linux/arch/mips/kernel/setup.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1995 Linus Torvalds
   7 * Copyright (C) 1995 Waldorf Electronics
   8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
   9 * Copyright (C) 1996 Stoned Elipot
  10 * Copyright (C) 1999 Silicon Graphics, Inc.
  11 * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
  12 */
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/export.h>
  16#include <linux/screen_info.h>
  17#include <linux/memblock.h>
  18#include <linux/bootmem.h>
  19#include <linux/initrd.h>
  20#include <linux/root_dev.h>
  21#include <linux/highmem.h>
  22#include <linux/console.h>
  23#include <linux/pfn.h>
  24#include <linux/debugfs.h>
  25#include <linux/kexec.h>
  26#include <linux/sizes.h>
  27
  28#include <asm/addrspace.h>
  29#include <asm/bootinfo.h>
  30#include <asm/bugs.h>
  31#include <asm/cache.h>
  32#include <asm/cpu.h>
  33#include <asm/sections.h>
  34#include <asm/setup.h>
  35#include <asm/smp-ops.h>
  36#include <asm/prom.h>
  37
  38struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
  39
  40EXPORT_SYMBOL(cpu_data);
  41
  42#ifdef CONFIG_VT
  43struct screen_info screen_info;
  44#endif
  45
  46/*
  47 * Despite it's name this variable is even if we don't have PCI
  48 */
  49unsigned int PCI_DMA_BUS_IS_PHYS;
  50
  51EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
  52
  53/*
  54 * Setup information
  55 *
  56 * These are initialized so they are in the .data section
  57 */
  58unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
  59
  60EXPORT_SYMBOL(mips_machtype);
  61
  62struct boot_mem_map boot_mem_map;
  63
  64static char __initdata command_line[COMMAND_LINE_SIZE];
  65char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
  66
  67#ifdef CONFIG_CMDLINE_BOOL
  68static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
  69#endif
  70
  71/*
  72 * mips_io_port_base is the begin of the address space to which x86 style
  73 * I/O ports are mapped.
  74 */
  75const unsigned long mips_io_port_base = -1;
  76EXPORT_SYMBOL(mips_io_port_base);
  77
  78static struct resource code_resource = { .name = "Kernel code", };
  79static struct resource data_resource = { .name = "Kernel data", };
  80
  81static void *detect_magic __initdata = detect_memory_region;
  82
  83void __init add_memory_region(phys_t start, phys_t size, long type)
  84{
  85        int x = boot_mem_map.nr_map;
  86        int i;
  87
  88        /* Sanity check */
  89        if (start + size < start) {
  90                pr_warning("Trying to add an invalid memory region, skipped\n");
  91                return;
  92        }
  93
  94        /*
  95         * Try to merge with existing entry, if any.
  96         */
  97        for (i = 0; i < boot_mem_map.nr_map; i++) {
  98                struct boot_mem_map_entry *entry = boot_mem_map.map + i;
  99                unsigned long top;
 100
 101                if (entry->type != type)
 102                        continue;
 103
 104                if (start + size < entry->addr)
 105                        continue;                       /* no overlap */
 106
 107                if (entry->addr + entry->size < start)
 108                        continue;                       /* no overlap */
 109
 110                top = max(entry->addr + entry->size, start + size);
 111                entry->addr = min(entry->addr, start);
 112                entry->size = top - entry->addr;
 113
 114                return;
 115        }
 116
 117        if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
 118                pr_err("Ooops! Too many entries in the memory map!\n");
 119                return;
 120        }
 121
 122        boot_mem_map.map[x].addr = start;
 123        boot_mem_map.map[x].size = size;
 124        boot_mem_map.map[x].type = type;
