && fp_cqe->bd_num > 1) {
1992                        PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
1993                                   " len on first: %04x Total Len: %04x",
1994                                   fp_cqe->bd_num, len, pkt_len);
1995                        num_segs = fp_cqe->bd_num - 1;
1996                        seg1 = rx_mb;
1997                        if (qede_process_sg_pkts(p_rxq, seg1, num_segs,
1998                                                 pkt_len - len))
1999                                goto next_cqe;
2000
2001                        rx_alloc_count += num_segs;
2002                        rxq->rx_segs += num_segs;
2003                }
2004                rxq->rx_segs++; /* for the first segment */
2005
2006                /* Prefetch next mbuf while processing current one. */
2007                preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
2008                rte_prefetch0(rxq->sw_rx_ring[preload_idx]);
2009
2010                /* Update rest of the MBUF fields */
2011                rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
2012                rx_mb->port = rxq->port_id;
2013                rx_mb->ol_flags = ol_flags;
2014                rx_mb->data_len = len;
2015                rx_mb->packet_type = packet_type;
2016#ifdef RTE_LIBRTE_QEDE_DEBUG_RX
2017                print_rx_bd_info(rx_mb, rxq, bitfield_val);
2018#endif
2019                if (!tpa_start_flg) {
2020                        rx_mb->nb_segs = fp_cqe->bd_num;
2021                        rx_mb->pkt_len = pkt_len;
2022                } else {
2023                        /* store ref to the updated mbuf */
2024                        tpa_info->tpa_head = rx_mb;
2025                        tpa_info->tpa_tail = tpa_info->tpa_head;
2026                }
2027                rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
2028tpa_end:
2029                if (!tpa_start_flg) {
2030                        rx_pkts[rx_pkt] = rx_mb;
2031                        rx_pkt++;
2032                }
2033next_cqe:
2034                ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
2035                sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2036                if (rx_pkt == nb_pkts) {
2037                        PMD_RX_LOG(DEBUG, rxq,
2038                                   "Budget reached nb_pkts=%u received=%u",
2039                                   rx_pkt, nb_pkts);
2040                        break;
2041                }
2042        }
2043
2044        /* Request number of bufferes to be allocated in next loop */
2045        rxq->rx_alloc_count = rx_alloc_count;
2046
2047        rxq->rcv_pkts += rx_pkt;
2048
2049        PMD_RX_LOG(DEBUG, rxq, "rx_pkts=%u core=%d", rx_pkt, rte_lcore_id());
2050
2051        return rx_pkt;
2052}
2053
2054uint16_t
2055qede_recv_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
2056{
2057        struct qede_fastpath_cmt *fp_cmt = p_fp_cmt;
2058        uint16_t eng0_pkts, eng1_pkts;
2059
2060        eng0_pkts = nb_pkts / 2;
2061
2062        eng0_pkts = qede_recv_pkts(fp_cmt->fp0->rxq, rx_pkts, eng0_pkts);
2063
2064        eng1_pkts = nb_pkts - eng0_pkts;
2065
2066        eng1_pkts = qede_recv_pkts(fp_cmt->fp1->rxq, rx_pkts + eng0_pkts,
2067                                   eng1_pkts);
2068
2069        return eng0_pkts + eng1_pkts;
2070}
2071
2072/* Populate scatter gather buffer descriptor fields */
2073static inline uint16_t
2074qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
2075                  struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3,
2076                  uint16_t start_seg)
2077{
2078        struct qede_tx_queue *txq = p_txq;
2079        struct eth_tx_bd *tx_bd = NULL;
2080        dma_addr_t mapping;
2081        uint16_t nb_segs = 0;
2082
2083        /* Check for scattered buffers */
2084        while (m_seg) {
2085                if (start_seg == 0) {
2086                        if (!*bd2) {
2087                                *bd2 = (struct eth_tx_2nd_bd *)
2088                                        ecore_chain_produce(&txq->tx_pbl);
2089                                memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
2090                                nb_segs++;
2091                        }
2092                        mapping = rte_mbuf_data_iova(m_seg);
2093                        QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
2094                        PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
2095                } else if (start_seg == 1) {
2096                        if (!*bd3) {
2097                                *bd3 = (struct eth_tx_3rd_bd *)
2098                                        ecore_chain_produce(&txq->tx_pbl);
2099                                memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
2100                                nb_segs++;
2101                        }
