linux/drivers/gpu/drm/vmwgfx/vmwgfx_ttm_buffer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/**************************************************************************
   3 *
   4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27
  28#include "vmwgfx_drv.h"
  29#include <drm/ttm/ttm_bo_driver.h>
  30#include <drm/ttm/ttm_placement.h>
  31#include <drm/ttm/ttm_page_alloc.h>
  32
  33static const struct ttm_place vram_placement_flags = {
  34        .fpfn = 0,
  35        .lpfn = 0,
  36        .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
  37};
  38
  39static const struct ttm_place vram_ne_placement_flags = {
  40        .fpfn = 0,
  41        .lpfn = 0,
  42        .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
  43};
  44
  45static const struct ttm_place sys_placement_flags = {
  46        .fpfn = 0,
  47        .lpfn = 0,
  48        .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
  49};
  50
  51static const struct ttm_place sys_ne_placement_flags = {
  52        .fpfn = 0,
  53        .lpfn = 0,
  54        .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
  55};
  56
  57static const struct ttm_place gmr_placement_flags = {
  58        .fpfn = 0,
  59        .lpfn = 0,
  60        .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
  61};
  62
  63static const struct ttm_place gmr_ne_placement_flags = {
  64        .fpfn = 0,
  65        .lpfn = 0,
  66        .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
  67};
  68
  69static const struct ttm_place mob_placement_flags = {
  70        .fpfn = 0,
  71        .lpfn = 0,
  72        .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
  73};
  74
  75static const struct ttm_place mob_ne_placement_flags = {
  76        .fpfn = 0,
  77        .lpfn = 0,
  78        .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
  79};
  80
  81struct ttm_placement vmw_vram_placement = {
  82        .num_placement = 1,
  83        .placement = &vram_placement_flags,
  84        .num_busy_placement = 1,
  85        .busy_placement = &vram_placement_flags
  86};
  87
  88static const struct ttm_place vram_gmr_placement_flags[] = {
  89        {
  90                .fpfn = 0,
  91                .lpfn = 0,
  92                .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
  93        }, {
  94                .fpfn = 0,
  95                .lpfn = 0,
  96                .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
  97        }
  98};
  99
 100static const struct ttm_place gmr_vram_placement_flags[] = {
 101        {
 102                .fpfn = 0,
 103                .lpfn = 0,
 104                .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
 105        }, {
 106                .fpfn = 0,
 107                .lpfn = 0,
 108                .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
 109        }
 110};
 111
 112struct ttm_placement vmw_vram_gmr_placement = {
 113        .num_placement = 2,
 114        .placement = vram_gmr_placement_flags,
 115        .num_busy_placement = 1,
 116        .busy_placement = &gmr_placement_flags
 117};
 118
 119static const struct ttm_place vram_gmr_ne_placement_flags[] = {
 120        {
 121                .fpfn = 0,
 122                .lpfn = 0,
 123                .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED |
 124                         TTM_PL_FLAG_NO_EVICT
 125        }, {
 126                .fpfn = 0,
 127                .lpfn = 0,
 128                .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED |
 129                         TTM_PL_FLAG_NO_EVICT
 130        }
 131};
 132
 133struct ttm_placement vmw_vram_gmr_ne_placement = {
 134        .num_placement = 2,
 135        .placement = vram_gmr_ne_placement_flags,
 136        .num_busy_placement = 1,
 137        .busy_placement = &gmr_ne_placement_flags
 138};
 139
 140struct ttm_placement vmw_vram_sys_placement = {
 141        .num_placement = 1,
 142        .placement = &vram_placement_flags,
 143        .num_busy_placement = 1,
 144        .busy_placement = &sys_placement_flags
 145};
 146
 147struct ttm_placement vmw_vram_ne_placement = {
 148        .num_placement = 1,
 149        .placement = &vram_ne_placement_flags,