 125        boot_mem_map.nr_map++;
 126}
 127
 128void __init detect_memory_region(phys_t start, phys_t sz_min, phys_t sz_max)
 129{
 130        void *dm = &detect_magic;
 131        phys_t size;
 132
 133        for (size = sz_min; size < sz_max; size <<= 1) {
 134                if (!memcmp(dm, dm + size, sizeof(detect_magic)))
 135                        break;
 136        }
 137
 138        pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
 139                ((unsigned long long) size) / SZ_1M,
 140                (unsigned long long) start,
 141                ((unsigned long long) sz_min) / SZ_1M,
 142                ((unsigned long long) sz_max) / SZ_1M);
 143
 144        add_memory_region(start, size, BOOT_MEM_RAM);
 145}
 146
 147static void __init print_memory_map(void)
 148{
 149        int i;
 150        const int field = 2 * sizeof(unsigned long);
 151
 152        for (i = 0; i < boot_mem_map.nr_map; i++) {
 153                printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
 154                       field, (unsigned long long) boot_mem_map.map[i].size,
 155                       field, (unsigned long long) boot_mem_map.map[i].addr);
 156
 157                switch (boot_mem_map.map[i].type) {
 158                case BOOT_MEM_RAM:
 159                        printk(KERN_CONT "(usable)\n");
 160                        break;
 161                case BOOT_MEM_INIT_RAM:
 162                        printk(KERN_CONT "(usable after init)\n");
 163                        break;
 164                case BOOT_MEM_ROM_DATA:
 165                        printk(KERN_CONT "(ROM data)\n");
 166                        break;
 167                case BOOT_MEM_RESERVED:
 168                        printk(KERN_CONT "(reserved)\n");
 169                        break;
 170                default:
 171                        printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
 172                        break;
 173                }
 174        }
 175}
 176
 177/*
 178 * Manage initrd
 179 */
 180#ifdef CONFIG_BLK_DEV_INITRD
 181
 182static int __init rd_start_early(char *p)
 183{
 184        unsigned long start = memparse(p, &p);
 185
 186#ifdef CONFIG_64BIT
 187        /* Guess if the sign extension was forgotten by bootloader */
 188        if (start < XKPHYS)
 189                start = (int)start;
 190#endif
 191        initrd_start = start;
 192        initrd_end += start;
 193        return 0;
 194}
 195early_param("rd_start", rd_start_early);
 196
 197static int __init rd_size_early(char *p)
 198{
 199        initrd_end += memparse(p, &p);
 200        return 0;
 201}
 202early_param("rd_size", rd_size_early);
 203
 204/* it returns the next free pfn after initrd */
 205static unsigned long __init init_initrd(void)
 206{
 207        unsigned long end;
 208
 209        /*
 210         * Board specific code or command line parser should have
 211         * already set up initrd_start and initrd_end. In these cases
 212         * perfom sanity checks and use them if all looks good.
 213         */
 214        if (!initrd_start || initrd_end <= initrd_start)
 215                goto disable;
 216
 217        if (initrd_start & ~PAGE_MASK) {
 218                pr_err("initrd start must be page aligned\n");
 219                goto disable;
 220        }
 221        if (initrd_start < PAGE_OFFSET) {
 222                pr_err("initrd start < PAGE_OFFSET\n");
 223                goto disable;
 224        }
 225
 226        /*
 227         * Sanitize initrd addresses. For example firmware
 228         * can't guess if they need to pass them through
 229         * 64-bits values if the kernel has been built in pure
 230         * 32-bit. We need also to switch from KSEG0 to XKPHYS
 231         * addresses now, so the code can now safely use __pa().