2102                        mapping = rte_mbuf_data_iova(m_seg);
2103                        QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
2104                        PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
2105                } else {
2106                        tx_bd = (struct eth_tx_bd *)
2107                                ecore_chain_produce(&txq->tx_pbl);
2108                        memset(tx_bd, 0, sizeof(*tx_bd));
2109                        nb_segs++;
2110                        mapping = rte_mbuf_data_iova(m_seg);
2111                        QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
2112                        PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
2113                }
2114                start_seg++;
2115                m_seg = m_seg->next;
2116        }
2117
2118        /* Return total scattered buffers */
2119        return nb_segs;
2120}
2121
2122#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2123static inline void
2124print_tx_bd_info(struct qede_tx_queue *txq,
2125                 struct eth_tx_1st_bd *bd1,
2126                 struct eth_tx_2nd_bd *bd2,
2127                 struct eth_tx_3rd_bd *bd3,
2128                 uint64_t tx_ol_flags)
2129{
2130        char ol_buf[256] = { 0 }; /* for verbose prints */
2131
2132        if (bd1)
2133                PMD_TX_LOG(INFO, txq,
2134                   "BD1: nbytes=0x%04x nbds=0x%04x bd_flags=0x%04x bf=0x%04x",
2135                   rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
2136                   bd1->data.bd_flags.bitfields,
2137                   rte_cpu_to_le_16(bd1->data.bitfields));
2138        if (bd2)
2139                PMD_TX_LOG(INFO, txq,
2140                   "BD2: nbytes=0x%04x bf1=0x%04x bf2=0x%04x tunn_ip=0x%04x\n",
2141                   rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1,
2142                   bd2->data.bitfields2, bd2->data.tunn_ip_size);
2143        if (bd3)
2144                PMD_TX_LOG(INFO, txq,
2145                   "BD3: nbytes=0x%04x bf=0x%04x MSS=0x%04x "
2146                   "tunn_l4_hdr_start_offset_w=0x%04x tunn_hdr_size=0x%04x\n",
2147                   rte_cpu_to_le_16(bd3->nbytes),
2148                   rte_cpu_to_le_16(bd3->data.bitfields),
2149                   rte_cpu_to_le_16(bd3->data.lso_mss),
2150                   bd3->data.tunn_l4_hdr_start_offset_w,
2151                   bd3->data.tunn_hdr_size_w);
2152
2153        rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
2154        PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
2155}
2156#endif
2157
2158/* TX prepare to check packets meets TX conditions */
2159uint16_t
2160#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2161qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
2162                    uint16_t nb_pkts)
2163{
2164        struct qede_tx_queue *txq = p_txq;
2165#else
2166qede_xmit_prep_pkts(__rte_unused void *p_txq, struct rte_mbuf **tx_pkts,
2167                    uint16_t nb_pkts)
2168{
2169#endif
2170        uint64_t ol_flags;
2171        struct rte_mbuf *m;
2172        uint16_t i;
2173#ifdef RTE_LIBRTE_ETHDEV_DEBUG
2174        int ret;
2175#endif
2176
2177        for (i = 0; i < nb_pkts; i++) {
2178                m = tx_pkts[i];
2179                ol_flags = m->ol_flags;
2180                if (ol_flags & PKT_TX_TCP_SEG) {
2181                        if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
2182                                rte_errno = EINVAL;
2183                                break;
2184                        }
2185                        /* TBD: confirm its ~9700B for both ? */
2186                        if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
2187                                rte_errno = EINVAL;
2188                                break;
2189                        }
2190                } else {
2191                        if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
2192                                rte_errno = EINVAL;
2193                                break;
2194                        }
2195                }
2196                if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
2197                        /* We support only limited tunnel protocols */
2198                        if (ol_flags & PKT_TX_TUNNEL_MASK) {
2199                                uint64_t temp;
2200
2201                                temp = ol_flags & PKT_TX_TUNNEL_MASK;
2202                                if (temp == PKT_TX_TUNNEL_VXLAN ||
2203                                    temp == PKT_TX_TUNNEL_GENEVE ||
2204                                    temp == PKT_TX_TUNNEL_MPLSINUDP ||
2205                                    temp == PKT_TX_TUNNEL_GRE)
2206                                        continue;
2207                        }
2208
2209                        rte_errno = ENOTSUP;
