dpdk/app/test-crypto-perf/cperf_test_pmd_cyclecount.c
<<
>>
Prefs
   1/* SPDX-License-Identifier: BSD-3-Clause
   2 * Copyright(c) 2017 Intel Corporation
   3 */
   4
   5#include <stdbool.h>
   6
   7#include <rte_crypto.h>
   8#include <rte_cryptodev.h>
   9#include <rte_cycles.h>
  10#include <rte_malloc.h>
  11
  12#include "cperf_ops.h"
  13#include "cperf_test_pmd_cyclecount.h"
  14#include "cperf_test_common.h"
  15
  16#define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
  17#define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
  18#define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
  19#define CSV_LINE_FMT "%10u,%10u,%u,%u,%u,%u,%u,%.3f,%.3f,%.3f\n"
  20
  21struct cperf_pmd_cyclecount_ctx {
  22        uint8_t dev_id;
  23        uint16_t qp_id;
  24        uint8_t lcore_id;
  25
  26        struct rte_mempool *pool;
  27        struct rte_crypto_op **ops;
  28        struct rte_crypto_op **ops_processed;
  29
  30        struct rte_cryptodev_sym_session *sess;
  31
  32        cperf_populate_ops_t populate_ops;
  33
  34        uint32_t src_buf_offset;
  35        uint32_t dst_buf_offset;
  36
  37        const struct cperf_options *options;
  38        const struct cperf_test_vector *test_vector;
  39};
  40
  41struct pmd_cyclecount_state {
  42        struct cperf_pmd_cyclecount_ctx *ctx;
  43        const struct cperf_options *opts;
  44        uint32_t lcore;
  45        uint64_t delay;
  46        int linearize;
  47        uint32_t ops_enqd;
  48        uint32_t ops_deqd;
  49        uint32_t ops_enq_retries;
  50        uint32_t ops_deq_retries;
  51        double cycles_per_build;
  52        double cycles_per_enq;
  53        double cycles_per_deq;
  54};
  55
  56static const uint16_t iv_offset =
  57                sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
  58
  59static void
  60cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
  61{
  62        if (!ctx)
  63                return;
  64
  65        if (ctx->sess) {
  66#ifdef RTE_LIB_SECURITY
  67                if (ctx->options->op_type == CPERF_PDCP ||
  68                                ctx->options->op_type == CPERF_DOCSIS) {
  69                        struct rte_security_ctx *sec_ctx =
  70                                (struct rte_security_ctx *)
  71                                rte_cryptodev_get_sec_ctx(ctx->dev_id);
  72                        rte_security_session_destroy(sec_ctx,
  73                                (struct rte_security_session *)ctx->sess);
  74                } else
  75#endif
  76                {
  77                        rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
  78                        rte_cryptodev_sym_session_free(ctx->sess);
  79                }
  80        }
  81
  82        rte_mempool_free(ctx->pool);
  83
  84        rte_free(ctx->ops);
  85
  86        rte_free(ctx->ops_processed);
  87
  88        rte_free(ctx);
  89}
  90
  91void *
  92cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
  93                struct rte_mempool *sess_priv_mp,
  94                uint8_t dev_id, uint16_t qp_id,
  95                const struct cperf_options *options,
  96                const struct cperf_test_vector *test_vector,
  97                const struct cperf_op_fns *op_fns)
  98{
  99        struct cperf_pmd_cyclecount_ctx *ctx = NULL;
 100
 101        /* preallocate buffers for crypto ops as they can get quite big */
 102        size_t alloc_sz = sizeof(struct rte_crypto_op *) *
 103                        options->nb_descriptors;
 104
 105        ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
 106        if (ctx == NULL)
 107                goto err;
 108
 109        ctx->dev_id = dev_id;
 110        ctx->qp_id = qp_id;
 111
 112        ctx->populate_ops = op_fns->populate_ops;
 113        ctx->options = options;
 114        ctx->test_vector = test_vector;
 115
 116        /* IV goes at the end of the crypto operation */
 117        uint16_t iv_offset = sizeof(struct rte_crypto_op) +
 118                        sizeof(struct rte_crypto_sym_op);
 119
 120        ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
 121                        test_vector, iv_offset);
 122        if (ctx->sess == NULL)
 123                goto err;
 124
 125        if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
 126                        &ctx->src_buf_offset, &ctx->dst_buf_offset,
 127                        &ctx->pool) < 0)
 128                goto err;
 129
 130        ctx->ops = rte_malloc("ops", alloc_sz, 0);
 131        if (!ctx->ops)
 132                goto err;
 133
 134        ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
 135        if (!ctx->ops_processed)
 136                goto err;
 137
 138        return ctx;
 139
 140err:
 141        cperf_pmd_cyclecount_test_free(ctx);
 142
 143        return NULL;
 144}
 145
 146/* benchmark alloc-build-free of ops */
 147static inline int
 148pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