 150        .num_busy_placement = 1,
 151        .busy_placement = &vram_ne_placement_flags
 152};
 153
 154struct ttm_placement vmw_sys_placement = {
 155        .num_placement = 1,
 156        .placement = &sys_placement_flags,
 157        .num_busy_placement = 1,
 158        .busy_placement = &sys_placement_flags
 159};
 160
 161struct ttm_placement vmw_sys_ne_placement = {
 162        .num_placement = 1,
 163        .placement = &sys_ne_placement_flags,
 164        .num_busy_placement = 1,
 165        .busy_placement = &sys_ne_placement_flags
 166};
 167
 168static const struct ttm_place evictable_placement_flags[] = {
 169        {
 170                .fpfn = 0,
 171                .lpfn = 0,
 172                .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
 173        }, {
 174                .fpfn = 0,
 175                .lpfn = 0,
 176                .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
 177        }, {
 178                .fpfn = 0,
 179                .lpfn = 0,
 180                .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
 181        }, {
 182                .fpfn = 0,
 183                .lpfn = 0,
 184                .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
 185        }
 186};
 187
 188static const struct ttm_place nonfixed_placement_flags[] = {
 189        {
 190                .fpfn = 0,
 191                .lpfn = 0,
 192                .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
 193        }, {
 194                .fpfn = 0,
 195                .lpfn = 0,
 196                .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
 197        }, {
 198                .fpfn = 0,
 199                .lpfn = 0,
 200                .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
 201        }
 202};
 203
 204struct ttm_placement vmw_evictable_placement = {
 205        .num_placement = 4,
 206        .placement = evictable_placement_flags,
 207        .num_busy_placement = 1,
 208        .busy_placement = &sys_placement_flags
 209};
 210
 211struct ttm_placement vmw_srf_placement = {
 212        .num_placement = 1,
 213        .num_busy_placement = 2,
 214        .placement = &gmr_placement_flags,
 215        .busy_placement = gmr_vram_placement_flags
 216};
 217
 218struct ttm_placement vmw_mob_placement = {
 219        .num_placement = 1,
 220        .num_busy_placement = 1,
 221        .placement = &mob_placement_flags,
 222        .busy_placement = &mob_placement_flags
 223};
 224
 225struct ttm_placement vmw_mob_ne_placement = {
 226        .num_placement = 1,
 227        .num_busy_placement = 1,
 228        .placement = &mob_ne_placement_flags,
 229        .busy_placement = &mob_ne_placement_flags
 230};
 231
 232struct ttm_placement vmw_nonfixed_placement = {
 233        .num_placement = 3,
 234        .placement = nonfixed_placement_flags,
 235        .num_busy_placement = 1,
 236        .busy_placement = &sys_placement_flags
 237};
 238
 239struct vmw_ttm_tt {
 240        struct ttm_dma_tt dma_ttm;
 241        struct vmw_private *dev_priv;
 242        int gmr_id;
 243        struct vmw_mob *mob;
 244        int mem_type;
 245        struct sg_table sgt;
 246        struct vmw_sg_table vsgt;
 247        uint64_t sg_alloc_size;
 248        bool mapped;
 249};
 250
 251const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
 252
 253/**
 254 * Helper functions to advance a struct vmw_piter iterator.
 255 *
 256 * @viter: Pointer to the iterator.
 257 *
 258 * These functions return false if past the end of the list,
 259 * true otherwise. Functions are selected depending on the current
 260 * DMA mapping mode.
 261 */
 262static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
 263{
 264        return ++(viter->i) < viter->num_pages;
 265}
 266
 267static bool __vmw_piter_sg_next(struct vmw_piter *viter)
 268{
 269        return __sg_page_iter_next(&viter->iter);
 270}
 271
 272
 273/**
 274 * Helper functions to return a pointer to the current page.
 275 *
 276 * @viter: Pointer to the iterator
 277 *
 278 * These functions return a pointer to the page currently
 279 * pointed to by @viter. Functions are selected depending on the
 280 * current mapping mode.
