dpdk/drivers/net/i40e/i40e_rxtx.c
<<
>>
Prefs
   1/* SPDX-License-Identifier: BSD-3-Clause
   2 * Copyright(c) 2010-2016 Intel Corporation
   3 */
   4
   5#include <stdio.h>
   6#include <stdlib.h>
   7#include <string.h>
   8#include <errno.h>
   9#include <stdint.h>
  10#include <stdarg.h>
  11#include <unistd.h>
  12#include <inttypes.h>
  13#include <sys/queue.h>
  14
  15#include <rte_string_fns.h>
  16#include <rte_memzone.h>
  17#include <rte_mbuf.h>
  18#include <rte_malloc.h>
  19#include <rte_ether.h>
  20#include <ethdev_driver.h>
  21#include <rte_tcp.h>
  22#include <rte_sctp.h>
  23#include <rte_udp.h>
  24#include <rte_ip.h>
  25#include <rte_net.h>
  26#include <rte_vect.h>
  27
  28#include "i40e_logs.h"
  29#include "base/i40e_prototype.h"
  30#include "base/i40e_type.h"
  31#include "i40e_ethdev.h"
  32#include "i40e_rxtx.h"
  33
  34#define DEFAULT_TX_RS_THRESH   32
  35#define DEFAULT_TX_FREE_THRESH 32
  36
  37#define I40E_TX_MAX_BURST  32
  38
  39#define I40E_DMA_MEM_ALIGN 4096
  40
  41/* Base address of the HW descriptor ring should be 128B aligned. */
  42#define I40E_RING_BASE_ALIGN    128
  43
  44#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  45
  46#ifdef RTE_LIBRTE_IEEE1588
  47#define I40E_TX_IEEE1588_TMST RTE_MBUF_F_TX_IEEE1588_TMST
  48#else
  49#define I40E_TX_IEEE1588_TMST 0
  50#endif
  51
  52#define I40E_TX_CKSUM_OFFLOAD_MASK (RTE_MBUF_F_TX_IP_CKSUM |             \
  53                RTE_MBUF_F_TX_L4_MASK |          \
  54                RTE_MBUF_F_TX_TCP_SEG |          \
  55                RTE_MBUF_F_TX_OUTER_IP_CKSUM)
  56
  57#define I40E_TX_OFFLOAD_MASK (RTE_MBUF_F_TX_OUTER_IPV4 |        \
  58                RTE_MBUF_F_TX_OUTER_IPV6 |      \
  59                RTE_MBUF_F_TX_IPV4 |            \
  60                RTE_MBUF_F_TX_IPV6 |            \
  61                RTE_MBUF_F_TX_IP_CKSUM |       \
  62                RTE_MBUF_F_TX_L4_MASK |        \
  63                RTE_MBUF_F_TX_OUTER_IP_CKSUM | \
  64                RTE_MBUF_F_TX_TCP_SEG |        \
  65                RTE_MBUF_F_TX_QINQ |       \
  66                RTE_MBUF_F_TX_VLAN |    \
  67                RTE_MBUF_F_TX_TUNNEL_MASK |     \
  68                RTE_MBUF_F_TX_OUTER_UDP_CKSUM | \
  69                I40E_TX_IEEE1588_TMST)
  70
  71#define I40E_TX_OFFLOAD_NOTSUP_MASK \
  72                (RTE_MBUF_F_TX_OFFLOAD_MASK ^ I40E_TX_OFFLOAD_MASK)
  73
  74#define I40E_TX_OFFLOAD_SIMPLE_SUP_MASK (RTE_MBUF_F_TX_IPV4 | \
  75                RTE_MBUF_F_TX_IPV6 | \
  76                RTE_MBUF_F_TX_OUTER_IPV4 | \
  77                RTE_MBUF_F_TX_OUTER_IPV6)
  78
  79#define I40E_TX_OFFLOAD_SIMPLE_NOTSUP_MASK \
  80                (RTE_MBUF_F_TX_OFFLOAD_MASK ^ I40E_TX_OFFLOAD_SIMPLE_SUP_MASK)
  81
  82static int
  83i40e_monitor_callback(const uint64_t value,
  84                const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
  85{
  86        const uint64_t m = rte_cpu_to_le_64(1 << I40E_RX_DESC_STATUS_DD_SHIFT);
  87        /*
  88         * we expect the DD bit to be set to 1 if this descriptor was already
  89         * written to.
  90         */
  91        return (value & m) == m ? -1 : 0;
  92}
  93
  94int
  95i40e_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
  96{
  97        struct i40e_rx_queue *rxq = rx_queue;
  98        volatile union i40e_rx_desc *rxdp;
  99        uint16_t desc;
 100
 101        desc = rxq->rx_tail;
 102        rxdp = &rxq->rx_ring[desc];
 103        /* watch for changes in status bit */
 104        pmc->addr = &rxdp->wb.qword1.status_error_len;
 105
 106        /* comparison callback */
 107        pmc->fn = i40e_monitor_callback;
 108
 109        /* registers are 64-bit */
 110        pmc->size = sizeof(uint64_t);
 111
 112        return 0;
 113}
 114
 115static inline void
 116i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
 117{
 118        if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
 119                (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
 120                mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
 121                mb->vlan_tci =
 122                        rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
 123                PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
 124                           rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
 125        } else {
 126                mb->vlan_tci = 0;
 127        }
 128#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
 129        if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
 130                (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
 131                mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED | RTE_MBUF_F_RX_QINQ |
 132                        RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN;
 133                mb->vlan_tci_outer = mb->vlan_tci;
 134                mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
 135                PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
 136                           rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
 137                           rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
 138        } else {
 139                mb->vlan_tci_outer = 0;
 140        }
 141#endif
 142        PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
 143                   mb->vlan_tci, mb->vlan_tci_outer);
 144}
 145
 146/* Translate the rx descriptor status to pkt flags */
 147static inline uint64_t
 148i40e_rxd_status_to_pkt_flags(uint64_t qword)
 149{
 150        uint64_t flags;
 151
 152        /* Check if RSS_HASH */
 153        flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
 154                                        I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
 155                        I40E_RX_DESC_FLTSTAT_RSS_HASH) ? RTE_MBUF_F_RX_RSS_HASH : 0;
 156
 157        /* Check if FDIR Match */
 158        flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
 159                                                        RTE_MBUF_F_RX_FDIR : 0);
 160
 161        return flags;
 162}
 163
 164static inline uint64_t
 165i40e_rxd_error_to_pkt_flags(uint64_t qword)
 166{
 167        uint64_t flags = 0;
 168        uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
 169
 170#define I40E_RX_ERR_BITS 0x3f
 171        if (likely((error_bits & I40E_RX_ERR_BITS) == 0)) {
 172                flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
 173                return flags;
 174        }
 175
 176        if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
 177                flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
 178        else
 179                flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
 180
 181        if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
 182                flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
 183        else
 184                flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
 185
 186        if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
 187                flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
 188
 189        return flags;
 190}
 191
 192/* Function to check and set the ieee1588 timesync index and get the
 193 * appropriate flags.
 194 */
 195#ifdef RTE_LIBRTE_IEEE1588
 196static inline uint64_t
 197i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
 198{
 199        uint64_t pkt_flags = 0;
 200        uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
 201                                  | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
 202                                    >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
 203
 204        if ((mb->packet_type & RTE_PTYPE_L2_MASK)
 205                        == RTE_PTYPE_L2_ETHER_TIMESYNC)
 206                pkt_flags = RTE_MBUF_F_RX_IEEE1588_PTP;
 207        if (tsyn & 0x04) {
 208                pkt_flags |= RTE_MBUF_F_RX_IEEE1588_TMST;
 209                mb->timesync = tsyn & 0x03;
 210        }
 211
 212        return pkt_flags;
 213}
 214#endif
 215
 216static inline uint64_t
 217i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
 218{
 219        uint64_t flags = 0;
 220#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
 221        uint16_t flexbh, flexbl;
 222
 223        flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
 224                I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
 225                I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
 226        flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
 227                I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
 228                I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
 229
 230
 231        if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
 232                mb->hash.fdir.hi =
 233                        rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
 234                flags |= RTE_MBUF_F_RX_FDIR_ID;
 235        } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
 236                mb->hash.fdir.hi =
 237                        rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
 238                flags |= RTE_MBUF_F_RX_FDIR_FLX;
 239        }
 240        if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
 241                mb->hash.fdir.lo =
 242                        rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
 243                flags |= RTE_MBUF_F_RX_FDIR_FLX;
 244        }
 245#else
 246        mb->hash.fdir.hi =
 247                rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
 248        flags |= RTE_MBUF_F_RX_FDIR_ID;
 249#endif
 250        return flags;
 251}
 252
 253static inline void
 254i40e_parse_tunneling_params(uint64_t ol_flags,
 255                            union i40e_tx_offload tx_offload,
 256                            uint32_t *cd_tunneling)
 257{
 258        /* EIPT: External (outer) IP header type */
 259        if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM)
 260                *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
 261        else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV4)
 262                *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
 263        else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)
 264                *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
 265
 266        /* EIPLEN: External (outer) IP header length, in DWords */
 267        *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
 268                I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
 269
 270        /* L4TUNT: L4 Tunneling Type */
 271        switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
 272        case RTE_MBUF_F_TX_TUNNEL_IPIP:
 273                /* for non UDP / GRE tunneling, set to 00b */
 274                break;
 275        case RTE_MBUF_F_TX_TUNNEL_VXLAN:
 276        case RTE_MBUF_F_TX_TUNNEL_GENEVE:
 277                *cd_tunneling |= I40E_TXD_CTX_UDP_TUNNELING;
 278                break;
 279        case RTE_MBUF_F_TX_TUNNEL_GRE:
 280                *cd_tunneling |= I40E_TXD_CTX_GRE_TUNNELING;
 281                break;
 282        default:
 283                PMD_TX_LOG(ERR, "Tunnel type not supported");
 284                return;
 285        }
 286
 287        /* L4TUNLEN: L4 Tunneling Length, in Words
 288         *
 289         * We depend on app to set rte_mbuf.l2_len correctly.
 290         * For IP in GRE it should be set to the length of the GRE
 291         * header;
 292         * for MAC in GRE or MAC in UDP it should be set to the length
 293         * of the GRE or UDP headers plus the inner MAC up to including
 294         * its last Ethertype.
 295         */
 296        *cd_tunneling |= (tx_offload.l2_len >> 1) <<
 297                I40E_TXD_CTX_QW0_NATLEN_SHIFT;
 298}
 299
 300static inline void
 301i40e_txd_enable_checksum(uint64_t ol_flags,
 302                        uint32_t *td_cmd,
 303                        uint32_t *td_offset,
 304                        union i40e_tx_offload tx_offload)
 305{
 306        /* Set MACLEN */
 307        if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
 308                *td_offset |= (tx_offload.outer_l2_len >> 1)
 309                                << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
 310        else
 311                *td_offset |= (tx_offload.l2_len >> 1)
 312                        << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
 313
 314        /* Enable L3 checksum offloads */
 315        if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
 316                *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
 317                *td_offset |= (tx_offload.l3_len >> 2)
 318                                << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
 319        } else if (ol_flags & RTE_MBUF_F_TX_IPV4) {
 320                *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
 321                *td_offset |= (tx_offload.l3_len >> 2)
 322                                << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
 323        } else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
 324                *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
 325                *td_offset |= (tx_offload.l3_len >> 2)
 326                                << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
 327        }
 328
 329        if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
 330                *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
 331                *td_offset |= (tx_offload.l4_len >> 2)
 332                        << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
 333                return;
 334        }
 335
 336        /* Enable L4 checksum offloads */
 337        switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
 338        case RTE_MBUF_F_TX_TCP_CKSUM:
 339                *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
 340                *td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
 341                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
 342                break;
 343        case RTE_MBUF_F_TX_SCTP_CKSUM:
 344                *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
 345                *td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
 346                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
 347                break;
 348        case RTE_MBUF_F_TX_UDP_CKSUM:
 349                *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
 350                *td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
 351                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
 352                break;
 353        default:
 354                break;
 355        }
 356}
 357
 358/* Construct the tx flags */
 359static inline uint64_t
 360i40e_build_ctob(uint32_t td_cmd,
 361                uint32_t td_offset,
 362                unsigned int size,
 363                uint32_t td_tag)
 364{
 365        return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
 366                        ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
 367                        ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
 368                        ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
 369                        ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
 370}
 371
 372static inline int
 373i40e_xmit_cleanup(struct i40e_tx_queue *txq)
 374{
 375        struct i40e_tx_entry *sw_ring = txq->sw_ring;
 376        volatile struct i40e_tx_desc *txd = txq->tx_ring;
 377        uint16_t last_desc_cleaned = txq->last_desc_cleaned;
 378        uint16_t nb_tx_desc = txq->nb_tx_desc;
 379        uint16_t desc_to_clean_to;
 380        uint16_t nb_tx_to_clean;
 381
 382        desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
 383        if (desc_to_clean_to >= nb_tx_desc)
 384                desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
 385
 386        desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
 387        if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
 388                        rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
 389                        rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
 390                PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
 391                           "(port=%d queue=%d)", desc_to_clean_to,
 392                           txq->port_id, txq->queue_id);
 393                return -1;
 394        }
 395
 396        if (last_desc_cleaned > desc_to_clean_to)
 397                nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
 398                                                        desc_to_clean_to);
 399        else
 400                nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
 401                                        last_desc_cleaned);
 402
 403        txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
 404
 405        txq->last_desc_cleaned = desc_to_clean_to;
 406        txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
 407
 408        return 0;
 409}
 410
 411static inline int
 412#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
 413check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
 414#else
 415check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
 416#endif
 417{
 418        int ret = 0;
 419
 420#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
 421        if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
 422                PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
 423                             "rxq->rx_free_thresh=%d, "
 424                             "RTE_PMD_I40E_RX_MAX_BURST=%d",
 425                             rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
 426                ret = -EINVAL;
 427        } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
 428                PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
 429                             "rxq->rx_free_thresh=%d, "
 430                             "rxq->nb_rx_desc=%d",
 431                             rxq->rx_free_thresh, rxq->nb_rx_desc);
 432                ret = -EINVAL;
 433        } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
 434                PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
 435                             "rxq->nb_rx_desc=%d, "
 436                             "rxq->rx_free_thresh=%d",
 437                             rxq->nb_rx_desc, rxq->rx_free_thresh);
 438                ret = -EINVAL;
 439        }
 440#else
 441        ret = -EINVAL;
 442#endif
 443
 444        return ret;
 445}
 446
 447#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
 448#define I40E_LOOK_AHEAD 8
 449#if (I40E_LOOK_AHEAD != 8)
 450#error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
 451#endif
 452static inline int
 453i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
 454{
 455        volatile union i40e_rx_desc *rxdp;
 456        struct i40e_rx_entry *rxep;
 457        struct rte_mbuf *mb;
 458        uint16_t pkt_len;
 459        uint64_t qword1;
 460        uint32_t rx_status;
 461        int32_t s[I40E_LOOK_AHEAD], var, nb_dd;
 462        int32_t i, j, nb_rx = 0;
 463        uint64_t pkt_flags;
 464        uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
 465
 466        rxdp = &rxq->rx_ring[rxq->rx_tail];
 467        rxep = &rxq->sw_ring[rxq->rx_tail];
 468
 469        qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
 470        rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
 471                                I40E_RXD_QW1_STATUS_SHIFT;
 472
 473        /* Make sure there is at least 1 packet to receive */
 474        if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
 475                return 0;
 476
 477        /**
 478         * Scan LOOK_AHEAD descriptors at a time to determine which
 479         * descriptors reference packets that are ready to be received.
