dpdk/drivers/net/ixgbe/base/ixgbe_common.c
<<
>>
Prefs
   1/* SPDX-License-Identifier: BSD-3-Clause
   2 * Copyright(c) 2001-2020 Intel Corporation
   3 */
   4
   5#include "ixgbe_common.h"
   6#include "ixgbe_phy.h"
   7#include "ixgbe_dcb.h"
   8#include "ixgbe_dcb_82599.h"
   9#include "ixgbe_api.h"
  10
  11STATIC s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  12STATIC s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  13STATIC void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  14STATIC s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  15STATIC void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  16STATIC void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  17                                        u16 count);
  18STATIC u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  19STATIC void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  20STATIC void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  21STATIC void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  22
  23STATIC s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  24STATIC s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
  25                                         u16 *san_mac_offset);
  26STATIC s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  27                                             u16 words, u16 *data);
  28STATIC s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  29                                              u16 words, u16 *data);
  30STATIC s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  31                                                 u16 offset);
  32
  33/**
  34 * ixgbe_init_ops_generic - Inits function ptrs
  35 * @hw: pointer to the hardware structure
  36 *
  37 * Initialize the function pointers.
  38 **/
  39s32 ixgbe_init_ops_generic(struct ixgbe_hw *hw)
  40{
  41        struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
  42        struct ixgbe_mac_info *mac = &hw->mac;
  43        u32 eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
  44
  45        DEBUGFUNC("ixgbe_init_ops_generic");
  46
  47        /* EEPROM */
  48        eeprom->ops.init_params = ixgbe_init_eeprom_params_generic;
  49        /* If EEPROM is valid (bit 8 = 1), use EERD otherwise use bit bang */
  50        if (eec & IXGBE_EEC_PRES) {
  51                eeprom->ops.read = ixgbe_read_eerd_generic;
  52                eeprom->ops.read_buffer = ixgbe_read_eerd_buffer_generic;
  53        } else {
  54                eeprom->ops.read = ixgbe_read_eeprom_bit_bang_generic;
  55                eeprom->ops.read_buffer =
  56                                 ixgbe_read_eeprom_buffer_bit_bang_generic;
  57        }
  58        eeprom->ops.write = ixgbe_write_eeprom_generic;
  59        eeprom->ops.write_buffer = ixgbe_write_eeprom_buffer_bit_bang_generic;
  60        eeprom->ops.validate_checksum =
  61                                      ixgbe_validate_eeprom_checksum_generic;
  62        eeprom->ops.update_checksum = ixgbe_update_eeprom_checksum_generic;
  63        eeprom->ops.calc_checksum = ixgbe_calc_eeprom_checksum_generic;
  64
  65        /* MAC */
  66        mac->ops.init_hw = ixgbe_init_hw_generic;
  67        mac->ops.reset_hw = NULL;
  68        mac->ops.start_hw = ixgbe_start_hw_generic;
  69        mac->ops.clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic;
  70        mac->ops.get_media_type = NULL;
  71        mac->ops.get_supported_physical_layer = NULL;
  72        mac->ops.enable_rx_dma = ixgbe_enable_rx_dma_generic;
  73        mac->ops.get_mac_addr = ixgbe_get_mac_addr_generic;
  74        mac->ops.stop_adapter = ixgbe_stop_adapter_generic;
  75        mac->ops.get_bus_info = ixgbe_get_bus_info_generic;
  76        mac->ops.set_lan_id = ixgbe_set_lan_id_multi_port_pcie;
  77        mac->ops.acquire_swfw_sync = ixgbe_acquire_swfw_sync;
  78        mac->ops.release_swfw_sync = ixgbe_release_swfw_sync;
  79        mac->ops.prot_autoc_read = prot_autoc_read_generic;
  80        mac->ops.prot_autoc_write = prot_autoc_write_generic;
  81
  82        /* LEDs */
  83        mac->ops.led_on = ixgbe_led_on_generic;
  84        mac->ops.led_off = ixgbe_led_off_generic;
  85        mac->ops.blink_led_start = ixgbe_blink_led_start_generic;
  86        mac->ops.blink_led_stop = ixgbe_blink_led_stop_generic;
  87        mac->ops.init_led_link_act = ixgbe_init_led_link_act_generic;
  88
  89        /* RAR, Multicast, VLAN */
  90        mac->ops.set_rar = ixgbe_set_rar_generic;
  91        mac->ops.clear_rar = ixgbe_clear_rar_generic;
  92        mac->ops.insert_mac_addr = NULL;
  93        mac->ops.set_vmdq = NULL;
  94        mac->ops.clear_vmdq = NULL;
  95        mac->ops.init_rx_addrs = ixgbe_init_rx_addrs_generic;
  96        mac->ops.update_uc_addr_list = ixgbe_update_uc_addr_list_generic;
  97        mac->ops.update_mc_addr_list = ixgbe_update_mc_addr_list_generic;
  98        mac->ops.enable_mc = ixgbe_enable_mc_generic;
  99        mac->ops.disable_mc = ixgbe_disable_mc_generic;
 100        mac->ops.clear_vfta = NULL;
 101        mac->ops.set_vfta = NULL;
 102        mac->ops.set_vlvf = NULL;
 103        mac->ops.init_uta_tables = NULL;
 104        mac->ops.enable_rx = ixgbe_enable_rx_generic;
 105        mac->ops.disable_rx = ixgbe_disable_rx_generic;
 106
 107        /* Flow Control */
 108        mac->ops.fc_enable = ixgbe_fc_enable_generic;
 109        mac->ops.setup_fc = ixgbe_setup_fc_generic;
 110        mac->ops.fc_autoneg = ixgbe_fc_autoneg;
 111
 112        /* Link */
 113        mac->ops.get_link_capabilities = NULL;
 114        mac->ops.setup_link = NULL;
 115        mac->ops.check_link = NULL;
 116        mac->ops.dmac_config = NULL;
 117        mac->ops.dmac_update_tcs = NULL;
 118        mac->ops.dmac_config_tcs = NULL;
 119
 120        return IXGBE_SUCCESS;
 121}
 122
 123/**
 124 * ixgbe_device_supports_autoneg_fc - Check if device supports autonegotiation
 125 * of flow control
 126 * @hw: pointer to hardware structure
 127 *
 128 * This function returns true if the device supports flow control
 129 * autonegotiation, and false if it does not.
 130 *
 131 **/
 132bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
 133{
 134        bool supported = false;
 135        ixgbe_link_speed speed;
 136        bool link_up;
 137
 138        DEBUGFUNC("ixgbe_device_supports_autoneg_fc");
 139
 140        switch (hw->phy.media_type) {
 141        case ixgbe_media_type_fiber_qsfp:
 142        case ixgbe_media_type_fiber:
 143                /* flow control autoneg black list */
 144                switch (hw->device_id) {
 145                case IXGBE_DEV_ID_X550EM_A_SFP:
 146                case IXGBE_DEV_ID_X550EM_A_SFP_N:
 147                case IXGBE_DEV_ID_X550EM_A_QSFP:
 148                case IXGBE_DEV_ID_X550EM_A_QSFP_N:
 149                        supported = false;
 150                        break;
 151                default:
 152                        hw->mac.ops.check_link(hw, &speed, &link_up, false);
 153                        /* if link is down, assume supported */
 154                        if (link_up)
 155                                supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
 156                                true : false;
 157                        else
 158                                supported = true;
 159                }
 160
 161                break;
 162        case ixgbe_media_type_backplane:
 163                if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
 164                        supported = false;
 165                else
 166                        supported = true;
 167                break;
 168        case ixgbe_media_type_copper:
 169                /* only some copper devices support flow control autoneg */
 170                switch (hw->device_id) {
 171                case IXGBE_DEV_ID_82599_T3_LOM:
 172                case IXGBE_DEV_ID_X540T:
 173                case IXGBE_DEV_ID_X540T1:
 174                case IXGBE_DEV_ID_X550T:
 175                case IXGBE_DEV_ID_X550T1:
 176                case IXGBE_DEV_ID_X550EM_X_10G_T:
 177                case IXGBE_DEV_ID_X550EM_A_10G_T:
 178                case IXGBE_DEV_ID_X550EM_A_1G_T:
 179                case IXGBE_DEV_ID_X550EM_A_1G_T_L:
 180                        supported = true;
 181                        break;
 182                default:
 183                        supported = false;
 184                }
 185        default:
 186                break;
 187        }
 188
 189        return supported;
 190}
 191
 192/**
 193 * ixgbe_setup_fc_generic - Set up flow control
 194 * @hw: pointer to hardware structure
 195 *
 196 * Called at init time to set up flow control.
 197 **/
 198s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
 199{
 200        s32 ret_val = IXGBE_SUCCESS;
 201        u32 reg = 0, reg_bp = 0;
 202        u16 reg_cu = 0;
 203        bool locked = false;
 204
 205        DEBUGFUNC("ixgbe_setup_fc_generic");
 206
 207        /* Validate the requested mode */
 208        if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 209                ERROR_REPORT1(IXGBE_ERROR_UNSUPPORTED,
 210                           "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 211                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 212                goto out;
 213        }
 214
 215        /*
 216         * 10gig parts do not have a word in the EEPROM to determine the
 217         * default flow control setting, so we explicitly set it to full.
 218         */
 219        if (hw->fc.requested_mode == ixgbe_fc_default)
 220                hw->fc.requested_mode = ixgbe_fc_full;
 221
 222        /*
 223         * Set up the 1G and 10G flow control advertisement registers so the
 224         * HW will be able to do fc autoneg once the cable is plugged in.  If
 225         * we link at 10G, the 1G advertisement is harmless and vice versa.
 226         */
 227        switch (hw->phy.media_type) {
 228        case ixgbe_media_type_backplane:
 229                /* some MAC's need RMW protection on AUTOC */
 230                ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 231                if (ret_val != IXGBE_SUCCESS)
 232                        goto out;
 233
 234                /* fall through - only backplane uses autoc */
 235        case ixgbe_media_type_fiber_qsfp:
 236        case ixgbe_media_type_fiber:
 237                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 238
 239                break;
 240        case ixgbe_media_type_copper:
 241                hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
 242                                     IXGBE_MDIO_AUTO_NEG_DEV_TYPE, &reg_cu);
 243                break;
 244        default:
 245                break;
 246        }
 247
 248        /*
 249         * The possible values of fc.requested_mode are:
 250         * 0: Flow control is completely disabled
 251         * 1: Rx flow control is enabled (we can receive pause frames,
 252         *    but not send pause frames).
 253         * 2: Tx flow control is enabled (we can send pause frames but
 254         *    we do not support receiving pause frames).
 255         * 3: Both Rx and Tx flow control (symmetric) are enabled.
 256         * other: Invalid.
 257         */
 258        switch (hw->fc.requested_mode) {
 259        case ixgbe_fc_none:
 260                /* Flow control completely disabled by software override. */
 261                reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 262                if (hw->phy.media_type == ixgbe_media_type_backplane)
 263                        reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 264                                    IXGBE_AUTOC_ASM_PAUSE);
 265                else if (hw->phy.media_type == ixgbe_media_type_copper)
 266                        reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 267                break;
 268        case ixgbe_fc_tx_pause:
 269                /*
 270                 * Tx Flow control is enabled, and Rx Flow control is
 271                 * disabled by software override.
 272                 */
 273                reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 274                reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 275                if (hw->phy.media_type == ixgbe_media_type_backplane) {
 276                        reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 277                        reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 278                } else if (hw->phy.media_type == ixgbe_media_type_copper) {
 279                        reg_cu |= IXGBE_TAF_ASM_PAUSE;
 280                        reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 281                }
 282                break;
 283        case ixgbe_fc_rx_pause:
 284                /*
 285                 * Rx Flow control is enabled and Tx Flow control is
 286                 * disabled by software override. Since there really
 287                 * isn't a way to advertise that we are capable of RX
 288                 * Pause ONLY, we will advertise that we support both
 289                 * symmetric and asymmetric Rx PAUSE, as such we fall
 290                 * through to the fc_full statement.  Later, we will
 291                 * disable the adapter's ability to send PAUSE frames.
 292                 */
 293        case ixgbe_fc_full:
 294                /* Flow control (both Rx and Tx) is enabled by SW override. */
 295                reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 296                if (hw->phy.media_type == ixgbe_media_type_backplane)
 297                        reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 298                                  IXGBE_AUTOC_ASM_PAUSE;
 299                else if (hw->phy.media_type == ixgbe_media_type_copper)
 300                        reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 301                break;
 302        default:
 303                ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
 304                             "Flow control param set incorrectly\n");
 305                ret_val = IXGBE_ERR_CONFIG;
 306                goto out;
 307                break;
 308        }
 309
 310        if (hw->mac.type < ixgbe_mac_X540) {
 311                /*
 312                 * Enable auto-negotiation between the MAC & PHY;
 313                 * the MAC will advertise clause 37 flow control.
 314                 */
 315                IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 316                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 317
 318                /* Disable AN timeout */
 319                if (hw->fc.strict_ieee)
 320                        reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 321
 322                IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 323                DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 324        }
 325
 326        /*
 327         * AUTOC restart handles negotiation of 1G and 10G on backplane
 328         * and copper. There is no need to set the PCS1GCTL register.
 329         *
 330         */
 331        if (hw->phy.media_type == ixgbe_media_type_backplane) {
 332                reg_bp |= IXGBE_AUTOC_AN_RESTART;
 333                ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 334                if (ret_val)
 335                        goto out;
 336        } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 337                    (ixgbe_device_supports_autoneg_fc(hw))) {
 338                hw->phy.ops.write_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
 339                                      IXGBE_MDIO_AUTO_NEG_DEV_TYPE, reg_cu);
 340        }
 341
 342        DEBUGOUT1("Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 343out:
 344        return ret_val;
 345}
 346
 347/**
 348 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 349 * @hw: pointer to hardware structure
 350 *
 351 * Starts the hardware by filling the bus info structure and media type, clears
 352 * all on chip counters, initializes receive address registers, multicast
 353 * table, VLAN filter table, calls routine to set up link and flow control
 354 * settings, and leaves transmit and receive units disabled and uninitialized
 355 **/
 356s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 357{
 358        s32 ret_val;
 359        u32 ctrl_ext;
 360        u16 device_caps;
 361
 362        DEBUGFUNC("ixgbe_start_hw_generic");
 363
 364        /* Set the media type */
 365        hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 366
 367        /* PHY ops initialization must be done in reset_hw() */
 368
 369        /* Clear the VLAN filter table */
 370        hw->mac.ops.clear_vfta(hw);
 371
 372        /* Clear statistics registers */
 373        hw->mac.ops.clear_hw_cntrs(hw);
 374
 375        /* Set No Snoop Disable */
 376        ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 377        ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 378        IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 379        IXGBE_WRITE_FLUSH(hw);
 380
 381        /* Setup flow control */
 382        ret_val = ixgbe_setup_fc(hw);
 383        if (ret_val != IXGBE_SUCCESS && ret_val != IXGBE_NOT_IMPLEMENTED) {
 384                DEBUGOUT1("Flow control setup failed, returning %d\n", ret_val);
 385                return ret_val;
 386        }
 387
 388        /* Cache bit indicating need for crosstalk fix */
 389        switch (hw->mac.type) {
 390        case ixgbe_mac_82599EB:
 391        case ixgbe_mac_X550EM_x:
 392        case ixgbe_mac_X550EM_a:
 393                hw->mac.ops.get_device_caps(hw, &device_caps);
 394                if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
 395                        hw->need_crosstalk_fix = false;
 396                else
 397                        hw->need_crosstalk_fix = true;
 398                break;
 399        default:
 400                hw->need_crosstalk_fix = false;
 401                break;
 402        }
 403
 404        /* Clear adapter stopped flag */
 405        hw->adapter_stopped = false;
 406
 407        return IXGBE_SUCCESS;
 408}
 409
 410/**
 411 * ixgbe_start_hw_gen2 - Init sequence for common device family
 412 * @hw: pointer to hw structure
 413 *
 414 * Performs the init sequence common to the second generation
 415 * of 10 GbE devices.
 416 * Devices in the second generation:
 417 *    82599
 418 *    X540
 419 **/
 420void ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 421{
 422        u32 i;
 423        u32 regval;
 424
 425        /* Clear the rate limiters */
 426        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 427                IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 428                IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 429        }
 430        IXGBE_WRITE_FLUSH(hw);
 431
 432        /* Disable relaxed ordering */
 433        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 434                regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
 435                regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
 436                IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
 437        }
 438
 439        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 440                regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
 441                regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
 442                            IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
 443                IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
 444        }
 445}
 446
 447/**
 448 * ixgbe_init_hw_generic - Generic hardware initialization
 449 * @hw: pointer to hardware structure
 450 *
 451 * Initialize the hardware by resetting the hardware, filling the bus info
 452 * structure and media type, clears all on chip counters, initializes receive
 453 * address registers, multicast table, VLAN filter table, calls routine to set
 454 * up link and flow control settings, and leaves transmit and receive units
 455 * disabled and uninitialized
 456 **/
 457s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 458{
 459        s32 status;
 460
 461        DEBUGFUNC("ixgbe_init_hw_generic");
 462
 463        /* Reset the hardware */
 464        status = hw->mac.ops.reset_hw(hw);
 465
 466        if (status == IXGBE_SUCCESS || status == IXGBE_ERR_SFP_NOT_PRESENT) {
 467                /* Start the HW */
 468                status = hw->mac.ops.start_hw(hw);
 469        }
 470
 471        /* Initialize the LED link active for LED blink support */
 472        if (hw->mac.ops.init_led_link_act)
 473                hw->mac.ops.init_led_link_act(hw);
 474
 475        if (status != IXGBE_SUCCESS)
 476                DEBUGOUT1("Failed to initialize HW, STATUS = %d\n", status);
 477
 478        return status;
 479}
 480
 481/**
 482 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 483 * @hw: pointer to hardware structure
 484 *
 485 * Clears all hardware statistics counters by reading them from the hardware
 486 * Statistics counters are clear on read.
 487 **/
 488s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 489{
 490        u16 i = 0;
 491
 492        DEBUGFUNC("ixgbe_clear_hw_cntrs_generic");
 493
 494        IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 495        IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 496        IXGBE_READ_REG(hw, IXGBE_ERRBC);
 497        IXGBE_READ_REG(hw, IXGBE_MSPDC);
 498        for (i = 0; i < 8; i++)
 499                IXGBE_READ_REG(hw, IXGBE_MPC(i));
 500
 501        IXGBE_READ_REG(hw, IXGBE_MLFC);
 502        IXGBE_READ_REG(hw, IXGBE_MRFC);
 503        IXGBE_READ_REG(hw, IXGBE_RLEC);
 504        IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 505        IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 506        if (hw->mac.type >= ixgbe_mac_82599EB) {
 507                IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 508                IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 509        } else {
 510                IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 511                IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 512        }
 513
 514        for (i = 0; i < 8; i++) {
 515                IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 516                IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 517                if (hw->mac.type >= ixgbe_mac_82599EB) {
 518                        IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 519                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 520                } else {
 521                        IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 522                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 523                }
 524        }
 525        if (hw->mac.type >= ixgbe_mac_82599EB)
 526                for (i = 0; i < 8; i++)
 527                        IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 528        IXGBE_READ_REG(hw, IXGBE_PRC64);
 529        IXGBE_READ_REG(hw, IXGBE_PRC127);
 530        IXGBE_READ_REG(hw, IXGBE_PRC255);
 531        IXGBE_READ_REG(hw, IXGBE_PRC511);
 532        IXGBE_READ_REG(hw, IXGBE_PRC1023);
 533        IXGBE_READ_REG(hw, IXGBE_PRC1522);
 534        IXGBE_READ_REG(hw, IXGBE_GPRC);
 535        IXGBE_READ_REG(hw, IXGBE_BPRC);
 536        IXGBE_READ_REG(hw, IXGBE_MPRC);
 537        IXGBE_READ_REG(hw, IXGBE_GPTC);
 538        IXGBE_READ_REG(hw, IXGBE_GORCL);
 539        IXGBE_READ_REG(hw, IXGBE_GORCH);
 540        IXGBE_READ_REG(hw, IXGBE_GOTCL);
 541        IXGBE_READ_REG(hw, IXGBE_GOTCH);
 542        if (hw->mac.type == ixgbe_mac_82598EB)
 543                for (i = 0; i < 8; i++)
 544                        IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 545        IXGBE_READ_REG(hw, IXGBE_RUC);
 546        IXGBE_READ_REG(hw, IXGBE_RFC);
 547        IXGBE_READ_REG(hw, IXGBE_ROC);
 548        IXGBE_READ_REG(hw, IXGBE_RJC);
 549        IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 550        IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 551        IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 552        IXGBE_READ_REG(hw, IXGBE_TORL);
 553        IXGBE_READ_REG(hw, IXGBE_TORH);
 554        IXGBE_READ_REG(hw, IXGBE_TPR);
 555        IXGBE_READ_REG(hw, IXGBE_TPT);
 556        IXGBE_READ_REG(hw, IXGBE_PTC64);
 557        IXGBE_READ_REG(hw, IXGBE_PTC127);
 558        IXGBE_READ_REG(hw, IXGBE_PTC255);
 559        IXGBE_READ_REG(hw, IXGBE_PTC511);
 560        IXGBE_READ_REG(hw, IXGBE_PTC1023);
 561        IXGBE_READ_REG(hw, IXGBE_PTC1522);
 562        IXGBE_READ_REG(hw, IXGBE_MPTC);
 563        IXGBE_READ_REG(hw, IXGBE_BPTC);
 564        for (i = 0; i < 16; i++) {
 565                IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 566                IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 567                if (hw->mac.type >= ixgbe_mac_82599EB) {
 568                        IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 569                        IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 570                        IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 571                        IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 572                        IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 573                } else {
 574                        IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 575                        IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 576                }
 577        }
 578
 579        if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
 580                if (hw->phy.id == 0)
 581                        ixgbe_identify_phy(hw);
 582                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL,
 583                                     IXGBE_MDIO_PCS_DEV_TYPE, &i);
 584                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH,
 585                                     IXGBE_MDIO_PCS_DEV_TYPE, &i);
 586                hw->phy.ops.read_reg(hw, IXGBE_LDPCECL,
 587                                     IXGBE_MDIO_PCS_DEV_TYPE, &i);
 588                hw->phy.ops.read_reg(hw, IXGBE_LDPCECH,
 589                                     IXGBE_MDIO_PCS_DEV_TYPE, &i);
 590        }
 591
 592        return IXGBE_SUCCESS;
 593}
 594
 595/**
 596 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 597 * @hw: pointer to hardware structure
 598 * @pba_num: stores the part number string from the EEPROM
 599 * @pba_num_size: part number string buffer length
 600 *
 601 * Reads the part number string from the EEPROM.
