linux/arch/mips/kernel/traps.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
  13 */
  14#include <linux/bug.h>
  15#include <linux/compiler.h>
  16#include <linux/kexec.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/mm.h>
  21#include <linux/sched.h>
  22#include <linux/smp.h>
  23#include <linux/spinlock.h>
  24#include <linux/kallsyms.h>
  25#include <linux/bootmem.h>
  26#include <linux/interrupt.h>
  27#include <linux/ptrace.h>
  28#include <linux/kgdb.h>
  29#include <linux/kdebug.h>
  30#include <linux/kprobes.h>
  31#include <linux/notifier.h>
  32#include <linux/kdb.h>
  33#include <linux/irq.h>
  34#include <linux/perf_event.h>
  35
  36#include <asm/bootinfo.h>
  37#include <asm/branch.h>
  38#include <asm/break.h>
  39#include <asm/cop2.h>
  40#include <asm/cpu.h>
  41#include <asm/dsp.h>
  42#include <asm/fpu.h>
  43#include <asm/fpu_emulator.h>
  44#include <asm/idle.h>
  45#include <asm/mipsregs.h>
  46#include <asm/mipsmtregs.h>
  47#include <asm/module.h>
  48#include <asm/pgtable.h>
  49#include <asm/ptrace.h>
  50#include <asm/sections.h>
  51#include <asm/tlbdebug.h>
  52#include <asm/traps.h>
  53#include <asm/uaccess.h>
  54#include <asm/watch.h>
  55#include <asm/mmu_context.h>
  56#include <asm/types.h>
  57#include <asm/stacktrace.h>
  58#include <asm/uasm.h>
  59
  60extern void check_wait(void);
  61extern asmlinkage void rollback_handle_int(void);
  62extern asmlinkage void handle_int(void);
  63extern u32 handle_tlbl[];
  64extern u32 handle_tlbs[];
  65extern u32 handle_tlbm[];
  66extern asmlinkage void handle_adel(void);
  67extern asmlinkage void handle_ades(void);
  68extern asmlinkage void handle_ibe(void);
  69extern asmlinkage void handle_dbe(void);
  70extern asmlinkage void handle_sys(void);
  71extern asmlinkage void handle_bp(void);
  72extern asmlinkage void handle_ri(void);
  73extern asmlinkage void handle_ri_rdhwr_vivt(void);
  74extern asmlinkage void handle_ri_rdhwr(void);
  75extern asmlinkage void handle_cpu(void);
  76extern asmlinkage void handle_ov(void);
  77extern asmlinkage void handle_tr(void);
  78extern asmlinkage void handle_fpe(void);
  79extern asmlinkage void handle_mdmx(void);
  80extern asmlinkage void handle_watch(void);
  81extern asmlinkage void handle_mt(void);
  82extern asmlinkage void handle_dsp(void);
  83extern asmlinkage void handle_mcheck(void);
  84extern asmlinkage void handle_reserved(void);
  85
  86void (*board_be_init)(void);
  87int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  88void (*board_nmi_handler_setup)(void);
  89void (*board_ejtag_handler_setup)(void);
  90void (*board_bind_eic_interrupt)(int irq, int regset);
  91void (*board_ebase_setup)(void);
  92void __cpuinitdata(*board_cache_error_setup)(void);
  93
  94static void show_raw_backtrace(unsigned long reg29)
  95{
  96        unsigned long *sp = (unsigned long *)(reg29 & ~3);
  97        unsigned long addr;
  98
  99        printk("Call Trace:");
 100#ifdef CONFIG_KALLSYMS
 101        printk("\n");
 102#endif
 103        while (!kstack_end(sp)) {
 104                unsigned long __user *p =
 105                        (unsigned long __user *)(unsigned long)sp++;
 106                if (__get_user(addr, p)) {
 107                        printk(" (Bad stack address)");
 108                        break;
 109                }
 110                if (__kernel_text_address(addr))
 111                        print_ip_sym(addr);
 112        }
 113        printk("\n");
 114}
 115
 116#ifdef CONFIG_KALLSYMS
 117int raw_show_trace;
 118static int __init set_raw_show_trace(char *str)
 119{
 120        raw_show_trace = 1;
 121        return 1;
 122}
 123__setup("raw_show_trace", set_raw_show_trace);
 124#endif
 125
 126static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 127{
 128        unsigned long sp = regs->regs[29];
 129        unsigned long ra = regs->regs[31];
 130        unsigned long pc = regs->cp0_epc;
 131
 132        if (!task)
 133                task = current;
 134
 135        if (raw_show_trace || !__kernel_text_address(pc)) {
 136                show_raw_backtrace(sp);
 137                return;
 138        }
 139        printk("Call Trace:\n");
 140        do {
 141                print_ip_sym(pc);
 142                pc = unwind_stack(task, &sp, pc, &ra);
 143        } while (pc);
 144        printk("\n");
 145}
 146
 147/*
 148 * This routine abuses get_user()/put_user() to reference pointers
 149 * with at least a bit of error checking ...
 150 */
 151static void show_stacktrace(struct task_struct *task,
 152        const struct pt_regs *regs)
 153{
 154        const int field = 2 * sizeof(unsigned long);
 155        long stackdata;
 156        int i;
 157        unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 158
 159        printk("Stack :");
 160        i = 0;
 161        while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 162                if (i && ((i % (64 / field)) == 0))
 163                        printk("\n       ");
 164                if (i > 39) {
 165                        printk(" ...");
 166                        break;
 167                }
 168
 169                if (__get_user(stackdata, sp++)) {
 170                        printk(" (Bad stack address)");
 171                        break;
 172                }
 173
 174                printk(" %0*lx", field, stackdata);
 175                i++;
 176        }
 177        printk("\n");
 178        show_backtrace(task, regs);
 179}
 180
 181void show_stack(struct task_struct *task, unsigned long *sp)
 182{
 183        struct pt_regs regs;
 184        if (sp) {
 185                regs.regs[29] = (unsigned long)sp;
 186                regs.regs[31] = 0;
 187                regs.cp0_epc = 0;
 188        } else {
 189                if (task && task != current) {
 190                        regs.regs[29] = task->thread.reg29;
 191                        regs.regs[31] = 0;
 192                        regs.cp0_epc = task->thread.reg31;
 193#ifdef CONFIG_KGDB_KDB
 194                } else if (atomic_read(&kgdb_active) != -1 &&
 195                           kdb_current_regs) {
 196                        memcpy(&regs, kdb_current_regs, sizeof(regs));
 197#endif /* CONFIG_KGDB_KDB */
 198                } else {
 199                        prepare_frametrace(&regs);
 200                }
 201        }
 202        show_stacktrace(task, &regs);
 203}
 204
 205static void show_code(unsigned int __user *pc)
 206{
 207        long i;
 208        unsigned short __user *pc16 = NULL;
 209
 210        printk("\nCode:");
 211
 212        if ((unsigned long)pc & 1)
 213                pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 214        for(i = -3 ; i < 6 ; i++) {
 215                unsigned int insn;
 216                if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 217                        printk(" (Bad address in epc)\n");
 218                        break;
 219                }
 220                printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 221        }
 222}
 223
 224static void __show_regs(const struct pt_regs *regs)
 225{
 226        const int field = 2 * sizeof(unsigned long);
 227        unsigned int cause = regs->cp0_cause;
 228        int i;
 229
 230        show_regs_print_info(KERN_DEFAULT);
 231
 232        /*
 233         * Saved main processor registers
 234         */
 235        for (i = 0; i < 32; ) {
 236                if ((i % 4) == 0)
 237                        printk("$%2d   :", i);
 238                if (i == 0)
 239                        printk(" %0*lx", field, 0UL);
 240                else if (i == 26 || i == 27)
 241                        printk(" %*s", field, "");
 242                else
 243                        printk(" %0*lx", field, regs->regs[i]);
 244
 245                i++;
 246                if ((i % 4) == 0)
 247                        printk("\n");
 248        }
 249
 250#ifdef CONFIG_CPU_HAS_SMARTMIPS
 251        printk("Acx    : %0*lx\n", field, regs->acx);
 252#endif
 253        printk("Hi    : %0*lx\n", field, regs->hi);
 254        printk("Lo    : %0*lx\n", field, regs->lo);
 255
 256        /*
 257         * Saved cp0 registers