 480         */
 481        for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
 482                        rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
 483                /* Read desc statuses backwards to avoid race condition */
 484                for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
 485                        qword1 = rte_le_to_cpu_64(\
 486                                rxdp[j].wb.qword1.status_error_len);
 487                        s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
 488                                        I40E_RXD_QW1_STATUS_SHIFT;
 489                }
 490
 491                /* This barrier is to order loads of different words in the descriptor */
 492                rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
 493
 494                /* Compute how many status bits were set */
 495                for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++) {
 496                        var = s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
 497#ifdef RTE_ARCH_ARM
 498                        /* For Arm platforms, only compute continuous status bits */
 499                        if (var)
 500                                nb_dd += 1;
 501                        else
 502                                break;
 503#else
 504                        nb_dd += var;
 505#endif
 506                }
 507
 508                nb_rx += nb_dd;
 509
 510                /* Translate descriptor info to mbuf parameters */
 511                for (j = 0; j < nb_dd; j++) {
 512                        mb = rxep[j].mbuf;
 513                        qword1 = rte_le_to_cpu_64(\
 514                                rxdp[j].wb.qword1.status_error_len);
 515                        pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
 516                                I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
 517                        mb->data_len = pkt_len;
 518                        mb->pkt_len = pkt_len;
 519                        mb->ol_flags = 0;
 520                        i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
 521                        pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
 522                        pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
 523                        mb->packet_type =
 524                                ptype_tbl[(uint8_t)((qword1 &
 525                                I40E_RXD_QW1_PTYPE_MASK) >>
 526                                I40E_RXD_QW1_PTYPE_SHIFT)];
 527                        if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
 528                                mb->hash.rss = rte_le_to_cpu_32(\
 529                                        rxdp[j].wb.qword0.hi_dword.rss);
 530                        if (pkt_flags & RTE_MBUF_F_RX_FDIR)
 531                                pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
 532
 533#ifdef RTE_LIBRTE_IEEE1588
 534                        pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
 535#endif
 536                        mb->ol_flags |= pkt_flags;
 537
 538                }
 539
 540                for (j = 0; j < I40E_LOOK_AHEAD; j++)
 541                        rxq->rx_stage[i + j] = rxep[j].mbuf;
 542
 543                if (nb_dd != I40E_LOOK_AHEAD)
 544                        break;
 545        }
 546
 547        /* Clear software ring entries */
 548        for (i = 0; i < nb_rx; i++)
 549                rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
 550
 551        return nb_rx;
 552}
 553
 554static inline uint16_t
 555i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
 556                        struct rte_mbuf **rx_pkts,
 557                        uint16_t nb_pkts)
 558{
 559        uint16_t i;
 560        struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
 561
 562        nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
 563
 564        for (i = 0; i < nb_pkts; i++)
 565                rx_pkts[i] = stage[i];
 566
 567        rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
 568        rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
 569
 570        return nb_pkts;
 571}
 572
 573static inline int
 574i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
 575{
 576        volatile union i40e_rx_desc *rxdp;
 577        struct i40e_rx_entry *rxep;
 578        struct rte_mbuf *mb;
 579        uint16_t alloc_idx, i;
 580        uint64_t dma_addr;
 581        int diag;
 582
 583        /* Allocate buffers in bulk */
 584        alloc_idx = (uint16_t)(rxq->rx_free_trigger -
 585                                (rxq->rx_free_thresh - 1));
 586        rxep = &(rxq->sw_ring[alloc_idx]);
 587        diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
 588                                        rxq->rx_free_thresh);
 589        if (unlikely(diag != 0)) {
 590                PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
 591                return -ENOMEM;
 592        }
 593
 594        rxdp = &rxq->rx_ring[alloc_idx];
 595        for (i = 0; i < rxq->rx_free_thresh; i++) {
 596                if (likely(i < (rxq->rx_free_thresh - 1)))
 597                        /* Prefetch next mbuf */
 598                        rte_prefetch0(rxep[i + 1].mbuf);
 599
 600                mb = rxep[i].mbuf;
 601                rte_mbuf_refcnt_set(mb, 1);
 602                mb->next = NULL;
 603                mb->data_off = RTE_PKTMBUF_HEADROOM;
 604                mb->nb_segs = 1;
 605                mb->port = rxq->port_id;
 606                dma_addr = rte_cpu_to_le_64(\
 607                        rte_mbuf_data_iova_default(mb));
 608                rxdp[i].read.hdr_addr = 0;
 609                rxdp[i].read.pkt_addr = dma_addr;
 610        }
 611
 612        /* Update rx tail register */
 613        I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
 614
 615        rxq->rx_free_trigger =
 616                (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
 617        if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
 618                rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
 619
 620        return 0;
 621}
 622
 623static inline uint16_t
 624rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
 625{
 626        struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
 627        struct rte_eth_dev *dev;
 628        uint16_t nb_rx = 0;
 629
 630        if (!nb_pkts)
 631                return 0;
 632
 633        if (rxq->rx_nb_avail)
 634                return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
 635
 636        nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
 637        rxq->rx_next_avail = 0;
 638        rxq->rx_nb_avail = nb_rx;
 639        rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
 640
 641        if (rxq->rx_tail > rxq->rx_free_trigger) {
 642                if (i40e_rx_alloc_bufs(rxq) != 0) {
 643                        uint16_t i, j;
 644
 645                        dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
 646                        dev->data->rx_mbuf_alloc_failed +=
 647                                rxq->rx_free_thresh;
 648
 649                        rxq->rx_nb_avail = 0;
 650                        rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
 651                        for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
 652                                rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
 653
 654                        return 0;
 655                }
 656        }
 657
 658        if (rxq->rx_tail >= rxq->nb_rx_desc)
 659                rxq->rx_tail = 0;
 660
 661        if (rxq->rx_nb_avail)
 662                return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
 663
 664        return 0;
 665}
 666
 667static uint16_t
 668i40e_recv_pkts_bulk_alloc(void *rx_queue,
 669                          struct rte_mbuf **rx_pkts,
 670                          uint16_t nb_pkts)
 671{
 672        uint16_t nb_rx = 0, n, count;
 673
 674        if (unlikely(nb_pkts == 0))
 675                return 0;
 676
 677        if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
 678                return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
 679
 680        while (nb_pkts) {
 681                n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
 682                count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
 683                nb_rx = (uint16_t)(nb_rx + count);
 684                nb_pkts = (uint16_t)(nb_pkts - count);
 685                if (count < n)
 686                        break;
 687        }
 688
 689        return nb_rx;
 690}
 691#else
 692static uint16_t
 693i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
 694                          struct rte_mbuf __rte_unused **rx_pkts,
 695                          uint16_t __rte_unused nb_pkts)
 696{
 697        return 0;
 698}
 699#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
 700
 701uint16_t
 702i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
 703{
 704        struct i40e_rx_queue *rxq;
 705        volatile union i40e_rx_desc *rx_ring;
 706        volatile union i40e_rx_desc *rxdp;
 707        union i40e_rx_desc rxd;
 708        struct i40e_rx_entry *sw_ring;
 709        struct i40e_rx_entry *rxe;
 710        struct rte_eth_dev *dev;
 711        struct rte_mbuf *rxm;
 712        struct rte_mbuf *nmb;
 713        uint16_t nb_rx;
 714        uint32_t rx_status;
 715        uint64_t qword1;
 716        uint16_t rx_packet_len;
 717        uint16_t rx_id, nb_hold;
 718        uint64_t dma_addr;
 719        uint64_t pkt_flags;
 720        uint32_t *ptype_tbl;
 721
 722        nb_rx = 0;
 723        nb_hold = 0;
 724        rxq = rx_queue;
 725        rx_id = rxq->rx_tail;
 726        rx_ring = rxq->rx_ring;
 727        sw_ring = rxq->sw_ring;
 728        ptype_tbl = rxq->vsi->adapter->ptype_tbl;
 729
 730        while (nb_rx < nb_pkts) {
 731                rxdp = &rx_ring[rx_id];
 732                qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
 733                rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
 734                                >> I40E_RXD_QW1_STATUS_SHIFT;
 735
 736                /* Check the DD bit first */
 737                if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
 738                        break;
 739
 740                nmb = rte_mbuf_raw_alloc(rxq->mp);
 741                if (unlikely(!nmb)) {
 742                        dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
 743                        dev->data->rx_mbuf_alloc_failed++;
 744                        break;
 745                }
 746
 747                /**
 748                 * Use acquire fence to ensure that qword1 which includes DD
 749                 * bit is loaded before loading of other descriptor words.
 750                 */
 751                rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
 752
 753                rxd = *rxdp;
 754                nb_hold++;
 755                rxe = &sw_ring[rx_id];
 756                rx_id++;
 757                if (unlikely(rx_id == rxq->nb_rx_desc))
 758                        rx_id = 0;
 759
 760                /* Prefetch next mbuf */
 761                rte_prefetch0(sw_ring[rx_id].mbuf);
 762
 763                /**
 764                 * When next RX descriptor is on a cache line boundary,
 765                 * prefetch the next 4 RX descriptors and next 8 pointers
 766                 * to mbufs.
 767                 */
 768                if ((rx_id & 0x3) == 0) {
 769                        rte_prefetch0(&rx_ring[rx_id]);
 770                        rte_prefetch0(&sw_ring[rx_id]);
 771                }
 772                rxm = rxe->mbuf;
 773                rxe->mbuf = nmb;
 774                dma_addr =
 775                        rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
 776                rxdp->read.hdr_addr = 0;
 777                rxdp->read.pkt_addr = dma_addr;
 778
 779                rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
 780                                I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
 781
 782                rxm->data_off = RTE_PKTMBUF_HEADROOM;
 783                rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
 784                rxm->nb_segs = 1;
 785                rxm->next = NULL;
 786                rxm->pkt_len = rx_packet_len;
 787                rxm->data_len = rx_packet_len;
 788                rxm->port = rxq->port_id;
 789                rxm->ol_flags = 0;
 790                i40e_rxd_to_vlan_tci(rxm, &rxd);
 791                pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
 792                pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
 793                rxm->packet_type =
 794                        ptype_tbl[(uint8_t)((qword1 &
 795                        I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
 796                if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
 797                        rxm->hash.rss =
 798                                rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
 799                if (pkt_flags & RTE_MBUF_F_RX_FDIR)
 800                        pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
 801
 802#ifdef RTE_LIBRTE_IEEE1588
 803                pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
 804#endif
 805                rxm->ol_flags |= pkt_flags;
 806
 807                rx_pkts[nb_rx++] = rxm;
 808        }
 809        rxq->rx_tail = rx_id;
 810
 811        /**
 812         * If the number of free RX descriptors is greater than the RX free
 813         * threshold of the queue, advance the receive tail register of queue.
 814         * Update that register with the value of the last processed RX
 815         * descriptor minus 1.
 816         */
 817        nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
 818        if (nb_hold > rxq->rx_free_thresh) {
 819                rx_id = (uint16_t) ((rx_id == 0) ?
 820                        (rxq->nb_rx_desc - 1) : (rx_id - 1));
 821                I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
 822                nb_hold = 0;
 823        }
 824        rxq->nb_rx_hold = nb_hold;
 825
 826        return nb_rx;
 827}
 828
 829uint16_t
 830i40e_recv_scattered_pkts(void *rx_queue,
 831                         struct rte_mbuf **rx_pkts,
 832                         uint16_t nb_pkts)
 833{
 834        struct i40e_rx_queue *rxq = rx_queue;
 835        volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
 836        volatile union i40e_rx_desc *rxdp;
 837        union i40e_rx_desc rxd;
 838        struct i40e_rx_entry *sw_ring = rxq->sw_ring;
 839        struct i40e_rx_entry *rxe;
 840        struct rte_mbuf *first_seg = rxq->pkt_first_seg;
 841        struct rte_mbuf *last_seg = rxq->pkt_last_seg;
 842        struct rte_mbuf *nmb, *rxm;
 843        uint16_t rx_id = rxq->rx_tail;
 844        uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
 845        struct rte_eth_dev *dev;
 846        uint32_t rx_status;
 847        uint64_t qword1;
 848        uint64_t dma_addr;
 849        uint64_t pkt_flags;
 850        uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
 851
 852        while (nb_rx < nb_pkts) {
 853                rxdp = &rx_ring[rx_id];
 854                qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
 855                rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
 856                                        I40E_RXD_QW1_STATUS_SHIFT;
 857
 858                /* Check the DD bit */
 859                if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
 860                        break;
 861
 862                nmb = rte_mbuf_raw_alloc(rxq->mp);
 863                if (unlikely(!nmb)) {
 864                        dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
 865                        dev->data->rx_mbuf_alloc_failed++;
 866                        break;
 867                }
 868
 869                /**
 870                 * Use acquire fence to ensure that qword1 which includes DD
 871                 * bit is loaded before loading of other descriptor words.
 872                 */
 873                rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
 874
 875                rxd = *rxdp;
 876                nb_hold++;
 877                rxe = &sw_ring[rx_id];
 878                rx_id++;
 879                if (rx_id == rxq->nb_rx_desc)
 880                        rx_id = 0;
 881
 882                /* Prefetch next mbuf */
 883                rte_prefetch0(sw_ring[rx_id].mbuf);
 884
 885                /**
 886                 * When next RX descriptor is on a cache line boundary,
 887                 * prefetch the next 4 RX descriptors and next 8 pointers
 888                 * to mbufs.
 889                 */
 890                if ((rx_id & 0x3) == 0) {
 891                        rte_prefetch0(&rx_ring[rx_id]);
 892                        rte_prefetch0(&sw_ring[rx_id]);
 893                }
 894
 895                rxm = rxe->mbuf;
 896                rxe->mbuf = nmb;
 897                dma_addr =
 898                        rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
 899
 900                /* Set data buffer address and data length of the mbuf */
 901                rxdp->read.hdr_addr = 0;
 902                rxdp->read.pkt_addr = dma_addr;
 903                rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
 904                                        I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
 905                rxm->data_len = rx_packet_len;
 906                rxm->data_off = RTE_PKTMBUF_HEADROOM;
 907
 908                /**
 909                 * If this is the first buffer of the received packet, set the
 910                 * pointer to the first mbuf of the packet and initialize its
 911                 * context. Otherwise, update the total length and the number
 912                 * of segments of the current scattered packet, and update the
 913                 * pointer to the last mbuf of the current packet.
 914                 */
 915                if (!first_seg) {
 916                        first_seg = rxm;
 917                        first_seg->nb_segs = 1;
 918                        first_seg->pkt_len = rx_packet_len;
 919                } else {
 920                        first_seg->pkt_len =
 921                                (uint16_t)(first_seg->pkt_len +
 922                                                rx_packet_len);
 923                        first_seg->nb_segs++;
 924                        last_seg->next = rxm;
 925                }
 926
 927                /**
 928                 * If this is not the last buffer of the received packet,
 929                 * update the pointer to the last mbuf of the current scattered
 930                 * packet and continue to parse the RX ring.
 931                 */
 932                if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
 933                        last_seg = rxm;
 934                        continue;
 935                }
 936
 937                /**
 938                 * This is the last buffer of the received packet. If the CRC
 939                 * is not stripped by the hardware:
 940                 *  - Subtract the CRC length from the total packet length.
 941                 *  - If the last buffer only contains the whole CRC or a part
 942                 *  of it, free the mbuf associated to the last buffer. If part
 943                 *  of the CRC is also contained in the previous mbuf, subtract
 944                 *  the length of that CRC part from the data length of the
 945                 *  previous mbuf.