 602 **/
 603s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 604                                  u32 pba_num_size)
 605{
 606        s32 ret_val;
 607        u16 data;
 608        u16 pba_ptr;
 609        u16 offset;
 610        u16 length;
 611
 612        DEBUGFUNC("ixgbe_read_pba_string_generic");
 613
 614        if (pba_num == NULL) {
 615                DEBUGOUT("PBA string buffer was null\n");
 616                return IXGBE_ERR_INVALID_ARGUMENT;
 617        }
 618
 619        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 620        if (ret_val) {
 621                DEBUGOUT("NVM Read Error\n");
 622                return ret_val;
 623        }
 624
 625        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 626        if (ret_val) {
 627                DEBUGOUT("NVM Read Error\n");
 628                return ret_val;
 629        }
 630
 631        /*
 632         * if data is not ptr guard the PBA must be in legacy format which
 633         * means pba_ptr is actually our second data word for the PBA number
 634         * and we can decode it into an ascii string
 635         */
 636        if (data != IXGBE_PBANUM_PTR_GUARD) {
 637                DEBUGOUT("NVM PBA number is not stored as string\n");
 638
 639                /* we will need 11 characters to store the PBA */
 640                if (pba_num_size < 11) {
 641                        DEBUGOUT("PBA string buffer too small\n");
 642                        return IXGBE_ERR_NO_SPACE;
 643                }
 644
 645                /* extract hex string from data and pba_ptr */
 646                pba_num[0] = (data >> 12) & 0xF;
 647                pba_num[1] = (data >> 8) & 0xF;
 648                pba_num[2] = (data >> 4) & 0xF;
 649                pba_num[3] = data & 0xF;
 650                pba_num[4] = (pba_ptr >> 12) & 0xF;
 651                pba_num[5] = (pba_ptr >> 8) & 0xF;
 652                pba_num[6] = '-';
 653                pba_num[7] = 0;
 654                pba_num[8] = (pba_ptr >> 4) & 0xF;
 655                pba_num[9] = pba_ptr & 0xF;
 656
 657                /* put a null character on the end of our string */
 658                pba_num[10] = '\0';
 659
 660                /* switch all the data but the '-' to hex char */
 661                for (offset = 0; offset < 10; offset++) {
 662                        if (pba_num[offset] < 0xA)
 663                                pba_num[offset] += '0';
 664                        else if (pba_num[offset] < 0x10)
 665                                pba_num[offset] += 'A' - 0xA;
 666                }
 667
 668                return IXGBE_SUCCESS;
 669        }
 670
 671        ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 672        if (ret_val) {
 673                DEBUGOUT("NVM Read Error\n");
 674                return ret_val;
 675        }
 676
 677        if (length == 0xFFFF || length == 0) {
 678                DEBUGOUT("NVM PBA number section invalid length\n");
 679                return IXGBE_ERR_PBA_SECTION;
 680        }
 681
 682        /* check if pba_num buffer is big enough */
 683        if (pba_num_size  < (((u32)length * 2) - 1)) {
 684                DEBUGOUT("PBA string buffer too small\n");
 685                return IXGBE_ERR_NO_SPACE;
 686        }
 687
 688        /* trim pba length from start of string */
 689        pba_ptr++;
 690        length--;
 691
 692        for (offset = 0; offset < length; offset++) {
 693                ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 694                if (ret_val) {
 695                        DEBUGOUT("NVM Read Error\n");
 696                        return ret_val;
 697                }
 698                pba_num[offset * 2] = (u8)(data >> 8);
 699                pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 700        }
 701        pba_num[offset * 2] = '\0';
 702
 703        return IXGBE_SUCCESS;
 704}
 705
 706/**
 707 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
 708 * @hw: pointer to hardware structure
 709 * @pba_num: stores the part number from the EEPROM
 710 *
 711 * Reads the part number from the EEPROM.
 712 **/
 713s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
 714{
 715        s32 ret_val;
 716        u16 data;
 717
 718        DEBUGFUNC("ixgbe_read_pba_num_generic");
 719
 720        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 721        if (ret_val) {
 722                DEBUGOUT("NVM Read Error\n");
 723                return ret_val;
 724        } else if (data == IXGBE_PBANUM_PTR_GUARD) {
 725                DEBUGOUT("NVM Not supported\n");
 726                return IXGBE_NOT_IMPLEMENTED;
 727        }
 728        *pba_num = (u32)(data << 16);
 729
 730        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
 731        if (ret_val) {
 732                DEBUGOUT("NVM Read Error\n");
 733                return ret_val;
 734        }
 735        *pba_num |= (u32)data;
 736
 737        return IXGBE_SUCCESS;
 738}
 739
 740/**
 741 * ixgbe_read_pba_raw
 742 * @hw: pointer to the HW structure
 743 * @eeprom_buf: optional pointer to EEPROM image
 744 * @eeprom_buf_size: size of EEPROM image in words
 745 * @max_pba_block_size: PBA block size limit
 746 * @pba: pointer to output PBA structure
 747 *
 748 * Reads PBA from EEPROM image when eeprom_buf is not NULL.
 749 * Reads PBA from physical EEPROM device when eeprom_buf is NULL.
 750 *
 751 **/
 752s32 ixgbe_read_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
 753                       u32 eeprom_buf_size, u16 max_pba_block_size,
 754                       struct ixgbe_pba *pba)
 755{
 756        s32 ret_val;
 757        u16 pba_block_size;
 758
 759        if (pba == NULL)
 760                return IXGBE_ERR_PARAM;
 761
 762        if (eeprom_buf == NULL) {
 763                ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
 764                                                     &pba->word[0]);
 765                if (ret_val)
 766                        return ret_val;
 767        } else {
 768                if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
 769                        pba->word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
 770                        pba->word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
 771                } else {
 772                        return IXGBE_ERR_PARAM;
 773                }
 774        }
 775
 776        if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
 777                if (pba->pba_block == NULL)
 778                        return IXGBE_ERR_PARAM;
 779
 780                ret_val = ixgbe_get_pba_block_size(hw, eeprom_buf,
 781                                                   eeprom_buf_size,
 782                                                   &pba_block_size);
 783                if (ret_val)
 784                        return ret_val;
 785
 786                if (pba_block_size > max_pba_block_size)
 787                        return IXGBE_ERR_PARAM;
 788
 789                if (eeprom_buf == NULL) {
 790                        ret_val = hw->eeprom.ops.read_buffer(hw, pba->word[1],
 791                                                             pba_block_size,
 792                                                             pba->pba_block);
 793                        if (ret_val)
 794                                return ret_val;
 795                } else {
 796                        if (eeprom_buf_size > (u32)(pba->word[1] +
 797                                              pba_block_size)) {
 798                                memcpy(pba->pba_block,
 799                                       &eeprom_buf[pba->word[1]],
 800                                       pba_block_size * sizeof(u16));
 801                        } else {
 802                                return IXGBE_ERR_PARAM;
 803                        }
 804                }
 805        }
 806
 807        return IXGBE_SUCCESS;
 808}
 809
 810/**
 811 * ixgbe_write_pba_raw
 812 * @hw: pointer to the HW structure
 813 * @eeprom_buf: optional pointer to EEPROM image
 814 * @eeprom_buf_size: size of EEPROM image in words
 815 * @pba: pointer to PBA structure
 816 *
 817 * Writes PBA to EEPROM image when eeprom_buf is not NULL.
 818 * Writes PBA to physical EEPROM device when eeprom_buf is NULL.
 819 *
 820 **/
 821s32 ixgbe_write_pba_raw(struct ixgbe_hw *hw, u16 *eeprom_buf,
 822                        u32 eeprom_buf_size, struct ixgbe_pba *pba)
 823{
 824        s32 ret_val;
 825
 826        if (pba == NULL)
 827                return IXGBE_ERR_PARAM;
 828
 829        if (eeprom_buf == NULL) {
 830                ret_val = hw->eeprom.ops.write_buffer(hw, IXGBE_PBANUM0_PTR, 2,
 831                                                      &pba->word[0]);
 832                if (ret_val)
 833                        return ret_val;
 834        } else {
 835                if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
 836                        eeprom_buf[IXGBE_PBANUM0_PTR] = pba->word[0];
 837                        eeprom_buf[IXGBE_PBANUM1_PTR] = pba->word[1];
 838                } else {
 839                        return IXGBE_ERR_PARAM;
 840                }
 841        }
 842
 843        if (pba->word[0] == IXGBE_PBANUM_PTR_GUARD) {
 844                if (pba->pba_block == NULL)
 845                        return IXGBE_ERR_PARAM;
 846
 847                if (eeprom_buf == NULL) {
 848                        ret_val = hw->eeprom.ops.write_buffer(hw, pba->word[1],
 849                                                              pba->pba_block[0],
 850                                                              pba->pba_block);
 851                        if (ret_val)
 852                                return ret_val;
 853                } else {
 854                        if (eeprom_buf_size > (u32)(pba->word[1] +
 855                                              pba->pba_block[0])) {
 856                                memcpy(&eeprom_buf[pba->word[1]],
 857                                       pba->pba_block,
 858                                       pba->pba_block[0] * sizeof(u16));
 859                        } else {
 860                                return IXGBE_ERR_PARAM;
 861                        }
 862                }
 863        }
 864
 865        return IXGBE_SUCCESS;
 866}
 867
 868/**
 869 * ixgbe_get_pba_block_size
 870 * @hw: pointer to the HW structure
 871 * @eeprom_buf: optional pointer to EEPROM image
 872 * @eeprom_buf_size: size of EEPROM image in words
 873 * @pba_data_size: pointer to output variable
 874 *
 875 * Returns the size of the PBA block in words. Function operates on EEPROM
 876 * image if the eeprom_buf pointer is not NULL otherwise it accesses physical
 877 * EEPROM device.
 878 *
 879 **/
 880s32 ixgbe_get_pba_block_size(struct ixgbe_hw *hw, u16 *eeprom_buf,
 881                             u32 eeprom_buf_size, u16 *pba_block_size)
 882{
 883        s32 ret_val;
 884        u16 pba_word[2];
 885        u16 length;
 886
 887        DEBUGFUNC("ixgbe_get_pba_block_size");
 888
 889        if (eeprom_buf == NULL) {
 890                ret_val = hw->eeprom.ops.read_buffer(hw, IXGBE_PBANUM0_PTR, 2,
 891                                                     &pba_word[0]);
 892                if (ret_val)
 893                        return ret_val;
 894        } else {
 895                if (eeprom_buf_size > IXGBE_PBANUM1_PTR) {
 896                        pba_word[0] = eeprom_buf[IXGBE_PBANUM0_PTR];
 897                        pba_word[1] = eeprom_buf[IXGBE_PBANUM1_PTR];
 898                } else {
 899                        return IXGBE_ERR_PARAM;
 900                }
 901        }
 902
 903        if (pba_word[0] == IXGBE_PBANUM_PTR_GUARD) {
 904                if (eeprom_buf == NULL) {
 905                        ret_val = hw->eeprom.ops.read(hw, pba_word[1] + 0,
 906                                                      &length);
 907                        if (ret_val)
 908                                return ret_val;
 909                } else {
 910                        if (eeprom_buf_size > pba_word[1])
 911                                length = eeprom_buf[pba_word[1] + 0];
 912                        else
 913                                return IXGBE_ERR_PARAM;
 914                }
 915
 916                if (length == 0xFFFF || length == 0)
 917                        return IXGBE_ERR_PBA_SECTION;
 918        } else {
 919                /* PBA number in legacy format, there is no PBA Block. */
 920                length = 0;
 921        }
 922
 923        if (pba_block_size != NULL)
 924                *pba_block_size = length;
 925
 926        return IXGBE_SUCCESS;
 927}
 928
 929/**
 930 * ixgbe_get_mac_addr_generic - Generic get MAC address
 931 * @hw: pointer to hardware structure
 932 * @mac_addr: Adapter MAC address
 933 *
 934 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
 935 * A reset of the adapter must be performed prior to calling this function
 936 * in order for the MAC address to have been loaded from the EEPROM into RAR0
 937 **/
 938s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 939{
 940        u32 rar_high;
 941        u32 rar_low;
 942        u16 i;
 943
 944        DEBUGFUNC("ixgbe_get_mac_addr_generic");
 945
 946        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 947        rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 948
 949        for (i = 0; i < 4; i++)
 950                mac_addr[i] = (u8)(rar_low >> (i*8));
 951
 952        for (i = 0; i < 2; i++)
 953                mac_addr[i+4] = (u8)(rar_high >> (i*8));
 954
 955        return IXGBE_SUCCESS;
 956}
 957
 958/**
 959 * ixgbe_set_pci_config_data_generic - Generic store PCI bus info
 960 * @hw: pointer to hardware structure
 961 * @link_status: the link status returned by the PCI config space
 962 *
 963 * Stores the PCI bus info (speed, width, type) within the ixgbe_hw structure
 964 **/
 965void ixgbe_set_pci_config_data_generic(struct ixgbe_hw *hw, u16 link_status)
 966{
 967        struct ixgbe_mac_info *mac = &hw->mac;
 968
 969        if (hw->bus.type == ixgbe_bus_type_unknown)
 970                hw->bus.type = ixgbe_bus_type_pci_express;
 971
 972        switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 973        case IXGBE_PCI_LINK_WIDTH_1:
 974                hw->bus.width = ixgbe_bus_width_pcie_x1;
 975                break;
 976        case IXGBE_PCI_LINK_WIDTH_2:
 977                hw->bus.width = ixgbe_bus_width_pcie_x2;
 978                break;
 979        case IXGBE_PCI_LINK_WIDTH_4:
 980                hw->bus.width = ixgbe_bus_width_pcie_x4;
 981                break;
 982        case IXGBE_PCI_LINK_WIDTH_8:
 983                hw->bus.width = ixgbe_bus_width_pcie_x8;
 984                break;
 985        default:
 986                hw->bus.width = ixgbe_bus_width_unknown;
 987                break;
 988        }
 989
 990        switch (link_status & IXGBE_PCI_LINK_SPEED) {
 991        case IXGBE_PCI_LINK_SPEED_2500:
 992                hw->bus.speed = ixgbe_bus_speed_2500;
 993                break;
 994        case IXGBE_PCI_LINK_SPEED_5000:
 995                hw->bus.speed = ixgbe_bus_speed_5000;
 996                break;
 997        case IXGBE_PCI_LINK_SPEED_8000:
 998                hw->bus.speed = ixgbe_bus_speed_8000;
 999                break;
1000        default:
1001                hw->bus.speed = ixgbe_bus_speed_unknown;
1002                break;
1003        }
1004
1005        mac->ops.set_lan_id(hw);
1006}
1007
1008/**
1009 * ixgbe_get_bus_info_generic - Generic set PCI bus info
1010 * @hw: pointer to hardware structure
1011 *
1012 * Gets the PCI bus info (speed, width, type) then calls helper function to
1013 * store this data within the ixgbe_hw structure.
1014 **/
1015s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
1016{
1017        u16 link_status;
1018
1019        DEBUGFUNC("ixgbe_get_bus_info_generic");
1020
1021        /* Get the negotiated link width and speed from PCI config space */
1022        link_status = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_LINK_STATUS);
1023
1024        ixgbe_set_pci_config_data_generic(hw, link_status);
1025
1026        return IXGBE_SUCCESS;
1027}
1028
1029/**
1030 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
1031 * @hw: pointer to the HW structure
1032 *
1033 * Determines the LAN function id by reading memory-mapped registers and swaps
1034 * the port value if requested, and set MAC instance for devices that share
1035 * CS4227.
1036 **/
1037void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
1038{
1039        struct ixgbe_bus_info *bus = &hw->bus;
1040        u32 reg;
1041        u16 ee_ctrl_4;
1042
1043        DEBUGFUNC("ixgbe_set_lan_id_multi_port_pcie");
1044
1045        reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
1046        bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
1047        bus->lan_id = (u8)bus->func;
1048
1049        /* check for a port swap */
1050        reg = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
1051        if (reg & IXGBE_FACTPS_LFS)
1052                bus->func ^= 0x1;
1053
1054        /* Get MAC instance from EEPROM for configuring CS4227 */
1055        if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
1056                hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
1057                bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
1058                                   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
1059        }
1060}
1061
1062/**
1063 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
1064 * @hw: pointer to hardware structure
1065 *
1066 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
1067 * disables transmit and receive units. The adapter_stopped flag is used by
1068 * the shared code and drivers to determine if the adapter is in a stopped
1069 * state and should not touch the hardware.
1070 **/
1071s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
1072{
1073        u32 reg_val;
1074        u16 i;
1075
1076        DEBUGFUNC("ixgbe_stop_adapter_generic");
1077
1078        /*
1079         * Set the adapter_stopped flag so other driver functions stop touching
1080         * the hardware
1081         */
1082        hw->adapter_stopped = true;
1083
1084        /* Disable the receive unit */
1085        ixgbe_disable_rx(hw);
1086
1087        /* Clear interrupt mask to stop interrupts from being generated */
1088        IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
1089
1090        /* Clear any pending interrupts, flush previous writes */
1091        IXGBE_READ_REG(hw, IXGBE_EICR);
1092
1093        /* Disable the transmit unit.  Each queue must be disabled. */
1094        for (i = 0; i < hw->mac.max_tx_queues; i++)
1095                IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
1096
1097        /* Disable the receive unit by stopping each queue */
1098        for (i = 0; i < hw->mac.max_rx_queues; i++) {
1099                reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1100                reg_val &= ~IXGBE_RXDCTL_ENABLE;
1101                reg_val |= IXGBE_RXDCTL_SWFLSH;
1102                IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1103        }
1104
1105        /* flush all queues disables */
1106        IXGBE_WRITE_FLUSH(hw);
1107        msec_delay(2);
1108
1109        /*
1110         * Prevent the PCI-E bus from hanging by disabling PCI-E master
1111         * access and verify no pending requests
1112         */
1113        return ixgbe_disable_pcie_master(hw);
1114}
1115
1116/**
1117 * ixgbe_init_led_link_act_generic - Store the LED index link/activity.
1118 * @hw: pointer to hardware structure
1119 *
1120 * Store the index for the link active LED. This will be used to support
1121 * blinking the LED.
1122 **/
1123s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
1124{
1125        struct ixgbe_mac_info *mac = &hw->mac;
1126        u32 led_reg, led_mode;
1127        u8 i;
1128
1129        led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1130
1131        /* Get LED link active from the LEDCTL register */
1132        for (i = 0; i < 4; i++) {
1133                led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
1134
1135                if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
1136                     IXGBE_LED_LINK_ACTIVE) {
1137                        mac->led_link_act = i;
1138                        return IXGBE_SUCCESS;
1139                }
1140        }
1141
1142        /*
1143         * If LEDCTL register does not have the LED link active set, then use
1144         * known MAC defaults.
1145         */
1146        switch (hw->mac.type) {
1147        case ixgbe_mac_X550EM_a:
1148        case ixgbe_mac_X550EM_x:
1149                mac->led_link_act = 1;
1150                break;
1151        default:
1152                mac->led_link_act = 2;
1153        }
1154        return IXGBE_SUCCESS;
1155}
1156
1157/**
1158 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
1159 * @hw: pointer to hardware structure
1160 * @index: led number to turn on
1161 **/
1162s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
1163{
1164        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1165
1166        DEBUGFUNC("ixgbe_led_on_generic");
1167
1168        if (index > 3)
1169                return IXGBE_ERR_PARAM;
1170
1171        /* To turn on the LED, set mode to ON. */
1172        led_reg &= ~IXGBE_LED_MODE_MASK(index);
1173        led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
1174        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1175        IXGBE_WRITE_FLUSH(hw);
1176
1177        return IXGBE_SUCCESS;
1178}
1179
1180/**
1181 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
1182 * @hw: pointer to hardware structure
1183 * @index: led number to turn off
1184 **/
1185s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
1186{
1187        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
1188
1189        DEBUGFUNC("ixgbe_led_off_generic");
1190
1191        if (index > 3)
1192                return IXGBE_ERR_PARAM;
1193
1194        /* To turn off the LED, set mode to OFF. */
1195        led_reg &= ~IXGBE_LED_MODE_MASK(index);
1196        led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
1197        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
1198        IXGBE_WRITE_FLUSH(hw);
1199
1200        return IXGBE_SUCCESS;
1201}
1202
1203/**
1204 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
1205 * @hw: pointer to hardware structure
1206 *
1207 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
1208 * ixgbe_hw struct in order to set up EEPROM access.
1209 **/
1210s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
1211{
1212        struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
1213        u32 eec;
1214        u16 eeprom_size;
1215
1216        DEBUGFUNC("ixgbe_init_eeprom_params_generic");
1217
1218        if (eeprom->type == ixgbe_eeprom_uninitialized) {
1219                eeprom->type = ixgbe_eeprom_none;
1220                /* Set default semaphore delay to 10ms which is a well
1221                 * tested value */
1222                eeprom->semaphore_delay = 10;
1223                /* Clear EEPROM page size, it will be initialized as needed */
1224                eeprom->word_page_size = 0;
1225
1226                /*
1227                 * Check for EEPROM present first.
