linux/include/linux/dmaengine.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   4 */
   5#ifndef LINUX_DMAENGINE_H
   6#define LINUX_DMAENGINE_H
   7
   8#include <linux/device.h>
   9#include <linux/err.h>
  10#include <linux/uio.h>
  11#include <linux/bug.h>
  12#include <linux/scatterlist.h>
  13#include <linux/bitmap.h>
  14#include <linux/types.h>
  15#include <asm/page.h>
  16
  17/**
  18 * typedef dma_cookie_t - an opaque DMA cookie
  19 *
  20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  21 */
  22typedef s32 dma_cookie_t;
  23#define DMA_MIN_COOKIE  1
  24
  25static inline int dma_submit_error(dma_cookie_t cookie)
  26{
  27        return cookie < 0 ? cookie : 0;
  28}
  29
  30/**
  31 * enum dma_status - DMA transaction status
  32 * @DMA_COMPLETE: transaction completed
  33 * @DMA_IN_PROGRESS: transaction not yet processed
  34 * @DMA_PAUSED: transaction is paused
  35 * @DMA_ERROR: transaction failed
  36 */
  37enum dma_status {
  38        DMA_COMPLETE,
  39        DMA_IN_PROGRESS,
  40        DMA_PAUSED,
  41        DMA_ERROR,
  42        DMA_OUT_OF_ORDER,
  43};
  44
  45/**
  46 * enum dma_transaction_type - DMA transaction types/indexes
  47 *
  48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
  49 * automatically set as dma devices are registered.
  50 */
  51enum dma_transaction_type {
  52        DMA_MEMCPY,
  53        DMA_XOR,
  54        DMA_PQ,
  55        DMA_XOR_VAL,
  56        DMA_PQ_VAL,
  57        DMA_MEMSET,
  58        DMA_MEMSET_SG,
  59        DMA_INTERRUPT,
  60        DMA_PRIVATE,
  61        DMA_ASYNC_TX,
  62        DMA_SLAVE,
  63        DMA_CYCLIC,
  64        DMA_INTERLEAVE,
  65        DMA_COMPLETION_NO_ORDER,
  66        DMA_REPEAT,
  67        DMA_LOAD_EOT,
  68/* last transaction type for creation of the capabilities mask */
  69        DMA_TX_TYPE_END,
  70};
  71
  72/**
  73 * enum dma_transfer_direction - dma transfer mode and direction indicator
  74 * @DMA_MEM_TO_MEM: Async/Memcpy mode
  75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  78 */
  79enum dma_transfer_direction {
  80        DMA_MEM_TO_MEM,
  81        DMA_MEM_TO_DEV,
  82        DMA_DEV_TO_MEM,
  83        DMA_DEV_TO_DEV,
  84        DMA_TRANS_NONE,
  85};
  86
  87/**
  88 * Interleaved Transfer Request
  89 * ----------------------------
  90 * A chunk is collection of contiguous bytes to be transferred.
  91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
  92 * ICGs may or may not change between chunks.
  93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
  94 *  that when repeated an integral number of times, specifies the transfer.
  95 * A transfer template is specification of a Frame, the number of times
  96 *  it is to be repeated and other per-transfer attributes.
  97 *
  98 * Practically, a client driver would have ready a template for each
  99 *  type of transfer it is going to need during its lifetime and
 100 *  set only 'src_start' and 'dst_start' before submitting the requests.
 101 *
 102 *
 103 *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
 104 *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
 105 *
 106 *    ==  Chunk size
 107 *    ... ICG
 108 */
 109
 110/**
 111 * struct data_chunk - Element of scatter-gather list that makes a frame.
 112 * @size: Number of bytes to read from source.
 113 *        size_dst := fn(op, size_src), so doesn't mean much for destination.
 114 * @icg: Number of bytes to jump after last src/dst address of this
 115 *       chunk and before first src/dst address for next chunk.
 116 *       Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
 117 *       Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
 118 * @dst_icg: Number of bytes to jump after last dst address of this
 119 *       chunk and before the first dst address for next chunk.
 120 *       Ignored if dst_inc is true and dst_sgl is false.
 121 * @src_icg: Number of bytes to jump after last src address of this
 122 *       chunk and before the first src address for next chunk.
 123 *       Ignored if src_inc is true and src_sgl is false.
 124 */
 125struct data_chunk {
 126        size_t size;
 127        size_t icg;
 128        size_t dst_icg;
 129        size_t src_icg;
 130};
 131
 132/**
 133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
 134 *       and attributes.
 135 * @src_start: Bus address of source for the first chunk.
 136 * @dst_start: Bus address of destination for the first chunk.
 137 * @dir: Specifies the type of Source and Destination.
 138 * @src_inc: If the source address increments after reading from it.
 139 * @dst_inc: If the destination address increments after writing to it.
 140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
 141 *              Otherwise, source is read contiguously (icg ignored).
 142 *              Ignored if src_inc is false.
 143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
 144 *              Otherwise, destination is filled contiguously (icg ignored).
 145 *              Ignored if dst_inc is false.
 146 * @numf: Number of frames in this template.
 147 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
 148 * @sgl: Array of {chunk,icg} pairs that make up a frame.
 149 */
 150struct dma_interleaved_template {
 151        dma_addr_t src_start;
 152        dma_addr_t dst_start;
 153        enum dma_transfer_direction dir;
 154        bool src_inc;
 155        bool dst_inc;
 156        bool src_sgl;
 157        bool dst_sgl;
 158        size_t numf;
 159        size_t frame_size;
 160        struct data_chunk sgl[];
 161};
 162
 163/**
 164 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
 165 *  control completion, and communicate status.
 166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
 167 *  this transaction
 168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
 169 *  acknowledges receipt, i.e. has a chance to establish any dependency
 170 *  chains
 171 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
 172 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
 173 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
 174 *  sources that were the result of a previous operation, in the case of a PQ
 175 *  operation it continues the calculation with new sources
 176 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
 177 *  on the result of this operation
 178 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
 179 *  cleared or freed
 180 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
 181 *  data and the descriptor should be in different format from normal
 182 *  data descriptors.
 183 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
 184 *  repeated when it ends until a transaction is issued on the same channel
 185 *  with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
 186 *  interleaved transactions and is ignored for all other transaction types.
 187 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
 188 *  active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
 189 *  repeated transaction ends. Not setting this flag when the previously queued
 190 *  transaction is marked with DMA_PREP_REPEAT will cause the new transaction
 191 *  to never be processed and stay in the issued queue forever. The flag is
 192 *  ignored if the previous transaction is not a repeated transaction.