 258         */
 259        printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 260               (void *) regs->cp0_epc);
 261        printk("    %s\n", print_tainted());
 262        printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 263               (void *) regs->regs[31]);
 264
 265        printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 266
 267        if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
 268                if (regs->cp0_status & ST0_KUO)
 269                        printk("KUo ");
 270                if (regs->cp0_status & ST0_IEO)
 271                        printk("IEo ");
 272                if (regs->cp0_status & ST0_KUP)
 273                        printk("KUp ");
 274                if (regs->cp0_status & ST0_IEP)
 275                        printk("IEp ");
 276                if (regs->cp0_status & ST0_KUC)
 277                        printk("KUc ");
 278                if (regs->cp0_status & ST0_IEC)
 279                        printk("IEc ");
 280        } else {
 281                if (regs->cp0_status & ST0_KX)
 282                        printk("KX ");
 283                if (regs->cp0_status & ST0_SX)
 284                        printk("SX ");
 285                if (regs->cp0_status & ST0_UX)
 286                        printk("UX ");
 287                switch (regs->cp0_status & ST0_KSU) {
 288                case KSU_USER:
 289                        printk("USER ");
 290                        break;
 291                case KSU_SUPERVISOR:
 292                        printk("SUPERVISOR ");
 293                        break;
 294                case KSU_KERNEL:
 295                        printk("KERNEL ");
 296                        break;
 297                default:
 298                        printk("BAD_MODE ");
 299                        break;
 300                }
 301                if (regs->cp0_status & ST0_ERL)
 302                        printk("ERL ");
 303                if (regs->cp0_status & ST0_EXL)
 304                        printk("EXL ");
 305                if (regs->cp0_status & ST0_IE)
 306                        printk("IE ");
 307        }
 308        printk("\n");
 309
 310        printk("Cause : %08x\n", cause);
 311
 312        cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 313        if (1 <= cause && cause <= 5)
 314                printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 315
 316        printk("PrId  : %08x (%s)\n", read_c0_prid(),
 317               cpu_name_string());
 318}
 319
 320/*
 321 * FIXME: really the generic show_regs should take a const pointer argument.
 322 */
 323void show_regs(struct pt_regs *regs)
 324{
 325        __show_regs((struct pt_regs *)regs);
 326}
 327
 328void show_registers(struct pt_regs *regs)
 329{
 330        const int field = 2 * sizeof(unsigned long);
 331
 332        __show_regs(regs);
 333        print_modules();
 334        printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 335               current->comm, current->pid, current_thread_info(), current,
 336              field, current_thread_info()->tp_value);
 337        if (cpu_has_userlocal) {
 338                unsigned long tls;
 339
 340                tls = read_c0_userlocal();
 341                if (tls != current_thread_info()->tp_value)
 342                        printk("*HwTLS: %0*lx\n", field, tls);
 343        }
 344
 345        show_stacktrace(current, regs);
 346        show_code((unsigned int __user *) regs->cp0_epc);
 347        printk("\n");
 348}
 349
 350static int regs_to_trapnr(struct pt_regs *regs)
 351{
 352        return (regs->cp0_cause >> 2) & 0x1f;
 353}
 354
 355static DEFINE_RAW_SPINLOCK(die_lock);
 356
 357void __noreturn die(const char *str, struct pt_regs *regs)
 358{
 359        static int die_counter;
 360        int sig = SIGSEGV;
 361#ifdef CONFIG_MIPS_MT_SMTC
 362        unsigned long dvpret;
 363#endif /* CONFIG_MIPS_MT_SMTC */
 364
 365        oops_enter();
 366
 367        if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
 368                sig = 0;
 369
 370        console_verbose();
 371        raw_spin_lock_irq(&die_lock);
 372#ifdef CONFIG_MIPS_MT_SMTC
 373        dvpret = dvpe();
 374#endif /* CONFIG_MIPS_MT_SMTC */
 375        bust_spinlocks(1);
 376#ifdef CONFIG_MIPS_MT_SMTC
 377        mips_mt_regdump(dvpret);
 378#endif /* CONFIG_MIPS_MT_SMTC */
 379
 380        printk("%s[#%d]:\n", str, ++die_counter);
 381        show_registers(regs);
 382        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 383        raw_spin_unlock_irq(&die_lock);
 384
 385        oops_exit();
 386
 387        if (in_interrupt())
 388                panic("Fatal exception in interrupt");
 389
 390        if (panic_on_oops) {
 391                printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
 392                ssleep(5);
 393                panic("Fatal exception");
 394        }
 395
 396        if (regs && kexec_should_crash(current))
 397                crash_kexec(regs);
 398
 399        do_exit(sig);
 400}
 401
 402extern struct exception_table_entry __start___dbe_table[];
 403extern struct exception_table_entry __stop___dbe_table[];
 404
 405__asm__(
 406"       .section        __dbe_table, \"a\"\n"
 407"       .previous                       \n");
 408
 409/* Given an address, look for it in the exception tables. */
 410static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 411{
 412        const struct exception_table_entry *e;
 413
 414        e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 415        if (!e)
 416                e = search_module_dbetables(addr);
 417        return e;
 418}
 419
 420asmlinkage void do_be(struct pt_regs *regs)
 421{
 422        const int field = 2 * sizeof(unsigned long);
 423        const struct exception_table_entry *fixup = NULL;
 424        int data = regs->cp0_cause & 4;
 425        int action = MIPS_BE_FATAL;
 426
 427        /* XXX For now.  Fixme, this searches the wrong table ...  */
 428        if (data && !user_mode(regs))
 429                fixup = search_dbe_tables(exception_epc(regs));
 430
 431        if (fixup)
 432                action = MIPS_BE_FIXUP;
 433
 434        if (board_be_handler)
 435                action = board_be_handler(regs, fixup != NULL);
 436
 437        switch (action) {
 438        case MIPS_BE_DISCARD:
 439                return;
 440        case MIPS_BE_FIXUP:
 441                if (fixup) {
 442                        regs->cp0_epc = fixup->nextinsn;
 443                        return;
 444                }
 445                break;
 446        default:
 447                break;
 448        }
 449
 450        /*
 451         * Assume it would be too dangerous to continue ...
 452         */
 453        printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 454               data ? "Data" : "Instruction",
 455               field, regs->cp0_epc, field, regs->regs[31]);
 456        if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
 457            == NOTIFY_STOP)
 458                return;
 459
 460        die_if_kernel("Oops", regs);
 461        force_sig(SIGBUS, current);
 462}
 463
 464/*
 465 * ll/sc, rdhwr, sync emulation
 466 */
 467
 468#define OPCODE 0xfc000000
 469#define BASE   0x03e00000
 470#define RT     0x001f0000
 471#define OFFSET 0x0000ffff
 472#define LL     0xc0000000
 473#define SC     0xe0000000
 474#define SPEC0  0x00000000
 475#define SPEC3  0x7c000000
 476#define RD     0x0000f800
 477#define FUNC   0x0000003f
 478#define SYNC   0x0000000f
 479#define RDHWR  0x0000003b
 480
 481/*  microMIPS definitions   */
 482#define MM_POOL32A_FUNC 0xfc00ffff
 483#define MM_RDHWR        0x00006b3c
 484#define MM_RS           0x001f0000
 485#define MM_RT           0x03e00000
 486
 487/*
 488 * The ll_bit is cleared by r*_switch.S
 489 */
 490
 491unsigned int ll_bit;
 492struct task_struct *ll_task;
 493
 494static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 495{
 496        unsigned long value, __user *vaddr;
 497        long offset;
 498
 499        /*
 500         * analyse the ll instruction that just caused a ri exception
 501         * and put the referenced address to addr.