1228                 * If not present leave as none
1229                 */
1230                eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1231                if (eec & IXGBE_EEC_PRES) {
1232                        eeprom->type = ixgbe_eeprom_spi;
1233
1234                        /*
1235                         * SPI EEPROM is assumed here.  This code would need to
1236                         * change if a future EEPROM is not SPI.
1237                         */
1238                        eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
1239                                            IXGBE_EEC_SIZE_SHIFT);
1240                        eeprom->word_size = 1 << (eeprom_size +
1241                                             IXGBE_EEPROM_WORD_SIZE_SHIFT);
1242                }
1243
1244                if (eec & IXGBE_EEC_ADDR_SIZE)
1245                        eeprom->address_bits = 16;
1246                else
1247                        eeprom->address_bits = 8;
1248                DEBUGOUT3("Eeprom params: type = %d, size = %d, address bits: "
1249                          "%d\n", eeprom->type, eeprom->word_size,
1250                          eeprom->address_bits);
1251        }
1252
1253        return IXGBE_SUCCESS;
1254}
1255
1256/**
1257 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
1258 * @hw: pointer to hardware structure
1259 * @offset: offset within the EEPROM to write
1260 * @words: number of word(s)
1261 * @data: 16 bit word(s) to write to EEPROM
1262 *
1263 * Reads 16 bit word(s) from EEPROM through bit-bang method
1264 **/
1265s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1266                                               u16 words, u16 *data)
1267{
1268        s32 status = IXGBE_SUCCESS;
1269        u16 i, count;
1270
1271        DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang_generic");
1272
1273        hw->eeprom.ops.init_params(hw);
1274
1275        if (words == 0) {
1276                status = IXGBE_ERR_INVALID_ARGUMENT;
1277                goto out;
1278        }
1279
1280        if (offset + words > hw->eeprom.word_size) {
1281                status = IXGBE_ERR_EEPROM;
1282                goto out;
1283        }
1284
1285        /*
1286         * The EEPROM page size cannot be queried from the chip. We do lazy
1287         * initialization. It is worth to do that when we write large buffer.
1288         */
1289        if ((hw->eeprom.word_page_size == 0) &&
1290            (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
1291                ixgbe_detect_eeprom_page_size_generic(hw, offset);
1292
1293        /*
1294         * We cannot hold synchronization semaphores for too long
1295         * to avoid other entity starvation. However it is more efficient
1296         * to read in bursts than synchronizing access for each word.
1297         */
1298        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1299                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1300                        IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1301                status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
1302                                                            count, &data[i]);
1303
1304                if (status != IXGBE_SUCCESS)
1305                        break;
1306        }
1307
1308out:
1309        return status;
1310}
1311
1312/**
1313 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
1314 * @hw: pointer to hardware structure
1315 * @offset: offset within the EEPROM to be written to
1316 * @words: number of word(s)
1317 * @data: 16 bit word(s) to be written to the EEPROM
1318 *
1319 * If ixgbe_eeprom_update_checksum is not called after this function, the
1320 * EEPROM will most likely contain an invalid checksum.
1321 **/
1322STATIC s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1323                                              u16 words, u16 *data)
1324{
1325        s32 status;
1326        u16 word;
1327        u16 page_size;
1328        u16 i;
1329        u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
1330
1331        DEBUGFUNC("ixgbe_write_eeprom_buffer_bit_bang");
1332
1333        /* Prepare the EEPROM for writing  */
1334        status = ixgbe_acquire_eeprom(hw);
1335
1336        if (status == IXGBE_SUCCESS) {
1337                if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1338                        ixgbe_release_eeprom(hw);
1339                        status = IXGBE_ERR_EEPROM;
1340                }
1341        }
1342
1343        if (status == IXGBE_SUCCESS) {
1344                for (i = 0; i < words; i++) {
1345                        ixgbe_standby_eeprom(hw);
1346
1347                        /*  Send the WRITE ENABLE command (8 bit opcode )  */
1348                        ixgbe_shift_out_eeprom_bits(hw,
1349                                                   IXGBE_EEPROM_WREN_OPCODE_SPI,
1350                                                   IXGBE_EEPROM_OPCODE_BITS);
1351
1352                        ixgbe_standby_eeprom(hw);
1353
1354                        /*
1355                         * Some SPI eeproms use the 8th address bit embedded
1356                         * in the opcode
1357                         */
1358                        if ((hw->eeprom.address_bits == 8) &&
1359                            ((offset + i) >= 128))
1360                                write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1361
1362                        /* Send the Write command (8-bit opcode + addr) */
1363                        ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1364                                                    IXGBE_EEPROM_OPCODE_BITS);
1365                        ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1366                                                    hw->eeprom.address_bits);
1367
1368                        page_size = hw->eeprom.word_page_size;
1369
1370                        /* Send the data in burst via SPI*/
1371                        do {
1372                                word = data[i];
1373                                word = (word >> 8) | (word << 8);
1374                                ixgbe_shift_out_eeprom_bits(hw, word, 16);
1375
1376                                if (page_size == 0)
1377                                        break;
1378
1379                                /* do not wrap around page */
1380                                if (((offset + i) & (page_size - 1)) ==
1381                                    (page_size - 1))
1382                                        break;
1383                        } while (++i < words);
1384
1385                        ixgbe_standby_eeprom(hw);
1386                        msec_delay(10);
1387                }
1388                /* Done with writing - release the EEPROM */
1389                ixgbe_release_eeprom(hw);
1390        }
1391
1392        return status;
1393}
1394
1395/**
1396 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1397 * @hw: pointer to hardware structure
1398 * @offset: offset within the EEPROM to be written to
1399 * @data: 16 bit word to be written to the EEPROM
1400 *
1401 * If ixgbe_eeprom_update_checksum is not called after this function, the
1402 * EEPROM will most likely contain an invalid checksum.
1403 **/
1404s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1405{
1406        s32 status;
1407
1408        DEBUGFUNC("ixgbe_write_eeprom_generic");
1409
1410        hw->eeprom.ops.init_params(hw);
1411
1412        if (offset >= hw->eeprom.word_size) {
1413                status = IXGBE_ERR_EEPROM;
1414                goto out;
1415        }
1416
1417        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1418
1419out:
1420        return status;
1421}
1422
1423/**
1424 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1425 * @hw: pointer to hardware structure
1426 * @offset: offset within the EEPROM to be read
1427 * @data: read 16 bit words(s) from EEPROM
1428 * @words: number of word(s)
1429 *
1430 * Reads 16 bit word(s) from EEPROM through bit-bang method
1431 **/
1432s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1433                                              u16 words, u16 *data)
1434{
1435        s32 status = IXGBE_SUCCESS;
1436        u16 i, count;
1437
1438        DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang_generic");
1439
1440        hw->eeprom.ops.init_params(hw);
1441
1442        if (words == 0) {
1443                status = IXGBE_ERR_INVALID_ARGUMENT;
1444                goto out;
1445        }
1446
1447        if (offset + words > hw->eeprom.word_size) {
1448                status = IXGBE_ERR_EEPROM;
1449                goto out;
1450        }
1451
1452        /*
1453         * We cannot hold synchronization semaphores for too long
1454         * to avoid other entity starvation. However it is more efficient
1455         * to read in bursts than synchronizing access for each word.
1456         */
1457        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1458                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1459                        IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1460
1461                status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1462                                                           count, &data[i]);
1463
1464                if (status != IXGBE_SUCCESS)
1465                        break;
1466        }
1467
1468out:
1469        return status;
1470}
1471
1472/**
1473 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1474 * @hw: pointer to hardware structure
1475 * @offset: offset within the EEPROM to be read
1476 * @words: number of word(s)
1477 * @data: read 16 bit word(s) from EEPROM
1478 *
1479 * Reads 16 bit word(s) from EEPROM through bit-bang method
1480 **/
1481STATIC s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1482                                             u16 words, u16 *data)
1483{
1484        s32 status;
1485        u16 word_in;
1486        u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1487        u16 i;
1488
1489        DEBUGFUNC("ixgbe_read_eeprom_buffer_bit_bang");
1490
1491        /* Prepare the EEPROM for reading  */
1492        status = ixgbe_acquire_eeprom(hw);
1493
1494        if (status == IXGBE_SUCCESS) {
1495                if (ixgbe_ready_eeprom(hw) != IXGBE_SUCCESS) {
1496                        ixgbe_release_eeprom(hw);
1497                        status = IXGBE_ERR_EEPROM;
1498                }
1499        }
1500
1501        if (status == IXGBE_SUCCESS) {
1502                for (i = 0; i < words; i++) {
1503                        ixgbe_standby_eeprom(hw);
1504                        /*
1505                         * Some SPI eeproms use the 8th address bit embedded
1506                         * in the opcode
1507                         */
1508                        if ((hw->eeprom.address_bits == 8) &&
1509                            ((offset + i) >= 128))
1510                                read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1511
1512                        /* Send the READ command (opcode + addr) */
1513                        ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1514                                                    IXGBE_EEPROM_OPCODE_BITS);
1515                        ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1516                                                    hw->eeprom.address_bits);
1517
1518                        /* Read the data. */
1519                        word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1520                        data[i] = (word_in >> 8) | (word_in << 8);
1521                }
1522
1523                /* End this read operation */
1524                ixgbe_release_eeprom(hw);
1525        }
1526
1527        return status;
1528}
1529
1530/**
1531 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1532 * @hw: pointer to hardware structure
1533 * @offset: offset within the EEPROM to be read
1534 * @data: read 16 bit value from EEPROM
1535 *
1536 * Reads 16 bit value from EEPROM through bit-bang method
1537 **/
1538s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1539                                       u16 *data)
1540{
1541        s32 status;
1542
1543        DEBUGFUNC("ixgbe_read_eeprom_bit_bang_generic");
1544
1545        hw->eeprom.ops.init_params(hw);
1546
1547        if (offset >= hw->eeprom.word_size) {
1548                status = IXGBE_ERR_EEPROM;
1549                goto out;
1550        }
1551
1552        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1553
1554out:
1555        return status;
1556}
1557
1558/**
1559 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1560 * @hw: pointer to hardware structure
1561 * @offset: offset of word in the EEPROM to read
1562 * @words: number of word(s)
1563 * @data: 16 bit word(s) from the EEPROM
1564 *
1565 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1566 **/
1567s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1568                                   u16 words, u16 *data)
1569{
1570        u32 eerd;
1571        s32 status = IXGBE_SUCCESS;
1572        u32 i;
1573
1574        DEBUGFUNC("ixgbe_read_eerd_buffer_generic");
1575
1576        hw->eeprom.ops.init_params(hw);
1577
1578        if (words == 0) {
1579                status = IXGBE_ERR_INVALID_ARGUMENT;
1580                ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1581                goto out;
1582        }
1583
1584        if (offset >= hw->eeprom.word_size) {
1585                status = IXGBE_ERR_EEPROM;
1586                ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1587                goto out;
1588        }
1589
1590        for (i = 0; i < words; i++) {
1591                eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1592                       IXGBE_EEPROM_RW_REG_START;
1593
1594                IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1595                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1596
1597                if (status == IXGBE_SUCCESS) {
1598                        data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1599                                   IXGBE_EEPROM_RW_REG_DATA);
1600                } else {
1601                        DEBUGOUT("Eeprom read timed out\n");
1602                        goto out;
1603                }
1604        }
1605out:
1606        return status;
1607}
1608
1609/**
1610 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1611 * @hw: pointer to hardware structure
1612 * @offset: offset within the EEPROM to be used as a scratch pad
1613 *
1614 * Discover EEPROM page size by writing marching data at given offset.
1615 * This function is called only when we are writing a new large buffer
1616 * at given offset so the data would be overwritten anyway.
1617 **/
1618STATIC s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1619                                                 u16 offset)
1620{
1621        u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1622        s32 status = IXGBE_SUCCESS;
1623        u16 i;
1624
1625        DEBUGFUNC("ixgbe_detect_eeprom_page_size_generic");
1626
1627        for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1628                data[i] = i;
1629
1630        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1631        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1632                                             IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1633        hw->eeprom.word_page_size = 0;
1634        if (status != IXGBE_SUCCESS)
1635                goto out;
1636
1637        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1638        if (status != IXGBE_SUCCESS)
1639                goto out;
1640
1641        /*
1642         * When writing in burst more than the actual page size
1643         * EEPROM address wraps around current page.
1644         */
1645        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1646
1647        DEBUGOUT1("Detected EEPROM page size = %d words.",
1648                  hw->eeprom.word_page_size);
1649out:
1650        return status;
1651}
1652
1653/**
1654 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1655 * @hw: pointer to hardware structure
1656 * @offset: offset of  word in the EEPROM to read
1657 * @data: word read from the EEPROM
1658 *
1659 * Reads a 16 bit word from the EEPROM using the EERD register.
1660 **/
1661s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1662{
1663        return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1664}
1665
1666/**
1667 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1668 * @hw: pointer to hardware structure
1669 * @offset: offset of  word in the EEPROM to write
1670 * @words: number of word(s)
1671 * @data: word(s) write to the EEPROM
1672 *
1673 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1674 **/
1675s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1676                                    u16 words, u16 *data)
1677{
1678        u32 eewr;
1679        s32 status = IXGBE_SUCCESS;
1680        u16 i;
1681
1682        DEBUGFUNC("ixgbe_write_eewr_generic");
1683
1684        hw->eeprom.ops.init_params(hw);
1685
1686        if (words == 0) {
1687                status = IXGBE_ERR_INVALID_ARGUMENT;
1688                ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM words");
1689                goto out;
1690        }
1691
1692        if (offset >= hw->eeprom.word_size) {
1693                status = IXGBE_ERR_EEPROM;
1694                ERROR_REPORT1(IXGBE_ERROR_ARGUMENT, "Invalid EEPROM offset");
1695                goto out;
1696        }
1697
1698        for (i = 0; i < words; i++) {
1699                eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1700                        (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1701                        IXGBE_EEPROM_RW_REG_START;
1702
1703                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1704                if (status != IXGBE_SUCCESS) {
1705                        DEBUGOUT("Eeprom write EEWR timed out\n");
1706                        goto out;
1707                }
1708
1709                IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1710
1711                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1712                if (status != IXGBE_SUCCESS) {
1713                        DEBUGOUT("Eeprom write EEWR timed out\n");
1714                        goto out;
1715                }
1716        }
1717
1718out:
1719        return status;
1720}
1721
1722/**
1723 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1724 * @hw: pointer to hardware structure
1725 * @offset: offset of  word in the EEPROM to write
1726 * @data: word write to the EEPROM
1727 *
1728 * Write a 16 bit word to the EEPROM using the EEWR register.
1729 **/
1730s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1731{
1732        return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1733}
1734
1735/**
1736 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1737 * @hw: pointer to hardware structure
1738 * @ee_reg: EEPROM flag for polling
1739 *
1740 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1741 * read or write is done respectively.
1742 **/
1743s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1744{
1745        u32 i;
1746        u32 reg;
1747        s32 status = IXGBE_ERR_EEPROM;
1748
1749        DEBUGFUNC("ixgbe_poll_eerd_eewr_done");
1750
1751        for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1752                if (ee_reg == IXGBE_NVM_POLL_READ)
1753                        reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1754                else
1755                        reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1756
1757                if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1758                        status = IXGBE_SUCCESS;
1759                        break;
1760                }
1761                usec_delay(5);
1762        }
1763
1764        if (i == IXGBE_EERD_EEWR_ATTEMPTS)
1765                ERROR_REPORT1(IXGBE_ERROR_POLLING,
1766                             "EEPROM read/write done polling timed out");
1767
1768        return status;
1769}
1770
1771/**
1772 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1773 * @hw: pointer to hardware structure
1774 *
1775 * Prepares EEPROM for access using bit-bang method. This function should
1776 * be called before issuing a command to the EEPROM.
1777 **/
1778STATIC s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1779{
1780        s32 status = IXGBE_SUCCESS;
1781        u32 eec;
1782        u32 i;
1783
1784        DEBUGFUNC("ixgbe_acquire_eeprom");
1785
1786        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM)
1787            != IXGBE_SUCCESS)
1788                status = IXGBE_ERR_SWFW_SYNC;
1789
1790        if (status == IXGBE_SUCCESS) {
1791                eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1792
1793                /* Request EEPROM Access */
1794                eec |= IXGBE_EEC_REQ;
1795                IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1796
1797                for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1798                        eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1799                        if (eec & IXGBE_EEC_GNT)
1800                                break;
1801                        usec_delay(5);
1802                }
1803
1804                /* Release if grant not acquired */
1805                if (!(eec & IXGBE_EEC_GNT)) {
1806                        eec &= ~IXGBE_EEC_REQ;
1807                        IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1808                        DEBUGOUT("Could not acquire EEPROM grant\n");
1809
1810                        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1811                        status = IXGBE_ERR_EEPROM;
1812                }
1813
1814                /* Setup EEPROM for Read/Write */
1815                if (status == IXGBE_SUCCESS) {
1816                        /* Clear CS and SK */
1817                        eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1818                        IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1819                        IXGBE_WRITE_FLUSH(hw);
1820                        usec_delay(1);
1821                }
1822        }
1823        return status;
1824}
1825
1826/**
1827 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1828 * @hw: pointer to hardware structure
1829 *
1830 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1831 **/
1832STATIC s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1833{
1834        s32 status = IXGBE_ERR_EEPROM;
1835        u32 timeout = 2000;
1836        u32 i;
1837        u32 swsm;
1838
1839        DEBUGFUNC("ixgbe_get_eeprom_semaphore");
1840
1841
1842        /* Get SMBI software semaphore between device drivers first */
1843        for (i = 0; i < timeout; i++) {
1844                /*
1845                 * If the SMBI bit is 0 when we read it, then the bit will be
1846                 * set and we have the semaphore
1847                 */
1848                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1849                if (!(swsm & IXGBE_SWSM_SMBI)) {
1850                        status = IXGBE_SUCCESS;
1851                        break;
1852                }
1853                usec_delay(50);
1854        }
1855
1856        if (i == timeout) {
1857                DEBUGOUT("Driver can't access the Eeprom - SMBI Semaphore "
1858                         "not granted.\n");
1859                /*
1860                 * this release is particularly important because our attempts
1861                 * above to get the semaphore may have succeeded, and if there
1862                 * was a timeout, we should unconditionally clear the semaphore
1863                 * bits to free the driver to make progress
1864                 */
1865                ixgbe_release_eeprom_semaphore(hw);
1866
1867                usec_delay(50);
1868                /*
1869                 * one last try
1870                 * If the SMBI bit is 0 when we read it, then the bit will be
1871                 * set and we have the semaphore
1872                 */
1873                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1874                if (!(swsm & IXGBE_SWSM_SMBI))
1875                        status = IXGBE_SUCCESS;
1876        }
1877
1878        /* Now get the semaphore between SW/FW through the SWESMBI bit */
1879        if (status == IXGBE_SUCCESS) {
1880                for (i = 0; i < timeout; i++) {
1881                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1882
1883                        /* Set the SW EEPROM semaphore bit to request access */
1884                        swsm |= IXGBE_SWSM_SWESMBI;
1885                        IXGBE_WRITE_REG(hw, IXGBE_SWSM_BY_MAC(hw), swsm);
1886
1887                        /*
1888                         * If we set the bit successfully then we got the
1889                         * semaphore.
1890                         */
1891                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM_BY_MAC(hw));
1892                        if (swsm & IXGBE_SWSM_SWESMBI)
1893                                break;
1894
1895                        usec_delay(50);
1896                }
1897
1898                /*
1899                 * Release semaphores and return error if SW EEPROM semaphore
1900                 * was not granted because we don't have access to the EEPROM
1901                 */
1902                if (i >= timeout) {
1903                        ERROR_REPORT1(IXGBE_ERROR_POLLING,
1904                            "SWESMBI Software EEPROM semaphore not granted.\n");
1905                        ixgbe_release_eeprom_semaphore(hw);
1906                        status = IXGBE_ERR_EEPROM;
1907                }
1908        } else {
1909                ERROR_REPORT1(IXGBE_ERROR_POLLING,
1910                             "Software semaphore SMBI between device drivers "
1911                             "not granted.\n");
1912        }
1913
1914        return status;
1915}
1916
1917/**
1918 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1919 * @hw: pointer to hardware structure
1920 *
1921 * This function clears hardware semaphore bits.
1922 **/
1923STATIC void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1924{
1925        u32 swsm;
1926
1927        DEBUGFUNC("ixgbe_release_eeprom_semaphore");
1928
1929        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1930
1931        /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1932        swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1933        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1934        IXGBE_WRITE_FLUSH(hw);
1935}
1936
1937/**
1938 * ixgbe_ready_eeprom - Polls for EEPROM ready
1939 * @hw: pointer to hardware structure
1940 **/
1941STATIC s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1942{
1943        s32 status = IXGBE_SUCCESS;
1944        u16 i;
1945        u8 spi_stat_reg;
1946
1947        DEBUGFUNC("ixgbe_ready_eeprom");
1948
1949        /*
1950         * Read "Status Register" repeatedly until the LSB is cleared.  The
1951         * EEPROM will signal that the command has been completed by clearing
1952         * bit 0 of the internal status register.  If it's not cleared within
1953         * 5 milliseconds, then error out.