2210                        break;
2211                }
2212
2213#ifdef RTE_LIBRTE_ETHDEV_DEBUG
2214                ret = rte_validate_tx_offload(m);
2215                if (ret != 0) {
2216                        rte_errno = -ret;
2217                        break;
2218                }
2219#endif
2220        }
2221
2222#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2223        if (unlikely(i != nb_pkts))
2224                PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
2225                           nb_pkts - i);
2226#endif
2227        return i;
2228}
2229
2230#define MPLSINUDP_HDR_SIZE                      (12)
2231
2232#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2233static inline void
2234qede_mpls_tunn_tx_sanity_check(struct rte_mbuf *mbuf,
2235                               struct qede_tx_queue *txq)
2236{
2237        if (((mbuf->outer_l2_len + mbuf->outer_l3_len) / 2) > 0xff)
2238                PMD_TX_LOG(ERR, txq, "tunn_l4_hdr_start_offset overflow\n");
2239        if (((mbuf->outer_l2_len + mbuf->outer_l3_len +
2240                MPLSINUDP_HDR_SIZE) / 2) > 0xff)
2241                PMD_TX_LOG(ERR, txq, "tunn_hdr_size overflow\n");
2242        if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE) / 2) >
2243                ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK)
2244                PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
2245        if (((mbuf->l2_len - MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2) >
2246                ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
2247                PMD_TX_LOG(ERR, txq, "inner_l2_hdr_size overflow\n");
2248}
2249#endif
2250
2251uint16_t
2252qede_xmit_pkts_regular(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2253{
2254        struct qede_tx_queue *txq = p_txq;
2255        struct qede_dev *qdev = txq->qdev;
2256        struct ecore_dev *edev = &qdev->edev;
2257        struct eth_tx_1st_bd *bd1;
2258        struct eth_tx_2nd_bd *bd2;
2259        struct eth_tx_3rd_bd *bd3;
2260        struct rte_mbuf *m_seg = NULL;
2261        struct rte_mbuf *mbuf;
2262        struct rte_mbuf **sw_tx_ring;
2263        uint16_t nb_tx_pkts;
2264        uint16_t bd_prod;
2265        uint16_t idx;
2266        uint16_t nb_frags = 0;
2267        uint16_t nb_pkt_sent = 0;
2268        uint8_t nbds;
2269        uint64_t tx_ol_flags;
2270        /* BD1 */
2271        uint16_t bd1_bf;
2272        uint8_t bd1_bd_flags_bf;
2273
2274        if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
2275                PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
2276                           nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
2277                qede_process_tx_compl(edev, txq);
2278        }
2279
2280        nb_tx_pkts  = nb_pkts;
2281        bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2282        sw_tx_ring = txq->sw_tx_ring;
2283
2284        while (nb_tx_pkts--) {
2285                /* Init flags/values */
2286                nbds = 0;
2287                bd1 = NULL;
2288                bd2 = NULL;
2289                bd3 = NULL;
2290                bd1_bf = 0;
2291                bd1_bd_flags_bf = 0;
2292                nb_frags = 0;
2293
2294                mbuf = *tx_pkts++;
2295                assert(mbuf);
2296
2297
2298                /* Check minimum TX BDS availability against available BDs */
2299                if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
2300                        break;
2301
2302                tx_ol_flags = mbuf->ol_flags;
2303                bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
2304
2305                if (unlikely(txq->nb_tx_avail <
2306                                ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
2307                        break;
2308                bd1_bf |=
2309                       (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
2310                        << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
2311
2312                /* Offload the IP checksum in the hardware */
2313                if (tx_ol_flags & PKT_TX_IP_CKSUM)
2314                        bd1_bd_flags_bf |=
2315                                1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2316
2317                /* L4 checksum offload (tcp or udp) */
2318                if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
2319                    (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM)))
2320                        bd1_bd_flags_bf |=
2321                                1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2322
2323                /* Fill the entry in the SW ring and the BDs in the FW ring */
2324                idx = TX_PROD(txq);
2325                sw_tx_ring[idx] = mbuf;
2326
2327                /* BD1 */
2328                bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