 946                 */
 947                rxm->next = NULL;
 948                if (unlikely(rxq->crc_len > 0)) {
 949                        first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
 950                        if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
 951                                rte_pktmbuf_free_seg(rxm);
 952                                first_seg->nb_segs--;
 953                                last_seg->data_len =
 954                                        (uint16_t)(last_seg->data_len -
 955                                        (RTE_ETHER_CRC_LEN - rx_packet_len));
 956                                last_seg->next = NULL;
 957                        } else
 958                                rxm->data_len = (uint16_t)(rx_packet_len -
 959                                                        RTE_ETHER_CRC_LEN);
 960                }
 961
 962                first_seg->port = rxq->port_id;
 963                first_seg->ol_flags = 0;
 964                i40e_rxd_to_vlan_tci(first_seg, &rxd);
 965                pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
 966                pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
 967                first_seg->packet_type =
 968                        ptype_tbl[(uint8_t)((qword1 &
 969                        I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT)];
 970                if (pkt_flags & RTE_MBUF_F_RX_RSS_HASH)
 971                        first_seg->hash.rss =
 972                                rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
 973                if (pkt_flags & RTE_MBUF_F_RX_FDIR)
 974                        pkt_flags |= i40e_rxd_build_fdir(&rxd, first_seg);
 975
 976#ifdef RTE_LIBRTE_IEEE1588
 977                pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
 978#endif
 979                first_seg->ol_flags |= pkt_flags;
 980
 981                /* Prefetch data of first segment, if configured to do so. */
 982                rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
 983                        first_seg->data_off));
 984                rx_pkts[nb_rx++] = first_seg;
 985                first_seg = NULL;
 986        }
 987
 988        /* Record index of the next RX descriptor to probe. */
 989        rxq->rx_tail = rx_id;
 990        rxq->pkt_first_seg = first_seg;
 991        rxq->pkt_last_seg = last_seg;
 992
 993        /**
 994         * If the number of free RX descriptors is greater than the RX free
 995         * threshold of the queue, advance the Receive Descriptor Tail (RDT)
 996         * register. Update the RDT with the value of the last processed RX
 997         * descriptor minus 1, to guarantee that the RDT register is never
 998         * equal to the RDH register, which creates a "full" ring situation
 999         * from the hardware point of view.
1000         */
1001        nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
1002        if (nb_hold > rxq->rx_free_thresh) {
1003                rx_id = (uint16_t)(rx_id == 0 ?
1004                        (rxq->nb_rx_desc - 1) : (rx_id - 1));
1005                I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
1006                nb_hold = 0;
1007        }
1008        rxq->nb_rx_hold = nb_hold;
1009
1010        return nb_rx;
1011}
1012
1013/* Check if the context descriptor is needed for TX offloading */
1014static inline uint16_t
1015i40e_calc_context_desc(uint64_t flags)
1016{
1017        static uint64_t mask = RTE_MBUF_F_TX_OUTER_IP_CKSUM |
1018                RTE_MBUF_F_TX_TCP_SEG |
1019                RTE_MBUF_F_TX_QINQ |
1020                RTE_MBUF_F_TX_TUNNEL_MASK;
1021
1022#ifdef RTE_LIBRTE_IEEE1588
1023        mask |= RTE_MBUF_F_TX_IEEE1588_TMST;
1024#endif
1025
1026        return (flags & mask) ? 1 : 0;
1027}
1028
1029/* set i40e TSO context descriptor */
1030static inline uint64_t
1031i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
1032{
1033        uint64_t ctx_desc = 0;
1034        uint32_t cd_cmd, hdr_len, cd_tso_len;
1035
1036        if (!tx_offload.l4_len) {
1037                PMD_DRV_LOG(DEBUG, "L4 length set to 0");
1038                return ctx_desc;
1039        }
1040
1041        hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
1042        hdr_len += (mbuf->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
1043                   tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
1044
1045        cd_cmd = I40E_TX_CTX_DESC_TSO;
1046        cd_tso_len = mbuf->pkt_len - hdr_len;
1047        ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1048                ((uint64_t)cd_tso_len <<
1049                 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1050                ((uint64_t)mbuf->tso_segsz <<
1051                 I40E_TXD_CTX_QW1_MSS_SHIFT);
1052
1053        return ctx_desc;
1054}
1055
1056/* HW requires that Tx buffer size ranges from 1B up to (16K-1)B. */
1057#define I40E_MAX_DATA_PER_TXD \
1058        (I40E_TXD_QW1_TX_BUF_SZ_MASK >> I40E_TXD_QW1_TX_BUF_SZ_SHIFT)
1059/* Calculate the number of TX descriptors needed for each pkt */
1060static inline uint16_t
1061i40e_calc_pkt_desc(struct rte_mbuf *tx_pkt)
1062{
1063        struct rte_mbuf *txd = tx_pkt;
1064        uint16_t count = 0;
1065
1066        while (txd != NULL) {
1067                count += DIV_ROUND_UP(txd->data_len, I40E_MAX_DATA_PER_TXD);
1068                txd = txd->next;
1069        }
1070
1071        return count;
1072}
1073
1074uint16_t
1075i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1076{
1077        struct i40e_tx_queue *txq;
1078        struct i40e_tx_entry *sw_ring;
1079        struct i40e_tx_entry *txe, *txn;
1080        volatile struct i40e_tx_desc *txd;
1081        volatile struct i40e_tx_desc *txr;
1082        struct rte_mbuf *tx_pkt;
1083        struct rte_mbuf *m_seg;
1084        uint32_t cd_tunneling_params;
1085        uint16_t tx_id;
1086        uint16_t nb_tx;
1087        uint32_t td_cmd;
1088        uint32_t td_offset;
1089        uint32_t td_tag;
1090        uint64_t ol_flags;
1091        uint16_t nb_used;
1092        uint16_t nb_ctx;
1093        uint16_t tx_last;
1094        uint16_t slen;
1095        uint64_t buf_dma_addr;
1096        union i40e_tx_offload tx_offload = {0};
1097
1098        txq = tx_queue;
1099        sw_ring = txq->sw_ring;
1100        txr = txq->tx_ring;
1101        tx_id = txq->tx_tail;
1102        txe = &sw_ring[tx_id];
1103
1104        /* Check if the descriptor ring needs to be cleaned. */
1105        if (txq->nb_tx_free < txq->tx_free_thresh)
1106                (void)i40e_xmit_cleanup(txq);
1107
1108        for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
1109                td_cmd = 0;
1110                td_tag = 0;
1111                td_offset = 0;
1112
1113                tx_pkt = *tx_pkts++;
1114                RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
1115
1116                ol_flags = tx_pkt->ol_flags;
1117                tx_offload.l2_len = tx_pkt->l2_len;
1118                tx_offload.l3_len = tx_pkt->l3_len;
1119                tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
1120                tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
1121                tx_offload.l4_len = tx_pkt->l4_len;
1122                tx_offload.tso_segsz = tx_pkt->tso_segsz;
1123
1124                /* Calculate the number of context descriptors needed. */
1125                nb_ctx = i40e_calc_context_desc(ol_flags);
1126
1127                /**
1128                 * The number of descriptors that must be allocated for
1129                 * a packet equals to the number of the segments of that
1130                 * packet plus 1 context descriptor if needed.
1131                 * Recalculate the needed tx descs when TSO enabled in case
1132                 * the mbuf data size exceeds max data size that hw allows
1133                 * per tx desc.
1134                 */
1135                if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
1136                        nb_used = (uint16_t)(i40e_calc_pkt_desc(tx_pkt) +
1137                                             nb_ctx);
1138                else
1139                        nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
1140                tx_last = (uint16_t)(tx_id + nb_used - 1);
1141
1142                /* Circular ring */
1143                if (tx_last >= txq->nb_tx_desc)
1144                        tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
1145
1146                if (nb_used > txq->nb_tx_free) {
1147                        if (i40e_xmit_cleanup(txq) != 0) {
1148                                if (nb_tx == 0)
1149                                        return 0;
1150                                goto end_of_tx;
1151                        }
1152                        if (unlikely(nb_used > txq->tx_rs_thresh)) {
1153                                while (nb_used > txq->nb_tx_free) {
1154                                        if (i40e_xmit_cleanup(txq) != 0) {
1155                                                if (nb_tx == 0)
1156                                                        return 0;
1157                                                goto end_of_tx;
1158                                        }
1159                                }
1160                        }
1161                }
1162
1163                /* Descriptor based VLAN insertion */
1164                if (ol_flags & (RTE_MBUF_F_TX_VLAN | RTE_MBUF_F_TX_QINQ)) {
1165                        td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1166                        td_tag = tx_pkt->vlan_tci;
1167                }
1168
1169                /* Always enable CRC offload insertion */
1170                td_cmd |= I40E_TX_DESC_CMD_ICRC;
1171
1172                /* Fill in tunneling parameters if necessary */
1173                cd_tunneling_params = 0;
1174                if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
1175                        i40e_parse_tunneling_params(ol_flags, tx_offload,
1176                                                    &cd_tunneling_params);
1177                /* Enable checksum offloading */
1178                if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK)
1179                        i40e_txd_enable_checksum(ol_flags, &td_cmd,
1180                                                 &td_offset, tx_offload);
1181
1182                if (nb_ctx) {
1183                        /* Setup TX context descriptor if required */
1184                        volatile struct i40e_tx_context_desc *ctx_txd =
1185                                (volatile struct i40e_tx_context_desc *)\
1186                                                        &txr[tx_id];
1187                        uint16_t cd_l2tag2 = 0;
1188                        uint64_t cd_type_cmd_tso_mss =
1189                                I40E_TX_DESC_DTYPE_CONTEXT;
1190
1191                        txn = &sw_ring[txe->next_id];
1192                        RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
1193                        if (txe->mbuf != NULL) {
1194                                rte_pktmbuf_free_seg(txe->mbuf);
1195                                txe->mbuf = NULL;
1196                        }
1197
1198                        /* TSO enabled means no timestamp */
1199                        if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
1200                                cd_type_cmd_tso_mss |=
1201                                        i40e_set_tso_ctx(tx_pkt, tx_offload);
1202                        else {
1203#ifdef RTE_LIBRTE_IEEE1588
1204                                if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
1205                                        cd_type_cmd_tso_mss |=
1206                                                ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
1207                                                 I40E_TXD_CTX_QW1_CMD_SHIFT);
1208#endif
1209                        }
1210
1211                        ctx_txd->tunneling_params =
1212                                rte_cpu_to_le_32(cd_tunneling_params);
1213                        if (ol_flags & RTE_MBUF_F_TX_QINQ) {
1214                                cd_l2tag2 = tx_pkt->vlan_tci_outer;
1215                                cd_type_cmd_tso_mss |=
1216                                        ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
1217                                                I40E_TXD_CTX_QW1_CMD_SHIFT);
1218                        }
1219                        ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
1220                        ctx_txd->type_cmd_tso_mss =
1221                                rte_cpu_to_le_64(cd_type_cmd_tso_mss);
1222
1223                        PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
1224                                "tunneling_params: %#x;\n"
1225                                "l2tag2: %#hx;\n"
1226                                "rsvd: %#hx;\n"
1227                                "type_cmd_tso_mss: %#"PRIx64";\n",
1228                                tx_pkt, tx_id,
1229                                ctx_txd->tunneling_params,
1230                                ctx_txd->l2tag2,
1231                                ctx_txd->rsvd,
1232                                ctx_txd->type_cmd_tso_mss);
1233
1234                        txe->last_id = tx_last;
1235                        tx_id = txe->next_id;
1236                        txe = txn;
1237                }
1238
1239                m_seg = tx_pkt;
1240                do {
1241                        txd = &txr[tx_id];
1242                        txn = &sw_ring[txe->next_id];
1243
1244                        if (txe->mbuf)
1245                                rte_pktmbuf_free_seg(txe->mbuf);
1246                        txe->mbuf = m_seg;
1247
1248                        /* Setup TX Descriptor */
1249                        slen = m_seg->data_len;
1250                        buf_dma_addr = rte_mbuf_data_iova(m_seg);
1251
1252                        while ((ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
1253                                unlikely(slen > I40E_MAX_DATA_PER_TXD)) {
1254                                txd->buffer_addr =
1255                                        rte_cpu_to_le_64(buf_dma_addr);
1256                                txd->cmd_type_offset_bsz =
1257                                        i40e_build_ctob(td_cmd,
1258                                        td_offset, I40E_MAX_DATA_PER_TXD,
1259                                        td_tag);
1260
1261                                buf_dma_addr += I40E_MAX_DATA_PER_TXD;
1262                                slen -= I40E_MAX_DATA_PER_TXD;
1263
1264                                txe->last_id = tx_last;
1265                                tx_id = txe->next_id;
1266                                txe = txn;
1267                                txd = &txr[tx_id];
1268                                txn = &sw_ring[txe->next_id];
1269                        }
1270                        PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
1271                                "buf_dma_addr: %#"PRIx64";\n"
1272                                "td_cmd: %#x;\n"
1273                                "td_offset: %#x;\n"
1274                                "td_len: %u;\n"
1275                                "td_tag: %#x;\n",
1276                                tx_pkt, tx_id, buf_dma_addr,
1277                                td_cmd, td_offset, slen, td_tag);
1278
1279                        txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
1280                        txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
1281                                                td_offset, slen, td_tag);
1282                        txe->last_id = tx_last;
1283                        tx_id = txe->next_id;
1284                        txe = txn;
1285                        m_seg = m_seg->next;
1286                } while (m_seg != NULL);
1287
1288                /* The last packet data descriptor needs End Of Packet (EOP) */
1289                td_cmd |= I40E_TX_DESC_CMD_EOP;
1290                txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
1291                txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
1292
1293                if (txq->nb_tx_used >= txq->tx_rs_thresh) {
1294                        PMD_TX_LOG(DEBUG,
1295                                   "Setting RS bit on TXD id="
1296                                   "%4u (port=%d queue=%d)",
1297                                   tx_last, txq->port_id, txq->queue_id);
1298
1299                        td_cmd |= I40E_TX_DESC_CMD_RS;
1300
1301                        /* Update txq RS bit counters */
1302                        txq->nb_tx_used = 0;
1303                }
1304
1305                txd->cmd_type_offset_bsz |=
1306                        rte_cpu_to_le_64(((uint64_t)td_cmd) <<
1307                                        I40E_TXD_QW1_CMD_SHIFT);
1308        }
1309
1310end_of_tx:
1311        PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
1312                   (unsigned) txq->port_id, (unsigned) txq->queue_id,
1313                   (unsigned) tx_id, (unsigned) nb_tx);
1314
1315        rte_io_wmb();
1316        I40E_PCI_REG_WC_WRITE_RELAXED(txq->qtx_tail, tx_id);
1317        txq->tx_tail = tx_id;
1318
1319        return nb_tx;
1320}
1321
1322static __rte_always_inline int
1323i40e_tx_free_bufs(struct i40e_tx_queue *txq)
1324{
1325        struct i40e_tx_entry *txep;
1326        uint16_t tx_rs_thresh = txq->tx_rs_thresh;
1327        uint16_t i = 0, j = 0;
1328        struct rte_mbuf *free[RTE_I40E_TX_MAX_FREE_BUF_SZ];
1329        const uint16_t k = RTE_ALIGN_FLOOR(tx_rs_thresh, RTE_I40E_TX_MAX_FREE_BUF_SZ);
1330        const uint16_t m = tx_rs_thresh % RTE_I40E_TX_MAX_FREE_BUF_SZ;
1331
1332        if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
1333                        rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
1334                        rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
1335                return 0;
1336
1337        txep = &txq->sw_ring[txq->tx_next_dd - (tx_rs_thresh - 1)];
1338
1339        for (i = 0; i < tx_rs_thresh; i++)
1340                rte_prefetch0((txep + i)->mbuf);
1341
1342        if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) {
1343                if (k) {
1344                        for (j = 0; j != k; j += RTE_I40E_TX_MAX_FREE_BUF_SZ) {
1345                                for (i = 0; i < RTE_I40E_TX_MAX_FREE_BUF_SZ; ++i, ++txep) {
1346                                        free[i] = txep->mbuf;
1347                                        txep->mbuf = NULL;
1348                                }
1349                                rte_mempool_put_bulk(free[0]->pool, (void **)free,
1350                                                RTE_I40E_TX_MAX_FREE_BUF_SZ);
1351                        }
1352                }
1353
1354                if (m) {
1355                        for (i = 0; i < m; ++i, ++txep) {
1356                                free[i] = txep->mbuf;
1357                                txep->mbuf = NULL;
1358                        }
1359                        rte_mempool_put_bulk(free[0]->pool, (void **)free, m);
1360                }
1361        } else {
1362                for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
1363                        rte_pktmbuf_free_seg(txep->mbuf);
1364                        txep->mbuf = NULL;
1365                }
1366        }
1367
1368        txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
1369        txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
1370        if (txq->tx_next_dd >= txq->nb_tx_desc)
1371                txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
1372
1373        return txq->tx_rs_thresh;
1374}
1375
1376/* Populate 4 descriptors with data from 4 mbufs */
1377static inline void
1378tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1379{
1380        uint64_t dma_addr;
1381        uint32_t i;
1382
1383        for (i = 0; i < 4; i++, txdp++, pkts++) {
1384                dma_addr = rte_mbuf_data_iova(*pkts);
1385                txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1386                txdp->cmd_type_offset_bsz =
1387                        i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1388                                        (*pkts)->data_len, 0);
1389        }
1390}
1391
1392/* Populate 1 descriptor with data from 1 mbuf */
1393static inline void
1394tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
1395{
1396        uint64_t dma_addr;
1397
1398        dma_addr = rte_mbuf_data_iova(*pkts);
1399        txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
1400        txdp->cmd_type_offset_bsz =
1401                i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
1402                                (*pkts)->data_len, 0);
1403}
1404
1405/* Fill hardware descriptor ring with mbuf data */
1406static inline void
1407i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
1408                     struct rte_mbuf **pkts,
1409                     uint16_t nb_pkts)
1410{
1411        volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
1412        struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
1413        const int N_PER_LOOP = 4;
1414        const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
1415        int mainpart, leftover;
1416        int i, j;
1417
1418        mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
1419        leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
1420        for (i = 0; i < mainpart; i += N_PER_LOOP) {
1421                for (j = 0; j < N_PER_LOOP; ++j) {
1422                        (txep + i + j)->mbuf = *(pkts + i + j);
1423                }
1424                tx4(txdp + i, pkts + i);
1425        }
1426        if (unlikely(leftover > 0)) {
1427                for (i = 0; i < leftover; ++i) {
1428                        (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
1429                        tx1(txdp + mainpart + i, pkts + mainpart + i);
1430                }
1431        }
1432}
1433
1434static inline uint16_t
1435tx_xmit_pkts(struct i40e_tx_queue *txq,
1436             struct rte_mbuf **tx_pkts,
1437             uint16_t nb_pkts)
1438{
1439        volatile struct i40e_tx_desc *txr = txq->tx_ring;
1440        uint16_t n = 0;
1441
1442        /**
1443         * Begin scanning the H/W ring for done descriptors when the number
1444         * of available descriptors drops below tx_free_thresh. For each done
1445         * descriptor, free the associated buffer.