 281 */
 282static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
 283{
 284        return viter->pages[viter->i];
 285}
 286
 287static struct page *__vmw_piter_sg_page(struct vmw_piter *viter)
 288{
 289        return sg_page_iter_page(&viter->iter);
 290}
 291
 292
 293/**
 294 * Helper functions to return the DMA address of the current page.
 295 *
 296 * @viter: Pointer to the iterator
 297 *
 298 * These functions return the DMA address of the page currently
 299 * pointed to by @viter. Functions are selected depending on the
 300 * current mapping mode.
 301 */
 302static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
 303{
 304        return page_to_phys(viter->pages[viter->i]);
 305}
 306
 307static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
 308{
 309        return viter->addrs[viter->i];
 310}
 311
 312static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
 313{
 314        return sg_page_iter_dma_address(&viter->iter);
 315}
 316
 317
 318/**
 319 * vmw_piter_start - Initialize a struct vmw_piter.
 320 *
 321 * @viter: Pointer to the iterator to initialize
 322 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
 323 *
 324 * Note that we're following the convention of __sg_page_iter_start, so that
 325 * the iterator doesn't point to a valid page after initialization; it has
 326 * to be advanced one step first.
 327 */
 328void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
 329                     unsigned long p_offset)
 330{
 331        viter->i = p_offset - 1;
 332        viter->num_pages = vsgt->num_pages;
 333        switch (vsgt->mode) {
 334        case vmw_dma_phys:
 335                viter->next = &__vmw_piter_non_sg_next;
 336                viter->dma_address = &__vmw_piter_phys_addr;
 337                viter->page = &__vmw_piter_non_sg_page;
 338                viter->pages = vsgt->pages;
 339                break;
 340        case vmw_dma_alloc_coherent:
 341                viter->next = &__vmw_piter_non_sg_next;
 342                viter->dma_address = &__vmw_piter_dma_addr;
 343                viter->page = &__vmw_piter_non_sg_page;
 344                viter->addrs = vsgt->addrs;
 345                viter->pages = vsgt->pages;
 346                break;
 347        case vmw_dma_map_populate:
 348        case vmw_dma_map_bind:
 349                viter->next = &__vmw_piter_sg_next;
 350                viter->dma_address = &__vmw_piter_sg_addr;
 351                viter->page = &__vmw_piter_sg_page;
 352                __sg_page_iter_start(&viter->iter, vsgt->sgt->sgl,
 353                                     vsgt->sgt->orig_nents, p_offset);
 354                break;
 355        default:
 356                BUG();
 357        }
 358}
 359
 360/**
 361 * vmw_ttm_unmap_from_dma - unmap  device addresses previsouly mapped for
 362 * TTM pages
 363 *
 364 * @vmw_tt: Pointer to a struct vmw_ttm_backend
 365 *
 366 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
 367 */
 368static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
 369{
 370        struct device *dev = vmw_tt->dev_priv->dev->dev;
 371
 372        dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
 373                DMA_BIDIRECTIONAL);
 374        vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
 375}
 376
 377/**
 378 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
 379 *
 380 * @vmw_tt: Pointer to a struct vmw_ttm_backend
 381 *
 382 * This function is used to get device addresses from the kernel DMA layer.
 383 * However, it's violating the DMA API in that when this operation has been
 384 * performed, it's illegal for the CPU to write to the pages without first
 385 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
 386 * therefore only legal to call this function if we know that the function
 387 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
 388 * a CPU write buffer flush.
 389 */
 390static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
 391{
 392        struct device *dev = vmw_tt->dev_priv->dev->dev;
 393        int ret;
 394
 395        ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
 396                         DMA_BIDIRECTIONAL);
 397        if (unlikely(ret == 0))
 398                return -ENOMEM;
 399
 400        vmw_tt->sgt.nents = ret;
 401
 402        return 0;
 403}
 404
 405/**
 406 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
 407 *
 408 * @vmw_tt: Pointer to a struct vmw_ttm_tt
 409 *
 410 * Select the correct function for and make sure the TTM pages are
 411 * visible to the device. Allocate storage for the device mappings.