2329                memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
2330                nbds++;
2331
2332                /* Map MBUF linear data for DMA and set in the BD1 */
2333                QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2334                                     mbuf->data_len);
2335                bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
2336                bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
2337
2338                /* Handle fragmented MBUF */
2339                if (unlikely(mbuf->nb_segs > 1)) {
2340                        m_seg = mbuf->next;
2341
2342                        /* Encode scatter gather buffer descriptors */
2343                        nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3,
2344                                                     nbds - 1);
2345                }
2346
2347                bd1->data.nbds = nbds + nb_frags;
2348
2349                txq->nb_tx_avail -= bd1->data.nbds;
2350                txq->sw_tx_prod++;
2351                bd_prod =
2352                    rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2353#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2354                print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
2355#endif
2356                nb_pkt_sent++;
2357                txq->xmit_pkts++;
2358        }
2359
2360        /* Write value of prod idx into bd_prod */
2361        txq->tx_db.data.bd_prod = bd_prod;
2362        rte_wmb();
2363        rte_compiler_barrier();
2364        DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
2365        rte_wmb();
2366
2367        /* Check again for Tx completions */
2368        qede_process_tx_compl(edev, txq);
2369
2370        PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
2371                   nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
2372
2373        return nb_pkt_sent;
2374}
2375
2376uint16_t
2377qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2378{
2379        struct qede_tx_queue *txq = p_txq;
2380        struct qede_dev *qdev = txq->qdev;
2381        struct ecore_dev *edev = &qdev->edev;
2382        struct rte_mbuf *mbuf;
2383        struct rte_mbuf *m_seg = NULL;
2384        uint16_t nb_tx_pkts;
2385        uint16_t bd_prod;
2386        uint16_t idx;
2387        uint16_t nb_frags;
2388        uint16_t nb_pkt_sent = 0;
2389        uint8_t nbds;
2390        bool lso_flg;
2391        bool mplsoudp_flg;
2392        __rte_unused bool tunn_flg;
2393        bool tunn_ipv6_ext_flg;
2394        struct eth_tx_1st_bd *bd1;
2395        struct eth_tx_2nd_bd *bd2;
2396        struct eth_tx_3rd_bd *bd3;
2397        uint64_t tx_ol_flags;
2398        uint16_t hdr_size;
2399        /* BD1 */
2400        uint16_t bd1_bf;
2401        uint8_t bd1_bd_flags_bf;
2402        uint16_t vlan;
2403        /* BD2 */
2404        uint16_t bd2_bf1;
2405        uint16_t bd2_bf2;
2406        /* BD3 */
2407        uint16_t mss;
2408        uint16_t bd3_bf;
2409
2410        uint8_t tunn_l4_hdr_start_offset;
2411        uint8_t tunn_hdr_size;
2412        uint8_t inner_l2_hdr_size;
2413        uint16_t inner_l4_hdr_offset;
2414
2415        if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
2416                PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
2417                           nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
2418                qede_process_tx_compl(edev, txq);
2419        }
2420
2421        nb_tx_pkts  = nb_pkts;
2422        bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2423        while (nb_tx_pkts--) {
2424                /* Init flags/values */
2425                tunn_flg = false;
2426                lso_flg = false;
2427                nbds = 0;
2428                vlan = 0;
2429                bd1 = NULL;
2430                bd2 = NULL;
2431                bd3 = NULL;
2432                hdr_size = 0;
2433                bd1_bf = 0;
2434                bd1_bd_flags_bf = 0;
2435                bd2_bf1 = 0;
2436                bd2_bf2 = 0;
2437                mss = 0;
2438                bd3_bf = 0;
2439                mplsoudp_flg = false;
2440                tunn_ipv6_ext_flg = false;
2441                tunn_hdr_size = 0;
2442                tunn_l4_hdr_start_offset = 0;
2443
2444                mbuf = *tx_pkts++;
2445                assert(mbuf);
2446
2447                /* Check minimum TX BDS availability against available BDs */
2448                if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
2449                        break;
2450
2451                tx_ol_flags = mbuf->ol_flags;
2452                bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
2453
2454                /* TX prepare would have already checked supported tunnel Tx
2455                 * offloads. Don't rely on pkt_type marked by Rx, instead use
2456                 * tx_ol_flags to decide.
