linux/drivers/infiniband/core/verbs.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#include <linux/errno.h>
  40#include <linux/err.h>
  41#include <linux/export.h>
  42#include <linux/string.h>
  43#include <linux/slab.h>
  44#include <linux/in.h>
  45#include <linux/in6.h>
  46#include <net/addrconf.h>
  47#include <linux/security.h>
  48
  49#include <rdma/ib_verbs.h>
  50#include <rdma/ib_cache.h>
  51#include <rdma/ib_addr.h>
  52#include <rdma/rw.h>
  53
  54#include "core_priv.h"
  55
  56static int ib_resolve_eth_dmac(struct ib_device *device,
  57                               struct rdma_ah_attr *ah_attr);
  58
  59static const char * const ib_events[] = {
  60        [IB_EVENT_CQ_ERR]               = "CQ error",
  61        [IB_EVENT_QP_FATAL]             = "QP fatal error",
  62        [IB_EVENT_QP_REQ_ERR]           = "QP request error",
  63        [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
  64        [IB_EVENT_COMM_EST]             = "communication established",
  65        [IB_EVENT_SQ_DRAINED]           = "send queue drained",
  66        [IB_EVENT_PATH_MIG]             = "path migration successful",
  67        [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
  68        [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
  69        [IB_EVENT_PORT_ACTIVE]          = "port active",
  70        [IB_EVENT_PORT_ERR]             = "port error",
  71        [IB_EVENT_LID_CHANGE]           = "LID change",
  72        [IB_EVENT_PKEY_CHANGE]          = "P_key change",
  73        [IB_EVENT_SM_CHANGE]            = "SM change",
  74        [IB_EVENT_SRQ_ERR]              = "SRQ error",
  75        [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
  76        [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
  77        [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
  78        [IB_EVENT_GID_CHANGE]           = "GID changed",
  79};
  80
  81const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  82{
  83        size_t index = event;
  84
  85        return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  86                        ib_events[index] : "unrecognized event";
  87}
  88EXPORT_SYMBOL(ib_event_msg);
  89
  90static const char * const wc_statuses[] = {
  91        [IB_WC_SUCCESS]                 = "success",
  92        [IB_WC_LOC_LEN_ERR]             = "local length error",
  93        [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
  94        [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
  95        [IB_WC_LOC_PROT_ERR]            = "local protection error",
  96        [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
  97        [IB_WC_MW_BIND_ERR]             = "memory management operation error",
  98        [IB_WC_BAD_RESP_ERR]            = "bad response error",
  99        [IB_WC_LOC_ACCESS_ERR]          = "local access error",
 100        [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
 101        [IB_WC_REM_ACCESS_ERR]          = "remote access error",
 102        [IB_WC_REM_OP_ERR]              = "remote operation error",
 103        [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
 104        [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
 105        [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
 106        [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
 107        [IB_WC_REM_ABORT_ERR]           = "operation aborted",
 108        [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
 109        [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
 110        [IB_WC_FATAL_ERR]               = "fatal error",
 111        [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
 112        [IB_WC_GENERAL_ERR]             = "general error",
 113};
 114
 115const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
 116{
 117        size_t index = status;
 118
 119        return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
 120                        wc_statuses[index] : "unrecognized status";
 121}
 122EXPORT_SYMBOL(ib_wc_status_msg);
 123
 124__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
 125{
 126        switch (rate) {
 127        case IB_RATE_2_5_GBPS: return   1;
 128        case IB_RATE_5_GBPS:   return   2;
 129        case IB_RATE_10_GBPS:  return   4;
 130        case IB_RATE_20_GBPS:  return   8;
 131        case IB_RATE_30_GBPS:  return  12;