 412 * If a mapping has already been performed, indicated by the storage
 413 * pointer being non NULL, the function returns success.
 414 */
 415static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
 416{
 417        struct vmw_private *dev_priv = vmw_tt->dev_priv;
 418        struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
 419        struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
 420        struct ttm_operation_ctx ctx = {
 421                .interruptible = true,
 422                .no_wait_gpu = false
 423        };
 424        struct vmw_piter iter;
 425        dma_addr_t old;
 426        int ret = 0;
 427        static size_t sgl_size;
 428        static size_t sgt_size;
 429
 430        if (vmw_tt->mapped)
 431                return 0;
 432
 433        vsgt->mode = dev_priv->map_mode;
 434        vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
 435        vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
 436        vsgt->addrs = vmw_tt->dma_ttm.dma_address;
 437        vsgt->sgt = &vmw_tt->sgt;
 438
 439        switch (dev_priv->map_mode) {
 440        case vmw_dma_map_bind:
 441        case vmw_dma_map_populate:
 442                if (unlikely(!sgl_size)) {
 443                        sgl_size = ttm_round_pot(sizeof(struct scatterlist));
 444                        sgt_size = ttm_round_pot(sizeof(struct sg_table));
 445                }
 446                vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
 447                ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
 448                if (unlikely(ret != 0))
 449                        return ret;
 450
 451                ret = sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
 452                                                vsgt->num_pages, 0,
 453                                                (unsigned long)
 454                                                vsgt->num_pages << PAGE_SHIFT,
 455                                                GFP_KERNEL);
 456                if (unlikely(ret != 0))
 457                        goto out_sg_alloc_fail;
 458
 459                if (vsgt->num_pages > vmw_tt->sgt.nents) {
 460                        uint64_t over_alloc =
 461                                sgl_size * (vsgt->num_pages -
 462                                            vmw_tt->sgt.nents);
 463
 464                        ttm_mem_global_free(glob, over_alloc);
 465                        vmw_tt->sg_alloc_size -= over_alloc;
 466                }
 467
 468                ret = vmw_ttm_map_for_dma(vmw_tt);
 469                if (unlikely(ret != 0))
 470                        goto out_map_fail;
 471
 472                break;
 473        default:
 474                break;
 475        }
 476
 477        old = ~((dma_addr_t) 0);
 478        vmw_tt->vsgt.num_regions = 0;
 479        for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
 480                dma_addr_t cur = vmw_piter_dma_addr(&iter);
 481
 482                if (cur != old + PAGE_SIZE)
 483                        vmw_tt->vsgt.num_regions++;
 484                old = cur;
 485        }
 486
 487        vmw_tt->mapped = true;
 488        return 0;
 489
 490out_map_fail:
 491        sg_free_table(vmw_tt->vsgt.sgt);
 492        vmw_tt->vsgt.sgt = NULL;
 493out_sg_alloc_fail:
 494        ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
 495        return ret;
 496}
 497
 498/**
 499 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
 500 *
 501 * @vmw_tt: Pointer to a struct vmw_ttm_tt
 502 *
 503 * Tear down any previously set up device DMA mappings and free
 504 * any storage space allocated for them. If there are no mappings set up,
 505 * this function is a NOP.