 232         */
 233        end = __pa(initrd_end);
 234        initrd_end = (unsigned long)__va(end);
 235        initrd_start = (unsigned long)__va(__pa(initrd_start));
 236
 237        ROOT_DEV = Root_RAM0;
 238        return PFN_UP(end);
 239disable:
 240        initrd_start = 0;
 241        initrd_end = 0;
 242        return 0;
 243}
 244
 245static void __init finalize_initrd(void)
 246{
 247        unsigned long size = initrd_end - initrd_start;
 248
 249        if (size == 0) {
 250                printk(KERN_INFO "Initrd not found or empty");
 251                goto disable;
 252        }
 253        if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
 254                printk(KERN_ERR "Initrd extends beyond end of memory");
 255                goto disable;
 256        }
 257
 258        reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
 259        initrd_below_start_ok = 1;
 260
 261        pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
 262                initrd_start, size);
 263        return;
 264disable:
 265        printk(KERN_CONT " - disabling initrd\n");
 266        initrd_start = 0;
 267        initrd_end = 0;
 268}
 269
 270#else  /* !CONFIG_BLK_DEV_INITRD */
 271
 272static unsigned long __init init_initrd(void)
 273{
 274        return 0;
 275}
 276
 277#define finalize_initrd()       do {} while (0)
 278
 279#endif
 280
 281/*
 282 * Initialize the bootmem allocator. It also setup initrd related data
 283 * if needed.
 284 */
 285#ifdef CONFIG_SGI_IP27
 286
 287static void __init bootmem_init(void)
 288{
 289        init_initrd();
 290        finalize_initrd();
 291}
 292
 293#else  /* !CONFIG_SGI_IP27 */
 294
 295static void __init bootmem_init(void)
 296{
 297        unsigned long reserved_end;
 298        unsigned long mapstart = ~0UL;
 299        unsigned long bootmap_size;
 300        int i;
 301
 302        /*
 303         * Init any data related to initrd. It's a nop if INITRD is
 304         * not selected. Once that done we can determine the low bound
 305         * of usable memory.
 306         */
 307        reserved_end = max(init_initrd(),
 308                           (unsigned long) PFN_UP(__pa_symbol(&_end)));
 309
 310        /*
 311         * max_low_pfn is not a number of pages. The number of pages
 312         * of the system is given by 'max_low_pfn - min_low_pfn'.
 313         */
 314        min_low_pfn = ~0UL;
 315        max_low_pfn = 0;
 316
 317        /*
 318         * Find the highest page frame number we have available.
 319         */
 320        for (i = 0; i < boot_mem_map.nr_map; i++) {
 321                unsigned long start, end;
 322
 323                if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
 324                        continue;
 325
 326                start = PFN_UP(boot_mem_map.map[i].addr);
 327                end = PFN_DOWN(boot_mem_map.map[i].addr
 328                                + boot_mem_map.map[i].size);
 329
 330                if (end > max_low_pfn)
 331                        max_low_pfn = end;
 332                if (start < min_low_pfn)
 333                        min_low_pfn = start;
 334                if (end <= reserved_end)
 335                        continue;
 336                if (start >= mapstart)
 337                        continue;
 338                mapstart = max(reserved_end, start);
 339        }
 340
 341        if (min_low_pfn >= max_low_pfn)
 342                panic("Incorrect memory mapping !!!");
 343        if (min_low_pfn > ARCH_PFN_OFFSET) {
 344                pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
 345                        (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
 346                        min_low_pfn - ARCH_PFN_OFFSET);
 347        } else if (min_low_pfn < ARCH_PFN_OFFSET) {
 348                pr_info("%lu free pages won't be used\n",
 349                        ARCH_PFN_OFFSET - min_low_pfn);
 350        }
 351        min_low_pfn = ARCH_PFN_OFFSET;
 352
 353        /*
 354         * Determine low and high memory ranges
 355         */
 356        max_pfn = max_low_pfn;
 357        if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
 358#ifdef CONFIG_HIGHMEM
 359                highstart_pfn = PFN_DOWN(HIGHMEM_START);
 360                highend_pfn = max_low_pfn;
 361#endif
 362                max_low_pfn = PFN_DOWN(HIGHMEM_START);
 363        }
 364
 365        /*
 366         * Initialize the boot-time allocator with low memory only.
 367         */
 368        bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
 369                                         min_low_pfn, max_low_pfn);
 370
 371
 372        for (i = 0; i < boot_mem_map.nr_map; i++) {
 373                unsigned long start, end;
 374
 375                start = PFN_UP(boot_mem_map.map[i].addr);
 376                end = PFN_DOWN(boot_mem_map.map[i].addr
 377                                + boot_mem_map.map[i].size);
 378
 379                if (start <= min_low_pfn)
 380                        start = min_low_pfn;
 381                if (start >= end)
 382                        continue;
 383
 384#ifndef CONFIG_HIGHMEM
 385                if (end > max_low_pfn)
 386                        end = max_low_pfn;
 387
 388                /*
 389                 * ... finally, is the area going away?
