linux/drivers/block/brd.c
<<
>>
Prefs
   1/*
   2 * Ram backed block device driver.
   3 *
   4 * Copyright (C) 2007 Nick Piggin
   5 * Copyright (C) 2007 Novell Inc.
   6 *
   7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
   8 * of their respective owners.
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/moduleparam.h>
  14#include <linux/major.h>
  15#include <linux/blkdev.h>
  16#include <linux/bio.h>
  17#include <linux/highmem.h>
  18#include <linux/mutex.h>
  19#include <linux/radix-tree.h>
  20#include <linux/fs.h>
  21#include <linux/slab.h>
  22#ifdef CONFIG_BLK_DEV_RAM_DAX
  23#include <linux/pfn_t.h>
  24#include <linux/dax.h>
  25#include <linux/socket.h> /* memcpy_fromiovecend_partial */
  26#endif
  27
  28#include <asm/uaccess.h>
  29
  30#define SECTOR_SHIFT            9
  31#define PAGE_SECTORS_SHIFT      (PAGE_SHIFT - SECTOR_SHIFT)
  32#define PAGE_SECTORS            (1 << PAGE_SECTORS_SHIFT)
  33
  34/*
  35 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
  36 * the pages containing the block device's contents. A brd page's ->index is
  37 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
  38 * with, the kernel's pagecache or buffer cache (which sit above our block
  39 * device).
  40 */
  41struct brd_device {
  42        int             brd_number;
  43
  44        struct request_queue    *brd_queue;
  45        struct gendisk          *brd_disk;
  46#ifdef CONFIG_BLK_DEV_RAM_DAX
  47        struct dax_device       *dax_dev;
  48#endif
  49        struct list_head        brd_list;
  50
  51        /*
  52         * Backing store of pages and lock to protect it. This is the contents
  53         * of the block device.
  54         */
  55        spinlock_t              brd_lock;
  56        struct radix_tree_root  brd_pages;
  57};
  58
  59/*
  60 * Look up and return a brd's page for a given sector.
  61 */
  62static DEFINE_MUTEX(brd_mutex);
  63static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
  64{
  65        pgoff_t idx;
  66        struct page *page;
  67
  68        /*
  69         * The page lifetime is protected by the fact that we have opened the
  70         * device node -- brd pages will never be deleted under us, so we
  71         * don't need any further locking or refcounting.
  72         *
  73         * This is strictly true for the radix-tree nodes as well (ie. we
  74         * don't actually need the rcu_read_lock()), however that is not a
  75         * documented feature of the radix-tree API so it is better to be
  76         * safe here (we don't have total exclusion from radix tree updates
  77         * here, only deletes).
  78         */
  79        rcu_read_lock();
  80        idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
  81        page = radix_tree_lookup(&brd->brd_pages, idx);
  82        rcu_read_unlock();
  83
  84        BUG_ON(page && page->index != idx);
  85
  86        return page;
  87}
  88
  89/*
  90 * Look up and return a brd's page for a given sector.
  91 * If one does not exist, allocate an empty page, and insert that. Then
  92 * return it.
  93 */
  94static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
  95{
  96        pgoff_t idx;
  97        struct page *page;
  98        gfp_t gfp_flags;
  99
 100        page = brd_lookup_page(brd, sector);
 101        if (page)
 102                return page;
 103
 104        /*
 105         * Must use NOIO because we don't want to recurse back into the
 106         * block or filesystem layers from page reclaim.
 107         *
 108         * Cannot support DAX and highmem, because our ->direct_access
 109         * routine for DAX must return memory that is always addressable.
 110         * If DAX was reworked to use pfns and kmap throughout, this
 111         * restriction might be able to be lifted.