1954         */
1955        for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1956                ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1957                                            IXGBE_EEPROM_OPCODE_BITS);
1958                spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1959                if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1960                        break;
1961
1962                usec_delay(5);
1963                ixgbe_standby_eeprom(hw);
1964        };
1965
1966        /*
1967         * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1968         * devices (and only 0-5mSec on 5V devices)
1969         */
1970        if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1971                DEBUGOUT("SPI EEPROM Status error\n");
1972                status = IXGBE_ERR_EEPROM;
1973        }
1974
1975        return status;
1976}
1977
1978/**
1979 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1980 * @hw: pointer to hardware structure
1981 **/
1982STATIC void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1983{
1984        u32 eec;
1985
1986        DEBUGFUNC("ixgbe_standby_eeprom");
1987
1988        eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
1989
1990        /* Toggle CS to flush commands */
1991        eec |= IXGBE_EEC_CS;
1992        IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1993        IXGBE_WRITE_FLUSH(hw);
1994        usec_delay(1);
1995        eec &= ~IXGBE_EEC_CS;
1996        IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
1997        IXGBE_WRITE_FLUSH(hw);
1998        usec_delay(1);
1999}
2000
2001/**
2002 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
2003 * @hw: pointer to hardware structure
2004 * @data: data to send to the EEPROM
2005 * @count: number of bits to shift out
2006 **/
2007STATIC void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
2008                                        u16 count)
2009{
2010        u32 eec;
2011        u32 mask;
2012        u32 i;
2013
2014        DEBUGFUNC("ixgbe_shift_out_eeprom_bits");
2015
2016        eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2017
2018        /*
2019         * Mask is used to shift "count" bits of "data" out to the EEPROM
2020         * one bit at a time.  Determine the starting bit based on count
2021         */
2022        mask = 0x01 << (count - 1);
2023
2024        for (i = 0; i < count; i++) {
2025                /*
2026                 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
2027                 * "1", and then raising and then lowering the clock (the SK
2028                 * bit controls the clock input to the EEPROM).  A "0" is
2029                 * shifted out to the EEPROM by setting "DI" to "0" and then
2030                 * raising and then lowering the clock.
2031                 */
2032                if (data & mask)
2033                        eec |= IXGBE_EEC_DI;
2034                else
2035                        eec &= ~IXGBE_EEC_DI;
2036
2037                IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2038                IXGBE_WRITE_FLUSH(hw);
2039
2040                usec_delay(1);
2041
2042                ixgbe_raise_eeprom_clk(hw, &eec);
2043                ixgbe_lower_eeprom_clk(hw, &eec);
2044
2045                /*
2046                 * Shift mask to signify next bit of data to shift in to the
2047                 * EEPROM
2048                 */
2049                mask = mask >> 1;
2050        };
2051
2052        /* We leave the "DI" bit set to "0" when we leave this routine. */
2053        eec &= ~IXGBE_EEC_DI;
2054        IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2055        IXGBE_WRITE_FLUSH(hw);
2056}
2057
2058/**
2059 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
2060 * @hw: pointer to hardware structure
2061 * @count: number of bits to shift
2062 **/
2063STATIC u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
2064{
2065        u32 eec;
2066        u32 i;
2067        u16 data = 0;
2068
2069        DEBUGFUNC("ixgbe_shift_in_eeprom_bits");
2070
2071        /*
2072         * In order to read a register from the EEPROM, we need to shift
2073         * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
2074         * the clock input to the EEPROM (setting the SK bit), and then reading
2075         * the value of the "DO" bit.  During this "shifting in" process the
2076         * "DI" bit should always be clear.
2077         */
2078        eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2079
2080        eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
2081
2082        for (i = 0; i < count; i++) {
2083                data = data << 1;
2084                ixgbe_raise_eeprom_clk(hw, &eec);
2085
2086                eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2087
2088                eec &= ~(IXGBE_EEC_DI);
2089                if (eec & IXGBE_EEC_DO)
2090                        data |= 1;
2091
2092                ixgbe_lower_eeprom_clk(hw, &eec);
2093        }
2094
2095        return data;
2096}
2097
2098/**
2099 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
2100 * @hw: pointer to hardware structure
2101 * @eec: EEC register's current value
2102 **/
2103STATIC void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2104{
2105        DEBUGFUNC("ixgbe_raise_eeprom_clk");
2106
2107        /*
2108         * Raise the clock input to the EEPROM
2109         * (setting the SK bit), then delay
2110         */
2111        *eec = *eec | IXGBE_EEC_SK;
2112        IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2113        IXGBE_WRITE_FLUSH(hw);
2114        usec_delay(1);
2115}
2116
2117/**
2118 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
2119 * @hw: pointer to hardware structure
2120 * @eec: EEC's current value
2121 **/
2122STATIC void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
2123{
2124        DEBUGFUNC("ixgbe_lower_eeprom_clk");
2125
2126        /*
2127         * Lower the clock input to the EEPROM (clearing the SK bit), then
2128         * delay
2129         */
2130        *eec = *eec & ~IXGBE_EEC_SK;
2131        IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), *eec);
2132        IXGBE_WRITE_FLUSH(hw);
2133        usec_delay(1);
2134}
2135
2136/**
2137 * ixgbe_release_eeprom - Release EEPROM, release semaphores
2138 * @hw: pointer to hardware structure
2139 **/
2140STATIC void ixgbe_release_eeprom(struct ixgbe_hw *hw)
2141{
2142        u32 eec;
2143
2144        DEBUGFUNC("ixgbe_release_eeprom");
2145
2146        eec = IXGBE_READ_REG(hw, IXGBE_EEC_BY_MAC(hw));
2147
2148        eec |= IXGBE_EEC_CS;  /* Pull CS high */
2149        eec &= ~IXGBE_EEC_SK; /* Lower SCK */
2150
2151        IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2152        IXGBE_WRITE_FLUSH(hw);
2153
2154        usec_delay(1);
2155
2156        /* Stop requesting EEPROM access */
2157        eec &= ~IXGBE_EEC_REQ;
2158        IXGBE_WRITE_REG(hw, IXGBE_EEC_BY_MAC(hw), eec);
2159
2160        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
2161
2162        /* Delay before attempt to obtain semaphore again to allow FW access */
2163        msec_delay(hw->eeprom.semaphore_delay);
2164}
2165
2166/**
2167 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
2168 * @hw: pointer to hardware structure
2169 *
2170 * Returns a negative error code on error, or the 16-bit checksum
2171 **/
2172s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
2173{
2174        u16 i;
2175        u16 j;
2176        u16 checksum = 0;
2177        u16 length = 0;
2178        u16 pointer = 0;
2179        u16 word = 0;
2180
2181        DEBUGFUNC("ixgbe_calc_eeprom_checksum_generic");
2182
2183        /* Include 0x0-0x3F in the checksum */
2184        for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
2185                if (hw->eeprom.ops.read(hw, i, &word)) {
2186                        DEBUGOUT("EEPROM read failed\n");
2187                        return IXGBE_ERR_EEPROM;
2188                }
2189                checksum += word;
2190        }
2191
2192        /* Include all data from pointers except for the fw pointer */
2193        for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
2194                if (hw->eeprom.ops.read(hw, i, &pointer)) {
2195                        DEBUGOUT("EEPROM read failed\n");
2196                        return IXGBE_ERR_EEPROM;
2197                }
2198
2199                /* If the pointer seems invalid */
2200                if (pointer == 0xFFFF || pointer == 0)
2201                        continue;
2202
2203                if (hw->eeprom.ops.read(hw, pointer, &length)) {
2204                        DEBUGOUT("EEPROM read failed\n");
2205                        return IXGBE_ERR_EEPROM;
2206                }
2207
2208                if (length == 0xFFFF || length == 0)
2209                        continue;
2210
2211                for (j = pointer + 1; j <= pointer + length; j++) {
2212                        if (hw->eeprom.ops.read(hw, j, &word)) {
2213                                DEBUGOUT("EEPROM read failed\n");
2214                                return IXGBE_ERR_EEPROM;
2215                        }
2216                        checksum += word;
2217                }
2218        }
2219
2220        checksum = (u16)IXGBE_EEPROM_SUM - checksum;
2221
2222        return (s32)checksum;
2223}
2224
2225/**
2226 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
2227 * @hw: pointer to hardware structure
2228 * @checksum_val: calculated checksum
2229 *
2230 * Performs checksum calculation and validates the EEPROM checksum.  If the
2231 * caller does not need checksum_val, the value can be NULL.
2232 **/
2233s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
2234                                           u16 *checksum_val)
2235{
2236        s32 status;
2237        u16 checksum;
2238        u16 read_checksum = 0;
2239
2240        DEBUGFUNC("ixgbe_validate_eeprom_checksum_generic");
2241
2242        /* Read the first word from the EEPROM. If this times out or fails, do
2243         * not continue or we could be in for a very long wait while every
2244         * EEPROM read fails
2245         */
2246        status = hw->eeprom.ops.read(hw, 0, &checksum);
2247        if (status) {
2248                DEBUGOUT("EEPROM read failed\n");
2249                return status;
2250        }
2251
2252        status = hw->eeprom.ops.calc_checksum(hw);
2253        if (status < 0)
2254                return status;
2255
2256        checksum = (u16)(status & 0xffff);
2257
2258        status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
2259        if (status) {
2260                DEBUGOUT("EEPROM read failed\n");
2261                return status;
2262        }
2263
2264        /* Verify read checksum from EEPROM is the same as
2265         * calculated checksum
2266         */
2267        if (read_checksum != checksum)
2268                status = IXGBE_ERR_EEPROM_CHECKSUM;
2269
2270        /* If the user cares, return the calculated checksum */
2271        if (checksum_val)
2272                *checksum_val = checksum;
2273
2274        return status;
2275}
2276
2277/**
2278 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
2279 * @hw: pointer to hardware structure
2280 **/
2281s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
2282{
2283        s32 status;
2284        u16 checksum;
2285
2286        DEBUGFUNC("ixgbe_update_eeprom_checksum_generic");
2287
2288        /* Read the first word from the EEPROM. If this times out or fails, do
2289         * not continue or we could be in for a very long wait while every
2290         * EEPROM read fails
2291         */
2292        status = hw->eeprom.ops.read(hw, 0, &checksum);
2293        if (status) {
2294                DEBUGOUT("EEPROM read failed\n");
2295                return status;
2296        }
2297
2298        status = hw->eeprom.ops.calc_checksum(hw);
2299        if (status < 0)
2300                return status;
2301
2302        checksum = (u16)(status & 0xffff);
2303
2304        status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
2305
2306        return status;
2307}
2308
2309/**
2310 * ixgbe_validate_mac_addr - Validate MAC address
2311 * @mac_addr: pointer to MAC address.
2312 *
2313 * Tests a MAC address to ensure it is a valid Individual Address.
2314 **/
2315s32 ixgbe_validate_mac_addr(u8 *mac_addr)
2316{
2317        s32 status = IXGBE_SUCCESS;
2318
2319        DEBUGFUNC("ixgbe_validate_mac_addr");
2320
2321        /* Make sure it is not a multicast address */
2322        if (IXGBE_IS_MULTICAST(mac_addr)) {
2323                status = IXGBE_ERR_INVALID_MAC_ADDR;
2324        /* Not a broadcast address */
2325        } else if (IXGBE_IS_BROADCAST(mac_addr)) {
2326                status = IXGBE_ERR_INVALID_MAC_ADDR;
2327        /* Reject the zero address */
2328        } else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
2329                   mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0) {
2330                status = IXGBE_ERR_INVALID_MAC_ADDR;
2331        }
2332        return status;
2333}
2334
2335/**
2336 * ixgbe_set_rar_generic - Set Rx address register
2337 * @hw: pointer to hardware structure
2338 * @index: Receive address register to write
2339 * @addr: Address to put into receive address register
2340 * @vmdq: VMDq "set" or "pool" index
2341 * @enable_addr: set flag that address is active
2342 *
2343 * Puts an ethernet address into a receive address register.
2344 **/
2345s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
2346                          u32 enable_addr)
2347{
2348        u32 rar_low, rar_high;
2349        u32 rar_entries = hw->mac.num_rar_entries;
2350
2351        DEBUGFUNC("ixgbe_set_rar_generic");
2352
2353        /* Make sure we are using a valid rar index range */
2354        if (index >= rar_entries) {
2355                ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2356                             "RAR index %d is out of range.\n", index);
2357                return IXGBE_ERR_INVALID_ARGUMENT;
2358        }
2359
2360        /* setup VMDq pool selection before this RAR gets enabled */
2361        hw->mac.ops.set_vmdq(hw, index, vmdq);
2362
2363        /*
2364         * HW expects these in little endian so we reverse the byte
2365         * order from network order (big endian) to little endian
2366         */
2367        rar_low = ((u32)addr[0] |
2368                   ((u32)addr[1] << 8) |
2369                   ((u32)addr[2] << 16) |
2370                   ((u32)addr[3] << 24));
2371        /*
2372         * Some parts put the VMDq setting in the extra RAH bits,
2373         * so save everything except the lower 16 bits that hold part
2374         * of the address and the address valid bit.
2375         */
2376        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2377        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2378        rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
2379
2380        if (enable_addr != 0)
2381                rar_high |= IXGBE_RAH_AV;
2382
2383        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
2384        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2385
2386        return IXGBE_SUCCESS;
2387}
2388
2389/**
2390 * ixgbe_clear_rar_generic - Remove Rx address register
2391 * @hw: pointer to hardware structure
2392 * @index: Receive address register to write
2393 *
2394 * Clears an ethernet address from a receive address register.
2395 **/
2396s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
2397{
2398        u32 rar_high;
2399        u32 rar_entries = hw->mac.num_rar_entries;
2400
2401        DEBUGFUNC("ixgbe_clear_rar_generic");
2402
2403        /* Make sure we are using a valid rar index range */
2404        if (index >= rar_entries) {
2405                ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
2406                             "RAR index %d is out of range.\n", index);
2407                return IXGBE_ERR_INVALID_ARGUMENT;
2408        }
2409
2410        /*
2411         * Some parts put the VMDq setting in the extra RAH bits,
2412         * so save everything except the lower 16 bits that hold part
2413         * of the address and the address valid bit.
2414         */
2415        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
2416        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
2417
2418        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
2419        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
2420
2421        /* clear VMDq pool/queue selection for this RAR */
2422        hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
2423
2424        return IXGBE_SUCCESS;
2425}
2426
2427/**
2428 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
2429 * @hw: pointer to hardware structure
2430 *
2431 * Places the MAC address in receive address register 0 and clears the rest
2432 * of the receive address registers. Clears the multicast table. Assumes
2433 * the receiver is in reset when the routine is called.
2434 **/
2435s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
2436{
2437        u32 i;
2438        u32 rar_entries = hw->mac.num_rar_entries;
2439
2440        DEBUGFUNC("ixgbe_init_rx_addrs_generic");
2441
2442        /*
2443         * If the current mac address is valid, assume it is a software override
2444         * to the permanent address.
2445         * Otherwise, use the permanent address from the eeprom.
2446         */
2447        if (ixgbe_validate_mac_addr(hw->mac.addr) ==
2448            IXGBE_ERR_INVALID_MAC_ADDR) {
2449                /* Get the MAC address from the RAR0 for later reference */
2450                hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2451
2452                DEBUGOUT3(" Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
2453                          hw->mac.addr[0], hw->mac.addr[1],
2454                          hw->mac.addr[2]);
2455                DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2456                          hw->mac.addr[4], hw->mac.addr[5]);
2457        } else {
2458                /* Setup the receive address. */
2459                DEBUGOUT("Overriding MAC Address in RAR[0]\n");
2460                DEBUGOUT3(" New MAC Addr =%.2X %.2X %.2X ",
2461                          hw->mac.addr[0], hw->mac.addr[1],
2462                          hw->mac.addr[2]);
2463                DEBUGOUT3("%.2X %.2X %.2X\n", hw->mac.addr[3],
2464                          hw->mac.addr[4], hw->mac.addr[5]);
2465
2466                hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
2467        }
2468
2469        /* clear VMDq pool/queue selection for RAR 0 */
2470        hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
2471
2472        hw->addr_ctrl.overflow_promisc = 0;
2473
2474        hw->addr_ctrl.rar_used_count = 1;
2475
2476        /* Zero out the other receive addresses. */
2477        DEBUGOUT1("Clearing RAR[1-%d]\n", rar_entries - 1);
2478        for (i = 1; i < rar_entries; i++) {
2479                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
2480                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
2481        }
2482
2483        /* Clear the MTA */
2484        hw->addr_ctrl.mta_in_use = 0;
2485        IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2486
2487        DEBUGOUT(" Clearing MTA\n");
2488        for (i = 0; i < hw->mac.mcft_size; i++)
2489                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
2490
2491        ixgbe_init_uta_tables(hw);
2492
2493        return IXGBE_SUCCESS;
2494}
2495
2496/**
2497 * ixgbe_add_uc_addr - Adds a secondary unicast address.
2498 * @hw: pointer to hardware structure
2499 * @addr: new address
2500 * @vmdq: VMDq "set" or "pool" index
2501 *
2502 * Adds it to unused receive address register or goes into promiscuous mode.
2503 **/
2504void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
2505{
2506        u32 rar_entries = hw->mac.num_rar_entries;
2507        u32 rar;
2508
2509        DEBUGFUNC("ixgbe_add_uc_addr");
2510
2511        DEBUGOUT6(" UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
2512                  addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
2513
2514        /*
2515         * Place this address in the RAR if there is room,
2516         * else put the controller into promiscuous mode
2517         */
2518        if (hw->addr_ctrl.rar_used_count < rar_entries) {
2519                rar = hw->addr_ctrl.rar_used_count;
2520                hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
2521                DEBUGOUT1("Added a secondary address to RAR[%d]\n", rar);
2522                hw->addr_ctrl.rar_used_count++;
2523        } else {
2524                hw->addr_ctrl.overflow_promisc++;
2525        }
2526
2527        DEBUGOUT("ixgbe_add_uc_addr Complete\n");
2528}
2529
2530/**
2531 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
2532 * @hw: pointer to hardware structure
2533 * @addr_list: the list of new addresses
2534 * @addr_count: number of addresses
2535 * @next: iterator function to walk the address list
2536 *
2537 * The given list replaces any existing list.  Clears the secondary addrs from
2538 * receive address registers.  Uses unused receive address registers for the
2539 * first secondary addresses, and falls back to promiscuous mode as needed.
2540 *
2541 * Drivers using secondary unicast addresses must set user_set_promisc when
2542 * manually putting the device into promiscuous mode.
2543 **/
2544s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
2545                                      u32 addr_count, ixgbe_mc_addr_itr next)
2546{
2547        u8 *addr;
2548        u32 i;
2549        u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
2550        u32 uc_addr_in_use;
2551        u32 fctrl;
2552        u32 vmdq;
2553
2554        DEBUGFUNC("ixgbe_update_uc_addr_list_generic");
2555
2556        /*
2557         * Clear accounting of old secondary address list,
2558         * don't count RAR[0]
2559         */
2560        uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
2561        hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
2562        hw->addr_ctrl.overflow_promisc = 0;
2563
2564        /* Zero out the other receive addresses */
2565        DEBUGOUT1("Clearing RAR[1-%d]\n", uc_addr_in_use+1);
2566        for (i = 0; i < uc_addr_in_use; i++) {
2567                IXGBE_WRITE_REG(hw, IXGBE_RAL(1+i), 0);
2568                IXGBE_WRITE_REG(hw, IXGBE_RAH(1+i), 0);
2569        }
2570
2571        /* Add the new addresses */
2572        for (i = 0; i < addr_count; i++) {
2573                DEBUGOUT(" Adding the secondary addresses:\n");
2574                addr = next(hw, &addr_list, &vmdq);
2575                ixgbe_add_uc_addr(hw, addr, vmdq);
2576        }
2577
2578        if (hw->addr_ctrl.overflow_promisc) {
2579                /* enable promisc if not already in overflow or set by user */
2580                if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2581                        DEBUGOUT(" Entering address overflow promisc mode\n");
2582                        fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2583                        fctrl |= IXGBE_FCTRL_UPE;
2584                        IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2585                }
2586        } else {
2587                /* only disable if set by overflow, not by user */
2588                if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
2589                        DEBUGOUT(" Leaving address overflow promisc mode\n");
2590                        fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
2591                        fctrl &= ~IXGBE_FCTRL_UPE;
2592                        IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
2593                }
2594        }
2595
2596        DEBUGOUT("ixgbe_update_uc_addr_list_generic Complete\n");
2597        return IXGBE_SUCCESS;
2598}
2599
2600/**
2601 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
2602 * @hw: pointer to hardware structure
2603 * @mc_addr: the multicast address
2604 *
2605 * Extracts the 12 bits, from a multicast address, to determine which
2606 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
2607 * incoming rx multicast addresses, to determine the bit-vector to check in
2608 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2609 * by the MO field of the MCSTCTRL. The MO field is set during initialization
2610 * to mc_filter_type.
2611 **/
2612STATIC s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2613{
2614        u32 vector = 0;
2615
2616        DEBUGFUNC("ixgbe_mta_vector");
2617
2618        switch (hw->mac.mc_filter_type) {
2619        case 0:   /* use bits [47:36] of the address */
2620                vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2621                break;
2622        case 1:   /* use bits [46:35] of the address */
2623                vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2624                break;
2625        case 2:   /* use bits [45:34] of the address */
2626                vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2627                break;
2628        case 3:   /* use bits [43:32] of the address */
2629                vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2630                break;
2631        default:  /* Invalid mc_filter_type */
2632                DEBUGOUT("MC filter type param set incorrectly\n");
2633                ASSERT(0);
2634                break;
2635        }
2636
2637        /* vector can only be 12-bits or boundary will be exceeded */
2638        vector &= 0xFFF;
2639        return vector;
2640}
2641
2642/**
2643 * ixgbe_set_mta - Set bit-vector in multicast table
2644 * @hw: pointer to hardware structure
2645 * @mc_addr: Multicast address
2646 *
2647 * Sets the bit-vector in the multicast table.