 390                 */
 391                if (end <= start)
 392                        continue;
 393#endif
 394
 395                memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
 396        }
 397
 398        /*
 399         * Register fully available low RAM pages with the bootmem allocator.
 400         */
 401        for (i = 0; i < boot_mem_map.nr_map; i++) {
 402                unsigned long start, end, size;
 403
 404                start = PFN_UP(boot_mem_map.map[i].addr);
 405                end   = PFN_DOWN(boot_mem_map.map[i].addr
 406                                    + boot_mem_map.map[i].size);
 407
 408                /*
 409                 * Reserve usable memory.
 410                 */
 411                switch (boot_mem_map.map[i].type) {
 412                case BOOT_MEM_RAM:
 413                        break;
 414                case BOOT_MEM_INIT_RAM:
 415                        memory_present(0, start, end);
 416                        continue;
 417                default:
 418                        /* Not usable memory */
 419                        continue;
 420                }
 421
 422                /*
 423                 * We are rounding up the start address of usable memory
 424                 * and at the end of the usable range downwards.
 425                 */
 426                if (start >= max_low_pfn)
 427                        continue;
 428                if (start < reserved_end)
 429                        start = reserved_end;
 430                if (end > max_low_pfn)
 431                        end = max_low_pfn;
 432
 433                /*
 434                 * ... finally, is the area going away?
 435                 */
 436                if (end <= start)
 437                        continue;
 438                size = end - start;
 439
 440                /* Register lowmem ranges */
 441                free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
 442                memory_present(0, start, end);
 443        }
 444
 445        /*
 446         * Reserve the bootmap memory.
 447         */
 448        reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
 449
 450        /*
 451         * Reserve initrd memory if needed.
 452         */
 453        finalize_initrd();
 454}
 455
 456#endif  /* CONFIG_SGI_IP27 */
 457
 458/*
 459 * arch_mem_init - initialize memory management subsystem
 460 *
 461 *  o plat_mem_setup() detects the memory configuration and will record detected
 462 *    memory areas using add_memory_region.
 463 *
 464 * At this stage the memory configuration of the system is known to the
 465 * kernel but generic memory management system is still entirely uninitialized.
 466 *
 467 *  o bootmem_init()
 468 *  o sparse_init()
 469 *  o paging_init()
 470 *
 471 * At this stage the bootmem allocator is ready to use.
 472 *
 473 * NOTE: historically plat_mem_setup did the entire platform initialization.
 474 *       This was rather impractical because it meant plat_mem_setup had to
 475 * get away without any kind of memory allocator.  To keep old code from
 476 * breaking plat_setup was just renamed to plat_setup and a second platform
 477 * initialization hook for anything else was introduced.
 478 */
 479
 480static int usermem __initdata;
 481
 482static int __init early_parse_mem(char *p)
 483{
 484        unsigned long start, size;
 485
 486        /*
 487         * If a user specifies memory size, we
 488         * blow away any automatically generated
 489         * size.
 490         */
 491        if (usermem == 0) {
 492                boot_mem_map.nr_map = 0;
 493                usermem = 1;
 494        }
 495        start = 0;
 496        size = memparse(p, &p);
 497        if (*p == '@')
 498                start = memparse(p + 1, &p);
 499
 500        add_memory_region(start, size, BOOT_MEM_RAM);
 501        return 0;
 502}
 503early_param("mem", early_parse_mem);
 504
 505#ifdef CONFIG_PROC_VMCORE
 506unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
 507static int __init early_parse_elfcorehdr(char *p)
 508{
 509        int i;
 510
 511        setup_elfcorehdr = memparse(p, &p);
 512
 513        for (i = 0; i < boot_mem_map.nr_map; i++) {
 514                unsigned long start = boot_mem_map.map[i].addr;
 515                unsigned long end = (boot_mem_map.map[i].addr +
 516                                     boot_mem_map.map[i].size);
 517                if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
 518                        /*
 519                         * Reserve from the elf core header to the end of
 520                         * the memory segment, that should all be kdump
 521                         * reserved memory.