 502         */
 503
 504        /* sign extend offset */
 505        offset = opcode & OFFSET;
 506        offset <<= 16;
 507        offset >>= 16;
 508
 509        vaddr = (unsigned long __user *)
 510                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 511
 512        if ((unsigned long)vaddr & 3)
 513                return SIGBUS;
 514        if (get_user(value, vaddr))
 515                return SIGSEGV;
 516
 517        preempt_disable();
 518
 519        if (ll_task == NULL || ll_task == current) {
 520                ll_bit = 1;
 521        } else {
 522                ll_bit = 0;
 523        }
 524        ll_task = current;
 525
 526        preempt_enable();
 527
 528        regs->regs[(opcode & RT) >> 16] = value;
 529
 530        return 0;
 531}
 532
 533static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 534{
 535        unsigned long __user *vaddr;
 536        unsigned long reg;
 537        long offset;
 538
 539        /*
 540         * analyse the sc instruction that just caused a ri exception
 541         * and put the referenced address to addr.
 542         */
 543
 544        /* sign extend offset */
 545        offset = opcode & OFFSET;
 546        offset <<= 16;
 547        offset >>= 16;
 548
 549        vaddr = (unsigned long __user *)
 550                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 551        reg = (opcode & RT) >> 16;
 552
 553        if ((unsigned long)vaddr & 3)
 554                return SIGBUS;
 555
 556        preempt_disable();
 557
 558        if (ll_bit == 0 || ll_task != current) {
 559                regs->regs[reg] = 0;
 560                preempt_enable();
 561                return 0;
 562        }
 563
 564        preempt_enable();
 565
 566        if (put_user(regs->regs[reg], vaddr))
 567                return SIGSEGV;
 568
 569        regs->regs[reg] = 1;
 570
 571        return 0;
 572}
 573
 574/*
 575 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 576 * opcodes are supposed to result in coprocessor unusable exceptions if
 577 * executed on ll/sc-less processors.  That's the theory.  In practice a
 578 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 579 * instead, so we're doing the emulation thing in both exception handlers.
 580 */
 581static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 582{
 583        if ((opcode & OPCODE) == LL) {
 584                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 585                                1, regs, 0);
 586                return simulate_ll(regs, opcode);
 587        }
 588        if ((opcode & OPCODE) == SC) {
 589                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 590                                1, regs, 0);
 591                return simulate_sc(regs, opcode);
 592        }
 593
 594        return -1;                      /* Must be something else ... */
 595}
 596
 597/*
 598 * Simulate trapping 'rdhwr' instructions to provide user accessible
 599 * registers not implemented in hardware.
 600 */
 601static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
 602{
 603        struct thread_info *ti = task_thread_info(current);
 604
 605        perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 606                        1, regs, 0);
 607        switch (rd) {
 608        case 0:         /* CPU number */
 609                regs->regs[rt] = smp_processor_id();
 610                return 0;
 611        case 1:         /* SYNCI length */
 612                regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 613                                     current_cpu_data.icache.linesz);
 614                return 0;
 615        case 2:         /* Read count register */
 616                regs->regs[rt] = read_c0_count();
 617                return 0;
 618        case 3:         /* Count register resolution */
 619                switch (current_cpu_data.cputype) {
 620                case CPU_20KC:
 621                case CPU_25KF:
 622                        regs->regs[rt] = 1;
 623                        break;
 624                default:
 625                        regs->regs[rt] = 2;
 626                }
 627                return 0;
 628        case 29:
 629                regs->regs[rt] = ti->tp_value;
 630                return 0;
 631        default:
 632                return -1;
 633        }
 634}
 635
 636static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
 637{
 638        if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 639                int rd = (opcode & RD) >> 11;
 640                int rt = (opcode & RT) >> 16;
 641
 642                simulate_rdhwr(regs, rd, rt);
 643                return 0;
 644        }
 645
 646        /* Not ours.  */
 647        return -1;
 648}
 649
 650static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
 651{
 652        if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
 653                int rd = (opcode & MM_RS) >> 16;
 654                int rt = (opcode & MM_RT) >> 21;
 655                simulate_rdhwr(regs, rd, rt);
 656                return 0;
 657        }
 658
 659        /* Not ours.  */
 660        return -1;
 661}
 662
 663static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 664{
 665        if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 666                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 667                                1, regs, 0);
 668                return 0;
 669        }
 670
 671        return -1;                      /* Must be something else ... */
 672}
 673
 674asmlinkage void do_ov(struct pt_regs *regs)
 675{
 676        siginfo_t info;
 677
 678        die_if_kernel("Integer overflow", regs);
 679
 680        info.si_code = FPE_INTOVF;
 681        info.si_signo = SIGFPE;
 682        info.si_errno = 0;
 683        info.si_addr = (void __user *) regs->cp0_epc;
 684        force_sig_info(SIGFPE, &info, current);
 685}
 686
 687int process_fpemu_return(int sig, void __user *fault_addr)
 688{
 689        if (sig == SIGSEGV || sig == SIGBUS) {
 690                struct siginfo si = {0};
 691                si.si_addr = fault_addr;
 692                si.si_signo = sig;
 693                if (sig == SIGSEGV) {
 694                        if (find_vma(current->mm, (unsigned long)fault_addr))
 695                                si.si_code = SEGV_ACCERR;
 696                        else
 697                                si.si_code = SEGV_MAPERR;
 698                } else {
 699                        si.si_code = BUS_ADRERR;
 700                }
 701                force_sig_info(sig, &si, current);
 702                return 1;
 703        } else if (sig) {
 704                force_sig(sig, current);
 705                return 1;
 706        } else {
 707                return 0;
 708        }
 709}
 710
 711/*
 712 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 713 */
 714asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 715{
 716        siginfo_t info = {0};
 717
 718        if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
 719            == NOTIFY_STOP)
 720                return;
 721        die_if_kernel("FP exception in kernel code", regs);
 722
 723        if (fcr31 & FPU_CSR_UNI_X) {
 724                int sig;
 725                void __user *fault_addr = NULL;
 726
 727                /*
 728                 * Unimplemented operation exception.  If we've got the full
 729                 * software emulator on-board, let's use it...
 730                 *
 731                 * Force FPU to dump state into task/thread context.  We're
 732                 * moving a lot of data here for what is probably a single
 733                 * instruction, but the alternative is to pre-decode the FP
 734                 * register operands before invoking the emulator, which seems
 735                 * a bit extreme for what should be an infrequent event.
 736                 */
 737                /* Ensure 'resume' not overwrite saved fp context again. */
 738                lose_fpu(1);
 739
 740                /* Run the emulator */
 741                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 742                                               &fault_addr);
 743
 744                /*
 745                 * We can't allow the emulated instruction to leave any of
 746                 * the cause bit set in $fcr31.
 747                 */
 748                current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 749
 750                /* Restore the hardware register state */
 751                own_fpu(1);     /* Using the FPU again.  */
 752
 753                /* If something went wrong, signal */
 754                process_fpemu_return(sig, fault_addr);
 755
 756                return;
 757        } else if (fcr31 & FPU_CSR_INV_X)
 758                info.si_code = FPE_FLTINV;
 759        else if (fcr31 & FPU_CSR_DIV_X)
 760                info.si_code = FPE_FLTDIV;
 761        else if (fcr31 & FPU_CSR_OVF_X)
 762                info.si_code = FPE_FLTOVF;
 763        else if (fcr31 & FPU_CSR_UDF_X)
 764                info.si_code = FPE_FLTUND;
 765        else if (fcr31 & FPU_CSR_INE_X)
 766                info.si_code = FPE_FLTRES;
 767        else
 768                info.si_code = __SI_FAULT;
 769        info.si_signo = SIGFPE;
 770        info.si_errno = 0;
 771        info.si_addr = (void __user *) regs->cp0_epc;
 772        force_sig_info(SIGFPE, &info, current);
 773}
 774
 775static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
 776        const char *str)
 777{
 778        siginfo_t info;
 779        char b[40];
 780
 781#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 782        if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 783                return;
 784#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 785
 786        if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 787                return;
 788
 789        /*
 790         * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 791         * insns, even for trap and break codes that indicate arithmetic
 792         * failures.  Weird ...