2457                 */
2458                tunn_flg = !!(tx_ol_flags & PKT_TX_TUNNEL_MASK);
2459
2460                if (tunn_flg) {
2461                        /* Check against max which is Tunnel IPv6 + ext */
2462                        if (unlikely(txq->nb_tx_avail <
2463                                ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
2464                                        break;
2465
2466                        /* First indicate its a tunnel pkt */
2467                        bd1_bf |= ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
2468                                  ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
2469                        /* Legacy FW had flipped behavior in regard to this bit
2470                         * i.e. it needed to set to prevent FW from touching
2471                         * encapsulated packets when it didn't need to.
2472                         */
2473                        if (unlikely(txq->is_legacy)) {
2474                                bd1_bf ^= 1 <<
2475                                        ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
2476                        }
2477
2478                        /* Outer IP checksum offload */
2479                        if (tx_ol_flags & (PKT_TX_OUTER_IP_CKSUM |
2480                                           PKT_TX_OUTER_IPV4)) {
2481                                bd1_bd_flags_bf |=
2482                                        ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
2483                                        ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
2484                        }
2485
2486                        /**
2487                         * Currently, only inner checksum offload in MPLS-in-UDP
2488                         * tunnel with one MPLS label is supported. Both outer
2489                         * and inner layers  lengths need to be provided in
2490                         * mbuf.
2491                         */
2492                        if ((tx_ol_flags & PKT_TX_TUNNEL_MASK) ==
2493                                                PKT_TX_TUNNEL_MPLSINUDP) {
2494                                mplsoudp_flg = true;
2495#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2496                                qede_mpls_tunn_tx_sanity_check(mbuf, txq);
2497#endif
2498                                /* Outer L4 offset in two byte words */
2499                                tunn_l4_hdr_start_offset =
2500                                  (mbuf->outer_l2_len + mbuf->outer_l3_len) / 2;
2501                                /* Tunnel header size in two byte words */
2502                                tunn_hdr_size = (mbuf->outer_l2_len +
2503                                                mbuf->outer_l3_len +
2504                                                MPLSINUDP_HDR_SIZE) / 2;
2505                                /* Inner L2 header size in two byte words */
2506                                inner_l2_hdr_size = (mbuf->l2_len -
2507                                                MPLSINUDP_HDR_SIZE) / 2;
2508                                /* Inner L4 header offset from the beggining
2509                                 * of inner packet in two byte words
2510                                 */
2511                                inner_l4_hdr_offset = (mbuf->l2_len -
2512                                        MPLSINUDP_HDR_SIZE + mbuf->l3_len) / 2;
2513
2514                                /* Inner L2 size and address type */
2515                                bd2_bf1 |= (inner_l2_hdr_size &
2516                                        ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_MASK) <<
2517                                        ETH_TX_DATA_2ND_BD_TUNN_INNER_L2_HDR_SIZE_W_SHIFT;
2518                                bd2_bf1 |= (UNICAST_ADDRESS &
2519                                        ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_MASK) <<
2520                                        ETH_TX_DATA_2ND_BD_TUNN_INNER_ETH_TYPE_SHIFT;
2521                                /* Treated as IPv6+Ext */
2522                                bd2_bf1 |=
2523                                    1 << ETH_TX_DATA_2ND_BD_TUNN_IPV6_EXT_SHIFT;
2524
2525                                /* Mark inner IPv6 if present */
2526                                if (tx_ol_flags & PKT_TX_IPV6)
2527                                        bd2_bf1 |=
2528                                                1 << ETH_TX_DATA_2ND_BD_TUNN_INNER_IPV6_SHIFT;
2529
2530                                /* Inner L4 offsets */
2531                                if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
2532                                     (tx_ol_flags & (PKT_TX_UDP_CKSUM |
2533                                                        PKT_TX_TCP_CKSUM))) {
2534                                        /* Determines if BD3 is needed */
2535                                        tunn_ipv6_ext_flg = true;
2536                                        if ((tx_ol_flags & PKT_TX_L4_MASK) ==
2537                                                        PKT_TX_UDP_CKSUM) {