 506 */
 507static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
 508{
 509        struct vmw_private *dev_priv = vmw_tt->dev_priv;
 510
 511        if (!vmw_tt->vsgt.sgt)
 512                return;
 513
 514        switch (dev_priv->map_mode) {
 515        case vmw_dma_map_bind:
 516        case vmw_dma_map_populate:
 517                vmw_ttm_unmap_from_dma(vmw_tt);
 518                sg_free_table(vmw_tt->vsgt.sgt);
 519                vmw_tt->vsgt.sgt = NULL;
 520                ttm_mem_global_free(vmw_mem_glob(dev_priv),
 521                                    vmw_tt->sg_alloc_size);
 522                break;
 523        default:
 524                break;
 525        }
 526        vmw_tt->mapped = false;
 527}
 528
 529
 530/**
 531 * vmw_bo_map_dma - Make sure buffer object pages are visible to the device
 532 *
 533 * @bo: Pointer to a struct ttm_buffer_object
 534 *
 535 * Wrapper around vmw_ttm_map_dma, that takes a TTM buffer object pointer
 536 * instead of a pointer to a struct vmw_ttm_backend as argument.
 537 * Note that the buffer object must be either pinned or reserved before
 538 * calling this function.
 539 */
 540int vmw_bo_map_dma(struct ttm_buffer_object *bo)
 541{
 542        struct vmw_ttm_tt *vmw_tt =
 543                container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 544
 545        return vmw_ttm_map_dma(vmw_tt);
 546}
 547
 548
 549/**
 550 * vmw_bo_unmap_dma - Make sure buffer object pages are visible to the device
 551 *
 552 * @bo: Pointer to a struct ttm_buffer_object
 553 *
 554 * Wrapper around vmw_ttm_unmap_dma, that takes a TTM buffer object pointer
 555 * instead of a pointer to a struct vmw_ttm_backend as argument.
 556 */
 557void vmw_bo_unmap_dma(struct ttm_buffer_object *bo)
 558{
 559        struct vmw_ttm_tt *vmw_tt =
 560                container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 561
 562        vmw_ttm_unmap_dma(vmw_tt);
 563}
 564
 565
 566/**
 567 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
 568 * TTM buffer object
 569 *
 570 * @bo: Pointer to a struct ttm_buffer_object
 571 *
 572 * Returns a pointer to a struct vmw_sg_table object. The object should
 573 * not be freed after use.
 574 * Note that for the device addresses to be valid, the buffer object must
 575 * either be reserved or pinned.
 576 */
 577const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
 578{
 579        struct vmw_ttm_tt *vmw_tt =
 580                container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 581
 582        return &vmw_tt->vsgt;
 583}
 584
 585
 586static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
 587{
 588        struct vmw_ttm_tt *vmw_be =
 589                container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 590        int ret;
 591
 592        ret = vmw_ttm_map_dma(vmw_be);
 593        if (unlikely(ret != 0))
 594                return ret;
 595
 596        vmw_be->gmr_id = bo_mem->start;
 597        vmw_be->mem_type = bo_mem->mem_type;
 598
 599        switch (bo_mem->mem_type) {
 600        case VMW_PL_GMR:
 601                return vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
 602                                    ttm->num_pages, vmw_be->gmr_id);
 603        case VMW_PL_MOB:
 604                if (unlikely(vmw_be->mob == NULL)) {
 605                        vmw_be->mob =
 606                                vmw_mob_create(ttm->num_pages);
 607                        if (unlikely(vmw_be->mob == NULL))
 608                                return -ENOMEM;
 609                }
 610
 611                return vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
 612                                    &vmw_be->vsgt, ttm->num_pages,
 613                                    vmw_be->gmr_id);
 614        default:
 615                BUG();
 616        }
 617        return 0;
 618}
 619
 620static int vmw_ttm_unbind(struct ttm_tt *ttm)
 621{
 622        struct vmw_ttm_tt *vmw_be =
 623                container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 624
 625        switch (vmw_be->mem_type) {
 626        case VMW_PL_GMR:
 627                vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
 628                break;
 629        case VMW_PL_MOB:
 630                vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
 631                break;
 632        default:
 633                BUG();
 634        }
 635
 636        if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
 637                vmw_ttm_unmap_dma(vmw_be);
 638
 639        return 0;
 640}
 641
 642
 643static void vmw_ttm_destroy(struct ttm_tt *ttm)
 644{
 645        struct vmw_ttm_tt *vmw_be =
 646                container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 647