2648 **/
2649void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2650{
2651        u32 vector;
2652        u32 vector_bit;
2653        u32 vector_reg;
2654
2655        DEBUGFUNC("ixgbe_set_mta");
2656
2657        hw->addr_ctrl.mta_in_use++;
2658
2659        vector = ixgbe_mta_vector(hw, mc_addr);
2660        DEBUGOUT1(" bit-vector = 0x%03X\n", vector);
2661
2662        /*
2663         * The MTA is a register array of 128 32-bit registers. It is treated
2664         * like an array of 4096 bits.  We want to set bit
2665         * BitArray[vector_value]. So we figure out what register the bit is
2666         * in, read it, OR in the new bit, then write back the new value.  The
2667         * register is determined by the upper 7 bits of the vector value and
2668         * the bit within that register are determined by the lower 5 bits of
2669         * the value.
2670         */
2671        vector_reg = (vector >> 5) & 0x7F;
2672        vector_bit = vector & 0x1F;
2673        hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2674}
2675
2676/**
2677 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2678 * @hw: pointer to hardware structure
2679 * @mc_addr_list: the list of new multicast addresses
2680 * @mc_addr_count: number of addresses
2681 * @next: iterator function to walk the multicast address list
2682 * @clear: flag, when set clears the table beforehand
2683 *
2684 * When the clear flag is set, the given list replaces any existing list.
2685 * Hashes the given addresses into the multicast table.
2686 **/
2687s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
2688                                      u32 mc_addr_count, ixgbe_mc_addr_itr next,
2689                                      bool clear)
2690{
2691        u32 i;
2692        u32 vmdq;
2693
2694        DEBUGFUNC("ixgbe_update_mc_addr_list_generic");
2695
2696        /*
2697         * Set the new number of MC addresses that we are being requested to
2698         * use.
2699         */
2700        hw->addr_ctrl.num_mc_addrs = mc_addr_count;
2701        hw->addr_ctrl.mta_in_use = 0;
2702
2703        /* Clear mta_shadow */
2704        if (clear) {
2705                DEBUGOUT(" Clearing MTA\n");
2706                memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2707        }
2708
2709        /* Update mta_shadow */
2710        for (i = 0; i < mc_addr_count; i++) {
2711                DEBUGOUT(" Adding the multicast addresses:\n");
2712                ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
2713        }
2714
2715        /* Enable mta */
2716        for (i = 0; i < hw->mac.mcft_size; i++)
2717                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2718                                      hw->mac.mta_shadow[i]);
2719
2720        if (hw->addr_ctrl.mta_in_use > 0)
2721                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2722                                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2723
2724        DEBUGOUT("ixgbe_update_mc_addr_list_generic Complete\n");
2725        return IXGBE_SUCCESS;
2726}
2727
2728/**
2729 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2730 * @hw: pointer to hardware structure
2731 *
2732 * Enables multicast address in RAR and the use of the multicast hash table.
2733 **/
2734s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2735{
2736        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2737
2738        DEBUGFUNC("ixgbe_enable_mc_generic");
2739
2740        if (a->mta_in_use > 0)
2741                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2742                                hw->mac.mc_filter_type);
2743
2744        return IXGBE_SUCCESS;
2745}
2746
2747/**
2748 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2749 * @hw: pointer to hardware structure
2750 *
2751 * Disables multicast address in RAR and the use of the multicast hash table.
2752 **/
2753s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2754{
2755        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2756
2757        DEBUGFUNC("ixgbe_disable_mc_generic");
2758
2759        if (a->mta_in_use > 0)
2760                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2761
2762        return IXGBE_SUCCESS;
2763}
2764
2765/**
2766 * ixgbe_fc_enable_generic - Enable flow control
2767 * @hw: pointer to hardware structure
2768 *
2769 * Enable flow control according to the current settings.
2770 **/
2771s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2772{
2773        s32 ret_val = IXGBE_SUCCESS;
2774        u32 mflcn_reg, fccfg_reg;
2775        u32 reg;
2776        u32 fcrtl, fcrth;
2777        int i;
2778
2779        DEBUGFUNC("ixgbe_fc_enable_generic");
2780
2781        /* Validate the water mark configuration */
2782        if (!hw->fc.pause_time) {
2783                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2784                goto out;
2785        }
2786
2787        /* Low water mark of zero causes XOFF floods */
2788        for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2789                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2790                    hw->fc.high_water[i]) {
2791                        if (!hw->fc.low_water[i] ||
2792                            hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2793                                DEBUGOUT("Invalid water mark configuration\n");
2794                                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2795                                goto out;
2796                        }
2797                }
2798        }
2799
2800        /* Negotiate the fc mode to use */
2801        hw->mac.ops.fc_autoneg(hw);
2802
2803        /* Disable any previous flow control settings */
2804        mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2805        mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2806
2807        fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2808        fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2809
2810        /*
2811         * The possible values of fc.current_mode are:
2812         * 0: Flow control is completely disabled
2813         * 1: Rx flow control is enabled (we can receive pause frames,
2814         *    but not send pause frames).
2815         * 2: Tx flow control is enabled (we can send pause frames but
2816         *    we do not support receiving pause frames).
2817         * 3: Both Rx and Tx flow control (symmetric) are enabled.
2818         * other: Invalid.
2819         */
2820        switch (hw->fc.current_mode) {
2821        case ixgbe_fc_none:
2822                /*
2823                 * Flow control is disabled by software override or autoneg.
2824                 * The code below will actually disable it in the HW.
2825                 */
2826                break;
2827        case ixgbe_fc_rx_pause:
2828                /*
2829                 * Rx Flow control is enabled and Tx Flow control is
2830                 * disabled by software override. Since there really
2831                 * isn't a way to advertise that we are capable of RX
2832                 * Pause ONLY, we will advertise that we support both
2833                 * symmetric and asymmetric Rx PAUSE.  Later, we will
2834                 * disable the adapter's ability to send PAUSE frames.
2835                 */
2836                mflcn_reg |= IXGBE_MFLCN_RFCE;
2837                break;
2838        case ixgbe_fc_tx_pause:
2839                /*
2840                 * Tx Flow control is enabled, and Rx Flow control is
2841                 * disabled by software override.
2842                 */
2843                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2844                break;
2845        case ixgbe_fc_full:
2846                /* Flow control (both Rx and Tx) is enabled by SW override. */
2847                mflcn_reg |= IXGBE_MFLCN_RFCE;
2848                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2849                break;
2850        default:
2851                ERROR_REPORT1(IXGBE_ERROR_ARGUMENT,
2852                             "Flow control param set incorrectly\n");
2853                ret_val = IXGBE_ERR_CONFIG;
2854                goto out;
2855                break;
2856        }
2857
2858        /* Set 802.3x based flow control settings. */
2859        mflcn_reg |= IXGBE_MFLCN_DPF;
2860        IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2861        IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2862
2863
2864        /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2865        for (i = 0; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
2866                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2867                    hw->fc.high_water[i]) {
2868                        fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2869                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2870                        fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2871                } else {
2872                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2873                        /*
2874                         * In order to prevent Tx hangs when the internal Tx
2875                         * switch is enabled we must set the high water mark
2876                         * to the Rx packet buffer size - 24KB.  This allows
2877                         * the Tx switch to function even under heavy Rx
2878                         * workloads.
2879                         */
2880                        fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2881                }
2882
2883                IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2884        }
2885
2886        /* Configure pause time (2 TCs per register) */
2887        reg = hw->fc.pause_time * 0x00010001;
2888        for (i = 0; i < (IXGBE_DCB_MAX_TRAFFIC_CLASS / 2); i++)
2889                IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2890
2891        /* Configure flow control refresh threshold value */
2892        IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2893
2894out:
2895        return ret_val;
2896}
2897
2898/**
2899 * ixgbe_negotiate_fc - Negotiate flow control
2900 * @hw: pointer to hardware structure
2901 * @adv_reg: flow control advertised settings
2902 * @lp_reg: link partner's flow control settings
2903 * @adv_sym: symmetric pause bit in advertisement
2904 * @adv_asm: asymmetric pause bit in advertisement
2905 * @lp_sym: symmetric pause bit in link partner advertisement
2906 * @lp_asm: asymmetric pause bit in link partner advertisement
2907 *
2908 * Find the intersection between advertised settings and link partner's
2909 * advertised settings
2910 **/
2911s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2912                       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2913{
2914        if ((!(adv_reg)) ||  (!(lp_reg))) {
2915                ERROR_REPORT3(IXGBE_ERROR_UNSUPPORTED,
2916                             "Local or link partner's advertised flow control "
2917                             "settings are NULL. Local: %x, link partner: %x\n",
2918                             adv_reg, lp_reg);
2919                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2920        }
2921
2922        if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2923                /*
2924                 * Now we need to check if the user selected Rx ONLY
2925                 * of pause frames.  In this case, we had to advertise
2926                 * FULL flow control because we could not advertise RX
2927                 * ONLY. Hence, we must now check to see if we need to
2928                 * turn OFF the TRANSMISSION of PAUSE frames.
2929                 */
2930                if (hw->fc.requested_mode == ixgbe_fc_full) {
2931                        hw->fc.current_mode = ixgbe_fc_full;
2932                        DEBUGOUT("Flow Control = FULL.\n");
2933                } else {
2934                        hw->fc.current_mode = ixgbe_fc_rx_pause;
2935                        DEBUGOUT("Flow Control=RX PAUSE frames only\n");
2936                }
2937        } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2938                   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2939                hw->fc.current_mode = ixgbe_fc_tx_pause;
2940                DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
2941        } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2942                   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2943                hw->fc.current_mode = ixgbe_fc_rx_pause;
2944                DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
2945        } else {
2946                hw->fc.current_mode = ixgbe_fc_none;
2947                DEBUGOUT("Flow Control = NONE.\n");
2948        }
2949        return IXGBE_SUCCESS;
2950}
2951
2952/**
2953 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2954 * @hw: pointer to hardware structure
2955 *
2956 * Enable flow control according on 1 gig fiber.
2957 **/
2958STATIC s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2959{
2960        u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2961        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2962
2963        /*
2964         * On multispeed fiber at 1g, bail out if
2965         * - link is up but AN did not complete, or if
2966         * - link is up and AN completed but timed out
2967         */
2968
2969        linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2970        if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2971            (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2972                DEBUGOUT("Auto-Negotiation did not complete or timed out\n");
2973                goto out;
2974        }
2975
2976        pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2977        pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2978
2979        ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2980                                      pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2981                                      IXGBE_PCS1GANA_ASM_PAUSE,
2982                                      IXGBE_PCS1GANA_SYM_PAUSE,
2983                                      IXGBE_PCS1GANA_ASM_PAUSE);
2984
2985out:
2986        return ret_val;
2987}
2988
2989/**
2990 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2991 * @hw: pointer to hardware structure
2992 *
2993 * Enable flow control according to IEEE clause 37.
2994 **/
2995STATIC s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2996{
2997        u32 links2, anlp1_reg, autoc_reg, links;
2998        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2999
3000        /*
3001         * On backplane, bail out if
3002         * - backplane autoneg was not completed, or if
3003         * - we are 82599 and link partner is not AN enabled
3004         */
3005        links = IXGBE_READ_REG(hw, IXGBE_LINKS);
3006        if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
3007                DEBUGOUT("Auto-Negotiation did not complete\n");
3008                goto out;
3009        }
3010
3011        if (hw->mac.type == ixgbe_mac_82599EB) {
3012                links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
3013                if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
3014                        DEBUGOUT("Link partner is not AN enabled\n");
3015                        goto out;
3016                }
3017        }
3018        /*
3019         * Read the 10g AN autoc and LP ability registers and resolve
3020         * local flow control settings accordingly
3021         */
3022        autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3023        anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
3024
3025        ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
3026                anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
3027                IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
3028
3029out:
3030        return ret_val;
3031}
3032
3033/**
3034 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
3035 * @hw: pointer to hardware structure
3036 *
3037 * Enable flow control according to IEEE clause 37.
3038 **/
3039STATIC s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
3040{
3041        u16 technology_ability_reg = 0;
3042        u16 lp_technology_ability_reg = 0;
3043
3044        hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_ADVT,
3045                             IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3046                             &technology_ability_reg);
3047        hw->phy.ops.read_reg(hw, IXGBE_MDIO_AUTO_NEG_LP,
3048                             IXGBE_MDIO_AUTO_NEG_DEV_TYPE,
3049                             &lp_technology_ability_reg);
3050
3051        return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
3052                                  (u32)lp_technology_ability_reg,
3053                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
3054                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
3055}
3056
3057/**
3058 * ixgbe_fc_autoneg - Configure flow control
3059 * @hw: pointer to hardware structure
3060 *
3061 * Compares our advertised flow control capabilities to those advertised by
3062 * our link partner, and determines the proper flow control mode to use.
3063 **/
3064void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
3065{
3066        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
3067        ixgbe_link_speed speed;
3068        bool link_up;
3069
3070        DEBUGFUNC("ixgbe_fc_autoneg");
3071
3072        /*
3073         * AN should have completed when the cable was plugged in.
3074         * Look for reasons to bail out.  Bail out if:
3075         * - FC autoneg is disabled, or if
3076         * - link is not up.
3077         */
3078        if (hw->fc.disable_fc_autoneg) {
3079                /* TODO: This should be just an informative log */
3080                ERROR_REPORT1(IXGBE_ERROR_CAUTION,
3081                              "Flow control autoneg is disabled");
3082                goto out;
3083        }
3084
3085        hw->mac.ops.check_link(hw, &speed, &link_up, false);
3086        if (!link_up) {
3087                ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "The link is down");
3088                goto out;
3089        }
3090
3091        switch (hw->phy.media_type) {
3092        /* Autoneg flow control on fiber adapters */
3093        case ixgbe_media_type_fiber_qsfp:
3094        case ixgbe_media_type_fiber:
3095                if (speed == IXGBE_LINK_SPEED_1GB_FULL)
3096                        ret_val = ixgbe_fc_autoneg_fiber(hw);
3097                break;
3098
3099        /* Autoneg flow control on backplane adapters */
3100        case ixgbe_media_type_backplane:
3101                ret_val = ixgbe_fc_autoneg_backplane(hw);
3102                break;
3103
3104        /* Autoneg flow control on copper adapters */
3105        case ixgbe_media_type_copper:
3106                if (ixgbe_device_supports_autoneg_fc(hw))
3107                        ret_val = ixgbe_fc_autoneg_copper(hw);
3108                break;
3109
3110        default:
3111                break;
3112        }
3113
3114out:
3115        if (ret_val == IXGBE_SUCCESS) {
3116                hw->fc.fc_was_autonegged = true;
3117        } else {
3118                hw->fc.fc_was_autonegged = false;
3119                hw->fc.current_mode = hw->fc.requested_mode;
3120        }
3121}
3122
3123/*
3124 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
3125 * @hw: pointer to hardware structure
3126 *
3127 * System-wide timeout range is encoded in PCIe Device Control2 register.
3128 *
3129 * Add 10% to specified maximum and return the number of times to poll for
3130 * completion timeout, in units of 100 microsec.  Never return less than
3131 * 800 = 80 millisec.
3132 */
3133STATIC u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
3134{
3135        s16 devctl2;
3136        u32 pollcnt;
3137
3138        devctl2 = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_CONTROL2);
3139        devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
3140
3141        switch (devctl2) {
3142        case IXGBE_PCIDEVCTRL2_65_130ms:
3143                pollcnt = 1300;         /* 130 millisec */
3144                break;
3145        case IXGBE_PCIDEVCTRL2_260_520ms:
3146                pollcnt = 5200;         /* 520 millisec */
3147                break;
3148        case IXGBE_PCIDEVCTRL2_1_2s:
3149                pollcnt = 20000;        /* 2 sec */
3150                break;
3151        case IXGBE_PCIDEVCTRL2_4_8s:
3152                pollcnt = 80000;        /* 8 sec */
3153                break;
3154        case IXGBE_PCIDEVCTRL2_17_34s:
3155                pollcnt = 34000;        /* 34 sec */
3156                break;
3157        case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
3158        case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
3159        case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
3160        case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
3161        default:
3162                pollcnt = 800;          /* 80 millisec minimum */
3163                break;
3164        }
3165
3166        /* add 10% to spec maximum */
3167        return (pollcnt * 11) / 10;
3168}
3169
3170/**
3171 * ixgbe_disable_pcie_master - Disable PCI-express master access
3172 * @hw: pointer to hardware structure
3173 *
3174 * Disables PCI-Express master access and verifies there are no pending
3175 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
3176 * bit hasn't caused the master requests to be disabled, else IXGBE_SUCCESS
3177 * is returned signifying master requests disabled.
3178 **/
3179s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
3180{
3181        s32 status = IXGBE_SUCCESS;
3182        u32 i, poll;
3183        u16 value;
3184
3185        DEBUGFUNC("ixgbe_disable_pcie_master");
3186
3187        /* Always set this bit to ensure any future transactions are blocked */
3188        IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
3189
3190        /* Exit if master requests are blocked */
3191        if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
3192            IXGBE_REMOVED(hw->hw_addr))
3193                goto out;
3194
3195        /* Poll for master request bit to clear */
3196        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
3197                usec_delay(100);
3198                if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
3199                        goto out;
3200        }
3201
3202        /*
3203         * Two consecutive resets are required via CTRL.RST per datasheet
3204         * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
3205         * of this need.  The first reset prevents new master requests from
3206         * being issued by our device.  We then must wait 1usec or more for any
3207         * remaining completions from the PCIe bus to trickle in, and then reset
3208         * again to clear out any effects they may have had on our device.
3209         */
3210        DEBUGOUT("GIO Master Disable bit didn't clear - requesting resets\n");
3211        hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3212
3213        if (hw->mac.type >= ixgbe_mac_X550)
3214                goto out;
3215
3216        /*
3217         * Before proceeding, make sure that the PCIe block does not have
3218         * transactions pending.
3219         */
3220        poll = ixgbe_pcie_timeout_poll(hw);
3221        for (i = 0; i < poll; i++) {
3222                usec_delay(100);
3223                value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
3224                if (IXGBE_REMOVED(hw->hw_addr))
3225                        goto out;
3226                if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3227                        goto out;
3228        }
3229
3230        ERROR_REPORT1(IXGBE_ERROR_POLLING,
3231                     "PCIe transaction pending bit also did not clear.\n");
3232        status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
3233
3234out:
3235        return status;
3236}
3237
3238/**
3239 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
3240 * @hw: pointer to hardware structure
3241 * @mask: Mask to specify which semaphore to acquire
3242 *
3243 * Acquires the SWFW semaphore through the GSSR register for the specified
3244 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3245 **/
3246s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3247{
3248        u32 gssr = 0;
3249        u32 swmask = mask;
3250        u32 fwmask = mask << 5;
3251        u32 timeout = 200;
3252        u32 i;
3253
3254        DEBUGFUNC("ixgbe_acquire_swfw_sync");
3255
3256        for (i = 0; i < timeout; i++) {
3257                /*
3258                 * SW NVM semaphore bit is used for access to all
3259                 * SW_FW_SYNC bits (not just NVM)
3260                 */
3261                if (ixgbe_get_eeprom_semaphore(hw))
3262                        return IXGBE_ERR_SWFW_SYNC;
3263
3264                gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3265                if (!(gssr & (fwmask | swmask))) {
3266                        gssr |= swmask;
3267                        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3268                        ixgbe_release_eeprom_semaphore(hw);
3269                        return IXGBE_SUCCESS;
3270                } else {
3271                        /* Resource is currently in use by FW or SW */
3272                        ixgbe_release_eeprom_semaphore(hw);
3273                        msec_delay(5);
3274                }
3275        }
3276
3277        /* If time expired clear the bits holding the lock and retry */
3278        if (gssr & (fwmask | swmask))
3279                ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
3280
3281        msec_delay(5);
3282        return IXGBE_ERR_SWFW_SYNC;
3283}
3284
3285/**
3286 * ixgbe_release_swfw_sync - Release SWFW semaphore
3287 * @hw: pointer to hardware structure
3288 * @mask: Mask to specify which semaphore to release
3289 *
3290 * Releases the SWFW semaphore through the GSSR register for the specified
3291 * function (CSR, PHY0, PHY1, EEPROM, Flash)
3292 **/
3293void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
3294{
3295        u32 gssr;
3296        u32 swmask = mask;
3297
3298        DEBUGFUNC("ixgbe_release_swfw_sync");
3299
3300        ixgbe_get_eeprom_semaphore(hw);
3301
3302        gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
3303        gssr &= ~swmask;
3304        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
3305
3306        ixgbe_release_eeprom_semaphore(hw);
3307}
3308
3309/**
3310 * ixgbe_disable_sec_rx_path_generic - Stops the receive data path
3311 * @hw: pointer to hardware structure
3312 *
3313 * Stops the receive data path and waits for the HW to internally empty
3314 * the Rx security block
3315 **/
3316s32 ixgbe_disable_sec_rx_path_generic(struct ixgbe_hw *hw)
3317{
3318#define IXGBE_MAX_SECRX_POLL 4000
3319
3320        int i;
3321        int secrxreg;
3322
3323        DEBUGFUNC("ixgbe_disable_sec_rx_path_generic");
3324
3325
3326        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3327        secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
3328        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3329        for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
3330                secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
3331                if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
3332                        break;
3333                else
3334                        /* Use interrupt-safe sleep just in case */
3335                        usec_delay(10);
3336        }
3337
3338        /* For informational purposes only */
3339        if (i >= IXGBE_MAX_SECRX_POLL)
3340                DEBUGOUT("Rx unit being enabled before security "
3341                         "path fully disabled.  Continuing with init.\n");
3342
3343        return IXGBE_SUCCESS;
3344}
3345
3346/**
3347 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
3348 * @hw: pointer to hardware structure
3349 * @locked: bool to indicate whether the SW/FW lock was taken
3350 * @reg_val: Value we read from AUTOC
3351 *
3352 * The default case requires no protection so just to the register read.