 193 */
 194enum dma_ctrl_flags {
 195        DMA_PREP_INTERRUPT = (1 << 0),
 196        DMA_CTRL_ACK = (1 << 1),
 197        DMA_PREP_PQ_DISABLE_P = (1 << 2),
 198        DMA_PREP_PQ_DISABLE_Q = (1 << 3),
 199        DMA_PREP_CONTINUE = (1 << 4),
 200        DMA_PREP_FENCE = (1 << 5),
 201        DMA_CTRL_REUSE = (1 << 6),
 202        DMA_PREP_CMD = (1 << 7),
 203        DMA_PREP_REPEAT = (1 << 8),
 204        DMA_PREP_LOAD_EOT = (1 << 9),
 205};
 206
 207/**
 208 * enum sum_check_bits - bit position of pq_check_flags
 209 */
 210enum sum_check_bits {
 211        SUM_CHECK_P = 0,
 212        SUM_CHECK_Q = 1,
 213};
 214
 215/**
 216 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
 217 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
 218 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
 219 */
 220enum sum_check_flags {
 221        SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
 222        SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
 223};
 224
 225
 226/**
 227 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
 228 * See linux/cpumask.h
 229 */
 230typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
 231
 232/**
 233 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
 234 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
 235 *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
 236 *  helper) to the descriptor.
 237 *
 238 * Client drivers interested to use this mode can follow:
 239 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
 240 *   1. prepare the descriptor (dmaengine_prep_*)
 241 *      construct the metadata in the client's buffer
 242 *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
 243 *      descriptor
 244 *   3. submit the transfer
 245 * - DMA_DEV_TO_MEM:
 246 *   1. prepare the descriptor (dmaengine_prep_*)
 247 *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
 248 *      descriptor
 249 *   3. submit the transfer
 250 *   4. when the transfer is completed, the metadata should be available in the
 251 *      attached buffer
 252 *
 253 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
 254 *  driver. The client driver can ask for the pointer, maximum size and the
 255 *  currently used size of the metadata and can directly update or read it.
 256 *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
 257 *  provided as helper functions.
 258 *
 259 *  Note: the metadata area for the descriptor is no longer valid after the
 260 *  transfer has been completed (valid up to the point when the completion
 261 *  callback returns if used).
 262 *
 263 * Client drivers interested to use this mode can follow:
 264 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
 265 *   1. prepare the descriptor (dmaengine_prep_*)
 266 *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
 267 *      metadata area
 268 *   3. update the metadata at the pointer
 269 *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
 270 *      of data the client has placed into the metadata buffer
 271 *   5. submit the transfer
 272 * - DMA_DEV_TO_MEM:
 273 *   1. prepare the descriptor (dmaengine_prep_*)
 274 *   2. submit the transfer
 275 *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
 276 *      pointer to the engine's metadata area
 277 *   4. Read out the metadata from the pointer
 278 *
 279 * Note: the two mode is not compatible and clients must use one mode for a
 280 * descriptor.
 281 */
 282enum dma_desc_metadata_mode {
 283        DESC_METADATA_NONE = 0,
 284        DESC_METADATA_CLIENT = BIT(0),
 285        DESC_METADATA_ENGINE = BIT(1),
 286};
 287
 288/**
 289 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
 290 * @memcpy_count: transaction counter
 291 * @bytes_transferred: byte counter
 292 */
 293struct dma_chan_percpu {
 294        /* stats */
 295        unsigned long memcpy_count;
 296        unsigned long bytes_transferred;
 297};
 298
 299/**
 300 * struct dma_router - DMA router structure
 301 * @dev: pointer to the DMA router device
 302 * @route_free: function to be called when the route can be disconnected
 303 */
 304struct dma_router {
 305        struct device *dev;
 306        void (*route_free)(struct device *dev, void *route_data);
 307};
 308
 309/**
 310 * struct dma_chan - devices supply DMA channels, clients use them
 311 * @device: ptr to the dma device who supplies this channel, always !%NULL
 312 * @slave: ptr to the device using this channel
 313 * @cookie: last cookie value returned to client
 314 * @completed_cookie: last completed cookie for this channel
 315 * @chan_id: channel ID for sysfs
 316 * @dev: class device for sysfs
 317 * @name: backlink name for sysfs
 318 * @dbg_client_name: slave name for debugfs in format:
 319 *      dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
 320 * @device_node: used to add this to the device chan list
 321 * @local: per-cpu pointer to a struct dma_chan_percpu
 322 * @client_count: how many clients are using this channel
 323 * @table_count: number of appearances in the mem-to-mem allocation table
 324 * @router: pointer to the DMA router structure
 325 * @route_data: channel specific data for the router
 326 * @private: private data for certain client-channel associations
 327 */
 328struct dma_chan {
 329        struct dma_device *device;
 330        struct device *slave;
 331        dma_cookie_t cookie;
 332        dma_cookie_t completed_cookie;
 333
 334        /* sysfs */
 335        int chan_id;
 336        struct dma_chan_dev *dev;
 337        const char *name;
 338#ifdef CONFIG_DEBUG_FS
 339        char *dbg_client_name;
 340#endif
 341
 342        struct list_head device_node;
 343        struct dma_chan_percpu __percpu *local;
 344        int client_count;
 345        int table_count;
 346
 347        /* DMA router */
 348        struct dma_router *router;
 349        void *route_data;
 350
 351        void *private;
 352};
 353
 354/**
 355 * struct dma_chan_dev - relate sysfs device node to backing channel device
 356 * @chan: driver channel device
 357 * @device: sysfs device
 358 * @dev_id: parent dma_device dev_id
 359 * @chan_dma_dev: The channel is using custom/different dma-mapping
 360 * compared to the parent dma_device
 361 */
 362struct dma_chan_dev {
 363        struct dma_chan *chan;
 364        struct device device;
 365        int dev_id;
 366        bool chan_dma_dev;
 367};
 368
 369/**
 370 * enum dma_slave_buswidth - defines bus width of the DMA slave
 371 * device, source or target buses
 372 */
 373enum dma_slave_buswidth {
 374        DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
 375        DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
 376        DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
 377        DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
 378        DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
 379        DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
 380        DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
 381        DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
 382        DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
 383        DMA_SLAVE_BUSWIDTH_128_BYTES = 128,
 384};
 385
 386/**
 387 * struct dma_slave_config - dma slave channel runtime config
 388 * @direction: whether the data shall go in or out on this slave
 389 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
 390 * legal values. DEPRECATED, drivers should use the direction argument
 391 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
 392 * the dir field in the dma_interleaved_template structure.
 393 * @src_addr: this is the physical address where DMA slave data
 394 * should be read (RX), if the source is memory this argument is
 395 * ignored.