 149                uint16_t test_burst_size)
 150{
 151        uint32_t iter_ops_left = state->opts->total_ops - cur_op;
 152        uint32_t iter_ops_needed =
 153                        RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
 154        uint32_t cur_iter_op;
 155        uint32_t imix_idx = 0;
 156
 157        for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
 158                        cur_iter_op += test_burst_size) {
 159                uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
 160                                test_burst_size);
 161                struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
 162
 163                /* Allocate objects containing crypto operations and mbufs */
 164                if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
 165                                        burst_size) != 0) {
 166                        RTE_LOG(ERR, USER1,
 167                                        "Failed to allocate more crypto operations "
 168                                        "from the crypto operation pool.\n"
 169                                        "Consider increasing the pool size "
 170                                        "with --pool-sz\n");
 171                                return -1;
 172                }
 173
 174                /* Setup crypto op, attach mbuf etc */
 175                (state->ctx->populate_ops)(ops,
 176                                state->ctx->src_buf_offset,
 177                                state->ctx->dst_buf_offset,
 178                                burst_size,
 179                                state->ctx->sess, state->opts,
 180                                state->ctx->test_vector, iv_offset,
 181                                &imix_idx, NULL);
 182
 183#ifdef CPERF_LINEARIZATION_ENABLE
 184                /* Check if source mbufs require coalescing */
 185                if (state->linearize) {
 186                        uint8_t i;
 187                        for (i = 0; i < burst_size; i++) {
 188                                struct rte_mbuf *src = ops[i]->sym->m_src;
 189                                rte_pktmbuf_linearize(src);
 190                        }
 191                }
 192#endif /* CPERF_LINEARIZATION_ENABLE */
 193                rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
 194                                burst_size);
 195        }
 196
 197        return 0;
 198}
 199
 200/* allocate and build ops (no free) */
 201static int
 202pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
 203                uint32_t iter_ops_needed, uint16_t test_burst_size)
 204{
 205        uint32_t cur_iter_op;
 206        uint32_t imix_idx = 0;
 207
 208        for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
 209                        cur_iter_op += test_burst_size) {
 210                uint32_t burst_size = RTE_MIN(
 211                                iter_ops_needed - cur_iter_op, test_burst_size);
 212                struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
 213
 214                /* Allocate objects containing crypto operations and mbufs */
 215                if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
 216                                        burst_size) != 0) {
 217                        RTE_LOG(ERR, USER1,
 218                                        "Failed to allocate more crypto operations "
 219                                        "from the crypto operation pool.\n"
 220                                        "Consider increasing the pool size "
 221                                        "with --pool-sz\n");
 222                                return -1;
 223                }
 224
 225                /* Setup crypto op, attach mbuf etc */
 226                (state->ctx->populate_ops)(ops,
 227                                state->ctx->src_buf_offset,
 228                                state->ctx->dst_buf_offset,
 229                                burst_size,
 230                                state->ctx->sess, state->opts,
 231                                state->ctx->test_vector, iv_offset,
 232                                &imix_idx, NULL);
 233        }
 234        return 0;
 235}
 236
 237/* benchmark enqueue, returns number of ops enqueued */
 238static uint32_t
 239pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
 240                uint32_t iter_ops_needed, uint16_t test_burst_size)
 241{
 242        /* Enqueue full descriptor ring of ops on crypto device */
 243        uint32_t cur_iter_op = 0;
 244        while (cur_iter_op < iter_ops_needed) {
 245                uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
 246                                test_burst_size);
 247                struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
 248                uint32_t burst_enqd;
 249
 250                burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
