1
2
3
4
5
6
7
8
9
10
11#include <linux/types.h>
12#include <linux/dma-mapping.h>
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/scatterlist.h>
16#include <linux/string.h>
17#include <linux/gfp.h>
18#include <linux/highmem.h>
19
20#include <asm/cache.h>
21#include <asm/io.h>
22
23#include <dma-coherence.h>
24
25int coherentio = 0;
26EXPORT_SYMBOL_GPL(coherentio);
27int hw_coherentio = 0;
28
29static int __init setcoherentio(char *str)
30{
31 coherentio = 1;
32 pr_info("Hardware DMA cache coherency (command line)\n");
33 return 0;
34}
35early_param("coherentio", setcoherentio);
36
37static int __init setnocoherentio(char *str)
38{
39 coherentio = 0;
40 pr_info("Software DMA cache coherency (command line)\n");
41 return 0;
42}
43early_param("nocoherentio", setnocoherentio);
44
45static inline struct page *dma_addr_to_page(struct device *dev,
46 dma_addr_t dma_addr)
47{
48 return pfn_to_page(
49 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
50}
51
52
53
54
55
56
57
58static inline int cpu_is_noncoherent_r10000(struct device *dev)
59{
60 return !plat_device_is_coherent(dev) &&
61 (current_cpu_type() == CPU_R10000 ||
62 current_cpu_type() == CPU_R12000);
63}
64
65static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
66{
67 gfp_t dma_flag;
68
69
70 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
71
72#ifdef CONFIG_ISA
73 if (dev == NULL)
74 dma_flag = __GFP_DMA;
75 else
76#endif
77#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
78 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
79 dma_flag = __GFP_DMA;
80 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
81 dma_flag = __GFP_DMA32;
82 else
83#endif
84#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
85 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
86 dma_flag = __GFP_DMA32;
87 else
88#endif
89#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
90 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
91 dma_flag = __GFP_DMA;
92 else
93#endif
94 dma_flag = 0;
95
96
97 gfp |= __GFP_NORETRY;
98
99 return gfp | dma_flag;
100}
101
102void *dma_alloc_noncoherent(struct device *dev, size_t size,
103 dma_addr_t * dma_handle, gfp_t gfp)
104{
105 void *ret;
106
107 gfp = massage_gfp_flags(dev, gfp);
108
109 ret = (void *) __get_free_pages(gfp, get_order(size));
110
111 if (ret != NULL) {
112 memset(ret, 0, size);
113 *dma_handle = plat_map_dma_mem(dev, ret, size);
114 }
115
116 return ret;
117}
118EXPORT_SYMBOL(dma_alloc_noncoherent);
119
120static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
121 dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
122{
123 void *ret;
124
125 if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
126 return ret;
127
128 gfp = massage_gfp_flags(dev, gfp);
129
130 ret = (void *) __get_free_pages(gfp, get_order(size));
131
132 if (ret) {
133 memset(ret, 0, size);
134 *dma_handle = plat_map_dma_mem(dev, ret, size);
135
136 if (!plat_device_is_coherent(dev)) {
137 dma_cache_wback_inv((unsigned long) ret, size);
138 if (!hw_coherentio)
139 ret = UNCAC_ADDR(ret);
140 }
141 }
142
143 return ret;
144}
145
146
147void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
148 dma_addr_t dma_handle)
149{
150 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
151 free_pages((unsigned long) vaddr, get_order(size));
152}
153EXPORT_SYMBOL(dma_free_noncoherent);
154
155static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
156 dma_addr_t dma_handle, struct dma_attrs *attrs)
157{
158 unsigned long addr = (unsigned long) vaddr;
159 int order = get_order(size);
160
161 if (dma_release_from_coherent(dev, order, vaddr))
162 return;
163
164 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
165
166 if (!plat_device_is_coherent(dev) && !hw_coherentio)
167 addr = CAC_ADDR(addr);
168
169 free_pages(addr, get_order(size));
170}
171
172static inline void __dma_sync_virtual(void *addr, size_t size,
173 enum dma_data_direction direction)
174{
175 switch (direction) {
176 case DMA_TO_DEVICE:
177 dma_cache_wback((unsigned long)addr, size);
178 break;
179
180 case DMA_FROM_DEVICE:
181 dma_cache_inv((unsigned long)addr, size);
182 break;
183
184 case DMA_BIDIRECTIONAL:
185 dma_cache_wback_inv((unsigned long)addr, size);
186 break;
187
188 default:
189 BUG();
190 }
191}
192
193
194
195
196
197
198
199static inline void __dma_sync(struct page *page,
200 unsigned long offset, size_t size, enum dma_data_direction direction)
201{
202 size_t left = size;
203
204 do {
205 size_t len = left;
206
207 if (PageHighMem(page)) {
208 void *addr;
209
210 if (offset + len > PAGE_SIZE) {