 112         */
 113        gfp_flags = GFP_NOIO | __GFP_ZERO;
 114#ifndef CONFIG_BLK_DEV_RAM_DAX
 115        gfp_flags |= __GFP_HIGHMEM;
 116#endif
 117        page = alloc_page(gfp_flags);
 118        if (!page)
 119                return NULL;
 120
 121        if (radix_tree_preload(GFP_NOIO)) {
 122                __free_page(page);
 123                return NULL;
 124        }
 125
 126        spin_lock(&brd->brd_lock);
 127        idx = sector >> PAGE_SECTORS_SHIFT;
 128        page->index = idx;
 129        if (radix_tree_insert(&brd->brd_pages, idx, page)) {
 130                __free_page(page);
 131                page = radix_tree_lookup(&brd->brd_pages, idx);
 132                BUG_ON(!page);
 133                BUG_ON(page->index != idx);
 134        }
 135        spin_unlock(&brd->brd_lock);
 136
 137        radix_tree_preload_end();
 138
 139        return page;
 140}
 141
 142static void brd_free_page(struct brd_device *brd, sector_t sector)
 143{
 144        struct page *page;
 145        pgoff_t idx;
 146
 147        spin_lock(&brd->brd_lock);
 148        idx = sector >> PAGE_SECTORS_SHIFT;
 149        page = radix_tree_delete(&brd->brd_pages, idx);
 150        spin_unlock(&brd->brd_lock);
 151        if (page)
 152                __free_page(page);
 153}
 154
 155static void brd_zero_page(struct brd_device *brd, sector_t sector)
 156{
 157        struct page *page;
 158
 159        page = brd_lookup_page(brd, sector);
 160        if (page)
 161                clear_highpage(page);
 162}
 163
 164/*
 165 * Free all backing store pages and radix tree. This must only be called when
 166 * there are no other users of the device.
 167 */
 168#define FREE_BATCH 16
 169static void brd_free_pages(struct brd_device *brd)
 170{
 171        unsigned long pos = 0;
 172        struct page *pages[FREE_BATCH];
 173        int nr_pages;
 174
 175        do {
 176                int i;
 177
 178                nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
 179                                (void **)pages, pos, FREE_BATCH);
 180
 181                for (i = 0; i < nr_pages; i++) {
 182                        void *ret;
 183
 184                        BUG_ON(pages[i]->index < pos);
 185                        pos = pages[i]->index;
 186                        ret = radix_tree_delete(&brd->brd_pages, pos);
 187                        BUG_ON(!ret || ret != pages[i]);
 188                        __free_page(pages[i]);
 189                }
 190
 191                pos++;
 192
 193                /*
 194                 * This assumes radix_tree_gang_lookup always returns as
 195                 * many pages as possible. If the radix-tree code changes,
 196                 * so will this have to.
 197                 */
 198        } while (nr_pages == FREE_BATCH);
 199}
 200
 201/*
 202 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
 203 */
 204static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
 205{
 206        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 207        size_t copy;
 208
 209        copy = min_t(size_t, n, PAGE_SIZE - offset);
 210        if (!brd_insert_page(brd, sector))
 211                return -ENOSPC;
 212        if (copy < n) {
 213                sector += copy >> SECTOR_SHIFT;
 214                if (!brd_insert_page(brd, sector))
 215                        return -ENOSPC;
 216        }
 217        return 0;
 218}
 219
 220static void discard_from_brd(struct brd_device *brd,
 221                        sector_t sector, size_t n)
 222{
 223        while (n >= PAGE_SIZE) {
 224                /*
 225                 * Don't want to actually discard pages here because
 226                 * re-allocating the pages can result in writeback
 227                 * deadlocks under heavy load.
 228                 */
 229                if (0)
 230                        brd_free_page(brd, sector);
 231                else
 232                        brd_zero_page(brd, sector);
 233                sector += PAGE_SIZE >> SECTOR_SHIFT;
 234                n -= PAGE_SIZE;
 235        }
 236}
 237
 238/*
 239 * Copy n bytes from src to the brd starting at sector. Does not sleep.
 240 */
 241static void copy_to_brd(struct brd_device *brd, const void *src,
 242                        sector_t sector, size_t n)
 243{
 244        struct page *page;
 245        void *dst;
 246        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 247        size_t copy;
 248
 249        copy = min_t(size_t, n, PAGE_SIZE - offset);
 250        page = brd_lookup_page(brd, sector);
 251        BUG_ON(!page);
 252
 253        dst = kmap_atomic(page);
 254        memcpy(dst + offset, src, copy);
 255        kunmap_atomic(dst);
 256
 257        if (copy < n) {
 258                src += copy;
 259                sector += copy >> SECTOR_SHIFT;
 260                copy = n - copy;
 261                page = brd_lookup_page(brd, sector);
 262                BUG_ON(!page);
 263
 264                dst = kmap_atomic(page);
 265                memcpy(dst, src, copy);
 266                kunmap_atomic(dst);
 267        }
 268}
 269
 270/*
 271 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
 272 */
 273static void copy_from_brd(void *dst, struct brd_device *brd,
 274                        sector_t sector, size_t n)
 275{
 276        struct page *page;
 277        void *src;
 278        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 279        size_t copy;
 280
 281        copy = min_t(size_t, n, PAGE_SIZE - offset);
 282        page = brd_lookup_page(brd, sector);
 283        if (page) {
 284                src = kmap_atomic(page);
 285                memcpy(dst, src + offset, copy);
 286                kunmap_atomic(src);
 287        } else
 288                memset(dst, 0, copy);
 289
 290        if (copy < n) {
 291                dst += copy;
 292                sector += copy >> SECTOR_SHIFT;
 293                copy = n - copy;
 294                page = brd_lookup_page(brd, sector);
 295                if (page) {
 296                        src = kmap_atomic(page);
 297                        memcpy(dst, src, copy);
 298                        kunmap_atomic(src);
 299                } else
 300                        memset(dst, 0, copy);
 301        }
 302}
 303
 304/*
 305 * Process a single bvec of a bio.