 396 * @dst_addr: this is the physical address where DMA slave data
 397 * should be written (TX), if the source is memory this argument
 398 * is ignored.
 399 * @src_addr_width: this is the width in bytes of the source (RX)
 400 * register where DMA data shall be read. If the source
 401 * is memory this may be ignored depending on architecture.
 402 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128.
 403 * @dst_addr_width: same as src_addr_width but for destination
 404 * target (TX) mutatis mutandis.
 405 * @src_maxburst: the maximum number of words (note: words, as in
 406 * units of the src_addr_width member, not bytes) that can be sent
 407 * in one burst to the device. Typically something like half the
 408 * FIFO depth on I/O peripherals so you don't overflow it. This
 409 * may or may not be applicable on memory sources.
 410 * @dst_maxburst: same as src_maxburst but for destination target
 411 * mutatis mutandis.
 412 * @src_port_window_size: The length of the register area in words the data need
 413 * to be accessed on the device side. It is only used for devices which is using
 414 * an area instead of a single register to receive the data. Typically the DMA
 415 * loops in this area in order to transfer the data.
 416 * @dst_port_window_size: same as src_port_window_size but for the destination
 417 * port.
 418 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
 419 * with 'true' if peripheral should be flow controller. Direction will be
 420 * selected at Runtime.
 421 * @slave_id: Slave requester id. Only valid for slave channels. The dma
 422 * slave peripheral will have unique id as dma requester which need to be
 423 * pass as slave config.
 424 * @peripheral_config: peripheral configuration for programming peripheral
 425 * for dmaengine transfer
 426 * @peripheral_size: peripheral configuration buffer size
 427 *
 428 * This struct is passed in as configuration data to a DMA engine
 429 * in order to set up a certain channel for DMA transport at runtime.
 430 * The DMA device/engine has to provide support for an additional
 431 * callback in the dma_device structure, device_config and this struct
 432 * will then be passed in as an argument to the function.
 433 *
 434 * The rationale for adding configuration information to this struct is as
 435 * follows: if it is likely that more than one DMA slave controllers in
 436 * the world will support the configuration option, then make it generic.
 437 * If not: if it is fixed so that it be sent in static from the platform
 438 * data, then prefer to do that.
 439 */
 440struct dma_slave_config {
 441        enum dma_transfer_direction direction;
 442        phys_addr_t src_addr;
 443        phys_addr_t dst_addr;
 444        enum dma_slave_buswidth src_addr_width;
 445        enum dma_slave_buswidth dst_addr_width;
 446        u32 src_maxburst;
 447        u32 dst_maxburst;
 448        u32 src_port_window_size;
 449        u32 dst_port_window_size;
 450        bool device_fc;
 451        unsigned int slave_id;
 452        void *peripheral_config;
 453        size_t peripheral_size;
 454};
 455
 456/**
 457 * enum dma_residue_granularity - Granularity of the reported transfer residue
 458 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
 459 *  DMA channel is only able to tell whether a descriptor has been completed or
 460 *  not, which means residue reporting is not supported by this channel. The
 461 *  residue field of the dma_tx_state field will always be 0.
 462 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
 463 *  completed segment of the transfer (For cyclic transfers this is after each
 464 *  period). This is typically implemented by having the hardware generate an
 465 *  interrupt after each transferred segment and then the drivers updates the
 466 *  outstanding residue by the size of the segment. Another possibility is if
 467 *  the hardware supports scatter-gather and the segment descriptor has a field
 468 *  which gets set after the segment has been completed. The driver then counts
 469 *  the number of segments without the flag set to compute the residue.
 470 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
 471 *  burst. This is typically only supported if the hardware has a progress
 472 *  register of some sort (E.g. a register with the current read/write address
 473 *  or a register with the amount of bursts/beats/bytes that have been
 474 *  transferred or still need to be transferred).
 475 */
 476enum dma_residue_granularity {
 477        DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
 478        DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
 479        DMA_RESIDUE_GRANULARITY_BURST = 2,
 480};
 481
 482/**
 483 * struct dma_slave_caps - expose capabilities of a slave channel only
 484 * @src_addr_widths: bit mask of src addr widths the channel supports.
 485 *      Width is specified in bytes, e.g. for a channel supporting
 486 *      a width of 4 the mask should have BIT(4) set.
 487 * @dst_addr_widths: bit mask of dst addr widths the channel supports
 488 * @directions: bit mask of slave directions the channel supports.
 489 *      Since the enum dma_transfer_direction is not defined as bit flag for
 490 *      each type, the dma controller should set BIT(<TYPE>) and same
 491 *      should be checked by controller as well
 492 * @min_burst: min burst capability per-transfer
 493 * @max_burst: max burst capability per-transfer
 494 * @max_sg_burst: max number of SG list entries executed in a single burst
 495 *      DMA tansaction with no software intervention for reinitialization.
 496 *      Zero value means unlimited number of entries.
 497 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
 498 *             for resume later)
 499 * @cmd_resume: true, if resume is supported
 500 * @cmd_terminate: true, if terminate cmd is supported
 501 * @residue_granularity: granularity of the reported transfer residue
 502 * @descriptor_reuse: if a descriptor can be reused by client and
 503 * resubmitted multiple times
 504 */
 505struct dma_slave_caps {
 506        u32 src_addr_widths;
 507        u32 dst_addr_widths;
 508        u32 directions;
 509        u32 min_burst;
 510        u32 max_burst;
 511        u32 max_sg_burst;
 512        bool cmd_pause;
 513        bool cmd_resume;
 514        bool cmd_terminate;
 515        enum dma_residue_granularity residue_granularity;
 516        bool descriptor_reuse;
 517};
 518
 519static inline const char *dma_chan_name(struct dma_chan *chan)
 520{
 521        return dev_name(&chan->dev->device);
 522}
 523
 524void dma_chan_cleanup(struct kref *kref);
 525
 526/**
 527 * typedef dma_filter_fn - callback filter for dma_request_channel
 528 * @chan: channel to be reviewed
 529 * @filter_param: opaque parameter passed through dma_request_channel
 530 *
 531 * When this optional parameter is specified in a call to dma_request_channel a
 532 * suitable channel is passed to this routine for further dispositioning before
 533 * being returned.  Where 'suitable' indicates a non-busy channel that
 534 * satisfies the given capability mask.  It returns 'true' to indicate that the
 535 * channel is suitable.