 251                                state->ctx->qp_id, ops, burst_size);
 252
 253                /* if we couldn't enqueue anything, the queue is full */
 254                if (!burst_enqd) {
 255                        /* don't try to dequeue anything we didn't enqueue */
 256                        return cur_iter_op;
 257                }
 258
 259                if (burst_enqd < burst_size)
 260                        state->ops_enq_retries++;
 261                state->ops_enqd += burst_enqd;
 262                cur_iter_op += burst_enqd;
 263        }
 264        return iter_ops_needed;
 265}
 266
 267/* benchmark dequeue */
 268static void
 269pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
 270                uint32_t iter_ops_needed, uint16_t test_burst_size)
 271{
 272        /* Dequeue full descriptor ring of ops on crypto device */
 273        uint32_t cur_iter_op = 0;
 274        while (cur_iter_op < iter_ops_needed) {
 275                uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
 276                                test_burst_size);
 277                struct rte_crypto_op **ops_processed =
 278                                &state->ctx->ops[cur_iter_op];
 279                uint32_t burst_deqd;
 280
 281                burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
 282                                state->ctx->qp_id, ops_processed, burst_size);
 283
 284                if (burst_deqd < burst_size)
 285                        state->ops_deq_retries++;
 286                state->ops_deqd += burst_deqd;
 287                cur_iter_op += burst_deqd;
 288        }
 289}
 290
 291/* run benchmark per burst size */
 292static inline int
 293pmd_cyclecount_bench_burst_sz(
 294                struct pmd_cyclecount_state *state, uint16_t test_burst_size)
 295{
 296        uint64_t tsc_start;
 297        uint64_t tsc_end;
 298        uint64_t tsc_op;
 299        uint64_t tsc_enq;
 300        uint64_t tsc_deq;
 301        uint32_t cur_op;
 302
 303        /* reset all counters */
 304        tsc_enq = 0;
 305        tsc_deq = 0;
 306        state->ops_enqd = 0;
 307        state->ops_enq_retries = 0;
 308        state->ops_deqd = 0;
 309        state->ops_deq_retries = 0;
 310
 311        /*
 312         * Benchmark crypto op alloc-build-free separately.
 313         */
 314        tsc_start = rte_rdtsc_precise();
 315
 316        for (cur_op = 0; cur_op < state->opts->total_ops;
 317                        cur_op += state->opts->nb_descriptors) {
 318                if (unlikely(pmd_cyclecount_bench_ops(
 319                                state, cur_op, test_burst_size)))
 320                        return -1;
 321        }
 322
 323        tsc_end = rte_rdtsc_precise();
 324        tsc_op = tsc_end - tsc_start;
 325
 326
 327        /*
 328         * Hardware acceleration cyclecount benchmarking loop.
 329         *
 330         * We're benchmarking raw enq/deq performance by filling up the device
 331         * queue, so we never get any failed enqs unless the driver won't accept
 332         * the exact number of descriptors we requested, or the driver won't
 333         * wrap around the end of the TX ring. However, since we're only
 334         * dequeuing once we've filled up the queue, we have to benchmark it
 335         * piecemeal and then average out the results.
 336         */
 337        cur_op = 0;
 338        while (cur_op < state->opts->total_ops) {
 339                uint32_t iter_ops_left = state->opts->total_ops - cur_op;
 340                uint32_t iter_ops_needed = RTE_MIN(
 341                                state->opts->nb_descriptors, iter_ops_left);
 342                uint32_t iter_ops_allocd = iter_ops_needed;
 343
 344                /* allocate and build ops */
 345                if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
 346                                test_burst_size)))
 347                        return -1;
 348
 349                tsc_start = rte_rdtsc_precise();
 350
 351                /* fill up TX ring */
 352                iter_ops_needed = pmd_cyclecount_bench_enq(state,
 353                                iter_ops_needed, test_burst_size);
 354
 355                tsc_end = rte_rdtsc_precise();
 356
 357                tsc_enq += tsc_end - tsc_start;
 358
 359                /* allow for HW to catch up */
 360                if (state->delay)
 361                        rte_delay_us_block(state->delay);
 362
 363                tsc_start = rte_rdtsc_precise();
 364
 365                /* drain RX ring */
 366                pmd_cyclecount_bench_deq(state, iter_ops_needed,
 367                                test_burst_size);
 368
 369                tsc_end = rte_rdtsc_precise();
 370
 371                tsc_deq += tsc_end - tsc_start;
 372
 373                cur_op += iter_ops_needed;
 374
 375                /*
 376                 * we may not have processed all ops that we allocated, so
 377                 * free everything we've allocated.