1446         */
1447        if (txq->nb_tx_free < txq->tx_free_thresh)
1448                i40e_tx_free_bufs(txq);
1449
1450        /* Use available descriptor only */
1451        nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
1452        if (unlikely(!nb_pkts))
1453                return 0;
1454
1455        txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
1456        if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
1457                n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
1458                i40e_tx_fill_hw_ring(txq, tx_pkts, n);
1459                txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1460                        rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1461                                                I40E_TXD_QW1_CMD_SHIFT);
1462                txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1463                txq->tx_tail = 0;
1464        }
1465
1466        /* Fill hardware descriptor ring with mbuf data */
1467        i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
1468        txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
1469
1470        /* Determine if RS bit needs to be set */
1471        if (txq->tx_tail > txq->tx_next_rs) {
1472                txr[txq->tx_next_rs].cmd_type_offset_bsz |=
1473                        rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
1474                                                I40E_TXD_QW1_CMD_SHIFT);
1475                txq->tx_next_rs =
1476                        (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
1477                if (txq->tx_next_rs >= txq->nb_tx_desc)
1478                        txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
1479        }
1480
1481        if (txq->tx_tail >= txq->nb_tx_desc)
1482                txq->tx_tail = 0;
1483
1484        /* Update the tx tail register */
1485        I40E_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
1486
1487        return nb_pkts;
1488}
1489
1490static uint16_t
1491i40e_xmit_pkts_simple(void *tx_queue,
1492                      struct rte_mbuf **tx_pkts,
1493                      uint16_t nb_pkts)
1494{
1495        uint16_t nb_tx = 0;
1496
1497        if (likely(nb_pkts <= I40E_TX_MAX_BURST))
1498                return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1499                                                tx_pkts, nb_pkts);
1500
1501        while (nb_pkts) {
1502                uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
1503                                                I40E_TX_MAX_BURST);
1504
1505                ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
1506                                                &tx_pkts[nb_tx], num);
1507                nb_tx = (uint16_t)(nb_tx + ret);
1508                nb_pkts = (uint16_t)(nb_pkts - ret);
1509                if (ret < num)
1510                        break;
1511        }
1512
1513        return nb_tx;
1514}
1515
1516static uint16_t
1517i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
1518                   uint16_t nb_pkts)
1519{
1520        uint16_t nb_tx = 0;
1521        struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
1522
1523        while (nb_pkts) {
1524                uint16_t ret, num;
1525
1526                /* cross rs_thresh boundary is not allowed */
1527                num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
1528                ret = i40e_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
1529                                                num);
1530                nb_tx += ret;
1531                nb_pkts -= ret;
1532                if (ret < num)
1533                        break;
1534        }
1535
1536        return nb_tx;
1537}
1538
1539/*********************************************************************
1540 *
1541 *  TX simple prep functions
1542 *
1543 **********************************************************************/
1544uint16_t
1545i40e_simple_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1546                      uint16_t nb_pkts)
1547{
1548        int i;
1549        uint64_t ol_flags;
1550        struct rte_mbuf *m;
1551
1552        for (i = 0; i < nb_pkts; i++) {
1553                m = tx_pkts[i];
1554                ol_flags = m->ol_flags;
1555
1556                if (m->nb_segs != 1) {
1557                        rte_errno = EINVAL;
1558                        return i;
1559                }
1560
1561                if (ol_flags & I40E_TX_OFFLOAD_SIMPLE_NOTSUP_MASK) {
1562                        rte_errno = ENOTSUP;
1563                        return i;
1564                }
1565
1566                /* check the size of packet */
1567                if (m->pkt_len < I40E_TX_MIN_PKT_LEN ||
1568                    m->pkt_len > I40E_FRAME_SIZE_MAX) {
1569                        rte_errno = EINVAL;
1570                        return i;
1571                }
1572        }
1573        return i;
1574}
1575
1576/*********************************************************************
1577 *
1578 *  TX prep functions
1579 *
1580 **********************************************************************/
1581uint16_t
1582i40e_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
1583                uint16_t nb_pkts)
1584{
1585        int i, ret;
1586        uint64_t ol_flags;
1587        struct rte_mbuf *m;
1588
1589        for (i = 0; i < nb_pkts; i++) {
1590                m = tx_pkts[i];
1591                ol_flags = m->ol_flags;
1592
1593                /* Check for m->nb_segs to not exceed the limits. */
1594                if (!(ol_flags & RTE_MBUF_F_TX_TCP_SEG)) {
1595                        if (m->nb_segs > I40E_TX_MAX_MTU_SEG ||
1596                            m->pkt_len > I40E_FRAME_SIZE_MAX) {
1597                                rte_errno = EINVAL;
1598                                return i;
1599                        }
1600                } else if (m->nb_segs > I40E_TX_MAX_SEG ||
1601                           m->tso_segsz < I40E_MIN_TSO_MSS ||
1602                           m->tso_segsz > I40E_MAX_TSO_MSS ||
1603                           m->pkt_len > I40E_TSO_FRAME_SIZE_MAX) {
1604                        /* MSS outside the range (256B - 9674B) are considered
1605                         * malicious
1606                         */
1607                        rte_errno = EINVAL;
1608                        return i;
1609                }
1610
1611                if (ol_flags & I40E_TX_OFFLOAD_NOTSUP_MASK) {
1612                        rte_errno = ENOTSUP;
1613                        return i;
1614                }
1615
1616                /* check the size of packet */
1617                if (m->pkt_len < I40E_TX_MIN_PKT_LEN) {
1618                        rte_errno = EINVAL;
1619                        return i;
1620                }
1621
1622#ifdef RTE_ETHDEV_DEBUG_TX
1623                ret = rte_validate_tx_offload(m);
1624                if (ret != 0) {
1625                        rte_errno = -ret;
1626                        return i;
1627                }
1628#endif
1629                ret = rte_net_intel_cksum_prepare(m);
1630                if (ret != 0) {
1631                        rte_errno = -ret;
1632                        return i;
1633                }
1634        }
1635        return i;
1636}
1637
1638/*
1639 * Find the VSI the queue belongs to. 'queue_idx' is the queue index
1640 * application used, which assume having sequential ones. But from driver's
1641 * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
1642 * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
1643 * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
1644 * use queue_idx from 0 to 95 to access queues, while real queue would be
1645 * different. This function will do a queue mapping to find VSI the queue
1646 * belongs to.
1647 */
1648static struct i40e_vsi*
1649i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1650{
1651        /* the queue in MAIN VSI range */
1652        if (queue_idx < pf->main_vsi->nb_qps)
1653                return pf->main_vsi;
1654
1655        queue_idx -= pf->main_vsi->nb_qps;
1656
1657        /* queue_idx is greater than VMDQ VSIs range */
1658        if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
1659                PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
1660                return NULL;
1661        }
1662
1663        return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
1664}
1665
1666static uint16_t
1667i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
1668{
1669        /* the queue in MAIN VSI range */
1670        if (queue_idx < pf->main_vsi->nb_qps)
1671                return queue_idx;
1672
1673        /* It's VMDQ queues */
1674        queue_idx -= pf->main_vsi->nb_qps;
1675
1676        if (pf->nb_cfg_vmdq_vsi)
1677                return queue_idx % pf->vmdq_nb_qps;
1678        else {
1679                PMD_INIT_LOG(ERR, "Fail to get queue offset");
1680                return (uint16_t)(-1);
1681        }
1682}
1683
1684int
1685i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1686{
1687        struct i40e_rx_queue *rxq;
1688        int err;
1689        struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1690
1691        PMD_INIT_FUNC_TRACE();
1692
1693        rxq = dev->data->rx_queues[rx_queue_id];
1694        if (!rxq || !rxq->q_set) {
1695                PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
1696                            rx_queue_id);
1697                return -EINVAL;
1698        }
1699
1700        if (rxq->rx_deferred_start)
1701                PMD_DRV_LOG(WARNING, "RX queue %u is deferred start",
1702                            rx_queue_id);
1703
1704        err = i40e_alloc_rx_queue_mbufs(rxq);
1705        if (err) {
1706                PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
1707                return err;
1708        }
1709
1710        /* Init the RX tail register. */
1711        I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
1712
1713        err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
1714        if (err) {
1715                PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
1716                            rx_queue_id);
1717
1718                i40e_rx_queue_release_mbufs(rxq);
1719                i40e_reset_rx_queue(rxq);
1720                return err;
1721        }
1722        dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1723
1724        return 0;
1725}
1726
1727int
1728i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1729{
1730        struct i40e_rx_queue *rxq;
1731        int err;
1732        struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1733
1734        rxq = dev->data->rx_queues[rx_queue_id];
1735        if (!rxq || !rxq->q_set) {
1736                PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
1737                                rx_queue_id);
1738                return -EINVAL;
1739        }
1740
1741        /*
1742         * rx_queue_id is queue id application refers to, while
1743         * rxq->reg_idx is the real queue index.
1744         */
1745        err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
1746        if (err) {
1747                PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
1748                            rx_queue_id);
1749                return err;
1750        }
1751        i40e_rx_queue_release_mbufs(rxq);
1752        i40e_reset_rx_queue(rxq);
1753        dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1754
1755        return 0;
1756}
1757
1758int
1759i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1760{
1761        int err;
1762        struct i40e_tx_queue *txq;
1763        struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1764
1765        PMD_INIT_FUNC_TRACE();
1766
1767        txq = dev->data->tx_queues[tx_queue_id];
1768        if (!txq || !txq->q_set) {
1769                PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
1770                            tx_queue_id);
1771                return -EINVAL;
1772        }
1773
1774        if (txq->tx_deferred_start)
1775                PMD_DRV_LOG(WARNING, "TX queue %u is deferred start",
1776                            tx_queue_id);
1777
1778        /*
1779         * tx_queue_id is queue id application refers to, while
1780         * rxq->reg_idx is the real queue index.
1781         */
1782        err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
1783        if (err) {
1784                PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
1785                            tx_queue_id);
1786                return err;
1787        }
1788        dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1789
1790        return 0;
1791}
1792
1793int
1794i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1795{
1796        struct i40e_tx_queue *txq;
1797        int err;
1798        struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1799
1800        txq = dev->data->tx_queues[tx_queue_id];
1801        if (!txq || !txq->q_set) {
1802                PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
1803                        tx_queue_id);
1804                return -EINVAL;
1805        }
1806
1807        /*
1808         * tx_queue_id is queue id application refers to, while
1809         * txq->reg_idx is the real queue index.