 536 */
 537typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
 538
 539typedef void (*dma_async_tx_callback)(void *dma_async_param);
 540
 541enum dmaengine_tx_result {
 542        DMA_TRANS_NOERROR = 0,          /* SUCCESS */
 543        DMA_TRANS_READ_FAILED,          /* Source DMA read failed */
 544        DMA_TRANS_WRITE_FAILED,         /* Destination DMA write failed */
 545        DMA_TRANS_ABORTED,              /* Op never submitted / aborted */
 546};
 547
 548struct dmaengine_result {
 549        enum dmaengine_tx_result result;
 550        u32 residue;
 551};
 552
 553typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
 554                                const struct dmaengine_result *result);
 555
 556struct dmaengine_unmap_data {
 557#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
 558        u16 map_cnt;
 559#else
 560        u8 map_cnt;
 561#endif
 562        u8 to_cnt;
 563        u8 from_cnt;
 564        u8 bidi_cnt;
 565        struct device *dev;
 566        struct kref kref;
 567        size_t len;
 568        dma_addr_t addr[];
 569};
 570
 571struct dma_async_tx_descriptor;
 572
 573struct dma_descriptor_metadata_ops {
 574        int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
 575                      size_t len);
 576
 577        void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
 578                         size_t *payload_len, size_t *max_len);
 579        int (*set_len)(struct dma_async_tx_descriptor *desc,
 580                       size_t payload_len);
 581};
 582
 583/**
 584 * struct dma_async_tx_descriptor - async transaction descriptor
 585 * ---dma generic offload fields---
 586 * @cookie: tracking cookie for this transaction, set to -EBUSY if
 587 *      this tx is sitting on a dependency list
 588 * @flags: flags to augment operation preparation, control completion, and
 589 *      communicate status
 590 * @phys: physical address of the descriptor
 591 * @chan: target channel for this operation
 592 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
 593 * descriptor pending. To be pushed on .issue_pending() call
 594 * @callback: routine to call after this operation is complete
 595 * @callback_param: general parameter to pass to the callback routine
 596 * @desc_metadata_mode: core managed metadata mode to protect mixed use of
 597 *      DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
 598 *      DESC_METADATA_NONE
 599 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
 600 *      DMA driver if metadata mode is supported with the descriptor
 601 * ---async_tx api specific fields---
 602 * @next: at completion submit this descriptor
 603 * @parent: pointer to the next level up in the dependency chain
 604 * @lock: protect the parent and next pointers
 605 */
 606struct dma_async_tx_descriptor {
 607        dma_cookie_t cookie;
 608        enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
 609        dma_addr_t phys;
 610        struct dma_chan *chan;
 611        dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
 612        int (*desc_free)(struct dma_async_tx_descriptor *tx);
 613        dma_async_tx_callback callback;
 614        dma_async_tx_callback_result callback_result;
 615        void *callback_param;
 616        struct dmaengine_unmap_data *unmap;
 617        enum dma_desc_metadata_mode desc_metadata_mode;
 618        struct dma_descriptor_metadata_ops *metadata_ops;
 619#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 620        struct dma_async_tx_descriptor *next;
 621        struct dma_async_tx_descriptor *parent;
 622        spinlock_t lock;
 623#endif
 624};
 625
 626#ifdef CONFIG_DMA_ENGINE
 627static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 628                                 struct dmaengine_unmap_data *unmap)
 629{
 630        kref_get(&unmap->kref);
 631        tx->unmap = unmap;
 632}
 633
 634struct dmaengine_unmap_data *
 635dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
 636void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
 637#else
 638static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 639                                 struct dmaengine_unmap_data *unmap)
 640{
 641}
 642static inline struct dmaengine_unmap_data *
 643dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
 644{
 645        return NULL;
 646}
 647static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
 648{
 649}
 650#endif
 651
 652static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
 653{
 654        if (!tx->unmap)
 655                return;
 656
 657        dmaengine_unmap_put(tx->unmap);
 658        tx->unmap = NULL;
 659}
 660
 661#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 662static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 663{
 664}
 665static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 666{
 667}
 668static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 669{
 670        BUG();
 671}
 672static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 673{
 674}
 675static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 676{
 677}
 678static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 679{
 680        return NULL;
 681}
 682static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 683{
 684        return NULL;
 685}
 686
 687#else
 688static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 689{
 690        spin_lock_bh(&txd->lock);
 691}
 692static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 693{
 694        spin_unlock_bh(&txd->lock);
 695}
 696static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 697{
 698        txd->next = next;
 699        next->parent = txd;
 700}
 701static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 702{
 703        txd->parent = NULL;
 704}
 705static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 706{
 707        txd->next = NULL;
 708}
 709static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 710{
 711        return txd->parent;
 712}
 713static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 714{
 715        return txd->next;
 716}
 717#endif
 718
 719/**
 720 * struct dma_tx_state - filled in to report the status of
 721 * a transfer.
 722 * @last: last completed DMA cookie
 723 * @used: last issued DMA cookie (i.e. the one in progress)
 724 * @residue: the remaining number of bytes left to transmit
 725 *      on the selected transfer for states DMA_IN_PROGRESS and
 726 *      DMA_PAUSED if this is implemented in the driver, else 0
 727 * @in_flight_bytes: amount of data in bytes cached by the DMA.
 728 */
 729struct dma_tx_state {
 730        dma_cookie_t last;
 731        dma_cookie_t used;
 732        u32 residue;
 733        u32 in_flight_bytes;
 734};
 735
 736/**
 737 * enum dmaengine_alignment - defines alignment of the DMA async tx
 738 * buffers
 739 */
 740enum dmaengine_alignment {
 741        DMAENGINE_ALIGN_1_BYTE = 0,
 742        DMAENGINE_ALIGN_2_BYTES = 1,
 743        DMAENGINE_ALIGN_4_BYTES = 2,
 744        DMAENGINE_ALIGN_8_BYTES = 3,
 745        DMAENGINE_ALIGN_16_BYTES = 4,
 746        DMAENGINE_ALIGN_32_BYTES = 5,
 747        DMAENGINE_ALIGN_64_BYTES = 6,
 748        DMAENGINE_ALIGN_128_BYTES = 7,
 749        DMAENGINE_ALIGN_256_BYTES = 8,
 750};
 751
 752/**
 753 * struct dma_slave_map - associates slave device and it's slave channel with
 754 * parameter to be used by a filter function
 755 * @devname: name of the device
 756 * @slave: slave channel name
 757 * @param: opaque parameter to pass to struct dma_filter.fn
 758 */
 759struct dma_slave_map {
 760        const char *devname;
 761        const char *slave;
 762        void *param;
 763};
 764
 765/**
 766 * struct dma_filter - information for slave device/channel to filter_fn/param
 767 * mapping
 768 * @fn: filter function callback
 769 * @mapcnt: number of slave device/channel in the map
 770 * @map: array of channel to filter mapping data
 771 */
 772struct dma_filter {
 773        dma_filter_fn fn;
 774        int mapcnt;
 775        const struct dma_slave_map *map;
 776};
 777
 778/**
 779 * struct dma_device - info on the entity supplying DMA services
 780 * @chancnt: how many DMA channels are supported
 781 * @privatecnt: how many DMA channels are requested by dma_request_channel
 782 * @channels: the list of struct dma_chan
 783 * @global_node: list_head for global dma_device_list
 784 * @filter: information for device/slave to filter function/param mapping
 785 * @cap_mask: one or more dma_capability flags
 786 * @desc_metadata_modes: supported metadata modes by the DMA device
 787 * @max_xor: maximum number of xor sources, 0 if no capability
 788 * @max_pq: maximum number of PQ sources and PQ-continue capability
 789 * @copy_align: alignment shift for memcpy operations
 790 * @xor_align: alignment shift for xor operations
 791 * @pq_align: alignment shift for pq operations
 792 * @fill_align: alignment shift for memset operations
 793 * @dev_id: unique device ID
 794 * @dev: struct device reference for dma mapping api
 795 * @owner: owner module (automatically set based on the provided dev)
 796 * @src_addr_widths: bit mask of src addr widths the device supports
 797 *      Width is specified in bytes, e.g. for a device supporting
 798 *      a width of 4 the mask should have BIT(4) set.