3353 */
3354s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
3355{
3356        *locked = false;
3357        *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
3358        return IXGBE_SUCCESS;
3359}
3360
3361/**
3362 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
3363 * @hw: pointer to hardware structure
3364 * @reg_val: value to write to AUTOC
3365 * @locked: bool to indicate whether the SW/FW lock was already taken by
3366 *          previous read.
3367 *
3368 * The default case requires no protection so just to the register write.
3369 */
3370s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
3371{
3372        UNREFERENCED_1PARAMETER(locked);
3373
3374        IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
3375        return IXGBE_SUCCESS;
3376}
3377
3378/**
3379 * ixgbe_enable_sec_rx_path_generic - Enables the receive data path
3380 * @hw: pointer to hardware structure
3381 *
3382 * Enables the receive data path.
3383 **/
3384s32 ixgbe_enable_sec_rx_path_generic(struct ixgbe_hw *hw)
3385{
3386        u32 secrxreg;
3387
3388        DEBUGFUNC("ixgbe_enable_sec_rx_path_generic");
3389
3390        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
3391        secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
3392        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
3393        IXGBE_WRITE_FLUSH(hw);
3394
3395        return IXGBE_SUCCESS;
3396}
3397
3398/**
3399 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
3400 * @hw: pointer to hardware structure
3401 * @regval: register value to write to RXCTRL
3402 *
3403 * Enables the Rx DMA unit
3404 **/
3405s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
3406{
3407        DEBUGFUNC("ixgbe_enable_rx_dma_generic");
3408
3409        if (regval & IXGBE_RXCTRL_RXEN)
3410                ixgbe_enable_rx(hw);
3411        else
3412                ixgbe_disable_rx(hw);
3413
3414        return IXGBE_SUCCESS;
3415}
3416
3417/**
3418 * ixgbe_blink_led_start_generic - Blink LED based on index.
3419 * @hw: pointer to hardware structure
3420 * @index: led number to blink
3421 **/
3422s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
3423{
3424        ixgbe_link_speed speed = 0;
3425        bool link_up = 0;
3426        u32 autoc_reg = 0;
3427        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3428        s32 ret_val = IXGBE_SUCCESS;
3429        bool locked = false;
3430
3431        DEBUGFUNC("ixgbe_blink_led_start_generic");
3432
3433        if (index > 3)
3434                return IXGBE_ERR_PARAM;
3435
3436        /*
3437         * Link must be up to auto-blink the LEDs;
3438         * Force it if link is down.
3439         */
3440        hw->mac.ops.check_link(hw, &speed, &link_up, false);
3441
3442        if (!link_up) {
3443                ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3444                if (ret_val != IXGBE_SUCCESS)
3445                        goto out;
3446
3447                autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3448                autoc_reg |= IXGBE_AUTOC_FLU;
3449
3450                ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3451                if (ret_val != IXGBE_SUCCESS)
3452                        goto out;
3453
3454                IXGBE_WRITE_FLUSH(hw);
3455                msec_delay(10);
3456        }
3457
3458        led_reg &= ~IXGBE_LED_MODE_MASK(index);
3459        led_reg |= IXGBE_LED_BLINK(index);
3460        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3461        IXGBE_WRITE_FLUSH(hw);
3462
3463out:
3464        return ret_val;
3465}
3466
3467/**
3468 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
3469 * @hw: pointer to hardware structure
3470 * @index: led number to stop blinking
3471 **/
3472s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
3473{
3474        u32 autoc_reg = 0;
3475        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
3476        s32 ret_val = IXGBE_SUCCESS;
3477        bool locked = false;
3478
3479        DEBUGFUNC("ixgbe_blink_led_stop_generic");
3480
3481        if (index > 3)
3482                return IXGBE_ERR_PARAM;
3483
3484
3485        ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
3486        if (ret_val != IXGBE_SUCCESS)
3487                goto out;
3488
3489        autoc_reg &= ~IXGBE_AUTOC_FLU;
3490        autoc_reg |= IXGBE_AUTOC_AN_RESTART;
3491
3492        ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
3493        if (ret_val != IXGBE_SUCCESS)
3494                goto out;
3495
3496        led_reg &= ~IXGBE_LED_MODE_MASK(index);
3497        led_reg &= ~IXGBE_LED_BLINK(index);
3498        led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
3499        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
3500        IXGBE_WRITE_FLUSH(hw);
3501
3502out:
3503        return ret_val;
3504}
3505
3506/**
3507 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
3508 * @hw: pointer to hardware structure
3509 * @san_mac_offset: SAN MAC address offset
3510 *
3511 * This function will read the EEPROM location for the SAN MAC address
3512 * pointer, and returns the value at that location.  This is used in both
3513 * get and set mac_addr routines.
3514 **/
3515STATIC s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
3516                                         u16 *san_mac_offset)
3517{
3518        s32 ret_val;
3519
3520        DEBUGFUNC("ixgbe_get_san_mac_addr_offset");
3521
3522        /*
3523         * First read the EEPROM pointer to see if the MAC addresses are
3524         * available.
3525         */
3526        ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
3527                                      san_mac_offset);
3528        if (ret_val) {
3529                ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3530                              "eeprom at offset %d failed",
3531                              IXGBE_SAN_MAC_ADDR_PTR);
3532        }
3533
3534        return ret_val;
3535}
3536
3537/**
3538 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
3539 * @hw: pointer to hardware structure
3540 * @san_mac_addr: SAN MAC address
3541 *
3542 * Reads the SAN MAC address from the EEPROM, if it's available.  This is
3543 * per-port, so set_lan_id() must be called before reading the addresses.
3544 * set_lan_id() is called by identify_sfp(), but this cannot be relied
3545 * upon for non-SFP connections, so we must call it here.
3546 **/
3547s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3548{
3549        u16 san_mac_data, san_mac_offset;
3550        u8 i;
3551        s32 ret_val;
3552
3553        DEBUGFUNC("ixgbe_get_san_mac_addr_generic");
3554
3555        /*
3556         * First read the EEPROM pointer to see if the MAC addresses are
3557         * available.  If they're not, no point in calling set_lan_id() here.
3558         */
3559        ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3560        if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3561                goto san_mac_addr_out;
3562
3563        /* make sure we know which port we need to program */
3564        hw->mac.ops.set_lan_id(hw);
3565        /* apply the port offset to the address offset */
3566        (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3567                         (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3568        for (i = 0; i < 3; i++) {
3569                ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
3570                                              &san_mac_data);
3571                if (ret_val) {
3572                        ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
3573                                      "eeprom read at offset %d failed",
3574                                      san_mac_offset);
3575                        goto san_mac_addr_out;
3576                }
3577                san_mac_addr[i * 2] = (u8)(san_mac_data);
3578                san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
3579                san_mac_offset++;
3580        }
3581        return IXGBE_SUCCESS;
3582
3583san_mac_addr_out:
3584        /*
3585         * No addresses available in this EEPROM.  It's not an
3586         * error though, so just wipe the local address and return.
3587         */
3588        for (i = 0; i < 6; i++)
3589                san_mac_addr[i] = 0xFF;
3590        return IXGBE_SUCCESS;
3591}
3592
3593/**
3594 * ixgbe_set_san_mac_addr_generic - Write the SAN MAC address to the EEPROM
3595 * @hw: pointer to hardware structure
3596 * @san_mac_addr: SAN MAC address
3597 *
3598 * Write a SAN MAC address to the EEPROM.
3599 **/
3600s32 ixgbe_set_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
3601{
3602        s32 ret_val;
3603        u16 san_mac_data, san_mac_offset;
3604        u8 i;
3605
3606        DEBUGFUNC("ixgbe_set_san_mac_addr_generic");
3607
3608        /* Look for SAN mac address pointer.  If not defined, return */
3609        ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
3610        if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
3611                return IXGBE_ERR_NO_SAN_ADDR_PTR;
3612
3613        /* Make sure we know which port we need to write */
3614        hw->mac.ops.set_lan_id(hw);
3615        /* Apply the port offset to the address offset */
3616        (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
3617                         (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
3618
3619        for (i = 0; i < 3; i++) {
3620                san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8);
3621                san_mac_data |= (u16)(san_mac_addr[i * 2]);
3622                hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data);
3623                san_mac_offset++;
3624        }
3625
3626        return IXGBE_SUCCESS;
3627}
3628
3629/**
3630 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
3631 * @hw: pointer to hardware structure
3632 *
3633 * Read PCIe configuration space, and get the MSI-X vector count from
3634 * the capabilities table.
3635 **/
3636u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
3637{
3638        u16 msix_count = 1;
3639        u16 max_msix_count;
3640        u16 pcie_offset;
3641
3642        switch (hw->mac.type) {
3643        case ixgbe_mac_82598EB:
3644                pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
3645                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
3646                break;
3647        case ixgbe_mac_82599EB:
3648        case ixgbe_mac_X540:
3649        case ixgbe_mac_X550:
3650        case ixgbe_mac_X550EM_x:
3651        case ixgbe_mac_X550EM_a:
3652                pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
3653                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
3654                break;
3655        default:
3656                return msix_count;
3657        }
3658
3659        DEBUGFUNC("ixgbe_get_pcie_msix_count_generic");
3660        msix_count = IXGBE_READ_PCIE_WORD(hw, pcie_offset);
3661        if (IXGBE_REMOVED(hw->hw_addr))
3662                msix_count = 0;
3663        msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
3664
3665        /* MSI-X count is zero-based in HW */
3666        msix_count++;
3667
3668        if (msix_count > max_msix_count)
3669                msix_count = max_msix_count;
3670
3671        return msix_count;
3672}
3673
3674/**
3675 * ixgbe_insert_mac_addr_generic - Find a RAR for this mac address
3676 * @hw: pointer to hardware structure
3677 * @addr: Address to put into receive address register
3678 * @vmdq: VMDq pool to assign
3679 *
3680 * Puts an ethernet address into a receive address register, or
3681 * finds the rar that it is already in; adds to the pool list
3682 **/
3683s32 ixgbe_insert_mac_addr_generic(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
3684{
3685        static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF;
3686        u32 first_empty_rar = NO_EMPTY_RAR_FOUND;
3687        u32 rar;
3688        u32 rar_low, rar_high;
3689        u32 addr_low, addr_high;
3690
3691        DEBUGFUNC("ixgbe_insert_mac_addr_generic");
3692
3693        /* swap bytes for HW little endian */
3694        addr_low  = addr[0] | (addr[1] << 8)
3695                            | (addr[2] << 16)
3696                            | (addr[3] << 24);
3697        addr_high = addr[4] | (addr[5] << 8);
3698
3699        /*
3700         * Either find the mac_id in rar or find the first empty space.
3701         * rar_highwater points to just after the highest currently used
3702         * rar in order to shorten the search.  It grows when we add a new
3703         * rar to the top.
3704         */
3705        for (rar = 0; rar < hw->mac.rar_highwater; rar++) {
3706                rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar));
3707
3708                if (((IXGBE_RAH_AV & rar_high) == 0)
3709                    && first_empty_rar == NO_EMPTY_RAR_FOUND) {
3710                        first_empty_rar = rar;
3711                } else if ((rar_high & 0xFFFF) == addr_high) {
3712                        rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar));
3713                        if (rar_low == addr_low)
3714                                break;    /* found it already in the rars */
3715                }
3716        }
3717
3718        if (rar < hw->mac.rar_highwater) {
3719                /* already there so just add to the pool bits */
3720                ixgbe_set_vmdq(hw, rar, vmdq);
3721        } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) {
3722                /* stick it into first empty RAR slot we found */
3723                rar = first_empty_rar;
3724                ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3725        } else if (rar == hw->mac.rar_highwater) {
3726                /* add it to the top of the list and inc the highwater mark */
3727                ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
3728                hw->mac.rar_highwater++;
3729        } else if (rar >= hw->mac.num_rar_entries) {
3730                return IXGBE_ERR_INVALID_MAC_ADDR;
3731        }
3732
3733        /*
3734         * If we found rar[0], make sure the default pool bit (we use pool 0)
3735         * remains cleared to be sure default pool packets will get delivered
3736         */
3737        if (rar == 0)
3738                ixgbe_clear_vmdq(hw, rar, 0);
3739
3740        return rar;
3741}
3742
3743/**
3744 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
3745 * @hw: pointer to hardware struct
3746 * @rar: receive address register index to disassociate
3747 * @vmdq: VMDq pool index to remove from the rar
3748 **/
3749s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3750{
3751        u32 mpsar_lo, mpsar_hi;
3752        u32 rar_entries = hw->mac.num_rar_entries;
3753
3754        DEBUGFUNC("ixgbe_clear_vmdq_generic");
3755
3756        /* Make sure we are using a valid rar index range */
3757        if (rar >= rar_entries) {
3758                ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3759                             "RAR index %d is out of range.\n", rar);
3760                return IXGBE_ERR_INVALID_ARGUMENT;
3761        }
3762
3763        mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3764        mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3765
3766        if (IXGBE_REMOVED(hw->hw_addr))
3767                goto done;
3768
3769        if (!mpsar_lo && !mpsar_hi)
3770                goto done;
3771
3772        if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
3773                if (mpsar_lo) {
3774                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3775                        mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3776                }
3777                if (mpsar_hi) {
3778                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3779                        mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3780                }
3781        } else if (vmdq < 32) {
3782                mpsar_lo &= ~(1 << vmdq);
3783                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3784        } else {
3785                mpsar_hi &= ~(1 << (vmdq - 32));
3786                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3787        }
3788
3789        /* was that the last pool using this rar? */
3790        if (mpsar_lo == 0 && mpsar_hi == 0 &&
3791            rar != 0 && rar != hw->mac.san_mac_rar_index)
3792                hw->mac.ops.clear_rar(hw, rar);
3793done:
3794        return IXGBE_SUCCESS;
3795}
3796
3797/**
3798 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3799 * @hw: pointer to hardware struct
3800 * @rar: receive address register index to associate with a VMDq index
3801 * @vmdq: VMDq pool index
3802 **/
3803s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3804{
3805        u32 mpsar;
3806        u32 rar_entries = hw->mac.num_rar_entries;
3807
3808        DEBUGFUNC("ixgbe_set_vmdq_generic");
3809
3810        /* Make sure we are using a valid rar index range */
3811        if (rar >= rar_entries) {
3812                ERROR_REPORT2(IXGBE_ERROR_ARGUMENT,
3813                             "RAR index %d is out of range.\n", rar);
3814                return IXGBE_ERR_INVALID_ARGUMENT;
3815        }
3816
3817        if (vmdq < 32) {
3818                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3819                mpsar |= 1 << vmdq;
3820                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3821        } else {
3822                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3823                mpsar |= 1 << (vmdq - 32);
3824                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3825        }
3826        return IXGBE_SUCCESS;
3827}
3828
3829/**
3830 * This function should only be involved in the IOV mode.
3831 * In IOV mode, Default pool is next pool after the number of
3832 * VFs advertized and not 0.
3833 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3834 *
3835 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3836 * @hw: pointer to hardware struct
3837 * @vmdq: VMDq pool index
3838 **/
3839s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3840{
3841        u32 rar = hw->mac.san_mac_rar_index;
3842
3843        DEBUGFUNC("ixgbe_set_vmdq_san_mac");
3844
3845        if (vmdq < 32) {
3846                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
3847                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3848        } else {
3849                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3850                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
3851        }
3852
3853        return IXGBE_SUCCESS;
3854}
3855
3856/**
3857 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3858 * @hw: pointer to hardware structure
3859 **/
3860s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3861{
3862        int i;
3863
3864        DEBUGFUNC("ixgbe_init_uta_tables_generic");
3865        DEBUGOUT(" Clearing UTA\n");
3866
3867        for (i = 0; i < 128; i++)
3868                IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3869
3870        return IXGBE_SUCCESS;
3871}
3872
3873/**
3874 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3875 * @hw: pointer to hardware structure
3876 * @vlan: VLAN id to write to VLAN filter
3877 * @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3878 *                vlanid not found
3879 *
3880 *
3881 * return the VLVF index where this VLAN id should be placed
3882 *
3883 **/
3884s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3885{
3886        s32 regindex, first_empty_slot;
3887        u32 bits;
3888
3889        /* short cut the special case */
3890        if (vlan == 0)
3891                return 0;
3892
3893        /* if vlvf_bypass is set we don't want to use an empty slot, we
3894         * will simply bypass the VLVF if there are no entries present in the
3895         * VLVF that contain our VLAN
3896         */
3897        first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3898
3899        /* add VLAN enable bit for comparison */
3900        vlan |= IXGBE_VLVF_VIEN;
3901
3902        /* Search for the vlan id in the VLVF entries. Save off the first empty
3903         * slot found along the way.
3904         *
3905         * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3906         */
3907        for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3908                bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3909                if (bits == vlan)
3910                        return regindex;
3911                if (!first_empty_slot && !bits)
3912                        first_empty_slot = regindex;
3913        }
3914
3915        /* If we are here then we didn't find the VLAN.  Return first empty
3916         * slot we found during our search, else error.
3917         */
3918        if (!first_empty_slot)
3919                ERROR_REPORT1(IXGBE_ERROR_SOFTWARE, "No space in VLVF.\n");
3920
3921        return first_empty_slot ? first_empty_slot : IXGBE_ERR_NO_SPACE;
3922}
3923
3924/**
3925 * ixgbe_set_vfta_generic - Set VLAN filter table
3926 * @hw: pointer to hardware structure
3927 * @vlan: VLAN id to write to VLAN filter
3928 * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3929 * @vlan_on: boolean flag to turn on/off VLAN
3930 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3931 *
3932 * Turn on/off specified VLAN in the VLAN filter table.
3933 **/
3934s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3935                           bool vlan_on, bool vlvf_bypass)
3936{
3937        u32 regidx, vfta_delta, vfta;
3938        s32 ret_val;
3939
3940        DEBUGFUNC("ixgbe_set_vfta_generic");
3941
3942        if (vlan > 4095 || vind > 63)
3943                return IXGBE_ERR_PARAM;
3944
3945        /*
3946         * this is a 2 part operation - first the VFTA, then the
3947         * VLVF and VLVFB if VT Mode is set
3948         * We don't write the VFTA until we know the VLVF part succeeded.
3949         */
3950
3951        /* Part 1
3952         * The VFTA is a bitstring made up of 128 32-bit registers
3953         * that enable the particular VLAN id, much like the MTA:
3954         *    bits[11-5]: which register
3955         *    bits[4-0]:  which bit in the register
3956         */
3957        regidx = vlan / 32;
3958        vfta_delta = 1 << (vlan % 32);
3959        vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3960
3961        /*
3962         * vfta_delta represents the difference between the current value
3963         * of vfta and the value we want in the register.  Since the diff
3964         * is an XOR mask we can just update the vfta using an XOR
3965         */
3966        vfta_delta &= vlan_on ? ~vfta : vfta;
3967        vfta ^= vfta_delta;
3968
3969        /* Part 2
3970         * Call ixgbe_set_vlvf_generic to set VLVFB and VLVF
3971         */
3972        ret_val = ixgbe_set_vlvf_generic(hw, vlan, vind, vlan_on, &vfta_delta,
3973                                         vfta, vlvf_bypass);
3974        if (ret_val != IXGBE_SUCCESS) {
3975                if (vlvf_bypass)
3976                        goto vfta_update;
3977                return ret_val;
3978        }
3979
3980vfta_update:
3981        /* Update VFTA now that we are ready for traffic */
3982        if (vfta_delta)
3983                IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3984
3985        return IXGBE_SUCCESS;
3986}
3987
3988/**
3989 * ixgbe_set_vlvf_generic - Set VLAN Pool Filter
3990 * @hw: pointer to hardware structure
3991 * @vlan: VLAN id to write to VLAN filter
3992 * @vind: VMDq output index that maps queue to VLAN id in VLVFB
3993 * @vlan_on: boolean flag to turn on/off VLAN in VLVF
3994 * @vfta_delta: pointer to the difference between the current value of VFTA
3995 *               and the desired value
3996 * @vfta: the desired value of the VFTA
3997 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3998 *
3999 * Turn on/off specified bit in VLVF table.
4000 **/
4001s32 ixgbe_set_vlvf_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
4002                           bool vlan_on, u32 *vfta_delta, u32 vfta,
4003                           bool vlvf_bypass)
4004{
4005        u32 bits;
4006        s32 vlvf_index;
4007
4008        DEBUGFUNC("ixgbe_set_vlvf_generic");
4009
4010        if (vlan > 4095 || vind > 63)
4011                return IXGBE_ERR_PARAM;
4012
4013        /* If VT Mode is set
4014         *   Either vlan_on
4015         *     make sure the vlan is in VLVF
4016         *     set the vind bit in the matching VLVFB
4017         *   Or !vlan_on
4018         *     clear the pool bit and possibly the vind
4019         */
4020        if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
4021                return IXGBE_SUCCESS;
4022
4023        vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
4024        if (vlvf_index < 0)
4025                return vlvf_index;
4026
4027        bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
4028
4029        /* set the pool bit */
4030        bits |= 1 << (vind % 32);
4031        if (vlan_on)
4032                goto vlvf_update;
4033
4034        /* clear the pool bit */
4035        bits ^= 1 << (vind % 32);
4036
4037        if (!bits &&
4038            !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
4039                /* Clear VFTA first, then disable VLVF.  Otherwise
4040                 * we run the risk of stray packets leaking into
4041                 * the PF via the default pool
4042                 */
4043                if (*vfta_delta)
4044                        IXGBE_WRITE_REG(hw, IXGBE_VFTA(vlan / 32), vfta);
4045
4046                /* disable VLVF and clear remaining bit from pool */
4047                IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
4048                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
4049
4050                return IXGBE_SUCCESS;
4051        }
4052
4053        /* If there are still bits set in the VLVFB registers
4054         * for the VLAN ID indicated we need to see if the
4055         * caller is requesting that we clear the VFTA entry bit.