 793         * But should we continue the brokenness???  --macro
 794         */
 795        switch (code) {
 796        case BRK_OVERFLOW:
 797        case BRK_DIVZERO:
 798                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 799                die_if_kernel(b, regs);
 800                if (code == BRK_DIVZERO)
 801                        info.si_code = FPE_INTDIV;
 802                else
 803                        info.si_code = FPE_INTOVF;
 804                info.si_signo = SIGFPE;
 805                info.si_errno = 0;
 806                info.si_addr = (void __user *) regs->cp0_epc;
 807                force_sig_info(SIGFPE, &info, current);
 808                break;
 809        case BRK_BUG:
 810                die_if_kernel("Kernel bug detected", regs);
 811                force_sig(SIGTRAP, current);
 812                break;
 813        case BRK_MEMU:
 814                /*
 815                 * Address errors may be deliberately induced by the FPU
 816                 * emulator to retake control of the CPU after executing the
 817                 * instruction in the delay slot of an emulated branch.
 818                 *
 819                 * Terminate if exception was recognized as a delay slot return
 820                 * otherwise handle as normal.
 821                 */
 822                if (do_dsemulret(regs))
 823                        return;
 824
 825                die_if_kernel("Math emu break/trap", regs);
 826                force_sig(SIGTRAP, current);
 827                break;
 828        default:
 829                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 830                die_if_kernel(b, regs);
 831                force_sig(SIGTRAP, current);
 832        }
 833}
 834
 835asmlinkage void do_bp(struct pt_regs *regs)
 836{
 837        unsigned int opcode, bcode;
 838        unsigned long epc;
 839        u16 instr[2];
 840
 841        if (get_isa16_mode(regs->cp0_epc)) {
 842                /* Calculate EPC. */
 843                epc = exception_epc(regs);
 844                if (cpu_has_mmips) {
 845                        if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
 846                            (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
 847                                goto out_sigsegv;
 848                    opcode = (instr[0] << 16) | instr[1];
 849                } else {
 850                    /* MIPS16e mode */
 851                    if (__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)))
 852                                goto out_sigsegv;
 853                    bcode = (instr[0] >> 6) & 0x3f;
 854                    do_trap_or_bp(regs, bcode, "Break");
 855                    return;
 856                }
 857        } else {
 858                if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 859                        goto out_sigsegv;
 860        }
 861
 862        /*
 863         * There is the ancient bug in the MIPS assemblers that the break
 864         * code starts left to bit 16 instead to bit 6 in the opcode.
 865         * Gas is bug-compatible, but not always, grrr...
 866         * We handle both cases with a simple heuristics.  --macro
 867         */
 868        bcode = ((opcode >> 6) & ((1 << 20) - 1));
 869        if (bcode >= (1 << 10))
 870                bcode >>= 10;
 871
 872        /*
 873         * notify the kprobe handlers, if instruction is likely to
 874         * pertain to them.
 875         */
 876        switch (bcode) {
 877        case BRK_KPROBE_BP:
 878                if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 879                        return;
 880                else
 881                        break;
 882        case BRK_KPROBE_SSTEPBP:
 883                if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 884                        return;
 885                else
 886                        break;
 887        default:
 888                break;
 889        }
 890
 891        do_trap_or_bp(regs, bcode, "Break");
 892        return;
 893
 894out_sigsegv:
 895        force_sig(SIGSEGV, current);
 896}
 897
 898asmlinkage void do_tr(struct pt_regs *regs)
 899{
 900        u32 opcode, tcode = 0;
 901        u16 instr[2];
 902        unsigned long epc = msk_isa16_mode(exception_epc(regs));
 903
 904        if (get_isa16_mode(regs->cp0_epc)) {
 905                if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
 906                    __get_user(instr[1], (u16 __user *)(epc + 2)))
 907                        goto out_sigsegv;
 908                opcode = (instr[0] << 16) | instr[1];
 909                /* Immediate versions don't provide a code.  */
 910                if (!(opcode & OPCODE))
 911                        tcode = (opcode >> 12) & ((1 << 4) - 1);
 912        } else {
 913                if (__get_user(opcode, (u32 __user *)epc))
 914                        goto out_sigsegv;
 915                /* Immediate versions don't provide a code.  */
 916                if (!(opcode & OPCODE))
 917                        tcode = (opcode >> 6) & ((1 << 10) - 1);
 918        }
 919
 920        do_trap_or_bp(regs, tcode, "Trap");
 921        return;
 922
 923out_sigsegv:
 924        force_sig(SIGSEGV, current);
 925}
 926
 927asmlinkage void do_ri(struct pt_regs *regs)
 928{
 929        unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
 930        unsigned long old_epc = regs->cp0_epc;
 931        unsigned long old31 = regs->regs[31];
 932        unsigned int opcode = 0;
 933        int status = -1;
 934
 935        if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
 936            == NOTIFY_STOP)
 937                return;
 938
 939        die_if_kernel("Reserved instruction in kernel code", regs);
 940
 941        if (unlikely(compute_return_epc(regs) < 0))
 942                return;
 943
 944        if (get_isa16_mode(regs->cp0_epc)) {
 945                unsigned short mmop[2] = { 0 };
 946
 947                if (unlikely(get_user(mmop[0], epc) < 0))
 948                        status = SIGSEGV;
 949                if (unlikely(get_user(mmop[1], epc) < 0))
 950                        status = SIGSEGV;
 951                opcode = (mmop[0] << 16) | mmop[1];
 952
 953                if (status < 0)
 954                        status = simulate_rdhwr_mm(regs, opcode);
 955        } else {
 956                if (unlikely(get_user(opcode, epc) < 0))
 957                        status = SIGSEGV;
 958
 959                if (!cpu_has_llsc && status < 0)
 960                        status = simulate_llsc(regs, opcode);
 961
 962                if (status < 0)
 963                        status = simulate_rdhwr_normal(regs, opcode);
 964
 965                if (status < 0)
 966                        status = simulate_sync(regs, opcode);
 967        }
 968
 969        if (status < 0)
 970                status = SIGILL;
 971
 972        if (unlikely(status > 0)) {
 973                regs->cp0_epc = old_epc;                /* Undo skip-over.  */
 974                regs->regs[31] = old31;
 975                force_sig(status, current);
 976        }
 977}
 978
 979/*
 980 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
 981 * emulated more than some threshold number of instructions, force migration to
 982 * a "CPU" that has FP support.
 983 */
 984static void mt_ase_fp_affinity(void)
 985{
 986#ifdef CONFIG_MIPS_MT_FPAFF
 987        if (mt_fpemul_threshold > 0 &&
 988             ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
 989                /*
 990                 * If there's no FPU present, or if the application has already
 991                 * restricted the allowed set to exclude any CPUs with FPUs,
 992                 * we'll skip the procedure.
 993                 */
 994                if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
 995                        cpumask_t tmask;
 996
 997                        current->thread.user_cpus_allowed
 998                                = current->cpus_allowed;
 999                        cpus_and(tmask, current->cpus_allowed,
1000                                mt_fpu_cpumask);
1001                        set_cpus_allowed_ptr(current, &tmask);
1002                        set_thread_flag(TIF_FPUBOUND);
1003                }
1004        }
1005#endif /* CONFIG_MIPS_MT_FPAFF */
1006}
1007
1008/*
1009 * No lock; only written during early bootup by CPU 0.