1810         */
1811        err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
1812        if (err) {
1813                PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
1814                            tx_queue_id);
1815                return err;
1816        }
1817
1818        i40e_tx_queue_release_mbufs(txq);
1819        i40e_reset_tx_queue(txq);
1820        dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1821
1822        return 0;
1823}
1824
1825const uint32_t *
1826i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
1827{
1828        static const uint32_t ptypes[] = {
1829                /* refers to i40e_rxd_pkt_type_mapping() */
1830                RTE_PTYPE_L2_ETHER,
1831                RTE_PTYPE_L2_ETHER_TIMESYNC,
1832                RTE_PTYPE_L2_ETHER_LLDP,
1833                RTE_PTYPE_L2_ETHER_ARP,
1834                RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
1835                RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
1836                RTE_PTYPE_L4_FRAG,
1837                RTE_PTYPE_L4_ICMP,
1838                RTE_PTYPE_L4_NONFRAG,
1839                RTE_PTYPE_L4_SCTP,
1840                RTE_PTYPE_L4_TCP,
1841                RTE_PTYPE_L4_UDP,
1842                RTE_PTYPE_TUNNEL_GRENAT,
1843                RTE_PTYPE_TUNNEL_IP,
1844                RTE_PTYPE_INNER_L2_ETHER,
1845                RTE_PTYPE_INNER_L2_ETHER_VLAN,
1846                RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
1847                RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
1848                RTE_PTYPE_INNER_L4_FRAG,
1849                RTE_PTYPE_INNER_L4_ICMP,
1850                RTE_PTYPE_INNER_L4_NONFRAG,
1851                RTE_PTYPE_INNER_L4_SCTP,
1852                RTE_PTYPE_INNER_L4_TCP,
1853                RTE_PTYPE_INNER_L4_UDP,
1854                RTE_PTYPE_UNKNOWN
1855        };
1856
1857        if (dev->rx_pkt_burst == i40e_recv_pkts ||
1858#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
1859            dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
1860#endif
1861            dev->rx_pkt_burst == i40e_recv_scattered_pkts ||
1862            dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
1863            dev->rx_pkt_burst == i40e_recv_pkts_vec ||
1864#ifdef CC_AVX512_SUPPORT
1865            dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx512 ||
1866            dev->rx_pkt_burst == i40e_recv_pkts_vec_avx512 ||
1867#endif
1868            dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
1869            dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2)
1870                return ptypes;
1871        return NULL;
1872}
1873
1874static int
1875i40e_dev_first_queue(uint16_t idx, void **queues, int num)
1876{
1877        uint16_t i;
1878
1879        for (i = 0; i < num; i++) {
1880                if (i != idx && queues[i])
1881                        return 0;
1882        }
1883
1884        return 1;
1885}
1886
1887static int
1888i40e_dev_rx_queue_setup_runtime(struct rte_eth_dev *dev,
1889                                struct i40e_rx_queue *rxq)
1890{
1891        struct i40e_adapter *ad =
1892                I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1893        int use_def_burst_func =
1894                check_rx_burst_bulk_alloc_preconditions(rxq);
1895        uint16_t buf_size =
1896                (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
1897                           RTE_PKTMBUF_HEADROOM);
1898        int use_scattered_rx =
1899                (rxq->max_pkt_len > buf_size);
1900
1901        if (i40e_rx_queue_init(rxq) != I40E_SUCCESS) {
1902                PMD_DRV_LOG(ERR,
1903                            "Failed to do RX queue initialization");
1904                return -EINVAL;
1905        }
1906
1907        if (i40e_dev_first_queue(rxq->queue_id,
1908                                 dev->data->rx_queues,
1909                                 dev->data->nb_rx_queues)) {
1910                /**
1911                 * If it is the first queue to setup,
1912                 * set all flags to default and call
1913                 * i40e_set_rx_function.
1914                 */
1915                ad->rx_bulk_alloc_allowed = true;
1916                ad->rx_vec_allowed = true;
1917                dev->data->scattered_rx = use_scattered_rx;
1918                if (use_def_burst_func)
1919                        ad->rx_bulk_alloc_allowed = false;
1920                i40e_set_rx_function(dev);
1921                return 0;
1922        } else if (ad->rx_vec_allowed && !rte_is_power_of_2(rxq->nb_rx_desc)) {
1923                PMD_DRV_LOG(ERR, "Vector mode is allowed, but descriptor"
1924                            " number %d of queue %d isn't power of 2",
1925                            rxq->nb_rx_desc, rxq->queue_id);
1926                return -EINVAL;
1927        }
1928
1929        /* check bulk alloc conflict */
1930        if (ad->rx_bulk_alloc_allowed && use_def_burst_func) {
1931                PMD_DRV_LOG(ERR, "Can't use default burst.");
1932                return -EINVAL;
1933        }
1934        /* check scattered conflict */
1935        if (!dev->data->scattered_rx && use_scattered_rx) {
1936                PMD_DRV_LOG(ERR, "Scattered rx is required.");
1937                return -EINVAL;
1938        }
1939        /* check vector conflict */
1940        if (ad->rx_vec_allowed && i40e_rxq_vec_setup(rxq)) {
1941                PMD_DRV_LOG(ERR, "Failed vector rx setup.");
1942                return -EINVAL;
1943        }
1944
1945        return 0;
1946}
1947
1948int
1949i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
1950                        uint16_t queue_idx,
1951                        uint16_t nb_desc,
1952                        unsigned int socket_id,
1953                        const struct rte_eth_rxconf *rx_conf,
1954                        struct rte_mempool *mp)
1955{
1956        struct i40e_adapter *ad =
1957                I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1958        struct i40e_vsi *vsi;
1959        struct i40e_pf *pf = NULL;
1960        struct i40e_rx_queue *rxq;
1961        const struct rte_memzone *rz;
1962        uint32_t ring_size;
1963        uint16_t len, i;
1964        uint16_t reg_idx, base, bsf, tc_mapping;
1965        int q_offset, use_def_burst_func = 1;
1966        uint64_t offloads;
1967
1968        offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1969
1970        pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1971        vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
1972        if (!vsi)
1973                return -EINVAL;
1974        q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
1975        if (q_offset < 0)
1976                return -EINVAL;
1977        reg_idx = vsi->base_queue + q_offset;
1978
1979        if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
1980            (nb_desc > I40E_MAX_RING_DESC) ||
1981            (nb_desc < I40E_MIN_RING_DESC)) {
1982                PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
1983                            "invalid", nb_desc);
1984                return -EINVAL;
1985        }
1986
1987        /* Free memory if needed */
1988        if (dev->data->rx_queues[queue_idx]) {
1989                i40e_rx_queue_release(dev->data->rx_queues[queue_idx]);
1990                dev->data->rx_queues[queue_idx] = NULL;
1991        }
1992
1993        /* Allocate the rx queue data structure */
1994        rxq = rte_zmalloc_socket("i40e rx queue",
1995                                 sizeof(struct i40e_rx_queue),
1996                                 RTE_CACHE_LINE_SIZE,
1997                                 socket_id);
1998        if (!rxq) {
1999                PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2000                            "rx queue data structure");
2001                return -ENOMEM;
2002        }
2003        rxq->mp = mp;
2004        rxq->nb_rx_desc = nb_desc;
2005        rxq->rx_free_thresh = rx_conf->rx_free_thresh;
2006        rxq->queue_id = queue_idx;
2007        rxq->reg_idx = reg_idx;
2008        rxq->port_id = dev->data->port_id;
2009        if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
2010                rxq->crc_len = RTE_ETHER_CRC_LEN;
2011        else
2012                rxq->crc_len = 0;
2013        rxq->drop_en = rx_conf->rx_drop_en;
2014        rxq->vsi = vsi;
2015        rxq->rx_deferred_start = rx_conf->rx_deferred_start;
2016        rxq->offloads = offloads;
2017
2018        /* Allocate the maximum number of RX ring hardware descriptor. */
2019        len = I40E_MAX_RING_DESC;
2020
2021        /**
2022         * Allocating a little more memory because vectorized/bulk_alloc Rx
2023         * functions doesn't check boundaries each time.
2024         */
2025        len += RTE_PMD_I40E_RX_MAX_BURST;
2026
2027        ring_size = RTE_ALIGN(len * sizeof(union i40e_rx_desc),
2028                              I40E_DMA_MEM_ALIGN);
2029
2030        rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
2031                              ring_size, I40E_RING_BASE_ALIGN, socket_id);
2032        if (!rz) {
2033                i40e_rx_queue_release(rxq);
2034                PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
2035                return -ENOMEM;
2036        }
2037
2038        rxq->mz = rz;
2039        /* Zero all the descriptors in the ring. */
2040        memset(rz->addr, 0, ring_size);
2041
2042        rxq->rx_ring_phys_addr = rz->iova;
2043        rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
2044
2045        len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
2046
2047        /* Allocate the software ring. */
2048        rxq->sw_ring =
2049                rte_zmalloc_socket("i40e rx sw ring",
2050                                   sizeof(struct i40e_rx_entry) * len,
2051                                   RTE_CACHE_LINE_SIZE,
2052                                   socket_id);
2053        if (!rxq->sw_ring) {
2054                i40e_rx_queue_release(rxq);
2055                PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
2056                return -ENOMEM;
2057        }
2058
2059        i40e_reset_rx_queue(rxq);
2060        rxq->q_set = TRUE;
2061
2062        for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2063                if (!(vsi->enabled_tc & (1 << i)))
2064                        continue;
2065                tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2066                base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2067                        I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2068                bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2069                        I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2070
2071                if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2072                        rxq->dcb_tc = i;
2073        }
2074
2075        if (dev->data->dev_started) {
2076                if (i40e_dev_rx_queue_setup_runtime(dev, rxq)) {
2077                        i40e_rx_queue_release(rxq);
2078                        return -EINVAL;
2079                }
2080        } else {
2081                use_def_burst_func =
2082                        check_rx_burst_bulk_alloc_preconditions(rxq);
2083                if (!use_def_burst_func) {
2084#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2085                        PMD_INIT_LOG(DEBUG,
2086                          "Rx Burst Bulk Alloc Preconditions are "
2087                          "satisfied. Rx Burst Bulk Alloc function will be "
2088                          "used on port=%d, queue=%d.",
2089                          rxq->port_id, rxq->queue_id);
2090#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2091                } else {
2092                        PMD_INIT_LOG(DEBUG,
2093                          "Rx Burst Bulk Alloc Preconditions are "
2094                          "not satisfied, Scattered Rx is requested, "
2095                          "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
2096                          "not enabled on port=%d, queue=%d.",
2097                          rxq->port_id, rxq->queue_id);
2098                        ad->rx_bulk_alloc_allowed = false;
2099                }
2100        }
2101
2102        dev->data->rx_queues[queue_idx] = rxq;
2103        return 0;
2104}
2105
2106void
2107i40e_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
2108{
2109        i40e_rx_queue_release(dev->data->rx_queues[qid]);
2110}
2111
2112void
2113i40e_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
2114{
2115        i40e_tx_queue_release(dev->data->tx_queues[qid]);
2116}
2117
2118void
2119i40e_rx_queue_release(void *rxq)
2120{
2121        struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
2122
2123        if (!q) {
2124                PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2125                return;
2126        }
2127
2128        i40e_rx_queue_release_mbufs(q);
2129        rte_free(q->sw_ring);
2130        rte_memzone_free(q->mz);
2131        rte_free(q);
2132}
2133
2134uint32_t
2135i40e_dev_rx_queue_count(void *rx_queue)
2136{
2137#define I40E_RXQ_SCAN_INTERVAL 4
2138        volatile union i40e_rx_desc *rxdp;
2139        struct i40e_rx_queue *rxq;
2140        uint16_t desc = 0;
2141
2142        rxq = rx_queue;
2143        rxdp = &(rxq->rx_ring[rxq->rx_tail]);
2144        while ((desc < rxq->nb_rx_desc) &&
2145                ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
2146                I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
2147                                (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
2148                /**
2149                 * Check the DD bit of a rx descriptor of each 4 in a group,
2150                 * to avoid checking too frequently and downgrading performance
2151                 * too much.
2152                 */
2153                desc += I40E_RXQ_SCAN_INTERVAL;
2154                rxdp += I40E_RXQ_SCAN_INTERVAL;
2155                if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
2156                        rxdp = &(rxq->rx_ring[rxq->rx_tail +
2157                                        desc - rxq->nb_rx_desc]);
2158        }
2159
2160        return desc;
2161}
2162
2163int
2164i40e_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
2165{
2166        struct i40e_rx_queue *rxq = rx_queue;
2167        volatile uint64_t *status;
2168        uint64_t mask;
2169        uint32_t desc;
2170
2171        if (unlikely(offset >= rxq->nb_rx_desc))
2172                return -EINVAL;
2173
2174        if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
2175                return RTE_ETH_RX_DESC_UNAVAIL;
2176
2177        desc = rxq->rx_tail + offset;
2178        if (desc >= rxq->nb_rx_desc)
2179                desc -= rxq->nb_rx_desc;
2180
2181        status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
2182        mask = rte_le_to_cpu_64((1ULL << I40E_RX_DESC_STATUS_DD_SHIFT)
2183                << I40E_RXD_QW1_STATUS_SHIFT);
2184        if (*status & mask)
2185                return RTE_ETH_RX_DESC_DONE;
2186
2187        return RTE_ETH_RX_DESC_AVAIL;
2188}
2189
2190int
2191i40e_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
2192{
2193        struct i40e_tx_queue *txq = tx_queue;
2194        volatile uint64_t *status;
2195        uint64_t mask, expect;
2196        uint32_t desc;
2197
2198        if (unlikely(offset >= txq->nb_tx_desc))
2199                return -EINVAL;
2200
2201        desc = txq->tx_tail + offset;
2202        /* go to next desc that has the RS bit */
2203        desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
2204                txq->tx_rs_thresh;
2205        if (desc >= txq->nb_tx_desc) {
2206                desc -= txq->nb_tx_desc;
2207                if (desc >= txq->nb_tx_desc)
2208                        desc -= txq->nb_tx_desc;
2209        }
2210
2211        status = &txq->tx_ring[desc].cmd_type_offset_bsz;
2212        mask = rte_le_to_cpu_64(I40E_TXD_QW1_DTYPE_MASK);
2213        expect = rte_cpu_to_le_64(
2214                I40E_TX_DESC_DTYPE_DESC_DONE << I40E_TXD_QW1_DTYPE_SHIFT);
2215        if ((*status & mask) == expect)
2216                return RTE_ETH_TX_DESC_DONE;
2217
2218        return RTE_ETH_TX_DESC_FULL;
2219}
2220
2221static int
2222i40e_dev_tx_queue_setup_runtime(struct rte_eth_dev *dev,
2223                                struct i40e_tx_queue *txq)
2224{
2225        struct i40e_adapter *ad =
2226                I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2227
2228        if (i40e_tx_queue_init(txq) != I40E_SUCCESS) {
2229                PMD_DRV_LOG(ERR,
2230                            "Failed to do TX queue initialization");
2231                return -EINVAL;
2232        }
2233
2234        if (i40e_dev_first_queue(txq->queue_id,
2235                                 dev->data->tx_queues,
2236                                 dev->data->nb_tx_queues)) {
2237                /**
2238                 * If it is the first queue to setup,
2239                 * set all flags and call
2240                 * i40e_set_tx_function.
2241                 */
2242                i40e_set_tx_function_flag(dev, txq);
2243                i40e_set_tx_function(dev);
2244                return 0;
2245        }
2246
2247        /* check vector conflict */
2248        if (ad->tx_vec_allowed) {
2249                if (txq->tx_rs_thresh > RTE_I40E_TX_MAX_FREE_BUF_SZ ||
2250                    i40e_txq_vec_setup(txq)) {
2251                        PMD_DRV_LOG(ERR, "Failed vector tx setup.");
2252                        return -EINVAL;
2253                }
2254        }
2255        /* check simple tx conflict */
2256        if (ad->tx_simple_allowed) {
2257                if ((txq->offloads & ~RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) != 0 ||
2258                                txq->tx_rs_thresh < RTE_PMD_I40E_TX_MAX_BURST) {
2259                        PMD_DRV_LOG(ERR, "No-simple tx is required.");
2260                        return -EINVAL;
2261                }
2262        }
2263
2264        return 0;
2265}
2266
2267int
2268i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
2269                        uint16_t queue_idx,
2270                        uint16_t nb_desc,
2271                        unsigned int socket_id,
2272                        const struct rte_eth_txconf *tx_conf)
2273{
2274        struct i40e_vsi *vsi;
2275        struct i40e_pf *pf = NULL;
2276        struct i40e_tx_queue *txq;
2277        const struct rte_memzone *tz;
2278        uint32_t ring_size;
2279        uint16_t tx_rs_thresh, tx_free_thresh;
2280        uint16_t reg_idx, i, base, bsf, tc_mapping;
2281        int q_offset;
2282        uint64_t offloads;
2283
2284        offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
2285
2286        pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2287        vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
2288        if (!vsi)
2289                return -EINVAL;
2290        q_offset = i40e_get_queue_offset_by_qindex(pf, queue_idx);
2291        if (q_offset < 0)
2292                return -EINVAL;
2293        reg_idx = vsi->base_queue + q_offset;
2294
2295        if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
2296            (nb_desc > I40E_MAX_RING_DESC) ||
2297            (nb_desc < I40E_MIN_RING_DESC)) {
2298                PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
2299                            "invalid", nb_desc);
2300                return -EINVAL;
2301        }
2302
2303        /**
2304         * The following two parameters control the setting of the RS bit on
2305         * transmit descriptors. TX descriptors will have their RS bit set
2306         * after txq->tx_rs_thresh descriptors have been used. The TX
2307         * descriptor ring will be cleaned after txq->tx_free_thresh
2308         * descriptors are used or if the number of descriptors required to
2309         * transmit a packet is greater than the number of free TX descriptors.