 132        case IB_RATE_40_GBPS:  return  16;
 133        case IB_RATE_60_GBPS:  return  24;
 134        case IB_RATE_80_GBPS:  return  32;
 135        case IB_RATE_120_GBPS: return  48;
 136        case IB_RATE_14_GBPS:  return   6;
 137        case IB_RATE_56_GBPS:  return  22;
 138        case IB_RATE_112_GBPS: return  45;
 139        case IB_RATE_168_GBPS: return  67;
 140        case IB_RATE_25_GBPS:  return  10;
 141        case IB_RATE_100_GBPS: return  40;
 142        case IB_RATE_200_GBPS: return  80;
 143        case IB_RATE_300_GBPS: return 120;
 144        case IB_RATE_28_GBPS:  return  11;
 145        case IB_RATE_50_GBPS:  return  20;
 146        case IB_RATE_400_GBPS: return 160;
 147        case IB_RATE_600_GBPS: return 240;
 148        default:               return  -1;
 149        }
 150}
 151EXPORT_SYMBOL(ib_rate_to_mult);
 152
 153__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
 154{
 155        switch (mult) {
 156        case 1:   return IB_RATE_2_5_GBPS;
 157        case 2:   return IB_RATE_5_GBPS;
 158        case 4:   return IB_RATE_10_GBPS;
 159        case 8:   return IB_RATE_20_GBPS;
 160        case 12:  return IB_RATE_30_GBPS;
 161        case 16:  return IB_RATE_40_GBPS;
 162        case 24:  return IB_RATE_60_GBPS;
 163        case 32:  return IB_RATE_80_GBPS;
 164        case 48:  return IB_RATE_120_GBPS;
 165        case 6:   return IB_RATE_14_GBPS;
 166        case 22:  return IB_RATE_56_GBPS;
 167        case 45:  return IB_RATE_112_GBPS;
 168        case 67:  return IB_RATE_168_GBPS;
 169        case 10:  return IB_RATE_25_GBPS;
 170        case 40:  return IB_RATE_100_GBPS;
 171        case 80:  return IB_RATE_200_GBPS;
 172        case 120: return IB_RATE_300_GBPS;
 173        case 11:  return IB_RATE_28_GBPS;
 174        case 20:  return IB_RATE_50_GBPS;
 175        case 160: return IB_RATE_400_GBPS;
 176        case 240: return IB_RATE_600_GBPS;
 177        default:  return IB_RATE_PORT_CURRENT;
 178        }
 179}
 180EXPORT_SYMBOL(mult_to_ib_rate);
 181
 182__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
 183{
 184        switch (rate) {
 185        case IB_RATE_2_5_GBPS: return 2500;
 186        case IB_RATE_5_GBPS:   return 5000;
 187        case IB_RATE_10_GBPS:  return 10000;
 188        case IB_RATE_20_GBPS:  return 20000;
 189        case IB_RATE_30_GBPS:  return 30000;
 190        case IB_RATE_40_GBPS:  return 40000;
 191        case IB_RATE_60_GBPS:  return 60000;
 192        case IB_RATE_80_GBPS:  return 80000;
 193        case IB_RATE_120_GBPS: return 120000;
 194        case IB_RATE_14_GBPS:  return 14062;
 195        case IB_RATE_56_GBPS:  return 56250;
 196        case IB_RATE_112_GBPS: return 112500;
 197        case IB_RATE_168_GBPS: return 168750;
 198        case IB_RATE_25_GBPS:  return 25781;
 199        case IB_RATE_100_GBPS: return 103125;
 200        case IB_RATE_200_GBPS: return 206250;
 201        case IB_RATE_300_GBPS: return 309375;
 202        case IB_RATE_28_GBPS:  return 28125;
 203        case IB_RATE_50_GBPS:  return 53125;
 204        case IB_RATE_400_GBPS: return 425000;
 205        case IB_RATE_600_GBPS: return 637500;
 206        default:               return -1;
 207        }
 208}
 209EXPORT_SYMBOL(ib_rate_to_mbps);
 210
 211__attribute_const__ enum rdma_transport_type
 212rdma_node_get_transport(enum rdma_node_type node_type)
 213{
 214
 215        if (node_type == RDMA_NODE_USNIC)
 216                return RDMA_TRANSPORT_USNIC;
 217        if (node_type == RDMA_NODE_USNIC_UDP)
 218                return RDMA_TRANSPORT_USNIC_UDP;
 219        if (node_type == RDMA_NODE_RNIC)
 220                return RDMA_TRANSPORT_IWARP;
 221
 222        return RDMA_TRANSPORT_IB;
 223}
 224EXPORT_SYMBOL(rdma_node_get_transport);
 225
 226enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
 227{
 228        enum rdma_transport_type lt;
 229        if (device->get_link_layer)
 230                return device->get_link_layer(device, port_num);
 231
 232        lt = rdma_node_get_transport(device->node_type);
 233        if (lt == RDMA_TRANSPORT_IB)
 234                return IB_LINK_LAYER_INFINIBAND;
 235
 236        return IB_LINK_LAYER_ETHERNET;
 237}
 238EXPORT_SYMBOL(rdma_port_get_link_layer);
 239
 240/* Protection domains */
 241
 242/**
 243 * ib_alloc_pd - Allocates an unused protection domain.