1010 */
1011static RAW_NOTIFIER_HEAD(cu2_chain);
1012
1013int __ref register_cu2_notifier(struct notifier_block *nb)
1014{
1015        return raw_notifier_chain_register(&cu2_chain, nb);
1016}
1017
1018int cu2_notifier_call_chain(unsigned long val, void *v)
1019{
1020        return raw_notifier_call_chain(&cu2_chain, val, v);
1021}
1022
1023static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1024        void *data)
1025{
1026        struct pt_regs *regs = data;
1027
1028        switch (action) {
1029        default:
1030                die_if_kernel("Unhandled kernel unaligned access or invalid "
1031                              "instruction", regs);
1032                /* Fall through  */
1033
1034        case CU2_EXCEPTION:
1035                force_sig(SIGILL, current);
1036        }
1037
1038        return NOTIFY_OK;
1039}
1040
1041asmlinkage void do_cpu(struct pt_regs *regs)
1042{
1043        unsigned int __user *epc;
1044        unsigned long old_epc, old31;
1045        unsigned int opcode;
1046        unsigned int cpid;
1047        int status;
1048        unsigned long __maybe_unused flags;
1049
1050        die_if_kernel("do_cpu invoked from kernel context!", regs);
1051
1052        cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1053
1054        switch (cpid) {
1055        case 0:
1056                epc = (unsigned int __user *)exception_epc(regs);
1057                old_epc = regs->cp0_epc;
1058                old31 = regs->regs[31];
1059                opcode = 0;
1060                status = -1;
1061
1062                if (unlikely(compute_return_epc(regs) < 0))
1063                        return;
1064
1065                if (get_isa16_mode(regs->cp0_epc)) {
1066                        unsigned short mmop[2] = { 0 };
1067
1068                        if (unlikely(get_user(mmop[0], epc) < 0))
1069                                status = SIGSEGV;
1070                        if (unlikely(get_user(mmop[1], epc) < 0))
1071                                status = SIGSEGV;
1072                        opcode = (mmop[0] << 16) | mmop[1];
1073
1074                        if (status < 0)
1075                                status = simulate_rdhwr_mm(regs, opcode);
1076                } else {
1077                        if (unlikely(get_user(opcode, epc) < 0))
1078                                status = SIGSEGV;
1079
1080                        if (!cpu_has_llsc && status < 0)
1081                                status = simulate_llsc(regs, opcode);
1082
1083                        if (status < 0)
1084                                status = simulate_rdhwr_normal(regs, opcode);
1085                }
1086
1087                if (status < 0)
1088                        status = SIGILL;
1089
1090                if (unlikely(status > 0)) {
1091                        regs->cp0_epc = old_epc;        /* Undo skip-over.  */
1092                        regs->regs[31] = old31;
1093                        force_sig(status, current);
1094                }
1095
1096                return;
1097
1098        case 3:
1099                /*
1100                 * Old (MIPS I and MIPS II) processors will set this code
1101                 * for COP1X opcode instructions that replaced the original
1102                 * COP3 space.  We don't limit COP1 space instructions in
1103                 * the emulator according to the CPU ISA, so we want to
1104                 * treat COP1X instructions consistently regardless of which
1105                 * code the CPU chose.  Therefore we redirect this trap to
1106                 * the FP emulator too.
1107                 *
1108                 * Then some newer FPU-less processors use this code
1109                 * erroneously too, so they are covered by this choice
1110                 * as well.
1111                 */
1112                if (raw_cpu_has_fpu)
1113                        break;
1114                /* Fall through.  */
1115
1116        case 1:
1117                if (used_math())        /* Using the FPU again.  */
1118                        own_fpu(1);
1119                else {                  /* First time FPU user.  */
1120                        init_fpu();
1121                        set_used_math();
1122                }
1123
1124                if (!raw_cpu_has_fpu) {
1125                        int sig;
1126                        void __user *fault_addr = NULL;
1127                        sig = fpu_emulator_cop1Handler(regs,
1128                                                       &current->thread.fpu,
1129                                                       0, &fault_addr);
1130                        if (!process_fpemu_return(sig, fault_addr))
1131                                mt_ase_fp_affinity();
1132                }
1133
1134                return;
1135
1136        case 2:
1137                raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1138                return;
1139        }
1140
1141        force_sig(SIGILL, current);
1142}
1143
1144asmlinkage void do_mdmx(struct pt_regs *regs)
1145{
1146        force_sig(SIGILL, current);
1147}
1148
1149/*
1150 * Called with interrupts disabled.
1151 */
1152asmlinkage void do_watch(struct pt_regs *regs)
1153{
1154        u32 cause;
1155
1156        /*
1157         * Clear WP (bit 22) bit of cause register so we don't loop
1158         * forever.
1159         */
1160        cause = read_c0_cause();
1161        cause &= ~(1 << 22);
1162        write_c0_cause(cause);
1163
1164        /*
1165         * If the current thread has the watch registers loaded, save
1166         * their values and send SIGTRAP.  Otherwise another thread
1167         * left the registers set, clear them and continue.
1168         */
1169        if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1170                mips_read_watch_registers();
1171                local_irq_enable();
1172                force_sig(SIGTRAP, current);
1173        } else {
1174                mips_clear_watch_registers();
1175                local_irq_enable();
1176        }
1177}
1178
1179asmlinkage void do_mcheck(struct pt_regs *regs)
1180{
1181        const int field = 2 * sizeof(unsigned long);
1182        int multi_match = regs->cp0_status & ST0_TS;
1183
1184        show_regs(regs);
1185
1186        if (multi_match) {
1187                printk("Index   : %0x\n", read_c0_index());
1188                printk("Pagemask: %0x\n", read_c0_pagemask());
1189                printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1190                printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1191                printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1192                printk("\n");
1193                dump_tlb_all();
1194        }
1195
1196        show_code((unsigned int __user *) regs->cp0_epc);
1197
1198        /*
1199         * Some chips may have other causes of machine check (e.g. SB1
1200         * graduation timer)
1201         */
1202        panic("Caught Machine Check exception - %scaused by multiple "
1203              "matching entries in the TLB.",
1204              (multi_match) ? "" : "not ");
1205}
1206
1207asmlinkage void do_mt(struct pt_regs *regs)
1208{
1209        int subcode;
1210
1211        subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1212                        >> VPECONTROL_EXCPT_SHIFT;
1213        switch (subcode) {
1214        case 0:
1215                printk(KERN_DEBUG "Thread Underflow\n");
1216                break;
1217        case 1:
1218                printk(KERN_DEBUG "Thread Overflow\n");
1219                break;
1220        case 2:
1221                printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1222                break;
1223        case 3:
1224                printk(KERN_DEBUG "Gating Storage Exception\n");
1225                break;
1226        case 4:
1227                printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1228                break;
1229        case 5:
1230                printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1231                break;
1232        default:
1233                printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1234                        subcode);
1235                break;
1236        }
1237        die_if_kernel("MIPS MT Thread exception in kernel", regs);
1238
1239        force_sig(SIGILL, current);
1240}
1241
1242
1243asmlinkage void do_dsp(struct pt_regs *regs)
1244{
1245        if (cpu_has_dsp)
1246                panic("Unexpected DSP exception");
1247
1248        force_sig(SIGILL, current);
1249}
1250
1251asmlinkage void do_reserved(struct pt_regs *regs)
1252{
1253        /*
1254         * Game over - no way to handle this if it ever occurs.  Most probably
1255         * caused by a new unknown cpu type or after another deadly
1256         * hard/software error.
1257         */
1258        show_regs(regs);
1259        panic("Caught reserved exception %ld - should not happen.",
1260              (regs->cp0_cause & 0x7f) >> 2);
1261}
1262
1263static int __initdata l1parity = 1;
1264static int __init nol1parity(char *s)
1265{
1266        l1parity = 0;
1267        return 1;
1268}
1269__setup("nol1par", nol1parity);
1270static int __initdata l2parity = 1;
1271static int __init nol2parity(char *s)
1272{
1273        l2parity = 0;
1274        return 1;
1275}
1276__setup("nol2par", nol2parity);
1277
1278/*
1279 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1280 * it different ways.