2538                                                bd2_bf1 |=
2539                                                        1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
2540                                        }
2541
2542                                        /* TODO other pseudo checksum modes are
2543                                         * not supported
2544                                         */
2545                                        bd2_bf1 |=
2546                                        ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
2547                                        ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
2548                                        bd2_bf2 |= (inner_l4_hdr_offset &
2549                                                ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK) <<
2550                                                ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
2551                                }
2552                        } /* End MPLSoUDP */
2553                } /* End Tunnel handling */
2554
2555                if (tx_ol_flags & PKT_TX_TCP_SEG) {
2556                        lso_flg = true;
2557                        if (unlikely(txq->nb_tx_avail <
2558                                                ETH_TX_MIN_BDS_PER_LSO_PKT))
2559                                break;
2560                        /* For LSO, packet header and payload must reside on
2561                         * buffers pointed by different BDs. Using BD1 for HDR
2562                         * and BD2 onwards for data.
2563                         */
2564                        hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
2565                        if (tunn_flg)
2566                                hdr_size += mbuf->outer_l2_len +
2567                                            mbuf->outer_l3_len;
2568
2569                        bd1_bd_flags_bf |= 1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
2570                        bd1_bd_flags_bf |=
2571                                        1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2572                        /* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */
2573                        bd1_bd_flags_bf |=
2574                                        1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2575                        mss = rte_cpu_to_le_16(mbuf->tso_segsz);
2576                        /* Using one header BD */
2577                        bd3_bf |= rte_cpu_to_le_16(1 <<
2578                                        ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
2579                } else {
2580                        if (unlikely(txq->nb_tx_avail <
2581                                        ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
2582                                break;
2583                        bd1_bf |=
2584                               (mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
2585                                << ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
2586                }
2587
2588                /* Descriptor based VLAN insertion */
2589                if (tx_ol_flags & PKT_TX_VLAN_PKT) {
2590                        vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
2591                        bd1_bd_flags_bf |=
2592                            1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
2593                }
2594
2595                /* Offload the IP checksum in the hardware */
2596                if (tx_ol_flags & PKT_TX_IP_CKSUM) {
2597                        bd1_bd_flags_bf |=
2598                                1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
2599                        /* There's no DPDK flag to request outer-L4 csum
2600                         * offload. But in the case of tunnel if inner L3 or L4
2601                         * csum offload is requested then we need to force
2602                         * recalculation of L4 tunnel header csum also.
2603                         */
2604                        if (tunn_flg && ((tx_ol_flags & PKT_TX_TUNNEL_MASK) !=
2605                                                        PKT_TX_TUNNEL_GRE)) {
2606                                bd1_bd_flags_bf |=
2607                                        ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2608                                        ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2609                        }
2610                }
2611
2612                /* L4 checksum offload (tcp or udp) */
2613                if ((tx_ol_flags & (PKT_TX_IPV4 | PKT_TX_IPV6)) &&
2614                    (tx_ol_flags & (PKT_TX_UDP_CKSUM | PKT_TX_TCP_CKSUM))) {
2615                        bd1_bd_flags_bf |=
2616                                1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
2617                        /* There's no DPDK flag to request outer-L4 csum
2618                         * offload. But in the case of tunnel if inner L3 or L4
2619                         * csum offload is requested then we need to force
2620                         * recalculation of L4 tunnel header csum also.