 244 * @device: The device on which to allocate the protection domain.
 245 *
 246 * A protection domain object provides an association between QPs, shared
 247 * receive queues, address handles, memory regions, and memory windows.
 248 *
 249 * Every PD has a local_dma_lkey which can be used as the lkey value for local
 250 * memory operations.
 251 */
 252struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
 253                const char *caller)
 254{
 255        struct ib_pd *pd;
 256        int mr_access_flags = 0;
 257
 258        pd = device->alloc_pd(device, NULL, NULL);
 259        if (IS_ERR(pd))
 260                return pd;
 261
 262        pd->device = device;
 263        pd->uobject = NULL;
 264        pd->__internal_mr = NULL;
 265        atomic_set(&pd->usecnt, 0);
 266        pd->flags = flags;
 267
 268        if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
 269                pd->local_dma_lkey = device->local_dma_lkey;
 270        else
 271                mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
 272
 273        if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
 274                pr_warn("%s: enabling unsafe global rkey\n", caller);
 275                mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
 276        }
 277
 278        pd->res.type = RDMA_RESTRACK_PD;
 279        rdma_restrack_set_task(&pd->res, caller);
 280        rdma_restrack_add(&pd->res);
 281
 282        if (mr_access_flags) {
 283                struct ib_mr *mr;
 284
 285                mr = pd->device->get_dma_mr(pd, mr_access_flags);
 286                if (IS_ERR(mr)) {
 287                        ib_dealloc_pd(pd);
 288                        return ERR_CAST(mr);
 289                }
 290
 291                mr->device      = pd->device;
 292                mr->pd          = pd;
 293                mr->uobject     = NULL;
 294                mr->need_inval  = false;
 295
 296                pd->__internal_mr = mr;
 297
 298                if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
 299                        pd->local_dma_lkey = pd->__internal_mr->lkey;
 300
 301                if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
 302                        pd->unsafe_global_rkey = pd->__internal_mr->rkey;
 303        }
 304
 305        return pd;
 306}
 307EXPORT_SYMBOL(__ib_alloc_pd);
 308
 309/**
 310 * ib_dealloc_pd - Deallocates a protection domain.
 311 * @pd: The protection domain to deallocate.
 312 *
 313 * It is an error to call this function while any resources in the pd still
 314 * exist.  The caller is responsible to synchronously destroy them and
 315 * guarantee no new allocations will happen.