 648        vmw_ttm_unmap_dma(vmw_be);
 649        if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
 650                ttm_dma_tt_fini(&vmw_be->dma_ttm);
 651        else
 652                ttm_tt_fini(ttm);
 653
 654        if (vmw_be->mob)
 655                vmw_mob_destroy(vmw_be->mob);
 656
 657        kfree(vmw_be);
 658}
 659
 660
 661static int vmw_ttm_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
 662{
 663        struct vmw_ttm_tt *vmw_tt =
 664                container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
 665        struct vmw_private *dev_priv = vmw_tt->dev_priv;
 666        struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
 667        int ret;
 668
 669        if (ttm->state != tt_unpopulated)
 670                return 0;
 671
 672        if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
 673                size_t size =
 674                        ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
 675                ret = ttm_mem_global_alloc(glob, size, ctx);
 676                if (unlikely(ret != 0))
 677                        return ret;
 678
 679                ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev,
 680                                        ctx);
 681                if (unlikely(ret != 0))
 682                        ttm_mem_global_free(glob, size);
 683        } else
 684                ret = ttm_pool_populate(ttm, ctx);
 685
 686        return ret;
 687}
 688
 689static void vmw_ttm_unpopulate(struct ttm_tt *ttm)
 690{
 691        struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
 692                                                 dma_ttm.ttm);
 693        struct vmw_private *dev_priv = vmw_tt->dev_priv;
 694        struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
 695
 696
 697        if (vmw_tt->mob) {
 698                vmw_mob_destroy(vmw_tt->mob);
 699                vmw_tt->mob = NULL;
 700        }
 701
 702        vmw_ttm_unmap_dma(vmw_tt);
 703        if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
 704                size_t size =
 705                        ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
 706
 707                ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
 708                ttm_mem_global_free(glob, size);
 709        } else
 710                ttm_pool_unpopulate(ttm);
 711}
 712
 713static struct ttm_backend_func vmw_ttm_func = {
 714        .bind = vmw_ttm_bind,
 715        .unbind = vmw_ttm_unbind,
 716        .destroy = vmw_ttm_destroy,
 717};
 718
 719static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
 720                                        uint32_t page_flags)
 721{
 722        struct vmw_ttm_tt *vmw_be;
 723        int ret;
 724
 725        vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
 726        if (!vmw_be)
 727                return NULL;
 728
 729        vmw_be->dma_ttm.ttm.func = &vmw_ttm_func;
 730        vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
 731        vmw_be->mob = NULL;
 732
 733        if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
 734                ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags);
 735        else
 736                ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bo, page_flags);
 737        if (unlikely(ret != 0))
 738                goto out_no_init;
 739
 740        return &vmw_be->dma_ttm.ttm;
 741out_no_init:
 742        kfree(vmw_be);
 743        return NULL;
 744}
 745
 746static int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
 747{
 748        return 0;
 749}
 750
 751static int vmw_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
 752                      struct ttm_mem_type_manager *man)
 753{
 754        switch (type) {
 755        case TTM_PL_SYSTEM:
 756                /* System memory */
 757
 758                man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
 759                man->available_caching = TTM_PL_FLAG_CACHED;
 760                man->default_caching = TTM_PL_FLAG_CACHED;
 761                break;
 762        case TTM_PL_VRAM:
 763                /* "On-card" video ram */
 764                man->func = &ttm_bo_manager_func;
 765                man->gpu_offset = 0;
 766                man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE;
 767                man->available_caching = TTM_PL_FLAG_CACHED;
 768                man->default_caching = TTM_PL_FLAG_CACHED;
 769                break;
 770        case VMW_PL_GMR:
 771        case VMW_PL_MOB:
 772                /*
 773                 * "Guest Memory Regions" is an aperture like feature with
 774                 *  one slot per bo. There is an upper limit of the number of
 775                 *  slots as well as the bo size.