1281 */
1282static inline void parity_protection_init(void)
1283{
1284        switch (current_cpu_type()) {
1285        case CPU_24K:
1286        case CPU_34K:
1287        case CPU_74K:
1288        case CPU_1004K:
1289                {
1290#define ERRCTL_PE       0x80000000
1291#define ERRCTL_L2P      0x00800000
1292                        unsigned long errctl;
1293                        unsigned int l1parity_present, l2parity_present;
1294
1295                        errctl = read_c0_ecc();
1296                        errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1297
1298                        /* probe L1 parity support */
1299                        write_c0_ecc(errctl | ERRCTL_PE);
1300                        back_to_back_c0_hazard();
1301                        l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1302
1303                        /* probe L2 parity support */
1304                        write_c0_ecc(errctl|ERRCTL_L2P);
1305                        back_to_back_c0_hazard();
1306                        l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1307
1308                        if (l1parity_present && l2parity_present) {
1309                                if (l1parity)
1310                                        errctl |= ERRCTL_PE;
1311                                if (l1parity ^ l2parity)
1312                                        errctl |= ERRCTL_L2P;
1313                        } else if (l1parity_present) {
1314                                if (l1parity)
1315                                        errctl |= ERRCTL_PE;
1316                        } else if (l2parity_present) {
1317                                if (l2parity)
1318                                        errctl |= ERRCTL_L2P;
1319                        } else {
1320                                /* No parity available */
1321                        }
1322
1323                        printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1324
1325                        write_c0_ecc(errctl);
1326                        back_to_back_c0_hazard();
1327                        errctl = read_c0_ecc();
1328                        printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1329
1330                        if (l1parity_present)
1331                                printk(KERN_INFO "Cache parity protection %sabled\n",
1332                                       (errctl & ERRCTL_PE) ? "en" : "dis");
1333
1334                        if (l2parity_present) {
1335                                if (l1parity_present && l1parity)
1336                                        errctl ^= ERRCTL_L2P;
1337                                printk(KERN_INFO "L2 cache parity protection %sabled\n",
1338                                       (errctl & ERRCTL_L2P) ? "en" : "dis");
1339                        }
1340                }
1341                break;
1342
1343        case CPU_5KC:
1344        case CPU_5KE:
1345        case CPU_LOONGSON1:
1346                write_c0_ecc(0x80000000);
1347                back_to_back_c0_hazard();
1348                /* Set the PE bit (bit 31) in the c0_errctl register. */
1349                printk(KERN_INFO "Cache parity protection %sabled\n",
1350                       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1351                break;
1352        case CPU_20KC:
1353        case CPU_25KF:
1354                /* Clear the DE bit (bit 16) in the c0_status register. */
1355                printk(KERN_INFO "Enable cache parity protection for "
1356                       "MIPS 20KC/25KF CPUs.\n");
1357                clear_c0_status(ST0_DE);
1358                break;
1359        default:
1360                break;
1361        }
1362}
1363
1364asmlinkage void cache_parity_error(void)
1365{
1366        const int field = 2 * sizeof(unsigned long);
1367        unsigned int reg_val;
1368
1369        /* For the moment, report the problem and hang. */
1370        printk("Cache error exception:\n");
1371        printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1372        reg_val = read_c0_cacheerr();
1373        printk("c0_cacheerr == %08x\n", reg_val);
1374
1375        printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1376               reg_val & (1<<30) ? "secondary" : "primary",
1377               reg_val & (1<<31) ? "data" : "insn");
1378        printk("Error bits: %s%s%s%s%s%s%s\n",
1379               reg_val & (1<<29) ? "ED " : "",
1380               reg_val & (1<<28) ? "ET " : "",
1381               reg_val & (1<<26) ? "EE " : "",
1382               reg_val & (1<<25) ? "EB " : "",
1383               reg_val & (1<<24) ? "EI " : "",
1384               reg_val & (1<<23) ? "E1 " : "",
1385               reg_val & (1<<22) ? "E0 " : "");
1386        printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1387
1388#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1389        if (reg_val & (1<<22))
1390                printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1391
1392        if (reg_val & (1<<23))
1393                printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1394#endif
1395
1396        panic("Can't handle the cache error!");
1397}
1398
1399/*
1400 * SDBBP EJTAG debug exception handler.
1401 * We skip the instruction and return to the next instruction.
1402 */
1403void ejtag_exception_handler(struct pt_regs *regs)
1404{
1405        const int field = 2 * sizeof(unsigned long);
1406        unsigned long depc, old_epc, old_ra;
1407        unsigned int debug;
1408
1409        printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1410        depc = read_c0_depc();
1411        debug = read_c0_debug();
1412        printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1413        if (debug & 0x80000000) {
1414                /*
1415                 * In branch delay slot.
1416                 * We cheat a little bit here and use EPC to calculate the
1417                 * debug return address (DEPC). EPC is restored after the
1418                 * calculation.
1419                 */
1420                old_epc = regs->cp0_epc;
1421                old_ra = regs->regs[31];
1422                regs->cp0_epc = depc;
1423                compute_return_epc(regs);
1424                depc = regs->cp0_epc;
1425                regs->cp0_epc = old_epc;
1426                regs->regs[31] = old_ra;
1427        } else
1428                depc += 4;
1429        write_c0_depc(depc);
1430
1431#if 0
1432        printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1433        write_c0_debug(debug | 0x100);
1434#endif
1435}
1436
1437/*
1438 * NMI exception handler.
1439 * No lock; only written during early bootup by CPU 0.
1440 */
1441static RAW_NOTIFIER_HEAD(nmi_chain);
1442
1443int register_nmi_notifier(struct notifier_block *nb)
1444{
1445        return raw_notifier_chain_register(&nmi_chain, nb);
1446}
1447
1448void __noreturn nmi_exception_handler(struct pt_regs *regs)
1449{
1450        raw_notifier_call_chain(&nmi_chain, 0, regs);
1451        bust_spinlocks(1);
1452        printk("NMI taken!!!!\n");
1453        die("NMI", regs);
1454}
1455
1456#define VECTORSPACING 0x100     /* for EI/VI mode */
1457
1458unsigned long ebase;
1459unsigned long exception_handlers[32];
1460unsigned long vi_handlers[64];
1461
1462void __init *set_except_vector(int n, void *addr)
1463{
1464        unsigned long handler = (unsigned long) addr;
1465        unsigned long old_handler;
1466
1467#ifdef CONFIG_CPU_MICROMIPS
1468        /*
1469         * Only the TLB handlers are cache aligned with an even
1470         * address. All other handlers are on an odd address and
1471         * require no modification. Otherwise, MIPS32 mode will
1472         * be entered when handling any TLB exceptions. That
1473         * would be bad...since we must stay in microMIPS mode.