 306 */
 307static int brd_do_bvec(struct brd_device *brd, struct page *page,
 308                        unsigned int len, unsigned int off, int rw,
 309                        sector_t sector)
 310{
 311        void *mem;
 312        int err = 0;
 313
 314        if (rw != READ) {
 315                err = copy_to_brd_setup(brd, sector, len);
 316                if (err)
 317                        goto out;
 318        }
 319
 320        mem = kmap_atomic(page);
 321        if (rw == READ) {
 322                copy_from_brd(mem + off, brd, sector, len);
 323                flush_dcache_page(page);
 324        } else {
 325                flush_dcache_page(page);
 326                copy_to_brd(brd, mem + off, sector, len);
 327        }
 328        kunmap_atomic(mem);
 329
 330out:
 331        return err;
 332}
 333
 334static void brd_make_request(struct request_queue *q, struct bio *bio)
 335{
 336        struct block_device *bdev = bio->bi_bdev;
 337        struct brd_device *brd = bdev->bd_disk->private_data;
 338        int rw;
 339        struct bio_vec *bvec;
 340        sector_t sector;
 341        int i;
 342        int err = -EIO;
 343
 344        sector = bio->bi_sector;
 345        if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
 346                goto out;
 347
 348        if (unlikely(bio->bi_rw & REQ_DISCARD)) {
 349                err = 0;
 350                discard_from_brd(brd, sector, bio->bi_size);
 351                goto out;
 352        }
 353
 354        rw = bio_rw(bio);
 355        if (rw == READA)
 356                rw = READ;
 357
 358        bio_for_each_segment(bvec, bio, i) {
 359                unsigned int len = bvec->bv_len;
 360                err = brd_do_bvec(brd, bvec->bv_page, len,
 361                                        bvec->bv_offset, rw, sector);
 362                if (err)
 363                        break;
 364                sector += len >> SECTOR_SHIFT;
 365        }
 366
 367out:
 368        bio_endio(bio, err);
 369}
 370
 371static int brd_rw_page(struct block_device *bdev, sector_t sector,
 372                       struct page *page, int rw)
 373{
 374        struct brd_device *brd = bdev->bd_disk->private_data;
 375        int err = brd_do_bvec(brd, page, PAGE_CACHE_SIZE, 0, rw, sector);
 376        page_endio(page, rw & WRITE, err);
 377        return err;
 378}
 379
 380#ifdef CONFIG_BLK_DEV_RAM_DAX
 381static long __brd_direct_access(struct brd_device *brd, pgoff_t pgoff,
 382                long nr_pages, void **kaddr, pfn_t *pfn)
 383{
 384        struct page *page;
 385
 386        if (!brd)
 387                return -ENODEV;
 388        page = brd_insert_page(brd, PFN_PHYS(pgoff) / 512);
 389        if (!page)
 390                return -ENOSPC;
 391        *kaddr = page_address(page);
 392        *pfn = page_to_pfn_t(page);
 393
 394        return 1;
 395}
 396
 397static long brd_dax_direct_access(struct dax_device *dax_dev,
 398                pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
 399{
 400        struct brd_device *brd = dax_get_private(dax_dev);
 401
 402        return __brd_direct_access(brd, pgoff, nr_pages, kaddr, pfn);
 403}
 404
 405static int brd_dax_memcpy_fromiovecend(struct dax_device *dax_dev,
 406                pgoff_t pgoff, void *addr, const struct iovec *iov,
 407                int offset, int len)
 408{
 409        return memcpy_fromiovecend_partial_flushcache(addr, iov, offset, len);
 410}
 411
 412static const struct dax_operations brd_dax_ops = {
 413        .direct_access = brd_dax_direct_access,
 414        .memcpy_fromiovecend = brd_dax_memcpy_fromiovecend,
 415};
 416#endif
 417
 418static int brd_ioctl(struct block_device *bdev, fmode_t mode,
 419                        unsigned int cmd, unsigned long arg)
 420{
 421        int error;
 422        struct brd_device *brd = bdev->bd_disk->private_data;
 423
 424        if (cmd != BLKFLSBUF)
 425                return -ENOTTY;
 426
 427        /*
 428         * ram device BLKFLSBUF has special semantics, we want to actually
 429         * release and destroy the ramdisk data.