 378                 */
 379                rte_mempool_put_bulk(state->ctx->pool,
 380                                (void **)state->ctx->ops, iter_ops_allocd);
 381        }
 382
 383        state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
 384        state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
 385        state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
 386
 387        return 0;
 388}
 389
 390int
 391cperf_pmd_cyclecount_test_runner(void *test_ctx)
 392{
 393        struct pmd_cyclecount_state state = {0};
 394        const struct cperf_options *opts;
 395        uint16_t test_burst_size;
 396        uint8_t burst_size_idx = 0;
 397
 398        state.ctx = test_ctx;
 399        opts = state.ctx->options;
 400        state.opts = opts;
 401        state.lcore = rte_lcore_id();
 402        state.linearize = 0;
 403
 404        static uint16_t display_once;
 405        static bool warmup = true;
 406
 407        /*
 408         * We need a small delay to allow for hardware to process all the crypto
 409         * operations. We can't automatically figure out what the delay should
 410         * be, so we leave it up to the user (by default it's 0).
 411         */
 412        state.delay = 1000 * opts->pmdcc_delay;
 413
 414#ifdef CPERF_LINEARIZATION_ENABLE
 415        struct rte_cryptodev_info dev_info;
 416
 417        /* Check if source mbufs require coalescing */
 418        if (opts->segments_sz < ctx->options->max_buffer_size) {
 419                rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
 420                if ((dev_info.feature_flags &
 421                                    RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
 422                                0) {
 423                        state.linearize = 1;
 424                }
 425        }
 426#endif /* CPERF_LINEARIZATION_ENABLE */
 427
 428        state.ctx->lcore_id = state.lcore;
 429
 430        /* Get first size from range or list */
 431        if (opts->inc_burst_size != 0)
 432                test_burst_size = opts->min_burst_size;
 433        else
 434                test_burst_size = opts->burst_size_list[0];
 435
 436        while (test_burst_size <= opts->max_burst_size) {
 437                /* do a benchmark run */
 438                if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
 439                        return -1;
 440
 441                /*
 442                 * First run is always a warm up run.
 443                 */
 444                if (warmup) {
 445                        warmup = false;
 446                        continue;
 447                }
 448
 449                uint16_t exp = 0;
 450                if (!opts->csv) {
 451                        if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
 452                                        __ATOMIC_RELAXED, __ATOMIC_RELAXED))
 453                                printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
 454                                                "Burst Size", "Enqueued",
 455                                                "Dequeued", "Enq Retries",
 456                                                "Deq Retries", "Cycles/Op",
 457                                                "Cycles/Enq", "Cycles/Deq");
 458
 459                        printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
 460                                        opts->test_buffer_size, test_burst_size,
 461                                        state.ops_enqd, state.ops_deqd,
 462                                        state.ops_enq_retries,
 463                                        state.ops_deq_retries,
 464                                        state.cycles_per_build,
 465                                        state.cycles_per_enq,
 466                                        state.cycles_per_deq);
 467                } else {
 468                        if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
 469                                        __ATOMIC_RELAXED, __ATOMIC_RELAXED))
 470                                printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
 471                                                "Burst Size", "Enqueued",
 472                                                "Dequeued", "Enq Retries",
 473                                                "Deq Retries", "Cycles/Op",
 474                                                "Cycles/Enq", "Cycles/Deq");
 475
 476                        printf(CSV_LINE_FMT, state.ctx->lcore_id,
 477                                        opts->test_buffer_size, test_burst_size,
 478                                        state.ops_enqd, state.ops_deqd,
 479                                        state.ops_enq_retries,
 480                                        state.ops_deq_retries,
 481                                        state.cycles_per_build,
 482                                        state.cycles_per_enq,
 483                                        state.cycles_per_deq);
 484                }
 485
 486                /* Get next size from range or list */
 487                if (opts->inc_burst_size != 0)
 488                        test_burst_size += opts->inc_burst_size;
 489                else {
 490                        if (++burst_size_idx == opts->burst_size_count)
 491                                break;
 492                        test_burst_size = opts->burst_size_list[burst_size_idx];
 493                }
 494        }
 495
 496        return 0;
 497}
 498
 499void
 500cperf_pmd_cyclecount_test_destructor(void *arg)
 501{
 502        struct cperf_pmd_cyclecount_ctx *ctx = arg;
 503
 504        if (ctx == NULL)
 505                return;
 506
 507        cperf_pmd_cyclecount_test_free(ctx);
 508}
 509