211 if (offset >= PAGE_SIZE) {
212 page += offset >> PAGE_SHIFT;
213 offset &= ~PAGE_MASK;
214 }
215 len = PAGE_SIZE - offset;
216 }
217
218 addr = kmap_atomic(page);
219 __dma_sync_virtual(addr + offset, len, direction);
220 kunmap_atomic(addr);
221 } else
222 __dma_sync_virtual(page_address(page) + offset,
223 size, direction);
224 offset = 0;
225 page++;
226 left -= len;
227 } while (left);
228}
229
230static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
231 size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
232{
233 if (cpu_is_noncoherent_r10000(dev))
234 __dma_sync(dma_addr_to_page(dev, dma_addr),
235 dma_addr & ~PAGE_MASK, size, direction);
236
237 plat_unmap_dma_mem(dev, dma_addr, size, direction);
238}
239
240static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
241 int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
242{
243 int i;
244
245 for (i = 0; i < nents; i++, sg++) {
246 if (!plat_device_is_coherent(dev))
247 __dma_sync(sg_page(sg), sg->offset, sg->length,
248 direction);
249 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
250 sg->offset;
251 }
252
253 return nents;
254}
255
256static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
257 unsigned long offset, size_t size, enum dma_data_direction direction,
258 struct dma_attrs *attrs)
259{
260 if (!plat_device_is_coherent(dev))
261 __dma_sync(page, offset, size, direction);
262
263 return plat_map_dma_mem_page(dev, page) + offset;
264}
265
266static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
267 int nhwentries, enum dma_data_direction direction,
268 struct dma_attrs *attrs)
269{
270 int i;
271
272 for (i = 0; i < nhwentries; i++, sg++) {
273 if (!plat_device_is_coherent(dev) &&
274 direction != DMA_TO_DEVICE)
275 __dma_sync(sg_page(sg), sg->offset, sg->length,
276 direction);
277 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
278 }
279}
280
281static void mips_dma_sync_single_for_cpu(struct device *dev,
282 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
283{
284 if (cpu_is_noncoherent_r10000(dev))
285 __dma_sync(dma_addr_to_page(dev, dma_handle),
286 dma_handle & ~PAGE_MASK, size, direction);
287}
288
289static void mips_dma_sync_single_for_device(struct device *dev,
290 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
291{
292 plat_extra_sync_for_device(dev);
293 if (!plat_device_is_coherent(dev))
294 __dma_sync(dma_addr_to_page(dev, dma_handle),
295 dma_handle & ~PAGE_MASK, size, direction);
296}
297
298static void mips_dma_sync_sg_for_cpu(struct device *dev,
299 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
300{
301 int i;
302
303
304 for (i = 0; i < nelems; i++, sg++) {
305 if (cpu_is_noncoherent_r10000(dev))
306 __dma_sync(sg_page(sg), sg->offset, sg->length,
307 direction);
308 }
309}
310
311static void mips_dma_sync_sg_for_device(struct device *dev,
312 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
313{
314 int i;
315
316
317 for (i = 0; i < nelems; i++, sg++) {
318 if (!plat_device_is_coherent(dev))
319 __dma_sync(sg_page(sg), sg->offset, sg->length,
320 direction);
321 }
322}
323
324int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
325{
326 return plat_dma_mapping_error(dev, dma_addr);
327}
328
329int mips_dma_supported(struct device *dev, u64 mask)
330{
331 return plat_dma_supported(dev, mask);
332}
333
334void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
335 enum dma_data_direction direction)
336{
337 BUG_ON(direction == DMA_NONE);
338
339 plat_extra_sync_for_device(dev);
340 if (!plat_device_is_coherent(dev))
341 __dma_sync_virtual(vaddr, size, direction);
342}
343
344EXPORT_SYMBOL(dma_cache_sync);
345
346static struct dma_map_ops mips_default_dma_map_ops = {
347 .alloc = mips_dma_alloc_coherent,
348 .free = mips_dma_free_coherent,
349 .map_page = mips_dma_map_page,
350 .unmap_page = mips_dma_unmap_page,
351 .map_sg = mips_dma_map_sg,
352 .unmap_sg = mips_dma_unmap_sg,
353 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
354 .sync_single_for_device = mips_dma_sync_single_for_device,
355 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
356 .sync_sg_for_device = mips_dma_sync_sg_for_device,
357 .mapping_error = mips_dma_mapping_error,
358 .dma_supported = mips_dma_supported
359};
360
361struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
362EXPORT_SYMBOL(mips_dma_map_ops);
363
364#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
365
366static int __init mips_dma_init(void)
367{
368 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
369
370 return 0;
371}
372fs_initcall(mips_dma_init);
373