 430         */
 431        mutex_lock(&brd_mutex);
 432        mutex_lock(&bdev->bd_mutex);
 433        error = -EBUSY;
 434        if (bdev->bd_openers <= 1) {
 435                /*
 436                 * Kill the cache first, so it isn't written back to the
 437                 * device.
 438                 *
 439                 * Another thread might instantiate more buffercache here,
 440                 * but there is not much we can do to close that race.
 441                 */
 442                kill_bdev(bdev);
 443                brd_free_pages(brd);
 444                error = 0;
 445        }
 446        mutex_unlock(&bdev->bd_mutex);
 447        mutex_unlock(&brd_mutex);
 448
 449        return error;
 450}
 451
 452static const struct block_device_operations brd_fops = {
 453        .owner =                THIS_MODULE,
 454        .rw_page =              brd_rw_page,
 455        .ioctl =                brd_ioctl,
 456};
 457
 458/*
 459 * And now the modules code and kernel interface.
 460 */
 461static int rd_nr;
 462int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
 463static int max_part;
 464static int part_shift;
 465module_param(rd_nr, int, S_IRUGO);
 466MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
 467module_param(rd_size, int, S_IRUGO);
 468MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
 469module_param(max_part, int, S_IRUGO);
 470MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
 471MODULE_LICENSE("GPL");
 472MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
 473MODULE_ALIAS("rd");
 474
 475#ifndef MODULE
 476/* Legacy boot options - nonmodular */
 477static int __init ramdisk_size(char *str)
 478{
 479        rd_size = simple_strtol(str, NULL, 0);
 480        return 1;
 481}
 482__setup("ramdisk_size=", ramdisk_size);
 483#endif
 484
 485/*
 486 * The device scheme is derived from loop.c. Keep them in synch where possible
 487 * (should share code eventually).
 488 */
 489static LIST_HEAD(brd_devices);
 490static DEFINE_MUTEX(brd_devices_mutex);
 491
 492static struct brd_device *brd_alloc(int i)
 493{
 494        struct brd_device *brd;
 495        struct gendisk *disk;
 496
 497        brd = kzalloc(sizeof(*brd), GFP_KERNEL);
 498        if (!brd)
 499                goto out;
 500        brd->brd_number         = i;
 501        spin_lock_init(&brd->brd_lock);
 502        INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
 503
 504        brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
 505        if (!brd->brd_queue)
 506                goto out_free_dev;
 507        blk_queue_make_request(brd->brd_queue, brd_make_request);
 508        blk_queue_max_hw_sectors(brd->brd_queue, 1024);
 509        blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
 510
 511        brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
 512        brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
 513        brd->brd_queue->limits.discard_zeroes_data = 1;
 514        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
 515        disk = brd->brd_disk = alloc_disk(1 << part_shift);
 516        if (!disk)
 517                goto out_free_queue;
 518        disk->major             = RAMDISK_MAJOR;
 519        disk->first_minor       = i << part_shift;
 520        disk->fops              = &brd_fops;
 521        disk->private_data      = brd;
 522        disk->queue             = brd->brd_queue;
 523        disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
 524        sprintf(disk->disk_name, "ram%d", i);
 525        set_capacity(disk, rd_size * 2);
 526
 527#ifdef CONFIG_BLK_DEV_RAM_DAX
 528        queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
 529        brd->dax_dev = alloc_dax(brd, disk->disk_name, &brd_dax_ops);
 530        if (!brd->dax_dev)
 531                goto out_free_inode;
 532#endif
 533
 534
 535        return brd;
 536
 537#ifdef CONFIG_BLK_DEV_RAM_DAX
 538out_free_inode:
 539        kill_dax(brd->dax_dev);
 540        put_dax(brd->dax_dev);
 541#endif
 542out_free_queue:
 543        blk_cleanup_queue(brd->brd_queue);
 544out_free_dev:
 545        kfree(brd);
 546out:
 547        return NULL;
 548}
 549
 550static void brd_free(struct brd_device *brd)
 551{
 552        put_disk(brd->brd_disk);
 553        blk_cleanup_queue(brd->brd_queue);
 554        brd_free_pages(brd);
 555        kfree(brd);
 556}
 557
 558static struct brd_device *brd_init_one(int i)
 559{
 560        struct brd_device *brd;
 561
 562        list_for_each_entry(brd, &brd_devices, brd_list) {
 563                if (brd->brd_number == i)