 522                         */
 523                        setup_elfcorehdr_size = end - setup_elfcorehdr;
 524                        break;
 525                }
 526        }
 527        /*
 528         * If we don't find it in the memory map, then we shouldn't
 529         * have to worry about it, as the new kernel won't use it.
 530         */
 531        return 0;
 532}
 533early_param("elfcorehdr", early_parse_elfcorehdr);
 534#endif
 535
 536static void __init arch_mem_addpart(phys_t mem, phys_t end, int type)
 537{
 538        phys_t size;
 539        int i;
 540
 541        size = end - mem;
 542        if (!size)
 543                return;
 544
 545        /* Make sure it is in the boot_mem_map */
 546        for (i = 0; i < boot_mem_map.nr_map; i++) {
 547                if (mem >= boot_mem_map.map[i].addr &&
 548                    mem < (boot_mem_map.map[i].addr +
 549                           boot_mem_map.map[i].size))
 550                        return;
 551        }
 552        add_memory_region(mem, size, type);
 553}
 554
 555static void __init arch_mem_init(char **cmdline_p)
 556{
 557        extern void plat_mem_setup(void);
 558
 559        /* call board setup routine */
 560        plat_mem_setup();
 561
 562        /*
 563         * Make sure all kernel memory is in the maps.  The "UP" and
 564         * "DOWN" are opposite for initdata since if it crosses over
 565         * into another memory section you don't want that to be
 566         * freed when the initdata is freed.
 567         */
 568        arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
 569                         PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
 570                         BOOT_MEM_RAM);
 571        arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
 572                         PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
 573                         BOOT_MEM_INIT_RAM);
 574
 575        pr_info("Determined physical RAM map:\n");
 576        print_memory_map();
 577
 578#ifdef CONFIG_CMDLINE_BOOL
 579#ifdef CONFIG_CMDLINE_OVERRIDE
 580        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 581#else
 582        if (builtin_cmdline[0]) {
 583                strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
 584                strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
 585        }
 586        strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 587#endif
 588#else
 589        strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 590#endif
 591        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 592
 593        *cmdline_p = command_line;
 594
 595        parse_early_param();
 596
 597        if (usermem) {
 598                pr_info("User-defined physical RAM map:\n");
 599                print_memory_map();
 600        }
 601
 602        bootmem_init();
 603#ifdef CONFIG_PROC_VMCORE
 604        if (setup_elfcorehdr && setup_elfcorehdr_size) {
 605                printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
 606                       setup_elfcorehdr, setup_elfcorehdr_size);
 607                reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
 608                                BOOTMEM_DEFAULT);
 609        }
 610#endif
 611#ifdef CONFIG_KEXEC
 612        if (crashk_res.start != crashk_res.end)
 613                reserve_bootmem(crashk_res.start,
 614                                crashk_res.end - crashk_res.start + 1,
 615                                BOOTMEM_DEFAULT);
 616#endif
 617        device_tree_init();
 618        sparse_init();
 619        plat_swiotlb_setup();
 620        paging_init();
 621}
 622
 623#ifdef CONFIG_KEXEC
 624static inline unsigned long long get_total_mem(void)
 625{
 626        unsigned long long total;
 627
 628        total = max_pfn - min_low_pfn;
 629        return total << PAGE_SHIFT;
 630}
 631
 632static void __init mips_parse_crashkernel(void)
 633{
 634        unsigned long long total_mem;
 635        unsigned long long crash_size, crash_base;
 636        int ret;
 637
 638        total_mem = get_total_mem();