1474         */
1475        if (!(handler & 0x1))
1476                handler |= 1;
1477#endif
1478        old_handler = xchg(&exception_handlers[n], handler);
1479
1480        if (n == 0 && cpu_has_divec) {
1481#ifdef CONFIG_CPU_MICROMIPS
1482                unsigned long jump_mask = ~((1 << 27) - 1);
1483#else
1484                unsigned long jump_mask = ~((1 << 28) - 1);
1485#endif
1486                u32 *buf = (u32 *)(ebase + 0x200);
1487                unsigned int k0 = 26;
1488                if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1489                        uasm_i_j(&buf, handler & ~jump_mask);
1490                        uasm_i_nop(&buf);
1491                } else {
1492                        UASM_i_LA(&buf, k0, handler);
1493                        uasm_i_jr(&buf, k0);
1494                        uasm_i_nop(&buf);
1495                }
1496                local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1497        }
1498        return (void *)old_handler;
1499}
1500
1501static void do_default_vi(void)
1502{
1503        show_regs(get_irq_regs());
1504        panic("Caught unexpected vectored interrupt.");
1505}
1506
1507static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1508{
1509        unsigned long handler;
1510        unsigned long old_handler = vi_handlers[n];
1511        int srssets = current_cpu_data.srsets;
1512        u16 *h;
1513        unsigned char *b;
1514
1515        BUG_ON(!cpu_has_veic && !cpu_has_vint);
1516        BUG_ON((n < 0) && (n > 9));
1517
1518        if (addr == NULL) {
1519                handler = (unsigned long) do_default_vi;
1520                srs = 0;
1521        } else
1522                handler = (unsigned long) addr;
1523        vi_handlers[n] = handler;
1524
1525        b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1526
1527        if (srs >= srssets)
1528                panic("Shadow register set %d not supported", srs);
1529
1530        if (cpu_has_veic) {
1531                if (board_bind_eic_interrupt)
1532                        board_bind_eic_interrupt(n, srs);
1533        } else if (cpu_has_vint) {
1534                /* SRSMap is only defined if shadow sets are implemented */
1535                if (srssets > 1)
1536                        change_c0_srsmap(0xf << n*4, srs << n*4);
1537        }
1538
1539        if (srs == 0) {
1540                /*
1541                 * If no shadow set is selected then use the default handler
1542                 * that does normal register saving and standard interrupt exit
1543                 */
1544                extern char except_vec_vi, except_vec_vi_lui;
1545                extern char except_vec_vi_ori, except_vec_vi_end;
1546                extern char rollback_except_vec_vi;
1547                char *vec_start = using_rollback_handler() ?
1548                        &rollback_except_vec_vi : &except_vec_vi;
1549#ifdef CONFIG_MIPS_MT_SMTC
1550                /*
1551                 * We need to provide the SMTC vectored interrupt handler
1552                 * not only with the address of the handler, but with the
1553                 * Status.IM bit to be masked before going there.
1554                 */
1555                extern char except_vec_vi_mori;
1556#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1557                const int mori_offset = &except_vec_vi_mori - vec_start + 2;
1558#else
1559                const int mori_offset = &except_vec_vi_mori - vec_start;
1560#endif
1561#endif /* CONFIG_MIPS_MT_SMTC */
1562#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1563                const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1564                const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1565#else
1566                const int lui_offset = &except_vec_vi_lui - vec_start;
1567                const int ori_offset = &except_vec_vi_ori - vec_start;
1568#endif
1569                const int handler_len = &except_vec_vi_end - vec_start;
1570
1571                if (handler_len > VECTORSPACING) {
1572                        /*
1573                         * Sigh... panicing won't help as the console
1574                         * is probably not configured :(
1575                         */
1576                        panic("VECTORSPACING too small");
1577                }
1578
1579                set_handler(((unsigned long)b - ebase), vec_start,
1580#ifdef CONFIG_CPU_MICROMIPS
1581                                (handler_len - 1));
1582#else
1583                                handler_len);
1584#endif
1585#ifdef CONFIG_MIPS_MT_SMTC
1586                BUG_ON(n > 7);  /* Vector index %d exceeds SMTC maximum. */
1587
1588                h = (u16 *)(b + mori_offset);
1589                *h = (0x100 << n);
1590#endif /* CONFIG_MIPS_MT_SMTC */
1591                h = (u16 *)(b + lui_offset);
1592                *h = (handler >> 16) & 0xffff;
1593                h = (u16 *)(b + ori_offset);
1594                *h = (handler & 0xffff);
1595                local_flush_icache_range((unsigned long)b,
1596                                         (unsigned long)(b+handler_len));
1597        }
1598        else {
1599                /*
1600                 * In other cases jump directly to the interrupt handler. It
1601                 * is the handler's responsibility to save registers if required
1602                 * (eg hi/lo) and return from the exception using "eret".
1603                 */
1604                u32 insn;
1605
1606                h = (u16 *)b;
1607                /* j handler */
1608#ifdef CONFIG_CPU_MICROMIPS
1609                insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1610#else
1611                insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1612#endif
1613                h[0] = (insn >> 16) & 0xffff;
1614                h[1] = insn & 0xffff;
1615                h[2] = 0;
1616                h[3] = 0;
1617                local_flush_icache_range((unsigned long)b,
1618                                         (unsigned long)(b+8));
1619        }
1620
1621        return (void *)old_handler;
1622}
1623
1624void *set_vi_handler(int n, vi_handler_t addr)
1625{
1626        return set_vi_srs_handler(n, addr, 0);
1627}
1628
1629extern void tlb_init(void);
1630extern void flush_tlb_handlers(void);
1631
1632/*
1633 * Timer interrupt
1634 */
1635int cp0_compare_irq;
1636EXPORT_SYMBOL_GPL(cp0_compare_irq);
1637int cp0_compare_irq_shift;
1638
1639/*
1640 * Performance counter IRQ or -1 if shared with timer
1641 */
1642int cp0_perfcount_irq;
1643EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1644
1645static int __cpuinitdata noulri;
1646
1647static int __init ulri_disable(char *s)
1648{
1649        pr_info("Disabling ulri\n");
1650        noulri = 1;
1651
1652        return 1;
1653}
1654__setup("noulri", ulri_disable);
1655
1656void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
1657{
1658        unsigned int cpu = smp_processor_id();
1659        unsigned int status_set = ST0_CU0;
1660        unsigned int hwrena = cpu_hwrena_impl_bits;
1661#ifdef CONFIG_MIPS_MT_SMTC
1662        int secondaryTC = 0;
1663        int bootTC = (cpu == 0);
1664
1665        /*
1666         * Only do per_cpu_trap_init() for first TC of Each VPE.
1667         * Note that this hack assumes that the SMTC init code
1668         * assigns TCs consecutively and in ascending order.
1669         */
1670
1671        if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1672            ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1673                secondaryTC = 1;
1674#endif /* CONFIG_MIPS_MT_SMTC */
1675
1676        /*
1677         * Disable coprocessors and select 32-bit or 64-bit addressing
1678         * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1679         * flag that some firmware may have left set and the TS bit (for
1680         * IP27).  Set XX for ISA IV code to work.
1681         */
1682#ifdef CONFIG_64BIT
1683        status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1684#endif
1685        if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1686                status_set |= ST0_XX;
1687        if (cpu_has_dsp)
1688                status_set |= ST0_MX;
1689
1690        change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1691                         status_set);
1692
1693        if (cpu_has_mips_r2)
1694                hwrena |= 0x0000000f;
1695
1696        if (!noulri && cpu_has_userlocal)
1697                hwrena |= (1 << 29);
1698
1699        if (hwrena)
1700                write_c0_hwrena(hwrena);
1701
1702#ifdef CONFIG_MIPS_MT_SMTC
1703        if (!secondaryTC) {
1704#endif /* CONFIG_MIPS_MT_SMTC */
1705
1706        if (cpu_has_veic || cpu_has_vint) {
1707                unsigned long sr = set_c0_status(ST0_BEV);
1708                write_c0_ebase(ebase);
1709                write_c0_status(sr);
1710                /* Setting vector spacing enables EI/VI mode  */
1711                change_c0_intctl(0x3e0, VECTORSPACING);
1712        }
1713        if (cpu_has_divec) {
1714                if (cpu_has_mipsmt) {
1715                        unsigned int vpflags = dvpe();
1716                        set_c0_cause(CAUSEF_IV);
1717                        evpe(vpflags);
1718                } else
1719                        set_c0_cause(CAUSEF_IV);
1720        }
1721
1722        /*
1723         * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1724         *
1725         *  o read IntCtl.IPTI to determine the timer interrupt
1726         *  o read IntCtl.IPPCI to determine the performance counter interrupt
1727         */
1728        if (cpu_has_mips_r2) {
1729                cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1730                cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1731                cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1732                if (cp0_perfcount_irq == cp0_compare_irq)
1733                        cp0_perfcount_irq = -1;
1734        } else {
1735                cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1736                cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1737                cp0_perfcount_irq = -1;
1738        }
1739
1740#ifdef CONFIG_MIPS_MT_SMTC
1741        }
1742#endif /* CONFIG_MIPS_MT_SMTC */
1743
1744        if (!cpu_data[cpu].asid_cache)
1745                cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1746
1747        atomic_inc(&init_mm.mm_count);
1748        current->active_mm = &init_mm;
1749        BUG_ON(current->mm);
1750        enter_lazy_tlb(&init_mm, current);
1751
1752#ifdef CONFIG_MIPS_MT_SMTC
1753        if (bootTC) {
1754#endif /* CONFIG_MIPS_MT_SMTC */
1755                /* Boot CPU's cache setup in setup_arch(). */
1756                if (!is_boot_cpu)
1757                        cpu_cache_init();
1758                tlb_init();
1759#ifdef CONFIG_MIPS_MT_SMTC
1760        } else if (!secondaryTC) {
1761                /*
1762                 * First TC in non-boot VPE must do subset of tlb_init()
1763                 * for MMU countrol registers.