 776                 */
 777                man->func = &vmw_gmrid_manager_func;
 778                man->gpu_offset = 0;
 779                man->flags = TTM_MEMTYPE_FLAG_CMA | TTM_MEMTYPE_FLAG_MAPPABLE;
 780                man->available_caching = TTM_PL_FLAG_CACHED;
 781                man->default_caching = TTM_PL_FLAG_CACHED;
 782                break;
 783        default:
 784                DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
 785                return -EINVAL;
 786        }
 787        return 0;
 788}
 789
 790static void vmw_evict_flags(struct ttm_buffer_object *bo,
 791                     struct ttm_placement *placement)
 792{
 793        *placement = vmw_sys_placement;
 794}
 795
 796static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
 797{
 798        struct ttm_object_file *tfile =
 799                vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
 800
 801        return vmw_user_bo_verify_access(bo, tfile);
 802}
 803
 804static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
 805{
 806        struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
 807        struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
 808
 809        mem->bus.addr = NULL;
 810        mem->bus.is_iomem = false;
 811        mem->bus.offset = 0;
 812        mem->bus.size = mem->num_pages << PAGE_SHIFT;
 813        mem->bus.base = 0;
 814        if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
 815                return -EINVAL;
 816        switch (mem->mem_type) {
 817        case TTM_PL_SYSTEM:
 818        case VMW_PL_GMR:
 819        case VMW_PL_MOB:
 820                return 0;
 821        case TTM_PL_VRAM:
 822                mem->bus.offset = mem->start << PAGE_SHIFT;
 823                mem->bus.base = dev_priv->vram_start;
 824                mem->bus.is_iomem = true;
 825                break;
 826        default:
 827                return -EINVAL;
 828        }
 829        return 0;
 830}
 831
 832static void vmw_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
 833{
 834}
 835
 836static int vmw_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
 837{
 838        return 0;
 839}
 840
 841/**
 842 * vmw_move_notify - TTM move_notify_callback
 843 *
 844 * @bo: The TTM buffer object about to move.
 845 * @mem: The struct ttm_mem_reg indicating to what memory
 846 *       region the move is taking place.
 847 *
 848 * Calls move_notify for all subsystems needing it.
 849 * (currently only resources).
 850 */
 851static void vmw_move_notify(struct ttm_buffer_object *bo,
 852                            bool evict,
 853                            struct ttm_mem_reg *mem)
 854{
 855        vmw_bo_move_notify(bo, mem);
 856        vmw_query_move_notify(bo, mem);
 857}
 858
 859
 860/**
 861 * vmw_swap_notify - TTM move_notify_callback
 862 *
 863 * @bo: The TTM buffer object about to be swapped out.
 864 */
 865static void vmw_swap_notify(struct ttm_buffer_object *bo)
 866{
 867        vmw_bo_swap_notify(bo);
 868        (void) ttm_bo_wait(bo, false, false);
 869}
 870
 871
 872struct ttm_bo_driver vmw_bo_driver = {
 873        .ttm_tt_create = &vmw_ttm_tt_create,
 874        .ttm_tt_populate = &vmw_ttm_populate,
 875        .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
 876        .invalidate_caches = vmw_invalidate_caches,
 877        .init_mem_type = vmw_init_mem_type,
 878        .eviction_valuable = ttm_bo_eviction_valuable,
 879        .evict_flags = vmw_evict_flags,
 880        .move = NULL,
 881        .verify_access = vmw_verify_access,
 882        .move_notify = vmw_move_notify,
 883        .swap_notify = vmw_swap_notify,
 884        .fault_reserve_notify = &vmw_ttm_fault_reserve_notify,
 885        .io_mem_reserve = &vmw_ttm_io_mem_reserve,
 886        .io_mem_free = &vmw_ttm_io_mem_free,
 887};
 888