4056         * If the caller has requested that we clear the VFTA
4057         * entry bit but there are still pools/VFs using this VLAN
4058         * ID entry then ignore the request.  We're not worried
4059         * about the case where we're turning the VFTA VLAN ID
4060         * entry bit on, only when requested to turn it off as
4061         * there may be multiple pools and/or VFs using the
4062         * VLAN ID entry.  In that case we cannot clear the
4063         * VFTA bit until all pools/VFs using that VLAN ID have also
4064         * been cleared.  This will be indicated by "bits" being
4065         * zero.
4066         */
4067        *vfta_delta = 0;
4068
4069vlvf_update:
4070        /* record pool change and enable VLAN ID if not already enabled */
4071        IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
4072        IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
4073
4074        return IXGBE_SUCCESS;
4075}
4076
4077/**
4078 * ixgbe_clear_vfta_generic - Clear VLAN filter table
4079 * @hw: pointer to hardware structure
4080 *
4081 * Clears the VLAN filer table, and the VMDq index associated with the filter
4082 **/
4083s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
4084{
4085        u32 offset;
4086
4087        DEBUGFUNC("ixgbe_clear_vfta_generic");
4088
4089        for (offset = 0; offset < hw->mac.vft_size; offset++)
4090                IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
4091
4092        for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
4093                IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
4094                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
4095                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
4096        }
4097
4098        return IXGBE_SUCCESS;
4099}
4100
4101/**
4102 * ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
4103 * @hw: pointer to hardware structure
4104 *
4105 * Contains the logic to identify if we need to verify link for the
4106 * crosstalk fix
4107 **/
4108static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
4109{
4110
4111        /* Does FW say we need the fix */
4112        if (!hw->need_crosstalk_fix)
4113                return false;
4114
4115        /* Only consider SFP+ PHYs i.e. media type fiber */
4116        switch (hw->mac.ops.get_media_type(hw)) {
4117        case ixgbe_media_type_fiber:
4118        case ixgbe_media_type_fiber_qsfp:
4119                break;
4120        default:
4121                return false;
4122        }
4123
4124        return true;
4125}
4126
4127/**
4128 * ixgbe_check_mac_link_generic - Determine link and speed status
4129 * @hw: pointer to hardware structure
4130 * @speed: pointer to link speed
4131 * @link_up: true when link is up
4132 * @link_up_wait_to_complete: bool used to wait for link up or not
4133 *
4134 * Reads the links register to determine if link is up and the current speed
4135 **/
4136s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
4137                                 bool *link_up, bool link_up_wait_to_complete)
4138{
4139        u32 links_reg, links_orig;
4140        u32 i;
4141
4142        DEBUGFUNC("ixgbe_check_mac_link_generic");
4143
4144        /* If Crosstalk fix enabled do the sanity check of making sure
4145         * the SFP+ cage is full.
4146         */
4147        if (ixgbe_need_crosstalk_fix(hw)) {
4148                u32 sfp_cage_full;
4149
4150                switch (hw->mac.type) {
4151                case ixgbe_mac_82599EB:
4152                        sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4153                                        IXGBE_ESDP_SDP2;
4154                        break;
4155                case ixgbe_mac_X550EM_x:
4156                case ixgbe_mac_X550EM_a:
4157                        sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
4158                                        IXGBE_ESDP_SDP0;
4159                        break;
4160                default:
4161                        /* sanity check - No SFP+ devices here */
4162                        sfp_cage_full = false;
4163                        break;
4164                }
4165
4166                if (!sfp_cage_full) {
4167                        *link_up = false;
4168                        *speed = IXGBE_LINK_SPEED_UNKNOWN;
4169                        return IXGBE_SUCCESS;
4170                }
4171        }
4172
4173        /* clear the old state */
4174        links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
4175
4176        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4177
4178        if (links_orig != links_reg) {
4179                DEBUGOUT2("LINKS changed from %08X to %08X\n",
4180                          links_orig, links_reg);
4181        }
4182
4183        if (link_up_wait_to_complete) {
4184                for (i = 0; i < hw->mac.max_link_up_time; i++) {
4185                        if (links_reg & IXGBE_LINKS_UP) {
4186                                *link_up = true;
4187                                break;
4188                        } else {
4189                                *link_up = false;
4190                        }
4191                        msec_delay(100);
4192                        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
4193                }
4194        } else {
4195                if (links_reg & IXGBE_LINKS_UP)
4196                        *link_up = true;
4197                else
4198                        *link_up = false;
4199        }
4200
4201        switch (links_reg & IXGBE_LINKS_SPEED_82599) {
4202        case IXGBE_LINKS_SPEED_10G_82599:
4203                *speed = IXGBE_LINK_SPEED_10GB_FULL;
4204                if (hw->mac.type >= ixgbe_mac_X550) {
4205                        if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4206                                *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
4207                }
4208                break;
4209        case IXGBE_LINKS_SPEED_1G_82599:
4210                *speed = IXGBE_LINK_SPEED_1GB_FULL;
4211                break;
4212        case IXGBE_LINKS_SPEED_100_82599:
4213                *speed = IXGBE_LINK_SPEED_100_FULL;
4214                if (hw->mac.type == ixgbe_mac_X550) {
4215                        if (links_reg & IXGBE_LINKS_SPEED_NON_STD)
4216                                *speed = IXGBE_LINK_SPEED_5GB_FULL;
4217                }
4218                break;
4219        case IXGBE_LINKS_SPEED_10_X550EM_A:
4220                *speed = IXGBE_LINK_SPEED_UNKNOWN;
4221                if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
4222                    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L)
4223                        *speed = IXGBE_LINK_SPEED_10_FULL;
4224                break;
4225        default:
4226                *speed = IXGBE_LINK_SPEED_UNKNOWN;
4227        }
4228
4229        return IXGBE_SUCCESS;
4230}
4231
4232/**
4233 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
4234 * the EEPROM
4235 * @hw: pointer to hardware structure
4236 * @wwnn_prefix: the alternative WWNN prefix
4237 * @wwpn_prefix: the alternative WWPN prefix
4238 *
4239 * This function will read the EEPROM from the alternative SAN MAC address
4240 * block to check the support for the alternative WWNN/WWPN prefix support.
4241 **/
4242s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
4243                                 u16 *wwpn_prefix)
4244{
4245        u16 offset, caps;
4246        u16 alt_san_mac_blk_offset;
4247
4248        DEBUGFUNC("ixgbe_get_wwn_prefix_generic");
4249
4250        /* clear output first */
4251        *wwnn_prefix = 0xFFFF;
4252        *wwpn_prefix = 0xFFFF;
4253
4254        /* check if alternative SAN MAC is supported */
4255        offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
4256        if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
4257                goto wwn_prefix_err;
4258
4259        if ((alt_san_mac_blk_offset == 0) ||
4260            (alt_san_mac_blk_offset == 0xFFFF))
4261                goto wwn_prefix_out;
4262
4263        /* check capability in alternative san mac address block */
4264        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
4265        if (hw->eeprom.ops.read(hw, offset, &caps))
4266                goto wwn_prefix_err;
4267        if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
4268                goto wwn_prefix_out;
4269
4270        /* get the corresponding prefix for WWNN/WWPN */
4271        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
4272        if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) {
4273                ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4274                              "eeprom read at offset %d failed", offset);
4275        }
4276
4277        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
4278        if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
4279                goto wwn_prefix_err;
4280
4281wwn_prefix_out:
4282        return IXGBE_SUCCESS;
4283
4284wwn_prefix_err:
4285        ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4286                      "eeprom read at offset %d failed", offset);
4287        return IXGBE_SUCCESS;
4288}
4289
4290/**
4291 * ixgbe_get_fcoe_boot_status_generic - Get FCOE boot status from EEPROM
4292 * @hw: pointer to hardware structure
4293 * @bs: the fcoe boot status
4294 *
4295 * This function will read the FCOE boot status from the iSCSI FCOE block
4296 **/
4297s32 ixgbe_get_fcoe_boot_status_generic(struct ixgbe_hw *hw, u16 *bs)
4298{
4299        u16 offset, caps, flags;
4300        s32 status;
4301
4302        DEBUGFUNC("ixgbe_get_fcoe_boot_status_generic");
4303
4304        /* clear output first */
4305        *bs = ixgbe_fcoe_bootstatus_unavailable;
4306
4307        /* check if FCOE IBA block is present */
4308        offset = IXGBE_FCOE_IBA_CAPS_BLK_PTR;
4309        status = hw->eeprom.ops.read(hw, offset, &caps);
4310        if (status != IXGBE_SUCCESS)
4311                goto out;
4312
4313        if (!(caps & IXGBE_FCOE_IBA_CAPS_FCOE))
4314                goto out;
4315
4316        /* check if iSCSI FCOE block is populated */
4317        status = hw->eeprom.ops.read(hw, IXGBE_ISCSI_FCOE_BLK_PTR, &offset);
4318        if (status != IXGBE_SUCCESS)
4319                goto out;
4320
4321        if ((offset == 0) || (offset == 0xFFFF))
4322                goto out;
4323
4324        /* read fcoe flags in iSCSI FCOE block */
4325        offset = offset + IXGBE_ISCSI_FCOE_FLAGS_OFFSET;
4326        status = hw->eeprom.ops.read(hw, offset, &flags);
4327        if (status != IXGBE_SUCCESS)
4328                goto out;
4329
4330        if (flags & IXGBE_ISCSI_FCOE_FLAGS_ENABLE)
4331                *bs = ixgbe_fcoe_bootstatus_enabled;
4332        else
4333                *bs = ixgbe_fcoe_bootstatus_disabled;
4334
4335out:
4336        return status;
4337}
4338
4339/**
4340 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
4341 * @hw: pointer to hardware structure
4342 * @enable: enable or disable switch for MAC anti-spoofing
4343 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
4344 *
4345 **/
4346void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4347{
4348        int vf_target_reg = vf >> 3;
4349        int vf_target_shift = vf % 8;
4350        u32 pfvfspoof;
4351
4352        if (hw->mac.type == ixgbe_mac_82598EB)
4353                return;
4354
4355        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4356        if (enable)
4357                pfvfspoof |= (1 << vf_target_shift);
4358        else
4359                pfvfspoof &= ~(1 << vf_target_shift);
4360        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4361}
4362
4363/**
4364 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
4365 * @hw: pointer to hardware structure
4366 * @enable: enable or disable switch for VLAN anti-spoofing
4367 * @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
4368 *
4369 **/
4370void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
4371{
4372        int vf_target_reg = vf >> 3;
4373        int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
4374        u32 pfvfspoof;
4375
4376        if (hw->mac.type == ixgbe_mac_82598EB)
4377                return;
4378
4379        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
4380        if (enable)
4381                pfvfspoof |= (1 << vf_target_shift);
4382        else
4383                pfvfspoof &= ~(1 << vf_target_shift);
4384        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
4385}
4386
4387/**
4388 * ixgbe_get_device_caps_generic - Get additional device capabilities
4389 * @hw: pointer to hardware structure
4390 * @device_caps: the EEPROM word with the extra device capabilities
4391 *
4392 * This function will read the EEPROM location for the device capabilities,
4393 * and return the word through device_caps.
4394 **/
4395s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
4396{
4397        DEBUGFUNC("ixgbe_get_device_caps_generic");
4398
4399        hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
4400
4401        return IXGBE_SUCCESS;
4402}
4403
4404/**
4405 * ixgbe_enable_relaxed_ordering_gen2 - Enable relaxed ordering
4406 * @hw: pointer to hardware structure
4407 *
4408 **/
4409void ixgbe_enable_relaxed_ordering_gen2(struct ixgbe_hw *hw)
4410{
4411        u32 regval;
4412        u32 i;
4413
4414        DEBUGFUNC("ixgbe_enable_relaxed_ordering_gen2");
4415
4416        /* Enable relaxed ordering */
4417        for (i = 0; i < hw->mac.max_tx_queues; i++) {
4418                regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
4419                regval |= IXGBE_DCA_TXCTRL_DESC_WRO_EN;
4420                IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
4421        }
4422
4423        for (i = 0; i < hw->mac.max_rx_queues; i++) {
4424                regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
4425                regval |= IXGBE_DCA_RXCTRL_DATA_WRO_EN |
4426                          IXGBE_DCA_RXCTRL_HEAD_WRO_EN;
4427                IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
4428        }
4429
4430}
4431
4432/**
4433 * ixgbe_calculate_checksum - Calculate checksum for buffer
4434 * @buffer: pointer to EEPROM
4435 * @length: size of EEPROM to calculate a checksum for
4436 * Calculates the checksum for some buffer on a specified length.  The
4437 * checksum calculated is returned.
4438 **/
4439u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
4440{
4441        u32 i;
4442        u8 sum = 0;
4443
4444        DEBUGFUNC("ixgbe_calculate_checksum");
4445
4446        if (!buffer)
4447                return 0;
4448
4449        for (i = 0; i < length; i++)
4450                sum += buffer[i];
4451
4452        return (u8) (0 - sum);
4453}
4454
4455/**
4456 * ixgbe_hic_unlocked - Issue command to manageability block unlocked
4457 * @hw: pointer to the HW structure
4458 * @buffer: command to write and where the return status will be placed
4459 * @length: length of buffer, must be multiple of 4 bytes
4460 * @timeout: time in ms to wait for command completion
4461 *
4462 * Communicates with the manageability block. On success return IXGBE_SUCCESS
4463 * else returns semaphore error when encountering an error acquiring
4464 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4465 *
4466 * This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
4467 * by the caller.
4468 **/
4469s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
4470                       u32 timeout)
4471{
4472        u32 hicr, i, fwsts;
4473        u16 dword_len;
4474
4475        DEBUGFUNC("ixgbe_hic_unlocked");
4476
4477        if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4478                DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4479                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4480        }
4481
4482        /* Set bit 9 of FWSTS clearing FW reset indication */
4483        fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
4484        IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
4485
4486        /* Check that the host interface is enabled. */
4487        hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4488        if (!(hicr & IXGBE_HICR_EN)) {
4489                DEBUGOUT("IXGBE_HOST_EN bit disabled.\n");
4490                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4491        }
4492
4493        /* Calculate length in DWORDs. We must be DWORD aligned */
4494        if (length % sizeof(u32)) {
4495                DEBUGOUT("Buffer length failure, not aligned to dword");
4496                return IXGBE_ERR_INVALID_ARGUMENT;
4497        }
4498
4499        dword_len = length >> 2;
4500
4501        /* The device driver writes the relevant command block
4502         * into the ram area.
4503         */
4504        for (i = 0; i < dword_len; i++)
4505                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4506                                      i, IXGBE_CPU_TO_LE32(buffer[i]));
4507
4508        /* Setting this bit tells the ARC that a new command is pending. */
4509        IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
4510
4511        for (i = 0; i < timeout; i++) {
4512                hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
4513                if (!(hicr & IXGBE_HICR_C))
4514                        break;
4515                msec_delay(1);
4516        }
4517
4518        /* For each command except "Apply Update" perform
4519         * status checks in the HICR registry.
4520         */
4521        if ((buffer[0] & IXGBE_HOST_INTERFACE_MASK_CMD) ==
4522            IXGBE_HOST_INTERFACE_APPLY_UPDATE_CMD)
4523                return IXGBE_SUCCESS;
4524
4525        /* Check command completion */
4526        if ((timeout && i == timeout) ||
4527            !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
4528                ERROR_REPORT1(IXGBE_ERROR_CAUTION,
4529                              "Command has failed with no status valid.\n");
4530                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4531        }
4532
4533        return IXGBE_SUCCESS;
4534}
4535
4536/**
4537 * ixgbe_host_interface_command - Issue command to manageability block
4538 * @hw: pointer to the HW structure
4539 * @buffer: contains the command to write and where the return status will
4540 *  be placed
4541 * @length: length of buffer, must be multiple of 4 bytes
4542 * @timeout: time in ms to wait for command completion
4543 * @return_data: read and return data from the buffer (true) or not (false)
4544 *  Needed because FW structures are big endian and decoding of
4545 *  these fields can be 8 bit or 16 bit based on command. Decoding
4546 *  is not easily understood without making a table of commands.
4547 *  So we will leave this up to the caller to read back the data
4548 *  in these cases.
4549 *
4550 * Communicates with the manageability block. On success return IXGBE_SUCCESS
4551 * else returns semaphore error when encountering an error acquiring
4552 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4553 **/
4554s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
4555                                 u32 length, u32 timeout, bool return_data)
4556{
4557        u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
4558        struct ixgbe_hic_hdr *resp = (struct ixgbe_hic_hdr *)buffer;
4559        u16 buf_len;
4560        s32 status;
4561        u32 bi;
4562        u32 dword_len;
4563
4564        DEBUGFUNC("ixgbe_host_interface_command");
4565
4566        if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
4567                DEBUGOUT1("Buffer length failure buffersize=%d.\n", length);
4568                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
4569        }
4570
4571        /* Take management host interface semaphore */
4572        status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4573        if (status)
4574                return status;
4575
4576        status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
4577        if (status)
4578                goto rel_out;
4579
4580        if (!return_data)
4581                goto rel_out;
4582
4583        /* Calculate length in DWORDs */
4584        dword_len = hdr_size >> 2;
4585
4586        /* first pull in the header so we know the buffer length */
4587        for (bi = 0; bi < dword_len; bi++) {
4588                buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4589                IXGBE_LE32_TO_CPUS((uintptr_t)&buffer[bi]);
4590        }
4591
4592        /*
4593         * If there is any thing in data position pull it in
4594         * Read Flash command requires reading buffer length from
4595         * two byes instead of one byte
4596         */
4597        if (resp->cmd == IXGBE_HOST_INTERFACE_FLASH_READ_CMD ||
4598            resp->cmd == IXGBE_HOST_INTERFACE_SHADOW_RAM_READ_CMD) {
4599                for (; bi < dword_len + 2; bi++) {
4600                        buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG,
4601                                                          bi);
4602                        IXGBE_LE32_TO_CPUS(&buffer[bi]);
4603                }
4604                buf_len = (((u16)(resp->cmd_or_resp.ret_status) << 3)
4605                                  & 0xF00) | resp->buf_len;
4606                hdr_size += (2 << 2);
4607        } else {
4608                buf_len = resp->buf_len;
4609        }
4610        if (!buf_len)
4611                goto rel_out;
4612
4613        if (length < buf_len + hdr_size) {
4614                DEBUGOUT("Buffer not large enough for reply message.\n");
4615                status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4616                goto rel_out;
4617        }
4618
4619        /* Calculate length in DWORDs, add 3 for odd lengths */
4620        dword_len = (buf_len + 3) >> 2;
4621
4622        /* Pull in the rest of the buffer (bi is where we left off) */
4623        for (; bi <= dword_len; bi++) {
4624                buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
4625                IXGBE_LE32_TO_CPUS((uintptr_t)&buffer[bi]);
4626        }
4627
4628rel_out:
4629        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
4630
4631        return status;
4632}
4633
4634/**
4635 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
4636 * @hw: pointer to the HW structure
4637 * @maj: driver version major number
4638 * @min: driver version minor number
4639 * @build: driver version build number
4640 * @sub: driver version sub build number
4641 * @len: unused
4642 * @driver_ver: unused
4643 *
4644 * Sends driver version number to firmware through the manageability
4645 * block.  On success return IXGBE_SUCCESS
4646 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
4647 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
4648 **/
4649s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
4650                                 u8 build, u8 sub, u16 len,
4651                                 const char *driver_ver)
4652{
4653        struct ixgbe_hic_drv_info fw_cmd;
4654        int i;
4655        s32 ret_val = IXGBE_SUCCESS;
4656
4657        DEBUGFUNC("ixgbe_set_fw_drv_ver_generic");
4658        UNREFERENCED_2PARAMETER(len, driver_ver);
4659
4660        fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
4661        fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
4662        fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
4663        fw_cmd.port_num = (u8)hw->bus.func;
4664        fw_cmd.ver_maj = maj;
4665        fw_cmd.ver_min = min;
4666        fw_cmd.ver_build = build;
4667        fw_cmd.ver_sub = sub;
4668        fw_cmd.hdr.checksum = 0;
4669        fw_cmd.pad = 0;
4670        fw_cmd.pad2 = 0;
4671        fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
4672                                (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
4673
4674        for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
4675                ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
4676                                                       sizeof(fw_cmd),
4677                                                       IXGBE_HI_COMMAND_TIMEOUT,
4678                                                       true);
4679                if (ret_val != IXGBE_SUCCESS)
4680                        continue;
4681
4682                if (fw_cmd.hdr.cmd_or_resp.ret_status ==
4683                    FW_CEM_RESP_STATUS_SUCCESS)
4684                        ret_val = IXGBE_SUCCESS;
4685                else
4686                        ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
4687
4688                break;
4689        }
4690
4691        return ret_val;
4692}
4693
4694/**
4695 * ixgbe_set_rxpba_generic - Initialize Rx packet buffer
4696 * @hw: pointer to hardware structure
4697 * @num_pb: number of packet buffers to allocate
4698 * @headroom: reserve n KB of headroom
4699 * @strategy: packet buffer allocation strategy
4700 **/
4701void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, int num_pb, u32 headroom,
4702                             int strategy)
4703{
4704        u32 pbsize = hw->mac.rx_pb_size;
4705        int i = 0;
4706        u32 rxpktsize, txpktsize, txpbthresh;
4707
4708        /* Reserve headroom */
4709        pbsize -= headroom;
4710
4711        if (!num_pb)
4712                num_pb = 1;
4713
4714        /* Divide remaining packet buffer space amongst the number of packet
4715         * buffers requested using supplied strategy.