2310         *
2311         * The following constraints must be satisfied:
2312         *  - tx_rs_thresh must be greater than 0.
2313         *  - tx_rs_thresh must be less than the size of the ring minus 2.
2314         *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
2315         *  - tx_rs_thresh must be a divisor of the ring size.
2316         *  - tx_free_thresh must be greater than 0.
2317         *  - tx_free_thresh must be less than the size of the ring minus 3.
2318         *  - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
2319         *
2320         * One descriptor in the TX ring is used as a sentinel to avoid a H/W
2321         * race condition, hence the maximum threshold constraints. When set
2322         * to zero use default values.
2323         */
2324        tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
2325                tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
2326        /* force tx_rs_thresh to adapt an aggressive tx_free_thresh */
2327        tx_rs_thresh = (DEFAULT_TX_RS_THRESH + tx_free_thresh > nb_desc) ?
2328                nb_desc - tx_free_thresh : DEFAULT_TX_RS_THRESH;
2329        if (tx_conf->tx_rs_thresh > 0)
2330                tx_rs_thresh = tx_conf->tx_rs_thresh;
2331        if (tx_rs_thresh + tx_free_thresh > nb_desc) {
2332                PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
2333                                "exceed nb_desc. (tx_rs_thresh=%u "
2334                                "tx_free_thresh=%u nb_desc=%u port=%d queue=%d)",
2335                                (unsigned int)tx_rs_thresh,
2336                                (unsigned int)tx_free_thresh,
2337                                (unsigned int)nb_desc,
2338                                (int)dev->data->port_id,
2339                                (int)queue_idx);
2340                return I40E_ERR_PARAM;
2341        }
2342        if (tx_rs_thresh >= (nb_desc - 2)) {
2343                PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
2344                             "number of TX descriptors minus 2. "
2345                             "(tx_rs_thresh=%u port=%d queue=%d)",
2346                             (unsigned int)tx_rs_thresh,
2347                             (int)dev->data->port_id,
2348                             (int)queue_idx);
2349                return I40E_ERR_PARAM;
2350        }
2351        if (tx_free_thresh >= (nb_desc - 3)) {
2352                PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
2353                             "number of TX descriptors minus 3. "
2354                             "(tx_free_thresh=%u port=%d queue=%d)",
2355                             (unsigned int)tx_free_thresh,
2356                             (int)dev->data->port_id,
2357                             (int)queue_idx);
2358                return I40E_ERR_PARAM;
2359        }
2360        if (tx_rs_thresh > tx_free_thresh) {
2361                PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
2362                             "equal to tx_free_thresh. (tx_free_thresh=%u"
2363                             " tx_rs_thresh=%u port=%d queue=%d)",
2364                             (unsigned int)tx_free_thresh,
2365                             (unsigned int)tx_rs_thresh,
2366                             (int)dev->data->port_id,
2367                             (int)queue_idx);
2368                return I40E_ERR_PARAM;
2369        }
2370        if ((nb_desc % tx_rs_thresh) != 0) {
2371                PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
2372                             "number of TX descriptors. (tx_rs_thresh=%u"
2373                             " port=%d queue=%d)",
2374                             (unsigned int)tx_rs_thresh,
2375                             (int)dev->data->port_id,
2376                             (int)queue_idx);
2377                return I40E_ERR_PARAM;
2378        }
2379        if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
2380                PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
2381                             "tx_rs_thresh is greater than 1. "
2382                             "(tx_rs_thresh=%u port=%d queue=%d)",
2383                             (unsigned int)tx_rs_thresh,
2384                             (int)dev->data->port_id,
2385                             (int)queue_idx);
2386                return I40E_ERR_PARAM;
2387        }
2388
2389        /* Free memory if needed. */
2390        if (dev->data->tx_queues[queue_idx]) {
2391                i40e_tx_queue_release(dev->data->tx_queues[queue_idx]);
2392                dev->data->tx_queues[queue_idx] = NULL;
2393        }
2394
2395        /* Allocate the TX queue data structure. */
2396        txq = rte_zmalloc_socket("i40e tx queue",
2397                                  sizeof(struct i40e_tx_queue),
2398                                  RTE_CACHE_LINE_SIZE,
2399                                  socket_id);
2400        if (!txq) {
2401                PMD_DRV_LOG(ERR, "Failed to allocate memory for "
2402                            "tx queue structure");
2403                return -ENOMEM;
2404        }
2405
2406        /* Allocate TX hardware ring descriptors. */
2407        ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
2408        ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
2409        tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
2410                              ring_size, I40E_RING_BASE_ALIGN, socket_id);
2411        if (!tz) {
2412                i40e_tx_queue_release(txq);
2413                PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
2414                return -ENOMEM;
2415        }
2416
2417        txq->mz = tz;
2418        txq->nb_tx_desc = nb_desc;
2419        txq->tx_rs_thresh = tx_rs_thresh;
2420        txq->tx_free_thresh = tx_free_thresh;
2421        txq->pthresh = tx_conf->tx_thresh.pthresh;
2422        txq->hthresh = tx_conf->tx_thresh.hthresh;
2423        txq->wthresh = tx_conf->tx_thresh.wthresh;
2424        txq->queue_id = queue_idx;
2425        txq->reg_idx = reg_idx;
2426        txq->port_id = dev->data->port_id;
2427        txq->offloads = offloads;
2428        txq->vsi = vsi;
2429        txq->tx_deferred_start = tx_conf->tx_deferred_start;
2430
2431        txq->tx_ring_phys_addr = tz->iova;
2432        txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
2433
2434        /* Allocate software ring */
2435        txq->sw_ring =
2436                rte_zmalloc_socket("i40e tx sw ring",
2437                                   sizeof(struct i40e_tx_entry) * nb_desc,
2438                                   RTE_CACHE_LINE_SIZE,
2439                                   socket_id);
2440        if (!txq->sw_ring) {
2441                i40e_tx_queue_release(txq);
2442                PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
2443                return -ENOMEM;
2444        }
2445
2446        i40e_reset_tx_queue(txq);
2447        txq->q_set = TRUE;
2448
2449        for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
2450                if (!(vsi->enabled_tc & (1 << i)))
2451                        continue;
2452                tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
2453                base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
2454                        I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
2455                bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
2456                        I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
2457
2458                if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
2459                        txq->dcb_tc = i;
2460        }
2461
2462        if (dev->data->dev_started) {
2463                if (i40e_dev_tx_queue_setup_runtime(dev, txq)) {
2464                        i40e_tx_queue_release(txq);
2465                        return -EINVAL;
2466                }
2467        } else {
2468                /**
2469                 * Use a simple TX queue without offloads or
2470                 * multi segs if possible
2471                 */
2472                i40e_set_tx_function_flag(dev, txq);
2473        }
2474        dev->data->tx_queues[queue_idx] = txq;
2475
2476        return 0;
2477}
2478
2479void
2480i40e_tx_queue_release(void *txq)
2481{
2482        struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2483
2484        if (!q) {
2485                PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
2486                return;
2487        }
2488
2489        i40e_tx_queue_release_mbufs(q);
2490        rte_free(q->sw_ring);
2491        rte_memzone_free(q->mz);
2492        rte_free(q);
2493}
2494
2495const struct rte_memzone *
2496i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
2497{
2498        const struct rte_memzone *mz;
2499
2500        mz = rte_memzone_lookup(name);
2501        if (mz)
2502                return mz;
2503
2504        mz = rte_memzone_reserve_aligned(name, len, socket_id,
2505                        RTE_MEMZONE_IOVA_CONTIG, I40E_RING_BASE_ALIGN);
2506        return mz;
2507}
2508
2509void
2510i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
2511{
2512        uint16_t i;
2513
2514        /* SSE Vector driver has a different way of releasing mbufs. */
2515        if (rxq->rx_using_sse) {
2516                i40e_rx_queue_release_mbufs_vec(rxq);
2517                return;
2518        }
2519
2520        if (!rxq->sw_ring) {
2521                PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
2522                return;
2523        }
2524
2525        for (i = 0; i < rxq->nb_rx_desc; i++) {
2526                if (rxq->sw_ring[i].mbuf) {
2527                        rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
2528                        rxq->sw_ring[i].mbuf = NULL;
2529                }
2530        }
2531#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2532        if (rxq->rx_nb_avail == 0)
2533                return;
2534        for (i = 0; i < rxq->rx_nb_avail; i++) {
2535                struct rte_mbuf *mbuf;
2536
2537                mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
2538                rte_pktmbuf_free_seg(mbuf);
2539        }
2540        rxq->rx_nb_avail = 0;
2541#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2542}
2543
2544void
2545i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
2546{
2547        unsigned i;
2548        uint16_t len;
2549
2550        if (!rxq) {
2551                PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
2552                return;
2553        }
2554
2555#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2556        if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
2557                len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
2558        else
2559#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2560                len = rxq->nb_rx_desc;
2561
2562        for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
2563                ((volatile char *)rxq->rx_ring)[i] = 0;
2564
2565        memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
2566        for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
2567                rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
2568
2569#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
2570        rxq->rx_nb_avail = 0;
2571        rxq->rx_next_avail = 0;
2572        rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
2573#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
2574        rxq->rx_tail = 0;
2575        rxq->nb_rx_hold = 0;
2576
2577        rte_pktmbuf_free(rxq->pkt_first_seg);
2578
2579        rxq->pkt_first_seg = NULL;
2580        rxq->pkt_last_seg = NULL;
2581
2582        rxq->rxrearm_start = 0;
2583        rxq->rxrearm_nb = 0;
2584}
2585
2586void
2587i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
2588{
2589        struct rte_eth_dev *dev;
2590        uint16_t i;
2591
2592        if (!txq || !txq->sw_ring) {
2593                PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
2594                return;
2595        }
2596
2597        dev = &rte_eth_devices[txq->port_id];
2598
2599        /**
2600         *  vPMD tx will not set sw_ring's mbuf to NULL after free,
2601         *  so need to free remains more carefully.
2602         */
2603#ifdef CC_AVX512_SUPPORT
2604        if (dev->tx_pkt_burst == i40e_xmit_pkts_vec_avx512) {
2605                struct i40e_vec_tx_entry *swr = (void *)txq->sw_ring;
2606
2607                i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
2608                if (txq->tx_tail < i) {
2609                        for (; i < txq->nb_tx_desc; i++) {
2610                                rte_pktmbuf_free_seg(swr[i].mbuf);
2611                                swr[i].mbuf = NULL;
2612                        }
2613                        i = 0;
2614                }
2615                for (; i < txq->tx_tail; i++) {
2616                        rte_pktmbuf_free_seg(swr[i].mbuf);
2617                        swr[i].mbuf = NULL;
2618                }
2619                return;
2620        }
2621#endif
2622        if (dev->tx_pkt_burst == i40e_xmit_pkts_vec_avx2 ||
2623                        dev->tx_pkt_burst == i40e_xmit_pkts_vec) {
2624                i = txq->tx_next_dd - txq->tx_rs_thresh + 1;
2625                if (txq->tx_tail < i) {
2626                        for (; i < txq->nb_tx_desc; i++) {
2627                                rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2628                                txq->sw_ring[i].mbuf = NULL;
2629                        }
2630                        i = 0;
2631                }
2632                for (; i < txq->tx_tail; i++) {
2633                        rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2634                        txq->sw_ring[i].mbuf = NULL;
2635                }
2636        } else {
2637                for (i = 0; i < txq->nb_tx_desc; i++) {
2638                        if (txq->sw_ring[i].mbuf) {
2639                                rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
2640                                txq->sw_ring[i].mbuf = NULL;
2641                        }
2642                }
2643        }
2644}
2645
2646static int
2647i40e_tx_done_cleanup_full(struct i40e_tx_queue *txq,
2648                        uint32_t free_cnt)
2649{
2650        struct i40e_tx_entry *swr_ring = txq->sw_ring;
2651        uint16_t i, tx_last, tx_id;
2652        uint16_t nb_tx_free_last;
2653        uint16_t nb_tx_to_clean;
2654        uint32_t pkt_cnt;
2655
2656        /* Start free mbuf from the next of tx_tail */
2657        tx_last = txq->tx_tail;
2658        tx_id  = swr_ring[tx_last].next_id;
2659
2660        if (txq->nb_tx_free == 0 && i40e_xmit_cleanup(txq))
2661                return 0;
2662
2663        nb_tx_to_clean = txq->nb_tx_free;
2664        nb_tx_free_last = txq->nb_tx_free;
2665        if (!free_cnt)
2666                free_cnt = txq->nb_tx_desc;
2667
2668        /* Loop through swr_ring to count the amount of
2669         * freeable mubfs and packets.