2621                         */
2622                        if (tunn_flg) {
2623                                bd1_bd_flags_bf |=
2624                                        ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_MASK <<
2625                                        ETH_TX_1ST_BD_FLAGS_TUNN_L4_CSUM_SHIFT;
2626                        }
2627                }
2628
2629                /* Fill the entry in the SW ring and the BDs in the FW ring */
2630                idx = TX_PROD(txq);
2631                txq->sw_tx_ring[idx] = mbuf;
2632
2633                /* BD1 */
2634                bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
2635                memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
2636                nbds++;
2637
2638                /* Map MBUF linear data for DMA and set in the BD1 */
2639                QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2640                                     mbuf->data_len);
2641                bd1->data.bitfields = rte_cpu_to_le_16(bd1_bf);
2642                bd1->data.bd_flags.bitfields = bd1_bd_flags_bf;
2643                bd1->data.vlan = vlan;
2644
2645                if (lso_flg || mplsoudp_flg) {
2646                        bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
2647                                                        (&txq->tx_pbl);
2648                        memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
2649                        nbds++;
2650
2651                        /* BD1 */
2652                        QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_iova(mbuf),
2653                                             hdr_size);
2654                        /* BD2 */
2655                        QEDE_BD_SET_ADDR_LEN(bd2, (hdr_size +
2656                                             rte_mbuf_data_iova(mbuf)),
2657                                             mbuf->data_len - hdr_size);
2658                        bd2->data.bitfields1 = rte_cpu_to_le_16(bd2_bf1);
2659                        if (mplsoudp_flg) {
2660                                bd2->data.bitfields2 =
2661                                        rte_cpu_to_le_16(bd2_bf2);
2662                                /* Outer L3 size */
2663                                bd2->data.tunn_ip_size =
2664                                        rte_cpu_to_le_16(mbuf->outer_l3_len);
2665                        }
2666                        /* BD3 */
2667                        if (lso_flg || (mplsoudp_flg && tunn_ipv6_ext_flg)) {
2668                                bd3 = (struct eth_tx_3rd_bd *)
2669                                        ecore_chain_produce(&txq->tx_pbl);
2670                                memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
2671                                nbds++;
2672                                bd3->data.bitfields = rte_cpu_to_le_16(bd3_bf);
2673                                if (lso_flg)
2674                                        bd3->data.lso_mss = mss;
2675                                if (mplsoudp_flg) {
2676                                        bd3->data.tunn_l4_hdr_start_offset_w =
2677                                                tunn_l4_hdr_start_offset;
2678                                        bd3->data.tunn_hdr_size_w =
2679                                                tunn_hdr_size;
2680                                }
2681                        }
2682                }
2683
2684                /* Handle fragmented MBUF */
2685                m_seg = mbuf->next;
2686
2687                /* Encode scatter gather buffer descriptors if required */
2688                nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3, nbds - 1);
2689                bd1->data.nbds = nbds + nb_frags;
2690
2691                txq->nb_tx_avail -= bd1->data.nbds;
2692                txq->sw_tx_prod++;
2693                bd_prod =
2694                    rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
2695#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
2696                print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
2697#endif
2698                nb_pkt_sent++;
2699                txq->xmit_pkts++;
2700        }
2701
2702        /* Write value of prod idx into bd_prod */
2703        txq->tx_db.data.bd_prod = bd_prod;
2704        rte_wmb();
2705        rte_compiler_barrier();
2706        DIRECT_REG_WR_RELAXED(edev, txq->doorbell_addr, txq->tx_db.raw);
2707        rte_wmb();
2708
2709        /* Check again for Tx completions */
2710        qede_process_tx_compl(edev, txq);
2711
2712        PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
2713                   nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
2714
2715        return nb_pkt_sent;
2716}
2717
2718uint16_t
2719qede_xmit_pkts_cmt(void *p_fp_cmt, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
2720{
2721        struct qede_fastpath_cmt *fp_cmt = p_fp_cmt;
2722        uint16_t eng0_pkts, eng1_pkts;
2723
2724        eng0_pkts = nb_pkts / 2;
2725
2726        eng0_pkts = qede_xmit_pkts(fp_cmt->fp0->txq, tx_pkts, eng0_pkts);
2727
2728        eng1_pkts = nb_pkts - eng0_pkts;
2729
2730        eng1_pkts = qede_xmit_pkts(fp_cmt->fp1->txq, tx_pkts + eng0_pkts,
2731                                   eng1_pkts);
2732
2733        return eng0_pkts + eng1_pkts;
2734}
2735
2736uint16_t
2737qede_rxtx_pkts_dummy(__rte_unused void *p_rxq,
2738                     __rte_unused struct rte_mbuf **pkts,
2739                     __rte_unused uint16_t nb_pkts)
2740{
2741        return 0;
2742}
2743
2744
2745/* this function does a fake walk through over completion queue
2746 * to calculate number of BDs used by HW.