4716         */
4717        switch (strategy) {
4718        case PBA_STRATEGY_WEIGHTED:
4719                /* ixgbe_dcb_pba_80_48 strategy weight first half of packet
4720                 * buffer with 5/8 of the packet buffer space.
4721                 */
4722                rxpktsize = (pbsize * 5) / (num_pb * 4);
4723                pbsize -= rxpktsize * (num_pb / 2);
4724                rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
4725                for (; i < (num_pb / 2); i++)
4726                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4727                /* fall through - configure remaining packet buffers */
4728        case PBA_STRATEGY_EQUAL:
4729                rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
4730                for (; i < num_pb; i++)
4731                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
4732                break;
4733        default:
4734                break;
4735        }
4736
4737        /* Only support an equally distributed Tx packet buffer strategy. */
4738        txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
4739        txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
4740        for (i = 0; i < num_pb; i++) {
4741                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
4742                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
4743        }
4744
4745        /* Clear unused TCs, if any, to zero buffer size*/
4746        for (; i < IXGBE_MAX_PB; i++) {
4747                IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
4748                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
4749                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
4750        }
4751}
4752
4753/**
4754 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
4755 * @hw: pointer to the hardware structure
4756 *
4757 * The 82599 and x540 MACs can experience issues if TX work is still pending
4758 * when a reset occurs.  This function prevents this by flushing the PCIe
4759 * buffers on the system.
4760 **/
4761void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
4762{
4763        u32 gcr_ext, hlreg0, i, poll;
4764        u16 value;
4765
4766        /*
4767         * If double reset is not requested then all transactions should
4768         * already be clear and as such there is no work to do
4769         */
4770        if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
4771                return;
4772
4773        /*
4774         * Set loopback enable to prevent any transmits from being sent
4775         * should the link come up.  This assumes that the RXCTRL.RXEN bit
4776         * has already been cleared.
4777         */
4778        hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
4779        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
4780
4781        /* Wait for a last completion before clearing buffers */
4782        IXGBE_WRITE_FLUSH(hw);
4783        msec_delay(3);
4784
4785        /*
4786         * Before proceeding, make sure that the PCIe block does not have
4787         * transactions pending.
4788         */
4789        poll = ixgbe_pcie_timeout_poll(hw);
4790        for (i = 0; i < poll; i++) {
4791                usec_delay(100);
4792                value = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCI_DEVICE_STATUS);
4793                if (IXGBE_REMOVED(hw->hw_addr))
4794                        goto out;
4795                if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
4796                        goto out;
4797        }
4798
4799out:
4800        /* initiate cleaning flow for buffers in the PCIe transaction layer */
4801        gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
4802        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
4803                        gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
4804
4805        /* Flush all writes and allow 20usec for all transactions to clear */
4806        IXGBE_WRITE_FLUSH(hw);
4807        usec_delay(20);
4808
4809        /* restore previous register values */
4810        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
4811        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
4812}
4813
4814STATIC const u8 ixgbe_emc_temp_data[4] = {
4815        IXGBE_EMC_INTERNAL_DATA,
4816        IXGBE_EMC_DIODE1_DATA,
4817        IXGBE_EMC_DIODE2_DATA,
4818        IXGBE_EMC_DIODE3_DATA
4819};
4820STATIC const u8 ixgbe_emc_therm_limit[4] = {
4821        IXGBE_EMC_INTERNAL_THERM_LIMIT,
4822        IXGBE_EMC_DIODE1_THERM_LIMIT,
4823        IXGBE_EMC_DIODE2_THERM_LIMIT,
4824        IXGBE_EMC_DIODE3_THERM_LIMIT
4825};
4826
4827/**
4828 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
4829 * @hw: pointer to hardware structure
4830 *
4831 * Returns the thermal sensor data structure
4832 **/
4833s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
4834{
4835        s32 status = IXGBE_SUCCESS;
4836        u16 ets_offset;
4837        u16 ets_cfg;
4838        u16 ets_sensor;
4839        u8  num_sensors;
4840        u8  sensor_index;
4841        u8  sensor_location;
4842        u8  i;
4843        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
4844
4845        DEBUGFUNC("ixgbe_get_thermal_sensor_data_generic");
4846
4847        /* Only support thermal sensors attached to 82599 physical port 0 */
4848        if ((hw->mac.type != ixgbe_mac_82599EB) ||
4849            (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
4850                status = IXGBE_NOT_IMPLEMENTED;
4851                goto out;
4852        }
4853
4854        status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, &ets_offset);
4855        if (status)
4856                goto out;
4857
4858        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) {
4859                status = IXGBE_NOT_IMPLEMENTED;
4860                goto out;
4861        }
4862
4863        status = hw->eeprom.ops.read(hw, ets_offset, &ets_cfg);
4864        if (status)
4865                goto out;
4866
4867        if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT)
4868                != IXGBE_ETS_TYPE_EMC) {
4869                status = IXGBE_NOT_IMPLEMENTED;
4870                goto out;
4871        }
4872
4873        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4874        if (num_sensors > IXGBE_MAX_SENSORS)
4875                num_sensors = IXGBE_MAX_SENSORS;
4876
4877        for (i = 0; i < num_sensors; i++) {
4878                status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
4879                                             &ets_sensor);
4880                if (status)
4881                        goto out;
4882
4883                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4884                                IXGBE_ETS_DATA_INDEX_SHIFT);
4885                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4886                                   IXGBE_ETS_DATA_LOC_SHIFT);
4887
4888                if (sensor_location != 0) {
4889                        status = hw->phy.ops.read_i2c_byte(hw,
4890                                        ixgbe_emc_temp_data[sensor_index],
4891                                        IXGBE_I2C_THERMAL_SENSOR_ADDR,
4892                                        &data->sensor[i].temp);
4893                        if (status)
4894                                goto out;
4895                }
4896        }
4897out:
4898        return status;
4899}
4900
4901/**
4902 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
4903 * @hw: pointer to hardware structure
4904 *
4905 * Inits the thermal sensor thresholds according to the NVM map
4906 * and save off the threshold and location values into mac.thermal_sensor_data
4907 **/
4908s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
4909{
4910        s32 status = IXGBE_SUCCESS;
4911        u16 offset;
4912        u16 ets_offset;
4913        u16 ets_cfg;
4914        u16 ets_sensor;
4915        u8  low_thresh_delta;
4916        u8  num_sensors;
4917        u8  sensor_index;
4918        u8  sensor_location;
4919        u8  therm_limit;
4920        u8  i;
4921        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
4922
4923        DEBUGFUNC("ixgbe_init_thermal_sensor_thresh_generic");
4924
4925        memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
4926
4927        /* Only support thermal sensors attached to 82599 physical port 0 */
4928        if ((hw->mac.type != ixgbe_mac_82599EB) ||
4929            (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
4930                return IXGBE_NOT_IMPLEMENTED;
4931
4932        offset = IXGBE_ETS_CFG;
4933        if (hw->eeprom.ops.read(hw, offset, &ets_offset))
4934                goto eeprom_err;
4935        if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
4936                return IXGBE_NOT_IMPLEMENTED;
4937
4938        offset = ets_offset;
4939        if (hw->eeprom.ops.read(hw, offset, &ets_cfg))
4940                goto eeprom_err;
4941        if (((ets_cfg & IXGBE_ETS_TYPE_MASK) >> IXGBE_ETS_TYPE_SHIFT)
4942                != IXGBE_ETS_TYPE_EMC)
4943                return IXGBE_NOT_IMPLEMENTED;
4944
4945        low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
4946                             IXGBE_ETS_LTHRES_DELTA_SHIFT);
4947        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4948
4949        for (i = 0; i < num_sensors; i++) {
4950                offset = ets_offset + 1 + i;
4951                if (hw->eeprom.ops.read(hw, offset, &ets_sensor)) {
4952                        ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4953                                      "eeprom read at offset %d failed",
4954                                      offset);
4955                        continue;
4956                }
4957                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4958                                IXGBE_ETS_DATA_INDEX_SHIFT);
4959                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4960                                   IXGBE_ETS_DATA_LOC_SHIFT);
4961                therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4962
4963                hw->phy.ops.write_i2c_byte(hw,
4964                        ixgbe_emc_therm_limit[sensor_index],
4965                        IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4966
4967                if ((i < IXGBE_MAX_SENSORS) && (sensor_location != 0)) {
4968                        data->sensor[i].location = sensor_location;
4969                        data->sensor[i].caution_thresh = therm_limit;
4970                        data->sensor[i].max_op_thresh = therm_limit -
4971                                                        low_thresh_delta;
4972                }
4973        }
4974        return status;
4975
4976eeprom_err:
4977        ERROR_REPORT2(IXGBE_ERROR_INVALID_STATE,
4978                      "eeprom read at offset %d failed", offset);
4979        return IXGBE_NOT_IMPLEMENTED;
4980}
4981
4982/**
4983 * ixgbe_get_orom_version - Return option ROM from EEPROM
4984 *
4985 * @hw: pointer to hardware structure
4986 * @nvm_ver: pointer to output structure
4987 *
4988 * if valid option ROM version, nvm_ver->or_valid set to true
4989 * else nvm_ver->or_valid is false.
4990 **/
4991void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4992                            struct ixgbe_nvm_version *nvm_ver)
4993{
4994        u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4995
4996        nvm_ver->or_valid = false;
4997        /* Option Rom may or may not be present.  Start with pointer */
4998        hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4999
5000        /* make sure offset is valid */
5001        if ((offset == 0x0) || (offset == NVM_INVALID_PTR))
5002                return;
5003
5004        hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
5005        hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
5006
5007        /* option rom exists and is valid */
5008        if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
5009            eeprom_cfg_blkl == NVM_VER_INVALID ||
5010            eeprom_cfg_blkh == NVM_VER_INVALID)
5011                return;
5012
5013        nvm_ver->or_valid = true;
5014        nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
5015        nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
5016                            (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
5017        nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
5018}
5019
5020/**
5021 * ixgbe_get_oem_prod_version - Return OEM Product version
5022 *
5023 * @hw: pointer to hardware structure
5024 * @nvm_ver: pointer to output structure
5025 *
5026 * if valid OEM product version, nvm_ver->oem_valid set to true
5027 * else nvm_ver->oem_valid is false.
5028 **/
5029void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
5030                                struct ixgbe_nvm_version *nvm_ver)
5031{
5032        u16 rel_num, prod_ver, mod_len, cap, offset;
5033
5034        nvm_ver->oem_valid = false;
5035        hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
5036
5037        /* Return is offset to OEM Product Version block is invalid */
5038        if (offset == 0x0 || offset == NVM_INVALID_PTR)
5039                return;
5040
5041        /* Read product version block */
5042        hw->eeprom.ops.read(hw, offset, &mod_len);
5043        hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
5044
5045        /* Return if OEM product version block is invalid */
5046        if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
5047            (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
5048                return;
5049
5050        hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
5051        hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
5052
5053        /* Return if version is invalid */
5054        if ((rel_num | prod_ver) == 0x0 ||
5055            rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
5056                return;
5057
5058        nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
5059        nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
5060        nvm_ver->oem_release = rel_num;
5061        nvm_ver->oem_valid = true;
5062}
5063
5064/**
5065 * ixgbe_get_etk_id - Return Etrack ID from EEPROM
5066 *
5067 * @hw: pointer to hardware structure
5068 * @nvm_ver: pointer to output structure
5069 *
5070 * word read errors will return 0xFFFF
5071 **/
5072void ixgbe_get_etk_id(struct ixgbe_hw *hw, struct ixgbe_nvm_version *nvm_ver)
5073{
5074        u16 etk_id_l, etk_id_h;
5075
5076        if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
5077                etk_id_l = NVM_VER_INVALID;
5078        if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
5079                etk_id_h = NVM_VER_INVALID;
5080
5081        /* The word order for the version format is determined by high order
5082         * word bit 15.
5083         */
5084        if ((etk_id_h & NVM_ETK_VALID) == 0) {
5085                nvm_ver->etk_id = etk_id_h;
5086                nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
5087        } else {
5088                nvm_ver->etk_id = etk_id_l;
5089                nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
5090        }
5091}
5092
5093
5094/**
5095 * ixgbe_dcb_get_rtrup2tc_generic - read rtrup2tc reg
5096 * @hw: pointer to hardware structure
5097 * @map: pointer to u8 arr for returning map
5098 *
5099 * Read the rtrup2tc HW register and resolve its content into map
5100 **/
5101void ixgbe_dcb_get_rtrup2tc_generic(struct ixgbe_hw *hw, u8 *map)
5102{
5103        u32 reg, i;
5104
5105        reg = IXGBE_READ_REG(hw, IXGBE_RTRUP2TC);
5106        for (i = 0; i < IXGBE_DCB_MAX_USER_PRIORITY; i++)
5107                map[i] = IXGBE_RTRUP2TC_UP_MASK &
5108                        (reg >> (i * IXGBE_RTRUP2TC_UP_SHIFT));
5109        return;
5110}
5111
5112void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
5113{
5114        u32 pfdtxgswc;
5115        u32 rxctrl;
5116
5117        rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5118        if (rxctrl & IXGBE_RXCTRL_RXEN) {
5119                if (hw->mac.type != ixgbe_mac_82598EB) {
5120                        pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5121                        if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
5122                                pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
5123                                IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5124                                hw->mac.set_lben = true;
5125                        } else {
5126                                hw->mac.set_lben = false;
5127                        }
5128                }
5129                rxctrl &= ~IXGBE_RXCTRL_RXEN;
5130                IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
5131        }
5132}
5133
5134void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
5135{
5136        u32 pfdtxgswc;
5137        u32 rxctrl;
5138
5139        rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
5140        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
5141
5142        if (hw->mac.type != ixgbe_mac_82598EB) {
5143                if (hw->mac.set_lben) {
5144                        pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
5145                        pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
5146                        IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
5147                        hw->mac.set_lben = false;
5148                }
5149        }
5150}
5151
5152/**
5153 * ixgbe_mng_present - returns true when management capability is present
5154 * @hw: pointer to hardware structure
5155 */
5156bool ixgbe_mng_present(struct ixgbe_hw *hw)
5157{
5158        u32 fwsm;
5159
5160        if (hw->mac.type < ixgbe_mac_82599EB)
5161                return false;
5162
5163        fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5164
5165        return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
5166}
5167
5168/**
5169 * ixgbe_mng_enabled - Is the manageability engine enabled?
5170 * @hw: pointer to hardware structure
5171 *
5172 * Returns true if the manageability engine is enabled.
5173 **/
5174bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
5175{
5176        u32 fwsm, manc, factps;
5177
5178        fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM_BY_MAC(hw));
5179        if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
5180                return false;
5181
5182        manc = IXGBE_READ_REG(hw, IXGBE_MANC);
5183        if (!(manc & IXGBE_MANC_RCV_TCO_EN))
5184                return false;
5185
5186        if (hw->mac.type <= ixgbe_mac_X540) {
5187                factps = IXGBE_READ_REG(hw, IXGBE_FACTPS_BY_MAC(hw));
5188                if (factps & IXGBE_FACTPS_MNGCG)
5189                        return false;
5190        }
5191
5192        return true;
5193}
5194
5195/**
5196 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
5197 * @hw: pointer to hardware structure
5198 * @speed: new link speed
5199 * @autoneg_wait_to_complete: true when waiting for completion is needed
5200 *
5201 * Set the link speed in the MAC and/or PHY register and restarts link.
5202 **/
5203s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
5204                                          ixgbe_link_speed speed,
5205                                          bool autoneg_wait_to_complete)
5206{
5207        ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5208        ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
5209        s32 status = IXGBE_SUCCESS;
5210        u32 speedcnt = 0;
5211        u32 i = 0;
5212        bool autoneg, link_up = false;
5213
5214        DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber");
5215
5216        /* Mask off requested but non-supported speeds */
5217        status = ixgbe_get_link_capabilities(hw, &link_speed, &autoneg);
5218        if (status != IXGBE_SUCCESS)
5219                return status;
5220
5221        speed &= link_speed;
5222
5223        /* Try each speed one by one, highest priority first.  We do this in
5224         * software because 10Gb fiber doesn't support speed autonegotiation.
5225         */
5226        if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
5227                speedcnt++;
5228                highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
5229
5230                /* Set the module link speed */
5231                switch (hw->phy.media_type) {
5232                case ixgbe_media_type_fiber:
5233                        ixgbe_set_rate_select_speed(hw,
5234                                                    IXGBE_LINK_SPEED_10GB_FULL);
5235                        break;
5236                case ixgbe_media_type_fiber_qsfp:
5237                        /* QSFP module automatically detects MAC link speed */
5238                        break;
5239                default:
5240                        DEBUGOUT("Unexpected media type.\n");
5241                        break;
5242                }
5243
5244                /* Allow module to change analog characteristics (1G->10G) */
5245                msec_delay(40);
5246
5247                status = ixgbe_setup_mac_link(hw,
5248                                              IXGBE_LINK_SPEED_10GB_FULL,
5249                                              autoneg_wait_to_complete);
5250                if (status != IXGBE_SUCCESS)
5251                        return status;
5252
5253                /* Flap the Tx laser if it has not already been done */
5254                ixgbe_flap_tx_laser(hw);
5255
5256                /* Wait for the controller to acquire link.  Per IEEE 802.3ap,
5257                 * Section 73.10.2, we may have to wait up to 1000ms if KR is
5258                 * attempted.  82599 uses the same timing for 10g SFI.
5259                 */
5260                for (i = 0; i < 10; i++) {
5261                        /* Wait for the link partner to also set speed */
5262                        msec_delay(100);
5263
5264                        /* If we have link, just jump out */
5265                        status = ixgbe_check_link(hw, &link_speed,
5266                                                  &link_up, false);
5267                        if (status != IXGBE_SUCCESS)
5268                                return status;
5269
5270                        if (link_up)
5271                                goto out;
5272                }
5273        }
5274
5275        if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
5276                speedcnt++;
5277                if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
5278                        highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
5279
5280                /* Set the module link speed */
5281                switch (hw->phy.media_type) {
5282                case ixgbe_media_type_fiber:
5283                        ixgbe_set_rate_select_speed(hw,
5284                                                    IXGBE_LINK_SPEED_1GB_FULL);
5285                        break;
5286                case ixgbe_media_type_fiber_qsfp:
5287                        /* QSFP module automatically detects link speed */
5288                        break;
5289                default:
5290                        DEBUGOUT("Unexpected media type.\n");
5291                        break;
5292                }
5293
5294                /* Allow module to change analog characteristics (10G->1G) */
5295                msec_delay(40);
5296
5297                status = ixgbe_setup_mac_link(hw,
5298                                              IXGBE_LINK_SPEED_1GB_FULL,
5299                                              autoneg_wait_to_complete);
5300                if (status != IXGBE_SUCCESS)
5301                        return status;
5302
5303                /* Flap the Tx laser if it has not already been done */
5304                ixgbe_flap_tx_laser(hw);
5305
5306                /* Wait for the link partner to also set speed */
5307                msec_delay(100);
5308
5309                /* If we have link, just jump out */
5310                status = ixgbe_check_link(hw, &link_speed, &link_up, false);
5311                if (status != IXGBE_SUCCESS)
5312                        return status;
5313
5314                if (link_up)
5315                        goto out;
5316        }
5317
5318        /* We didn't get link.  Configure back to the highest speed we tried,
5319         * (if there was more than one).  We call ourselves back with just the
5320         * single highest speed that the user requested.
5321         */
5322        if (speedcnt > 1)
5323                status = ixgbe_setup_mac_link_multispeed_fiber(hw,
5324                                                      highest_link_speed,
5325                                                      autoneg_wait_to_complete);
5326
5327out:
5328        /* Set autoneg_advertised value based on input link speed */
5329        hw->phy.autoneg_advertised = 0;
5330
5331        if (speed & IXGBE_LINK_SPEED_10GB_FULL)
5332                hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
5333
5334        if (speed & IXGBE_LINK_SPEED_1GB_FULL)
5335                hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
5336
5337        return status;
5338}
5339
5340/**
5341 * ixgbe_set_soft_rate_select_speed - Set module link speed
5342 * @hw: pointer to hardware structure
5343 * @speed: link speed to set
5344 *
5345 * Set module link speed via the soft rate select.
5346 */
5347void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
5348                                        ixgbe_link_speed speed)
5349{
5350        s32 status;
5351        u8 rs, eeprom_data;
5352
5353        switch (speed) {
5354        case IXGBE_LINK_SPEED_10GB_FULL:
5355                /* one bit mask same as setting on */
5356                rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
5357                break;
5358        case IXGBE_LINK_SPEED_1GB_FULL:
5359                rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
5360                break;
5361        default:
5362                DEBUGOUT("Invalid fixed module speed\n");
5363                return;
5364        }
5365
5366        /* Set RS0 */
5367        status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5368                                           IXGBE_I2C_EEPROM_DEV_ADDR2,
5369                                           &eeprom_data);
5370        if (status) {
5371                DEBUGOUT("Failed to read Rx Rate Select RS0\n");
5372                goto out;
5373        }
5374
5375        eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5376
5377        status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
5378                                            IXGBE_I2C_EEPROM_DEV_ADDR2,
5379                                            eeprom_data);
5380        if (status) {
5381                DEBUGOUT("Failed to write Rx Rate Select RS0\n");
5382                goto out;
5383        }
5384
5385        /* Set RS1 */
5386        status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5387                                           IXGBE_I2C_EEPROM_DEV_ADDR2,
5388                                           &eeprom_data);
5389        if (status) {
5390                DEBUGOUT("Failed to read Rx Rate Select RS1\n");
5391                goto out;
5392        }
5393
5394        eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
5395
5396        status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
5397                                            IXGBE_I2C_EEPROM_DEV_ADDR2,
5398                                            eeprom_data);
5399        if (status) {
5400                DEBUGOUT("Failed to write Rx Rate Select RS1\n");
5401                goto out;
5402        }
5403out:
5404        return;
5405}
5406