2670         */
2671        for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
2672                for (i = 0; i < nb_tx_to_clean &&
2673                        pkt_cnt < free_cnt &&
2674                        tx_id != tx_last; i++) {
2675                        if (swr_ring[tx_id].mbuf != NULL) {
2676                                rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
2677                                swr_ring[tx_id].mbuf = NULL;
2678
2679                                /*
2680                                 * last segment in the packet,
2681                                 * increment packet count
2682                                 */
2683                                pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
2684                        }
2685
2686                        tx_id = swr_ring[tx_id].next_id;
2687                }
2688
2689                if (txq->tx_rs_thresh > txq->nb_tx_desc -
2690                        txq->nb_tx_free || tx_id == tx_last)
2691                        break;
2692
2693                if (pkt_cnt < free_cnt) {
2694                        if (i40e_xmit_cleanup(txq))
2695                                break;
2696
2697                        nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
2698                        nb_tx_free_last = txq->nb_tx_free;
2699                }
2700        }
2701
2702        return (int)pkt_cnt;
2703}
2704
2705static int
2706i40e_tx_done_cleanup_simple(struct i40e_tx_queue *txq,
2707                        uint32_t free_cnt)
2708{
2709        int i, n, cnt;
2710
2711        if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
2712                free_cnt = txq->nb_tx_desc;
2713
2714        cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
2715
2716        for (i = 0; i < cnt; i += n) {
2717                if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
2718                        break;
2719
2720                n = i40e_tx_free_bufs(txq);
2721
2722                if (n == 0)
2723                        break;
2724        }
2725
2726        return i;
2727}
2728
2729static int
2730i40e_tx_done_cleanup_vec(struct i40e_tx_queue *txq __rte_unused,
2731                        uint32_t free_cnt __rte_unused)
2732{
2733        return -ENOTSUP;
2734}
2735int
2736i40e_tx_done_cleanup(void *txq, uint32_t free_cnt)
2737{
2738        struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
2739        struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
2740        struct i40e_adapter *ad =
2741                I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2742
2743        if (ad->tx_simple_allowed) {
2744                if (ad->tx_vec_allowed)
2745                        return i40e_tx_done_cleanup_vec(q, free_cnt);
2746                else
2747                        return i40e_tx_done_cleanup_simple(q, free_cnt);
2748        } else {
2749                return i40e_tx_done_cleanup_full(q, free_cnt);
2750        }
2751}
2752
2753void
2754i40e_reset_tx_queue(struct i40e_tx_queue *txq)
2755{
2756        struct i40e_tx_entry *txe;
2757        uint16_t i, prev, size;
2758
2759        if (!txq) {
2760                PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
2761                return;
2762        }
2763
2764        txe = txq->sw_ring;
2765        size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
2766        for (i = 0; i < size; i++)
2767                ((volatile char *)txq->tx_ring)[i] = 0;
2768
2769        prev = (uint16_t)(txq->nb_tx_desc - 1);
2770        for (i = 0; i < txq->nb_tx_desc; i++) {
2771                volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
2772
2773                txd->cmd_type_offset_bsz =
2774                        rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
2775                txe[i].mbuf =  NULL;
2776                txe[i].last_id = i;
2777                txe[prev].next_id = i;
2778                prev = i;
2779        }
2780
2781        txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
2782        txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
2783
2784        txq->tx_tail = 0;
2785        txq->nb_tx_used = 0;
2786
2787        txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
2788        txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
2789}
2790
2791/* Init the TX queue in hardware */
2792int
2793i40e_tx_queue_init(struct i40e_tx_queue *txq)
2794{
2795        enum i40e_status_code err = I40E_SUCCESS;
2796        struct i40e_vsi *vsi = txq->vsi;
2797        struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
2798        uint16_t pf_q = txq->reg_idx;
2799        struct i40e_hmc_obj_txq tx_ctx;
2800        uint32_t qtx_ctl;
2801
2802        /* clear the context structure first */
2803        memset(&tx_ctx, 0, sizeof(tx_ctx));
2804        tx_ctx.new_context = 1;
2805        tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2806        tx_ctx.qlen = txq->nb_tx_desc;
2807
2808#ifdef RTE_LIBRTE_IEEE1588
2809        tx_ctx.timesync_ena = 1;
2810#endif
2811        tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
2812        if (vsi->type == I40E_VSI_FDIR)
2813                tx_ctx.fd_ena = TRUE;
2814
2815        err = i40e_clear_lan_tx_queue_context(hw, pf_q);
2816        if (err != I40E_SUCCESS) {
2817                PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
2818                return err;
2819        }
2820
2821        err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
2822        if (err != I40E_SUCCESS) {
2823                PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
2824                return err;
2825        }
2826
2827        /* Now associate this queue with this PCI function */
2828        qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
2829        qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
2830                                        I40E_QTX_CTL_PF_INDX_MASK);
2831        I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
2832        I40E_WRITE_FLUSH(hw);
2833
2834        txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
2835
2836        return err;
2837}
2838
2839int
2840i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
2841{
2842        struct i40e_rx_entry *rxe = rxq->sw_ring;
2843        uint64_t dma_addr;
2844        uint16_t i;
2845
2846        for (i = 0; i < rxq->nb_rx_desc; i++) {
2847                volatile union i40e_rx_desc *rxd;
2848                struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
2849
2850                if (unlikely(!mbuf)) {
2851                        PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
2852                        return -ENOMEM;
2853                }
2854
2855                rte_mbuf_refcnt_set(mbuf, 1);
2856                mbuf->next = NULL;
2857                mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2858                mbuf->nb_segs = 1;
2859                mbuf->port = rxq->port_id;
2860
2861                dma_addr =
2862                        rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2863
2864                rxd = &rxq->rx_ring[i];
2865                rxd->read.pkt_addr = dma_addr;
2866                rxd->read.hdr_addr = 0;
2867#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2868                rxd->read.rsvd1 = 0;
2869                rxd->read.rsvd2 = 0;
2870#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
2871
2872                rxe[i].mbuf = mbuf;
2873        }
2874
2875        return 0;
2876}
2877
2878/*
2879 * Calculate the buffer length, and check the jumbo frame
2880 * and maximum packet length.
2881 */
2882static int
2883i40e_rx_queue_config(struct i40e_rx_queue *rxq)
2884{
2885        struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
2886        struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2887        struct rte_eth_dev_data *data = pf->dev_data;
2888        uint16_t buf_size;
2889
2890        buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2891                RTE_PKTMBUF_HEADROOM);
2892
2893        switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
2894                        I40E_FLAG_HEADER_SPLIT_ENABLED)) {
2895        case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
2896                rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
2897                                (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
2898                rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
2899                                (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2900                rxq->hs_mode = i40e_header_split_enabled;
2901                break;
2902        case I40E_FLAG_HEADER_SPLIT_DISABLED:
2903        default:
2904                rxq->rx_hdr_len = 0;
2905                rxq->rx_buf_len = RTE_ALIGN_FLOOR(buf_size,
2906                        (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
2907                rxq->hs_mode = i40e_header_split_none;
2908                break;
2909        }
2910
2911        rxq->max_pkt_len =
2912                RTE_MIN(hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len,
2913                                data->mtu + I40E_ETH_OVERHEAD);
2914        if (rxq->max_pkt_len < RTE_ETHER_MIN_LEN ||
2915                rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
2916                PMD_DRV_LOG(ERR, "maximum packet length must be "
2917                            "larger than %u and smaller than %u",
2918                            (uint32_t)RTE_ETHER_MIN_LEN,
2919                            (uint32_t)I40E_FRAME_SIZE_MAX);
2920                return I40E_ERR_CONFIG;
2921        }
2922
2923        return 0;
2924}
2925
2926/* Init the RX queue in hardware */
2927int
2928i40e_rx_queue_init(struct i40e_rx_queue *rxq)
2929{
2930        int err = I40E_SUCCESS;
2931        struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
2932        struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
2933        uint16_t pf_q = rxq->reg_idx;
2934        uint16_t buf_size;
2935        struct i40e_hmc_obj_rxq rx_ctx;
2936
2937        err = i40e_rx_queue_config(rxq);
2938        if (err < 0) {
2939                PMD_DRV_LOG(ERR, "Failed to config RX queue");
2940                return err;
2941        }
2942
2943        /* Clear the context structure first */
2944        memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
2945        rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
2946        rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
2947
2948        rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
2949        rx_ctx.qlen = rxq->nb_rx_desc;
2950#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
2951        rx_ctx.dsize = 1;
2952#endif
2953        rx_ctx.dtype = rxq->hs_mode;
2954        if (rxq->hs_mode)
2955                rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
2956        else
2957                rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
2958        rx_ctx.rxmax = rxq->max_pkt_len;
2959        rx_ctx.tphrdesc_ena = 1;
2960        rx_ctx.tphwdesc_ena = 1;
2961        rx_ctx.tphdata_ena = 1;
2962        rx_ctx.tphhead_ena = 1;
2963        rx_ctx.lrxqthresh = 2;
2964        rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
2965        rx_ctx.l2tsel = 1;
2966        /* showiv indicates if inner VLAN is stripped inside of tunnel
2967         * packet. When set it to 1, vlan information is stripped from
2968         * the inner header, but the hardware does not put it in the
2969         * descriptor. So set it zero by default.
2970         */
2971        rx_ctx.showiv = 0;
2972        rx_ctx.prefena = 1;
2973
2974        err = i40e_clear_lan_rx_queue_context(hw, pf_q);
2975        if (err != I40E_SUCCESS) {
2976                PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
2977                return err;
2978        }
2979        err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
2980        if (err != I40E_SUCCESS) {
2981                PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
2982                return err;
2983        }
2984
2985        rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
2986
2987        buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
2988                RTE_PKTMBUF_HEADROOM);
2989
2990        /* Check if scattered RX needs to be used. */
2991        if (rxq->max_pkt_len > buf_size)
2992                dev_data->scattered_rx = 1;
2993
2994        /* Init the RX tail register. */
2995        I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
2996
2997        return 0;
2998}
2999
3000void
3001i40e_dev_clear_queues(struct rte_eth_dev *dev)
3002{
3003        uint16_t i;
3004
3005        PMD_INIT_FUNC_TRACE();
3006
3007        for (i = 0; i < dev->data->nb_tx_queues; i++) {
3008                if (!dev->data->tx_queues[i])
3009                        continue;
3010                i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
3011                i40e_reset_tx_queue(dev->data->tx_queues[i]);
3012        }
3013
3014        for (i = 0; i < dev->data->nb_rx_queues; i++) {
3015                if (!dev->data->rx_queues[i])
3016                        continue;
3017                i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
3018                i40e_reset_rx_queue(dev->data->rx_queues[i]);
3019        }
3020}
3021
3022void
3023i40e_dev_free_queues(struct rte_eth_dev *dev)
3024{
3025        uint16_t i;
3026
3027        PMD_INIT_FUNC_TRACE();
3028
3029        for (i = 0; i < dev->data->nb_rx_queues; i++) {
3030                if (!dev->data->rx_queues[i])
3031                        continue;
3032                i40e_rx_queue_release(dev->data->rx_queues[i]);
3033                dev->data->rx_queues[i] = NULL;
3034        }
3035
3036        for (i = 0; i < dev->data->nb_tx_queues; i++) {
3037                if (!dev->data->tx_queues[i])
3038                        continue;
3039                i40e_tx_queue_release(dev->data->tx_queues[i]);
3040                dev->data->tx_queues[i] = NULL;
3041        }
3042}
3043
3044enum i40e_status_code
3045i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
3046{
3047        struct i40e_tx_queue *txq;
3048        const struct rte_memzone *tz = NULL;
3049        struct rte_eth_dev *dev;
3050        uint32_t ring_size;
3051
3052        if (!pf) {
3053                PMD_DRV_LOG(ERR, "PF is not available");
3054                return I40E_ERR_BAD_PTR;
3055        }
3056
3057        dev = &rte_eth_devices[pf->dev_data->port_id];
3058
3059        /* Allocate the TX queue data structure. */
3060        txq = rte_zmalloc_socket("i40e fdir tx queue",
3061                                  sizeof(struct i40e_tx_queue),
3062                                  RTE_CACHE_LINE_SIZE,
3063                                  SOCKET_ID_ANY);
3064        if (!txq) {
3065                PMD_DRV_LOG(ERR, "Failed to allocate memory for "
3066                                        "tx queue structure.");
3067                return I40E_ERR_NO_MEMORY;
3068        }
3069
3070        /* Allocate TX hardware ring descriptors. */
3071        ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
3072        ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
3073
3074        tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
3075                                      I40E_FDIR_QUEUE_ID, ring_size,
3076                                      I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
3077        if (!tz) {
3078                i40e_tx_queue_release(txq);
3079                PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
3080                return I40E_ERR_NO_MEMORY;
3081        }
3082
3083        txq->mz = tz;
3084        txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
3085        txq->queue_id = I40E_FDIR_QUEUE_ID;
3086        txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3087        txq->vsi = pf->fdir.fdir_vsi;
3088
3089        txq->tx_ring_phys_addr = tz->iova;
3090        txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
3091
3092        /*
3093         * don't need to allocate software ring and reset for the fdir
3094         * program queue just set the queue has been configured.
3095         */
3096        txq->q_set = TRUE;
3097        pf->fdir.txq = txq;
3098        pf->fdir.txq_available_buf_count = I40E_FDIR_PRG_PKT_CNT;
3099
3100        return I40E_SUCCESS;
3101}
3102
3103enum i40e_status_code
3104i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
3105{
3106        struct i40e_rx_queue *rxq;
3107        const struct rte_memzone *rz = NULL;
3108        uint32_t ring_size;
3109        struct rte_eth_dev *dev;
3110
3111        if (!pf) {
3112                PMD_DRV_LOG(ERR, "PF is not available");
3113                return I40E_ERR_BAD_PTR;
3114        }
3115
3116        dev = &rte_eth_devices[pf->dev_data->port_id];
3117
3118        /* Allocate the RX queue data structure. */
3119        rxq = rte_zmalloc_socket("i40e fdir rx queue",
3120                                  sizeof(struct i40e_rx_queue),
3121                                  RTE_CACHE_LINE_SIZE,
3122                                  SOCKET_ID_ANY);
3123        if (!rxq) {
3124                PMD_DRV_LOG(ERR, "Failed to allocate memory for "
3125                                        "rx queue structure.");
3126                return I40E_ERR_NO_MEMORY;
3127        }
3128
3129        /* Allocate RX hardware ring descriptors. */
3130        ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
3131        ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
3132
3133        rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
3134                                      I40E_FDIR_QUEUE_ID, ring_size,
3135                                      I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
3136        if (!rz) {
3137                i40e_rx_queue_release(rxq);
3138                PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
3139                return I40E_ERR_NO_MEMORY;
3140        }
3141
3142        rxq->mz = rz;
3143        rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
3144        rxq->queue_id = I40E_FDIR_QUEUE_ID;
3145        rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
3146        rxq->vsi = pf->fdir.fdir_vsi;
3147
3148        rxq->rx_ring_phys_addr = rz->iova;
3149        memset(rz->addr, 0, I40E_FDIR_NUM_RX_DESC * sizeof(union i40e_rx_desc));
3150        rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
3151
3152        /*
3153         * Don't need to allocate software ring and reset for the fdir
3154         * rx queue, just set the queue has been configured.
3155         */
3156        rxq->q_set = TRUE;
3157        pf->fdir.rxq = rxq;
3158
3159        return I40E_SUCCESS;
3160}
3161
3162void
3163i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3164        struct rte_eth_rxq_info *qinfo)
3165{
3166        struct i40e_rx_queue *rxq;
3167
3168        rxq = dev->data->rx_queues[queue_id];
3169
3170        qinfo->mp = rxq->mp;
3171        qinfo->scattered_rx = dev->data->scattered_rx;
3172        qinfo->nb_desc = rxq->nb_rx_desc;
3173
3174        qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
3175        qinfo->conf.rx_drop_en = rxq->drop_en;
3176        qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
3177        qinfo->conf.offloads = rxq->offloads;
3178}
3179
3180void
3181i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
3182        struct rte_eth_txq_info *qinfo)
3183{
3184        struct i40e_tx_queue *txq;
3185
3186        txq = dev->data->tx_queues[queue_id];
3187
3188        qinfo->nb_desc = txq->nb_tx_desc;
3189
3190        qinfo->conf.tx_thresh.pthresh = txq->pthresh;
3191        qinfo->conf.tx_thresh.hthresh = txq->hthresh;
3192        qinfo->conf.tx_thresh.wthresh = txq->wthresh;
3193
3194        qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
3195        qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
3196        qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
3197        qinfo->conf.offloads = txq->offloads;
3198}
3199
3200#ifdef RTE_ARCH_X86
3201static inline bool
3202get_avx_supported(bool request_avx512)
3203{
3204        if (request_avx512) {
3205                if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
3206                rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
3207                rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
3208#ifdef CC_AVX512_SUPPORT
3209                        return true;
3210#else
3211                PMD_DRV_LOG(NOTICE,
3212                        "AVX512 is not supported in build env");
3213                return false;
3214#endif
3215        } else {
3216                if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256 &&
3217                rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 &&
3218                rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
3219#ifdef CC_AVX2_SUPPORT
3220                        return true;
3221#else
3222                PMD_DRV_LOG(NOTICE,
3223                        "AVX2 is not supported in build env");
3224                return false;
3225#endif
3226        }
3227
3228        return false;
3229}
3230#endif /* RTE_ARCH_X86 */
3231
3232
3233void __rte_cold
3234i40e_set_rx_function(struct rte_eth_dev *dev)
3235{
3236        struct i40e_adapter *ad =
3237                I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3238        uint16_t rx_using_sse, i;
3239        /* In order to allow Vector Rx there are a few configuration
3240         * conditions to be met and Rx Bulk Allocation should be allowed.