 564                        goto out;
 565        }
 566
 567        brd = brd_alloc(i);
 568        if (brd) {
 569                add_disk(brd->brd_disk);
 570                list_add_tail(&brd->brd_list, &brd_devices);
 571        }
 572out:
 573        return brd;
 574}
 575
 576static void brd_del_one(struct brd_device *brd)
 577{
 578        list_del(&brd->brd_list);
 579#ifdef CONFIG_BLK_DEV_RAM_DAX
 580        kill_dax(brd->dax_dev);
 581        put_dax(brd->dax_dev);
 582#endif
 583        del_gendisk(brd->brd_disk);
 584        brd_free(brd);
 585}
 586
 587static struct kobject *brd_probe(dev_t dev, int *part, void *data)
 588{
 589        struct brd_device *brd;
 590        struct kobject *kobj;
 591
 592        mutex_lock(&brd_devices_mutex);
 593        brd = brd_init_one(MINOR(dev) >> part_shift);
 594        kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
 595        mutex_unlock(&brd_devices_mutex);
 596
 597        *part = 0;
 598        return kobj;
 599}
 600
 601static int __init brd_init(void)
 602{
 603        int i, nr;
 604        unsigned long range;
 605        struct brd_device *brd, *next;
 606
 607        /*
 608         * brd module now has a feature to instantiate underlying device
 609         * structure on-demand, provided that there is an access dev node.
 610         * However, this will not work well with user space tool that doesn't
 611         * know about such "feature".  In order to not break any existing
 612         * tool, we do the following:
 613         *
 614         * (1) if rd_nr is specified, create that many upfront, and this
 615         *     also becomes a hard limit.
 616         * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT
 617         *     (default 16) rd device on module load, user can further
 618         *     extend brd device by create dev node themselves and have
 619         *     kernel automatically instantiate actual device on-demand.
 620         */
 621
 622        part_shift = 0;
 623        if (max_part > 0) {
 624                part_shift = fls(max_part);
 625
 626                /*
 627                 * Adjust max_part according to part_shift as it is exported
 628                 * to user space so that user can decide correct minor number
 629                 * if [s]he want to create more devices.
 630                 *
 631                 * Note that -1 is required because partition 0 is reserved
 632                 * for the whole disk.
 633                 */
 634                max_part = (1UL << part_shift) - 1;
 635        }
 636
 637        if ((1UL << part_shift) > DISK_MAX_PARTS)
 638                return -EINVAL;
 639
 640        if (rd_nr > 1UL << (MINORBITS - part_shift))
 641                return -EINVAL;
 642
 643        if (rd_nr) {
 644                nr = rd_nr;
 645                range = rd_nr << part_shift;
 646        } else {
 647                nr = CONFIG_BLK_DEV_RAM_COUNT;
 648                range = 1UL << MINORBITS;
 649        }
 650
 651        if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
 652                return -EIO;
 653
 654        for (i = 0; i < nr; i++) {
 655                brd = brd_alloc(i);
 656                if (!brd)
 657                        goto out_free;
 658                list_add_tail(&brd->brd_list, &brd_devices);
 659        }
 660
 661        /* point of no return */
 662
 663        list_for_each_entry(brd, &brd_devices, brd_list)
 664                add_disk(brd->brd_disk);
 665
 666        blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
 667                                  THIS_MODULE, brd_probe, NULL, NULL);
 668
 669        printk(KERN_INFO "brd: module loaded\n");
 670        return 0;
 671
 672out_free:
 673        list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
 674                list_del(&brd->brd_list);
 675                brd_free(brd);
 676        }
 677        unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
 678
 679        return -ENOMEM;
 680}
 681
 682static void __exit brd_exit(void)
 683{
 684        unsigned long range;
 685        struct brd_device *brd, *next;
 686
 687        range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS;
 688
 689        list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
 690                brd_del_one(brd);
 691
 692        blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
 693        unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
 694}
 695
 696module_init(brd_init);
 697module_exit(brd_exit);
 698
 699