 799 * @dst_addr_widths: bit mask of dst addr widths the device supports
 800 * @directions: bit mask of slave directions the device supports.
 801 *      Since the enum dma_transfer_direction is not defined as bit flag for
 802 *      each type, the dma controller should set BIT(<TYPE>) and same
 803 *      should be checked by controller as well
 804 * @min_burst: min burst capability per-transfer
 805 * @max_burst: max burst capability per-transfer
 806 * @max_sg_burst: max number of SG list entries executed in a single burst
 807 *      DMA tansaction with no software intervention for reinitialization.
 808 *      Zero value means unlimited number of entries.
 809 * @residue_granularity: granularity of the transfer residue reported
 810 *      by tx_status
 811 * @device_alloc_chan_resources: allocate resources and return the
 812 *      number of allocated descriptors
 813 * @device_router_config: optional callback for DMA router configuration
 814 * @device_free_chan_resources: release DMA channel's resources
 815 * @device_prep_dma_memcpy: prepares a memcpy operation
 816 * @device_prep_dma_xor: prepares a xor operation
 817 * @device_prep_dma_xor_val: prepares a xor validation operation
 818 * @device_prep_dma_pq: prepares a pq operation
 819 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
 820 * @device_prep_dma_memset: prepares a memset operation
 821 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
 822 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
 823 * @device_prep_slave_sg: prepares a slave dma operation
 824 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
 825 *      The function takes a buffer of size buf_len. The callback function will
 826 *      be called after period_len bytes have been transferred.
 827 * @device_prep_interleaved_dma: Transfer expression in a generic way.
 828 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
 829 * @device_caps: May be used to override the generic DMA slave capabilities
 830 *      with per-channel specific ones
 831 * @device_config: Pushes a new configuration to a channel, return 0 or an error
 832 *      code
 833 * @device_pause: Pauses any transfer happening on a channel. Returns
 834 *      0 or an error code
 835 * @device_resume: Resumes any transfer on a channel previously
 836 *      paused. Returns 0 or an error code
 837 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
 838 *      or an error code
 839 * @device_synchronize: Synchronizes the termination of a transfers to the
 840 *  current context.
 841 * @device_tx_status: poll for transaction completion, the optional
 842 *      txstate parameter can be supplied with a pointer to get a
 843 *      struct with auxiliary transfer status information, otherwise the call
 844 *      will just return a simple status code
 845 * @device_issue_pending: push pending transactions to hardware
 846 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
 847 * @device_release: called sometime atfer dma_async_device_unregister() is
 848 *     called and there are no further references to this structure. This
 849 *     must be implemented to free resources however many existing drivers
 850 *     do not and are therefore not safe to unbind while in use.
 851 * @dbg_summary_show: optional routine to show contents in debugfs; default code
 852 *     will be used when this is omitted, but custom code can show extra,
 853 *     controller specific information.
 854 */
 855struct dma_device {
 856        struct kref ref;
 857        unsigned int chancnt;
 858        unsigned int privatecnt;
 859        struct list_head channels;
 860        struct list_head global_node;
 861        struct dma_filter filter;
 862        dma_cap_mask_t  cap_mask;
 863        enum dma_desc_metadata_mode desc_metadata_modes;
 864        unsigned short max_xor;
 865        unsigned short max_pq;
 866        enum dmaengine_alignment copy_align;
 867        enum dmaengine_alignment xor_align;
 868        enum dmaengine_alignment pq_align;
 869        enum dmaengine_alignment fill_align;
 870        #define DMA_HAS_PQ_CONTINUE (1 << 15)
 871
 872        int dev_id;
 873        struct device *dev;
 874        struct module *owner;
 875        struct ida chan_ida;
 876        struct mutex chan_mutex;        /* to protect chan_ida */
 877
 878        u32 src_addr_widths;
 879        u32 dst_addr_widths;
 880        u32 directions;
 881        u32 min_burst;
 882        u32 max_burst;
 883        u32 max_sg_burst;
 884        bool descriptor_reuse;
 885        enum dma_residue_granularity residue_granularity;
 886
 887        int (*device_alloc_chan_resources)(struct dma_chan *chan);
 888        int (*device_router_config)(struct dma_chan *chan);
 889        void (*device_free_chan_resources)(struct dma_chan *chan);
 890
 891        struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
 892                struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
 893                size_t len, unsigned long flags);
 894        struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
 895                struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
 896                unsigned int src_cnt, size_t len, unsigned long flags);
 897        struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
 898                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
 899                size_t len, enum sum_check_flags *result, unsigned long flags);
 900        struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
 901                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
 902                unsigned int src_cnt, const unsigned char *scf,
 903                size_t len, unsigned long flags);
 904        struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
 905                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
 906                unsigned int src_cnt, const unsigned char *scf, size_t len,
 907                enum sum_check_flags *pqres, unsigned long flags);
 908        struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
 909                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 910                unsigned long flags);
 911        struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
 912                struct dma_chan *chan, struct scatterlist *sg,
 913                unsigned int nents, int value, unsigned long flags);
 914        struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
 915                struct dma_chan *chan, unsigned long flags);
 916
 917        struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
 918                struct dma_chan *chan, struct scatterlist *sgl,
 919                unsigned int sg_len, enum dma_transfer_direction direction,
 920                unsigned long flags, void *context);
 921        struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
 922                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 923                size_t period_len, enum dma_transfer_direction direction,
 924                unsigned long flags);
 925        struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
 926                struct dma_chan *chan, struct dma_interleaved_template *xt,
 927                unsigned long flags);
 928        struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
 929                struct dma_chan *chan, dma_addr_t dst, u64 data,
 930                unsigned long flags);
 931
 932        void (*device_caps)(struct dma_chan *chan,
 933                            struct dma_slave_caps *caps);
 934        int (*device_config)(struct dma_chan *chan,
 935                             struct dma_slave_config *config);