1764                 */
1765                write_c0_pagemask(PM_DEFAULT_MASK);
1766                write_c0_wired(0);
1767        }
1768#endif /* CONFIG_MIPS_MT_SMTC */
1769        TLBMISS_HANDLER_SETUP();
1770}
1771
1772/* Install CPU exception handler */
1773void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1774{
1775#ifdef CONFIG_CPU_MICROMIPS
1776        memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
1777#else
1778        memcpy((void *)(ebase + offset), addr, size);
1779#endif
1780        local_flush_icache_range(ebase + offset, ebase + offset + size);
1781}
1782
1783static char panic_null_cerr[] __cpuinitdata =
1784        "Trying to set NULL cache error exception handler";
1785
1786/*
1787 * Install uncached CPU exception handler.
1788 * This is suitable only for the cache error exception which is the only
1789 * exception handler that is being run uncached.
1790 */
1791void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1792        unsigned long size)
1793{
1794        unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1795
1796        if (!addr)
1797                panic(panic_null_cerr);
1798
1799        memcpy((void *)(uncached_ebase + offset), addr, size);
1800}
1801
1802static int __initdata rdhwr_noopt;
1803static int __init set_rdhwr_noopt(char *str)
1804{
1805        rdhwr_noopt = 1;
1806        return 1;
1807}
1808
1809__setup("rdhwr_noopt", set_rdhwr_noopt);
1810
1811void __init trap_init(void)
1812{
1813        extern char except_vec3_generic;
1814        extern char except_vec4;
1815        extern char except_vec3_r4000;
1816        unsigned long i;
1817
1818        check_wait();
1819
1820#if defined(CONFIG_KGDB)
1821        if (kgdb_early_setup)
1822                return; /* Already done */
1823#endif
1824
1825        if (cpu_has_veic || cpu_has_vint) {
1826                unsigned long size = 0x200 + VECTORSPACING*64;
1827                ebase = (unsigned long)
1828                        __alloc_bootmem(size, 1 << fls(size), 0);
1829        } else {
1830#ifdef CONFIG_KVM_GUEST
1831#define KVM_GUEST_KSEG0     0x40000000
1832        ebase = KVM_GUEST_KSEG0;
1833#else
1834        ebase = CKSEG0;
1835#endif
1836                if (cpu_has_mips_r2)
1837                        ebase += (read_c0_ebase() & 0x3ffff000);
1838        }
1839
1840        if (board_ebase_setup)
1841                board_ebase_setup();
1842        per_cpu_trap_init(true);
1843
1844        /*
1845         * Copy the generic exception handlers to their final destination.
1846         * This will be overriden later as suitable for a particular
1847         * configuration.
1848         */
1849        set_handler(0x180, &except_vec3_generic, 0x80);
1850
1851        /*
1852         * Setup default vectors
1853         */
1854        for (i = 0; i <= 31; i++)
1855                set_except_vector(i, handle_reserved);
1856
1857        /*
1858         * Copy the EJTAG debug exception vector handler code to it's final
1859         * destination.
1860         */
1861        if (cpu_has_ejtag && board_ejtag_handler_setup)
1862                board_ejtag_handler_setup();
1863
1864        /*
1865         * Only some CPUs have the watch exceptions.
1866         */
1867        if (cpu_has_watch)
1868                set_except_vector(23, handle_watch);
1869
1870        /*
1871         * Initialise interrupt handlers
1872         */
1873        if (cpu_has_veic || cpu_has_vint) {
1874                int nvec = cpu_has_veic ? 64 : 8;
1875                for (i = 0; i < nvec; i++)
1876                        set_vi_handler(i, NULL);
1877        }
1878        else if (cpu_has_divec)
1879                set_handler(0x200, &except_vec4, 0x8);
1880
1881        /*
1882         * Some CPUs can enable/disable for cache parity detection, but does
1883         * it different ways.
1884         */
1885        parity_protection_init();
1886
1887        /*
1888         * The Data Bus Errors / Instruction Bus Errors are signaled
1889         * by external hardware.  Therefore these two exceptions
1890         * may have board specific handlers.
1891         */
1892        if (board_be_init)
1893                board_be_init();
1894
1895        set_except_vector(0, using_rollback_handler() ? rollback_handle_int
1896                                                      : handle_int);
1897        set_except_vector(1, handle_tlbm);
1898        set_except_vector(2, handle_tlbl);
1899        set_except_vector(3, handle_tlbs);
1900
1901        set_except_vector(4, handle_adel);
1902        set_except_vector(5, handle_ades);
1903
1904        set_except_vector(6, handle_ibe);
1905        set_except_vector(7, handle_dbe);
1906
1907        set_except_vector(8, handle_sys);
1908        set_except_vector(9, handle_bp);
1909        set_except_vector(10, rdhwr_noopt ? handle_ri :
1910                          (cpu_has_vtag_icache ?
1911                           handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1912        set_except_vector(11, handle_cpu);
1913        set_except_vector(12, handle_ov);
1914        set_except_vector(13, handle_tr);
1915
1916        if (current_cpu_type() == CPU_R6000 ||
1917            current_cpu_type() == CPU_R6000A) {
1918                /*
1919                 * The R6000 is the only R-series CPU that features a machine
1920                 * check exception (similar to the R4000 cache error) and
1921                 * unaligned ldc1/sdc1 exception.  The handlers have not been
1922                 * written yet.  Well, anyway there is no R6000 machine on the
1923                 * current list of targets for Linux/MIPS.
1924                 * (Duh, crap, there is someone with a triple R6k machine)
1925                 */
1926                //set_except_vector(14, handle_mc);
1927                //set_except_vector(15, handle_ndc);
1928        }
1929
1930
1931        if (board_nmi_handler_setup)
1932                board_nmi_handler_setup();
1933
1934        if (cpu_has_fpu && !cpu_has_nofpuex)
1935                set_except_vector(15, handle_fpe);
1936
1937        set_except_vector(22, handle_mdmx);
1938
1939        if (cpu_has_mcheck)
1940                set_except_vector(24, handle_mcheck);
1941
1942        if (cpu_has_mipsmt)
1943                set_except_vector(25, handle_mt);
1944
1945        set_except_vector(26, handle_dsp);
1946
1947        if (board_cache_error_setup)
1948                board_cache_error_setup();
1949
1950        if (cpu_has_vce)
1951                /* Special exception: R4[04]00 uses also the divec space. */
1952                set_handler(0x180, &except_vec3_r4000, 0x100);
1953        else if (cpu_has_4kex)
1954                set_handler(0x180, &except_vec3_generic, 0x80);
1955        else
1956                set_handler(0x080, &except_vec3_generic, 0x80);
1957
1958        local_flush_icache_range(ebase, ebase + 0x400);
1959        flush_tlb_handlers();
1960
1961        sort_extable(__start___dbe_table, __stop___dbe_table);
1962
1963        cu2_notifier(default_cu2_call, 0x80000000);     /* Run last  */
1964}
1965