 639        ret = parse_crashkernel(boot_command_line, total_mem,
 640                                &crash_size, &crash_base);
 641        if (ret != 0 || crash_size <= 0)
 642                return;
 643
 644        crashk_res.start = crash_base;
 645        crashk_res.end   = crash_base + crash_size - 1;
 646}
 647
 648static void __init request_crashkernel(struct resource *res)
 649{
 650        int ret;
 651
 652        ret = request_resource(res, &crashk_res);
 653        if (!ret)
 654                pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
 655                        (unsigned long)((crashk_res.end -
 656                                crashk_res.start + 1) >> 20),
 657                        (unsigned long)(crashk_res.start  >> 20));
 658}
 659#else /* !defined(CONFIG_KEXEC)  */
 660static void __init mips_parse_crashkernel(void)
 661{
 662}
 663
 664static void __init request_crashkernel(struct resource *res)
 665{
 666}
 667#endif /* !defined(CONFIG_KEXEC)  */
 668
 669static void __init resource_init(void)
 670{
 671        int i;
 672
 673        if (UNCAC_BASE != IO_BASE)
 674                return;
 675
 676        code_resource.start = __pa_symbol(&_text);
 677        code_resource.end = __pa_symbol(&_etext) - 1;
 678        data_resource.start = __pa_symbol(&_etext);
 679        data_resource.end = __pa_symbol(&_edata) - 1;
 680
 681        /*
 682         * Request address space for all standard RAM.
 683         */
 684        mips_parse_crashkernel();
 685
 686        for (i = 0; i < boot_mem_map.nr_map; i++) {
 687                struct resource *res;
 688                unsigned long start, end;
 689
 690                start = boot_mem_map.map[i].addr;
 691                end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
 692                if (start >= HIGHMEM_START)
 693                        continue;
 694                if (end >= HIGHMEM_START)
 695                        end = HIGHMEM_START - 1;
 696
 697                res = alloc_bootmem(sizeof(struct resource));
 698                switch (boot_mem_map.map[i].type) {
 699                case BOOT_MEM_RAM:
 700                case BOOT_MEM_INIT_RAM:
 701                case BOOT_MEM_ROM_DATA:
 702                        res->name = "System RAM";
 703                        break;
 704                case BOOT_MEM_RESERVED:
 705                default:
 706                        res->name = "reserved";
 707                }
 708
 709                res->start = start;
 710                res->end = end;
 711
 712                res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 713                request_resource(&iomem_resource, res);
 714
 715                /*
 716                 *  We don't know which RAM region contains kernel data,
 717                 *  so we try it repeatedly and let the resource manager
 718                 *  test it.
 719                 */
 720                request_resource(res, &code_resource);
 721                request_resource(res, &data_resource);
 722                request_crashkernel(res);
 723        }
 724}
 725
 726void __init setup_arch(char **cmdline_p)
 727{
 728        cpu_probe();
 729        prom_init();
 730
 731#ifdef CONFIG_EARLY_PRINTK
 732        setup_early_printk();
 733#endif
 734        cpu_report();
 735        check_bugs_early();
 736
 737#if defined(CONFIG_VT)
 738#if defined(CONFIG_VGA_CONSOLE)
 739        conswitchp = &vga_con;
 740#elif defined(CONFIG_DUMMY_CONSOLE)
 741        conswitchp = &dummy_con;
 742#endif
 743#endif
 744
 745        arch_mem_init(cmdline_p);
 746
 747        resource_init();
 748        plat_smp_setup();
 749
 750        cpu_cache_init();
 751}
 752
 753unsigned long kernelsp[NR_CPUS];
 754unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
 755
 756#ifdef CONFIG_DEBUG_FS
 757struct dentry *mips_debugfs_dir;
 758static int __init debugfs_mips(void)
 759{
 760        struct dentry *d;
 761
 762        d = debugfs_create_dir("mips", NULL);
 763        if (!d)
 764                return -ENOMEM;
 765        mips_debugfs_dir = d;
 766        return 0;
 767}
 768arch_initcall(debugfs_mips);
 769#endif
 770