 936        int (*device_pause)(struct dma_chan *chan);
 937        int (*device_resume)(struct dma_chan *chan);
 938        int (*device_terminate_all)(struct dma_chan *chan);
 939        void (*device_synchronize)(struct dma_chan *chan);
 940
 941        enum dma_status (*device_tx_status)(struct dma_chan *chan,
 942                                            dma_cookie_t cookie,
 943                                            struct dma_tx_state *txstate);
 944        void (*device_issue_pending)(struct dma_chan *chan);
 945        void (*device_release)(struct dma_device *dev);
 946        /* debugfs support */
 947#ifdef CONFIG_DEBUG_FS
 948        void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
 949        struct dentry *dbg_dev_root;
 950#endif
 951};
 952
 953static inline int dmaengine_slave_config(struct dma_chan *chan,
 954                                          struct dma_slave_config *config)
 955{
 956        if (chan->device->device_config)
 957                return chan->device->device_config(chan, config);
 958
 959        return -ENOSYS;
 960}
 961
 962static inline bool is_slave_direction(enum dma_transfer_direction direction)
 963{
 964        return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
 965}
 966
 967static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
 968        struct dma_chan *chan, dma_addr_t buf, size_t len,
 969        enum dma_transfer_direction dir, unsigned long flags)
 970{
 971        struct scatterlist sg;
 972        sg_init_table(&sg, 1);
 973        sg_dma_address(&sg) = buf;
 974        sg_dma_len(&sg) = len;
 975
 976        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 977                return NULL;
 978
 979        return chan->device->device_prep_slave_sg(chan, &sg, 1,
 980                                                  dir, flags, NULL);
 981}
 982
 983static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
 984        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 985        enum dma_transfer_direction dir, unsigned long flags)
 986{
 987        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 988                return NULL;
 989
 990        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 991                                                  dir, flags, NULL);
 992}
 993
 994#ifdef CONFIG_RAPIDIO_DMA_ENGINE
 995struct rio_dma_ext;
 996static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
 997        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 998        enum dma_transfer_direction dir, unsigned long flags,
 999        struct rio_dma_ext *rio_ext)
1000{
1001        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1002                return NULL;
1003
1004        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1005                                                  dir, flags, rio_ext);
1006}
1007#endif
1008
1009static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1010                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1011                size_t period_len, enum dma_transfer_direction dir,
1012                unsigned long flags)
1013{
1014        if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1015                return NULL;
1016
1017        return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1018                                                period_len, dir, flags);
1019}
1020
1021static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1022                struct dma_chan *chan, struct dma_interleaved_template *xt,
1023                unsigned long flags)
1024{
1025        if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1026                return NULL;
1027        if (flags & DMA_PREP_REPEAT &&
1028            !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1029                return NULL;
1030
1031        return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1032}
1033
1034static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1035                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1036                unsigned long flags)
1037{
1038        if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1039                return NULL;
1040
1041        return chan->device->device_prep_dma_memset(chan, dest, value,
1042                                                    len, flags);
1043}
1044
1045static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1046                struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1047                size_t len, unsigned long flags)
1048{
1049        if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1050                return NULL;
1051
1052        return chan->device->device_prep_dma_memcpy(chan, dest, src,
1053                                                    len, flags);
1054}
1055
1056static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1057                enum dma_desc_metadata_mode mode)
1058{
1059        if (!chan)
1060                return false;
1061
1062        return !!(chan->device->desc_metadata_modes & mode);
1063}
1064
1065#ifdef CONFIG_DMA_ENGINE
1066int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1067                                   void *data, size_t len);
1068void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1069                                      size_t *payload_len, size_t *max_len);
1070int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1071                                    size_t payload_len);
1072#else /* CONFIG_DMA_ENGINE */
1073static inline int dmaengine_desc_attach_metadata(
1074                struct dma_async_tx_descriptor *desc, void *data, size_t len)
1075{
1076        return -EINVAL;
1077}
1078static inline void *dmaengine_desc_get_metadata_ptr(
1079                struct dma_async_tx_descriptor *desc, size_t *payload_len,
1080                size_t *max_len)
1081{
1082        return NULL;
1083}
1084static inline int dmaengine_desc_set_metadata_len(
1085                struct dma_async_tx_descriptor *desc, size_t payload_len)
1086{
1087        return -EINVAL;
1088}
1089#endif /* CONFIG_DMA_ENGINE */
1090
1091/**
1092 * dmaengine_terminate_all() - Terminate all active DMA transfers
1093 * @chan: The channel for which to terminate the transfers
1094 *
1095 * This function is DEPRECATED use either dmaengine_terminate_sync() or
1096 * dmaengine_terminate_async() instead.
1097 */
1098static inline int dmaengine_terminate_all(struct dma_chan *chan)
1099{
1100        if (chan->device->device_terminate_all)
1101                return chan->device->device_terminate_all(chan);
1102
1103        return -ENOSYS;
1104}
1105
1106/**
1107 * dmaengine_terminate_async() - Terminate all active DMA transfers
1108 * @chan: The channel for which to terminate the transfers
1109 *
1110 * Calling this function will terminate all active and pending descriptors
1111 * that have previously been submitted to the channel. It is not guaranteed
1112 * though that the transfer for the active descriptor has stopped when the
1113 * function returns. Furthermore it is possible the complete callback of a
1114 * submitted transfer is still running when this function returns.
1115 *
1116 * dmaengine_synchronize() needs to be called before it is safe to free
1117 * any memory that is accessed by previously submitted descriptors or before
1118 * freeing any resources accessed from within the completion callback of any
1119 * previously submitted descriptors.
1120 *
1121 * This function can be called from atomic context as well as from within a
1122 * complete callback of a descriptor submitted on the same channel.
1123 *
1124 * If none of the two conditions above apply consider using
1125 * dmaengine_terminate_sync() instead.