2747 * At the end, it restores the state of completion queue.
2748 */
2749static uint16_t
2750qede_parse_fp_cqe(struct qede_rx_queue *rxq)
2751{
2752        uint16_t hw_comp_cons, sw_comp_cons, bd_count = 0;
2753        union eth_rx_cqe *cqe, *orig_cqe = NULL;
2754
2755        hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
2756        sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2757
2758        if (hw_comp_cons == sw_comp_cons)
2759                return 0;
2760
2761        /* Get the CQE from the completion ring */
2762        cqe = (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
2763        orig_cqe = cqe;
2764
2765        while (sw_comp_cons != hw_comp_cons) {
2766                switch (cqe->fast_path_regular.type) {
2767                case ETH_RX_CQE_TYPE_REGULAR:
2768                        bd_count += cqe->fast_path_regular.bd_num;
2769                        break;
2770                case ETH_RX_CQE_TYPE_TPA_END:
2771                        bd_count += cqe->fast_path_tpa_end.num_of_bds;
2772                        break;
2773                default:
2774                        break;
2775                }
2776
2777                cqe =
2778                (union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
2779                sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
2780        }
2781
2782        /* revert comp_ring to original state */
2783        ecore_chain_set_cons(&rxq->rx_comp_ring, sw_comp_cons, orig_cqe);
2784
2785        return bd_count;
2786}
2787
2788int
2789qede_rx_descriptor_status(void *p_rxq, uint16_t offset)
2790{
2791        uint16_t hw_bd_cons, sw_bd_cons, sw_bd_prod;
2792        uint16_t produced, consumed;
2793        struct qede_rx_queue *rxq = p_rxq;
2794
2795        if (offset > rxq->nb_rx_desc)
2796                return -EINVAL;
2797
2798        sw_bd_cons = ecore_chain_get_cons_idx(&rxq->rx_bd_ring);
2799        sw_bd_prod = ecore_chain_get_prod_idx(&rxq->rx_bd_ring);
2800
2801        /* find BDs used by HW from completion queue elements */
2802        hw_bd_cons = sw_bd_cons + qede_parse_fp_cqe(rxq);
2803
2804        if (hw_bd_cons < sw_bd_cons)
2805                /* wraparound case */
2806                consumed = (0xffff - sw_bd_cons) + hw_bd_cons;
2807        else
2808                consumed = hw_bd_cons - sw_bd_cons;
2809
2810        if (offset <= consumed)
2811                return RTE_ETH_RX_DESC_DONE;
2812
2813        if (sw_bd_prod < sw_bd_cons)
2814                /* wraparound case */
2815                produced = (0xffff - sw_bd_cons) + sw_bd_prod;
2816        else
2817                produced = sw_bd_prod - sw_bd_cons;
2818
2819        if (offset <= produced)
2820                return RTE_ETH_RX_DESC_AVAIL;
2821
2822        return RTE_ETH_RX_DESC_UNAVAIL;
2823}
2824