3241         */
3242        if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3243#ifdef RTE_ARCH_X86
3244                ad->rx_use_avx512 = false;
3245                ad->rx_use_avx2 = false;
3246#endif
3247                if (i40e_rx_vec_dev_conf_condition_check(dev) ||
3248                    !ad->rx_bulk_alloc_allowed) {
3249                        PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
3250                                     " Vector Rx preconditions",
3251                                     dev->data->port_id);
3252
3253                        ad->rx_vec_allowed = false;
3254                }
3255                if (ad->rx_vec_allowed) {
3256                        for (i = 0; i < dev->data->nb_rx_queues; i++) {
3257                                struct i40e_rx_queue *rxq =
3258                                        dev->data->rx_queues[i];
3259
3260                                if (rxq && i40e_rxq_vec_setup(rxq)) {
3261                                        ad->rx_vec_allowed = false;
3262                                        break;
3263                                }
3264                        }
3265#ifdef RTE_ARCH_X86
3266                        ad->rx_use_avx512 = get_avx_supported(1);
3267
3268                        if (!ad->rx_use_avx512)
3269                                ad->rx_use_avx2 = get_avx_supported(0);
3270#endif
3271                }
3272        }
3273
3274        if (ad->rx_vec_allowed  &&
3275            rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3276#ifdef RTE_ARCH_X86
3277                if (dev->data->scattered_rx) {
3278                        if (ad->rx_use_avx512) {
3279#ifdef CC_AVX512_SUPPORT
3280                                PMD_DRV_LOG(NOTICE,
3281                                        "Using AVX512 Vector Scattered Rx (port %d).",
3282                                        dev->data->port_id);
3283                                dev->rx_pkt_burst =
3284                                        i40e_recv_scattered_pkts_vec_avx512;
3285#endif
3286                        } else {
3287                                PMD_INIT_LOG(DEBUG,
3288                                        "Using %sVector Scattered Rx (port %d).",
3289                                        ad->rx_use_avx2 ? "avx2 " : "",
3290                                        dev->data->port_id);
3291                                dev->rx_pkt_burst = ad->rx_use_avx2 ?
3292                                        i40e_recv_scattered_pkts_vec_avx2 :
3293                                        i40e_recv_scattered_pkts_vec;
3294                        }
3295                } else {
3296                        if (ad->rx_use_avx512) {
3297#ifdef CC_AVX512_SUPPORT
3298                                PMD_DRV_LOG(NOTICE,
3299                                        "Using AVX512 Vector Rx (port %d).",
3300                                        dev->data->port_id);
3301                                dev->rx_pkt_burst =
3302                                        i40e_recv_pkts_vec_avx512;
3303#endif
3304                        } else {
3305                                PMD_INIT_LOG(DEBUG,
3306                                        "Using %sVector Rx (port %d).",
3307                                        ad->rx_use_avx2 ? "avx2 " : "",
3308                                        dev->data->port_id);
3309                                dev->rx_pkt_burst = ad->rx_use_avx2 ?
3310                                        i40e_recv_pkts_vec_avx2 :
3311                                        i40e_recv_pkts_vec;
3312                        }
3313                }
3314#else /* RTE_ARCH_X86 */
3315                if (dev->data->scattered_rx) {
3316                        PMD_INIT_LOG(DEBUG,
3317                                     "Using Vector Scattered Rx (port %d).",
3318                                     dev->data->port_id);
3319                        dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec;
3320                } else {
3321                        PMD_INIT_LOG(DEBUG, "Using Vector Rx (port %d).",
3322                                     dev->data->port_id);
3323                        dev->rx_pkt_burst = i40e_recv_pkts_vec;
3324                }
3325#endif /* RTE_ARCH_X86 */
3326        } else if (!dev->data->scattered_rx && ad->rx_bulk_alloc_allowed) {
3327                PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
3328                                    "satisfied. Rx Burst Bulk Alloc function "
3329                                    "will be used on port=%d.",
3330                             dev->data->port_id);
3331
3332                dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
3333        } else {
3334                /* Simple Rx Path. */
3335                PMD_INIT_LOG(DEBUG, "Simple Rx path will be used on port=%d.",
3336                             dev->data->port_id);
3337                dev->rx_pkt_burst = dev->data->scattered_rx ?
3338                                        i40e_recv_scattered_pkts :
3339                                        i40e_recv_pkts;
3340        }
3341
3342        /* Propagate information about RX function choice through all queues. */
3343        if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3344                rx_using_sse =
3345                        (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
3346                         dev->rx_pkt_burst == i40e_recv_pkts_vec ||
3347#ifdef CC_AVX512_SUPPORT
3348                         dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx512 ||
3349                         dev->rx_pkt_burst == i40e_recv_pkts_vec_avx512 ||
3350#endif
3351                         dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 ||
3352                         dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2);
3353
3354                for (i = 0; i < dev->data->nb_rx_queues; i++) {
3355                        struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
3356
3357                        if (rxq)
3358                                rxq->rx_using_sse = rx_using_sse;
3359                }
3360        }
3361}
3362
3363static const struct {
3364        eth_rx_burst_t pkt_burst;
3365        const char *info;
3366} i40e_rx_burst_infos[] = {
3367        { i40e_recv_scattered_pkts,          "Scalar Scattered" },
3368        { i40e_recv_pkts_bulk_alloc,         "Scalar Bulk Alloc" },
3369        { i40e_recv_pkts,                    "Scalar" },
3370#ifdef RTE_ARCH_X86
3371#ifdef CC_AVX512_SUPPORT
3372        { i40e_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
3373        { i40e_recv_pkts_vec_avx512,           "Vector AVX512" },
3374#endif
3375        { i40e_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
3376        { i40e_recv_pkts_vec_avx2,           "Vector AVX2" },
3377        { i40e_recv_scattered_pkts_vec,      "Vector SSE Scattered" },
3378        { i40e_recv_pkts_vec,                "Vector SSE" },
3379#elif defined(RTE_ARCH_ARM64)
3380        { i40e_recv_scattered_pkts_vec,      "Vector Neon Scattered" },
3381        { i40e_recv_pkts_vec,                "Vector Neon" },
3382#elif defined(RTE_ARCH_PPC_64)
3383        { i40e_recv_scattered_pkts_vec,      "Vector AltiVec Scattered" },
3384        { i40e_recv_pkts_vec,                "Vector AltiVec" },
3385#endif
3386};
3387
3388int
3389i40e_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3390                       struct rte_eth_burst_mode *mode)
3391{
3392        eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
3393        int ret = -EINVAL;
3394        unsigned int i;
3395
3396        for (i = 0; i < RTE_DIM(i40e_rx_burst_infos); ++i) {
3397                if (pkt_burst == i40e_rx_burst_infos[i].pkt_burst) {
3398                        snprintf(mode->info, sizeof(mode->info), "%s",
3399                                 i40e_rx_burst_infos[i].info);
3400                        ret = 0;
3401                        break;
3402                }
3403        }
3404
3405        return ret;
3406}
3407
3408void __rte_cold
3409i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
3410{
3411        struct i40e_adapter *ad =
3412                I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3413
3414        /* Use a simple Tx queue if possible (only fast free is allowed) */
3415        ad->tx_simple_allowed =
3416                (txq->offloads ==
3417                 (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) &&
3418                 txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST);
3419        ad->tx_vec_allowed = (ad->tx_simple_allowed &&
3420                        txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ);
3421
3422        if (ad->tx_vec_allowed)
3423                PMD_INIT_LOG(DEBUG, "Vector Tx can be enabled on Tx queue %u.",
3424                                txq->queue_id);
3425        else if (ad->tx_simple_allowed)
3426                PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
3427                                txq->queue_id);
3428        else
3429                PMD_INIT_LOG(DEBUG,
3430                                "Neither simple nor vector Tx enabled on Tx queue %u\n",
3431                                txq->queue_id);
3432}
3433
3434void __rte_cold
3435i40e_set_tx_function(struct rte_eth_dev *dev)
3436{
3437        struct i40e_adapter *ad =
3438                I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3439        int i;
3440
3441        if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
3442#ifdef RTE_ARCH_X86
3443                ad->tx_use_avx2 = false;
3444                ad->tx_use_avx512 = false;
3445#endif
3446                if (ad->tx_vec_allowed) {
3447                        for (i = 0; i < dev->data->nb_tx_queues; i++) {
3448                                struct i40e_tx_queue *txq =
3449                                        dev->data->tx_queues[i];
3450
3451                                if (txq && i40e_txq_vec_setup(txq)) {
3452                                        ad->tx_vec_allowed = false;
3453                                        break;
3454                                }
3455                        }
3456#ifdef RTE_ARCH_X86
3457                        ad->tx_use_avx512 = get_avx_supported(1);
3458
3459                        if (!ad->tx_use_avx512)
3460                                ad->tx_use_avx2 = get_avx_supported(0);
3461#endif
3462                }
3463        }
3464
3465        if (ad->tx_simple_allowed) {
3466                if (ad->tx_vec_allowed &&
3467                    rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
3468#ifdef RTE_ARCH_X86
3469                        if (ad->tx_use_avx512) {
3470#ifdef CC_AVX512_SUPPORT
3471                                PMD_DRV_LOG(NOTICE, "Using AVX512 Vector Tx (port %d).",
3472                                            dev->data->port_id);
3473                                dev->tx_pkt_burst = i40e_xmit_pkts_vec_avx512;
3474#endif
3475                        } else {
3476                                PMD_INIT_LOG(DEBUG, "Using %sVector Tx (port %d).",
3477                                             ad->tx_use_avx2 ? "avx2 " : "",
3478                                             dev->data->port_id);
3479                                dev->tx_pkt_burst = ad->tx_use_avx2 ?
3480                                                    i40e_xmit_pkts_vec_avx2 :
3481                                                    i40e_xmit_pkts_vec;
3482                        }
3483#else /* RTE_ARCH_X86 */
3484                        PMD_INIT_LOG(DEBUG, "Using Vector Tx (port %d).",
3485                                     dev->data->port_id);
3486                        dev->tx_pkt_burst = i40e_xmit_pkts_vec;
3487#endif /* RTE_ARCH_X86 */
3488                } else {
3489                        PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
3490                        dev->tx_pkt_burst = i40e_xmit_pkts_simple;
3491                }
3492                dev->tx_pkt_prepare = i40e_simple_prep_pkts;
3493        } else {
3494                PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
3495                dev->tx_pkt_burst = i40e_xmit_pkts;
3496                dev->tx_pkt_prepare = i40e_prep_pkts;
3497        }
3498}
3499
3500static const struct {
3501        eth_tx_burst_t pkt_burst;
3502        const char *info;
3503} i40e_tx_burst_infos[] = {
3504        { i40e_xmit_pkts_simple,   "Scalar Simple" },
3505        { i40e_xmit_pkts,          "Scalar" },
3506#ifdef RTE_ARCH_X86
3507#ifdef CC_AVX512_SUPPORT
3508        { i40e_xmit_pkts_vec_avx512, "Vector AVX512" },
3509#endif
3510        { i40e_xmit_pkts_vec_avx2, "Vector AVX2" },
3511        { i40e_xmit_pkts_vec,      "Vector SSE" },
3512#elif defined(RTE_ARCH_ARM64)
3513        { i40e_xmit_pkts_vec,      "Vector Neon" },
3514#elif defined(RTE_ARCH_PPC_64)
3515        { i40e_xmit_pkts_vec,      "Vector AltiVec" },
3516#endif
3517};
3518
3519int
3520i40e_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
3521                       struct rte_eth_burst_mode *mode)
3522{
3523        eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
3524        int ret = -EINVAL;
3525        unsigned int i;
3526
3527        for (i = 0; i < RTE_DIM(i40e_tx_burst_infos); ++i) {
3528                if (pkt_burst == i40e_tx_burst_infos[i].pkt_burst) {
3529                        snprintf(mode->info, sizeof(mode->info), "%s",
3530                                 i40e_tx_burst_infos[i].info);
3531                        ret = 0;
3532                        break;
3533                }
3534        }
3535
3536        return ret;
3537}
3538
3539void __rte_cold
3540i40e_set_default_ptype_table(struct rte_eth_dev *dev)
3541{
3542        struct i40e_adapter *ad =
3543                I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3544        int i;
3545
3546        for (i = 0; i < I40E_MAX_PKT_TYPE; i++)
3547                ad->ptype_tbl[i] = i40e_get_default_pkt_type(i);
3548}
3549
3550void __rte_cold
3551i40e_set_default_pctype_table(struct rte_eth_dev *dev)
3552{
3553        struct i40e_adapter *ad =
3554                        I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3555        struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3556        int i;
3557
3558        for (i = 0; i < I40E_FLOW_TYPE_MAX; i++)
3559                ad->pctypes_tbl[i] = 0ULL;
3560        ad->flow_types_mask = 0ULL;
3561        ad->pctypes_mask = 0ULL;
3562
3563        ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV4] =
3564                                (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4);
3565        ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] =
3566                                (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
3567        ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] =
3568                                (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
3569        ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_SCTP] =
3570                                (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
3571        ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_OTHER] =
3572                                (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER);
3573        ad->pctypes_tbl[RTE_ETH_FLOW_FRAG_IPV6] =
3574                                (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6);
3575        ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] =
3576                                (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
3577        ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] =
3578                                (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
3579        ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_SCTP] =
3580                                (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
3581        ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_OTHER] =
3582                                (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER);
3583        ad->pctypes_tbl[RTE_ETH_FLOW_L2_PAYLOAD] =
3584                                (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD);
3585
3586        if (hw->mac.type == I40E_MAC_X722 ||
3587                hw->mac.type == I40E_MAC_X722_VF) {
3588                ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3589                        (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP);
3590                ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] |=
3591                        (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP);
3592                ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] |=
3593                        (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK);
3594                ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3595                        (1ULL << I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP);
3596                ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] |=
3597                        (1ULL << I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP);
3598                ad->pctypes_tbl[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] |=
3599                        (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK);
3600        }
3601
3602        for (i = 0; i < I40E_FLOW_TYPE_MAX; i++) {
3603                if (ad->pctypes_tbl[i])
3604                        ad->flow_types_mask |= (1ULL << i);
3605                ad->pctypes_mask |= ad->pctypes_tbl[i];
3606        }
3607}
3608
3609#ifndef CC_AVX2_SUPPORT
3610uint16_t
3611i40e_recv_pkts_vec_avx2(void __rte_unused *rx_queue,
3612                        struct rte_mbuf __rte_unused **rx_pkts,
3613                        uint16_t __rte_unused nb_pkts)
3614{
3615        return 0;
3616}
3617
3618uint16_t
3619i40e_recv_scattered_pkts_vec_avx2(void __rte_unused *rx_queue,
3620                        struct rte_mbuf __rte_unused **rx_pkts,
3621                        uint16_t __rte_unused nb_pkts)
3622{
3623        return 0;
3624}
3625
3626uint16_t
3627i40e_xmit_pkts_vec_avx2(void __rte_unused * tx_queue,
3628                          struct rte_mbuf __rte_unused **tx_pkts,
3629                          uint16_t __rte_unused nb_pkts)
3630{
3631        return 0;
3632}
3633#endif /* ifndef CC_AVX2_SUPPORT */
3634