1126 */
1127static inline int dmaengine_terminate_async(struct dma_chan *chan)
1128{
1129        if (chan->device->device_terminate_all)
1130                return chan->device->device_terminate_all(chan);
1131
1132        return -EINVAL;
1133}
1134
1135/**
1136 * dmaengine_synchronize() - Synchronize DMA channel termination
1137 * @chan: The channel to synchronize
1138 *
1139 * Synchronizes to the DMA channel termination to the current context. When this
1140 * function returns it is guaranteed that all transfers for previously issued
1141 * descriptors have stopped and it is safe to free the memory associated
1142 * with them. Furthermore it is guaranteed that all complete callback functions
1143 * for a previously submitted descriptor have finished running and it is safe to
1144 * free resources accessed from within the complete callbacks.
1145 *
1146 * The behavior of this function is undefined if dma_async_issue_pending() has
1147 * been called between dmaengine_terminate_async() and this function.
1148 *
1149 * This function must only be called from non-atomic context and must not be
1150 * called from within a complete callback of a descriptor submitted on the same
1151 * channel.
1152 */
1153static inline void dmaengine_synchronize(struct dma_chan *chan)
1154{
1155        might_sleep();
1156
1157        if (chan->device->device_synchronize)
1158                chan->device->device_synchronize(chan);
1159}
1160
1161/**
1162 * dmaengine_terminate_sync() - Terminate all active DMA transfers
1163 * @chan: The channel for which to terminate the transfers
1164 *
1165 * Calling this function will terminate all active and pending transfers
1166 * that have previously been submitted to the channel. It is similar to
1167 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1168 * stopped and that all complete callbacks have finished running when the
1169 * function returns.
1170 *
1171 * This function must only be called from non-atomic context and must not be
1172 * called from within a complete callback of a descriptor submitted on the same
1173 * channel.
1174 */
1175static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1176{
1177        int ret;
1178
1179        ret = dmaengine_terminate_async(chan);
1180        if (ret)
1181                return ret;
1182
1183        dmaengine_synchronize(chan);
1184
1185        return 0;
1186}
1187
1188static inline int dmaengine_pause(struct dma_chan *chan)
1189{
1190        if (chan->device->device_pause)
1191                return chan->device->device_pause(chan);
1192
1193        return -ENOSYS;
1194}
1195
1196static inline int dmaengine_resume(struct dma_chan *chan)
1197{
1198        if (chan->device->device_resume)
1199                return chan->device->device_resume(chan);
1200
1201        return -ENOSYS;
1202}
1203
1204static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1205        dma_cookie_t cookie, struct dma_tx_state *state)
1206{
1207        return chan->device->device_tx_status(chan, cookie, state);
1208}
1209
1210static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1211{
1212        return desc->tx_submit(desc);
1213}
1214
1215static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1216                                         size_t off1, size_t off2, size_t len)
1217{
1218        return !(((1 << align) - 1) & (off1 | off2 | len));
1219}
1220
1221static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1222                                       size_t off2, size_t len)
1223{
1224        return dmaengine_check_align(dev->copy_align, off1, off2, len);
1225}
1226
1227static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1228                                      size_t off2, size_t len)
1229{
1230        return dmaengine_check_align(dev->xor_align, off1, off2, len);
1231}
1232
1233static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1234                                     size_t off2, size_t len)
1235{
1236        return dmaengine_check_align(dev->pq_align, off1, off2, len);
1237}
1238
1239static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1240                                       size_t off2, size_t len)
1241{
1242        return dmaengine_check_align(dev->fill_align, off1, off2, len);
1243}
1244
1245static inline void
1246dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1247{
1248        dma->max_pq = maxpq;
1249        if (has_pq_continue)
1250                dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1251}
1252
1253static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1254{
1255        return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1256}
1257
1258static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1259{
1260        enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1261
1262        return (flags & mask) == mask;
1263}
1264
1265static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1266{
1267        return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1268}
1269
1270static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1271{
1272        return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1273}
1274
1275/* dma_maxpq - reduce maxpq in the face of continued operations
1276 * @dma - dma device with PQ capability
1277 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1278 *
1279 * When an engine does not support native continuation we need 3 extra
1280 * source slots to reuse P and Q with the following coefficients:
1281 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1282 * 2/ {01} * Q : use Q to continue Q' calculation
1283 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1284 *
1285 * In the case where P is disabled we only need 1 extra source:
1286 * 1/ {01} * Q : use Q to continue Q' calculation
1287 */
1288static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1289{
1290        if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1291                return dma_dev_to_maxpq(dma);
1292        if (dmaf_p_disabled_continue(flags))
1293                return dma_dev_to_maxpq(dma) - 1;
1294        if (dmaf_continue(flags))
1295                return dma_dev_to_maxpq(dma) - 3;
1296        BUG();
1297}
1298
1299static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1300                                      size_t dir_icg)
1301{
1302        if (inc) {
1303                if (dir_icg)
1304                        return dir_icg;
1305                if (sgl)
1306                        return icg;
1307        }
1308
1309        return 0;
1310}
1311
1312static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1313                                           struct data_chunk *chunk)
1314{
1315        return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1316                                 chunk->icg, chunk->dst_icg);
1317}
1318
1319static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1320                                           struct data_chunk *chunk)
1321{
1322        return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1323                                 chunk->icg, chunk->src_icg);
1324}
1325
1326/* --- public DMA engine API --- */
1327
1328#ifdef CONFIG_DMA_ENGINE
1329void dmaengine_get(void);
1330void dmaengine_put(void);
1331#else
1332static inline void dmaengine_get(void)
1333{
1334}
1335static inline void dmaengine_put(void)
1336{
1337}
1338#endif
1339
1340#ifdef CONFIG_ASYNC_TX_DMA
1341#define async_dmaengine_get()   dmaengine_get()
1342#define async_dmaengine_put()   dmaengine_put()
1343#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1344#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1345#else
1346#define async_dma_find_channel(type) dma_find_channel(type)
1347#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1348#else
1349static inline void async_dmaengine_get(void)
1350{
1351}
1352static inline void async_dmaengine_put(void)
1353{
1354}
1355static inline struct dma_chan *
1356async_dma_find_channel(enum dma_transaction_type type)
1357{
1358        return NULL;
1359}
1360#endif /* CONFIG_ASYNC_TX_DMA */
1361void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1362                                  struct dma_chan *chan);
1363
1364static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1365{
1366        tx->flags |= DMA_CTRL_ACK;
1367}
1368
1369static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1370{
1371        tx->flags &= ~DMA_CTRL_ACK;
1372}
1373
1374static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1375{
1376        return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1377}
1378
1379#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1380static inline void
1381__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1382{
1383        set_bit(tx_type, dstp->bits);
1384}
1385
1386#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1387static inline void
1388__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1389{
1390        clear_bit(tx_type, dstp->bits);
1391}
1392
1393#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1394static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1395{
1396        bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1397}
1398
1399#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1400static inline int
1401__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1402{
1403        return test_bit(tx_type, srcp->bits);
1404}
1405
1406#define for_each_dma_cap_mask(cap, mask) \
1407        for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1408
1409/**
1410 * dma_async_issue_pending - flush pending transactions to HW
1411 * @chan: target DMA channel
1412 *
1413 * This allows drivers to push copies to HW in batches,
1414 * reducing MMIO writes where possible.
1415 */
1416static inline void dma_async_issue_pending(struct dma_chan *chan)
1417{
1418        chan->device->device_issue_pending(chan);
1419}
1420
1421/**
1422 * dma_async_is_tx_complete - poll for transaction completion
1423 * @chan: DMA channel
1424 * @cookie: transaction identifier to check status of
1425 * @last: returns last completed cookie, can be NULL
1426 * @used: returns last issued cookie, can be NULL
1427 *
1428 * If @last and @used are passed in, upon return they reflect the driver
1429 * internal state and can be used with dma_async_is_complete() to check
1430 * the status of multiple cookies without re-checking hardware state.
1431 */
1432static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1433        dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1434{
1435        struct dma_tx_state state;
1436        enum dma_status status;
1437
1438        status = chan->device->device_tx_status(chan, cookie, &state);
1439        if (last)
1440                *last = state.last;
1441        if (used)
1442                *used = state.used;
1443        return status;
1444}
1445
1446/**
1447 * dma_async_is_complete - test a cookie against chan state
1448 * @cookie: transaction identifier to test status of
1449 * @last_complete: last know completed transaction
1450 * @last_used: last cookie value handed out
1451 *
1452 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1453 * the test logic is separated for lightweight testing of multiple cookies
1454 */
1455static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1456                        dma_cookie_t last_complete, dma_cookie_t last_used)
1457{
1458        if (last_complete <= last_used) {
1459                if ((cookie <= last_complete) || (cookie > last_used))
1460                        return DMA_COMPLETE;
1461        } else {
1462                if ((cookie <= last_complete) && (cookie > last_used))
1463                        return DMA_COMPLETE;
1464        }
1465        return DMA_IN_PROGRESS;
1466}
1467
1468static inline void
1469dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1470{
1471        if (!st)
1472                return;
1473
1474        st->last = last;
1475        st->used = used;
1476        st->residue = residue;
1477}
1478
1479#ifdef CONFIG_DMA_ENGINE
1480struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1481enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1482enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1483void dma_issue_pending_all(void);
1484struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1485                                       dma_filter_fn fn, void *fn_param,
1486                                       struct device_node *np);
1487
1488struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1489struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1490
1491void dma_release_channel(struct dma_chan *chan);
1492int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1493#else
1494static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1495{
1496        return NULL;
1497}
1498static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1499{
1500        return DMA_COMPLETE;
1501}
1502static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1503{
1504        return DMA_COMPLETE;
1505}
1506static inline void dma_issue_pending_all(void)
1507{
1508}
1509static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1510                                                     dma_filter_fn fn,
1511                                                     void *fn_param,
1512                                                     struct device_node *np)
1513{
1514        return NULL;
1515}
1516static inline struct dma_chan *dma_request_chan(struct device *dev,
1517                                                const char *name)
1518{
1519        return ERR_PTR(-ENODEV);
1520}
1521static inline struct dma_chan *dma_request_chan_by_mask(
1522                                                const dma_cap_mask_t *mask)
1523{
1524        return ERR_PTR(-ENODEV);
1525}
1526static inline void dma_release_channel(struct dma_chan *chan)
1527{
1528}
1529static inline int dma_get_slave_caps(struct dma_chan *chan,
1530                                     struct dma_slave_caps *caps)
1531{
1532        return -ENXIO;
1533}
1534#endif
1535
1536static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1537{
1538        struct dma_slave_caps caps;
1539        int ret;
1540
1541        ret = dma_get_slave_caps(tx->chan, &caps);
1542        if (ret)
1543                return ret;
1544
1545        if (!caps.descriptor_reuse)
1546                return -EPERM;
1547
1548        tx->flags |= DMA_CTRL_REUSE;
1549        return 0;
1550}
1551
1552static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1553{
1554        tx->flags &= ~DMA_CTRL_REUSE;
1555}
1556
1557static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1558{
1559        return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1560}
1561
1562static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1563{
1564        /* this is supported for reusable desc, so check that */
1565        if (!dmaengine_desc_test_reuse(desc))
1566                return -EPERM;
1567
1568        return desc->desc_free(desc);
1569}
1570
1571/* --- DMA device --- */
1572
1573int dma_async_device_register(struct dma_device *device);
1574int dmaenginem_async_device_register(struct dma_device *device);
1575void dma_async_device_unregister(struct dma_device *device);
1576int dma_async_device_channel_register(struct dma_device *device,
1577                                      struct dma_chan *chan);
1578void dma_async_device_channel_unregister(struct dma_device *device,
1579                                         struct dma_chan *chan);
1580void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1581#define dma_request_channel(mask, x, y) \
1582        __dma_request_channel(&(mask), x, y, NULL)
1583
1584/* Deprecated, please use dma_request_chan() directly */
1585static inline struct dma_chan * __deprecated
1586dma_request_slave_channel(struct device *dev, const char *name)
1587{
1588        struct dma_chan *ch = dma_request_chan(dev, name);
1589
1590        return IS_ERR(ch) ? NULL : ch;
1591}
1592
1593static inline struct dma_chan
1594*dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1595                                  dma_filter_fn fn, void *fn_param,
1596                                  struct device *dev, const char *name)
1597{
1598        struct dma_chan *chan;
1599
1600        chan = dma_request_slave_channel(dev, name);
1601        if (chan)
1602                return chan;
1603
1604        if (!fn || !fn_param)
1605                return NULL;
1606
1607        return __dma_request_channel(&mask, fn, fn_param, NULL);
1608}
1609
1610static inline char *
1611dmaengine_get_direction_text(enum dma_transfer_direction dir)
1612{
1613        switch (dir) {
1614        case DMA_DEV_TO_MEM:
1615                return "DEV_TO_MEM";
1616        case DMA_MEM_TO_DEV:
1617                return "MEM_TO_DEV";
1618        case DMA_MEM_TO_MEM:
1619                return "MEM_TO_MEM";
1620        case DMA_DEV_TO_DEV:
1621                return "DEV_TO_DEV";
1622        default:
1623                return "invalid";
1624        }
1625}
1626
1627static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
1628{
1629        if (chan->dev->chan_dma_dev)
1630                return &chan->dev->device;
1631
1632        return chan->device->dev;
1633}
1634
1635#endif /* DMAENGINE_H */
1636