 316 */
 317void ib_dealloc_pd(struct ib_pd *pd)
 318{
 319        int ret;
 320
 321        if (pd->__internal_mr) {
 322                ret = pd->device->dereg_mr(pd->__internal_mr);
 323                WARN_ON(ret);
 324                pd->__internal_mr = NULL;
 325        }
 326
 327        /* uverbs manipulates usecnt with proper locking, while the kabi
 328           requires the caller to guarantee we can't race here. */
 329        WARN_ON(atomic_read(&pd->usecnt));
 330
 331        rdma_restrack_del(&pd->res);
 332        /* Making delalloc_pd a void return is a WIP, no driver should return
 333           an error here. */
 334        ret = pd->device->dealloc_pd(pd);
 335        WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
 336}
 337EXPORT_SYMBOL(ib_dealloc_pd);
 338
 339/* Address handles */
 340
 341/**
 342 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
 343 * @dest:       Pointer to destination ah_attr. Contents of the destination
 344 *              pointer is assumed to be invalid and attribute are overwritten.
 345 * @src:        Pointer to source ah_attr.
 346 */
 347void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
 348                       const struct rdma_ah_attr *src)
 349{
 350        *dest = *src;
 351        if (dest->grh.sgid_attr)
 352                rdma_hold_gid_attr(dest->grh.sgid_attr);
 353}
 354EXPORT_SYMBOL(rdma_copy_ah_attr);
 355
 356/**
 357 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
 358 * @old:        Pointer to existing ah_attr which needs to be replaced.
 359 *              old is assumed to be valid or zero'd
 360 * @new:        Pointer to the new ah_attr.
 361 *
 362 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
 363 * old the ah_attr is valid; after that it copies the new attribute and holds
 364 * the reference to the replaced ah_attr.
 365 */
 366void rdma_replace_ah_attr(struct rdma_ah_attr *old,
 367                          const struct rdma_ah_attr *new)
 368{
 369        rdma_destroy_ah_attr(old);
 370        *old = *new;
 371        if (old->grh.sgid_attr)
 372                rdma_hold_gid_attr(old->grh.sgid_attr);
 373}
 374EXPORT_SYMBOL(rdma_replace_ah_attr);
 375
 376/**
 377 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
 378 * @dest:       Pointer to destination ah_attr to copy to.
 379 *              dest is assumed to be valid or zero'd
 380 * @src:        Pointer to the new ah_attr.
 381 *
 382 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
 383 * if it is valid. This also transfers ownership of internal references from
 384 * src to dest, making src invalid in the process. No new reference of the src
 385 * ah_attr is taken.
 386 */
 387void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
 388{
 389        rdma_destroy_ah_attr(dest);
 390        *dest = *src;
 391        src->grh.sgid_attr = NULL;
 392}
 393EXPORT_SYMBOL(rdma_move_ah_attr);
 394
 395/*
 396 * Validate that the rdma_ah_attr is valid for the device before passing it
 397 * off to the driver.
 398 */
 399static int rdma_check_ah_attr(struct ib_device *device,
 400                              struct rdma_ah_attr *ah_attr)
 401{
 402        if (!rdma_is_port_valid(device, ah_attr->port_num))
 403                return -EINVAL;
 404
 405        if ((rdma_is_grh_required(device, ah_attr->port_num) ||
 406             ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
 407            !(ah_attr->ah_flags & IB_AH_GRH))
 408                return -EINVAL;
 409
 410        if (ah_attr->grh.sgid_attr) {
 411                /*
 412                 * Make sure the passed sgid_attr is consistent with the
 413                 * parameters
 414                 */
 415                if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
 416                    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
 417                        return -EINVAL;
 418        }
 419        return 0;
 420}
 421
 422/*
 423 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
 424 * On success the caller is responsible to call rdma_unfill_sgid_attr().
 425 */
 426static int rdma_fill_sgid_attr(struct ib_device *device,
 427                               struct rdma_ah_attr *ah_attr,
 428                               const struct ib_gid_attr **old_sgid_attr)
 429{
 430        const struct ib_gid_attr *sgid_attr;
 431        struct ib_global_route *grh;
 432        int ret;
 433
 434        *old_sgid_attr = ah_attr->grh.sgid_attr;
 435
 436        ret = rdma_check_ah_attr(device, ah_attr);
 437        if (ret)
 438                return ret;
 439
 440        if (!(ah_attr->ah_flags & IB_AH_GRH))
 441                return 0;
 442
 443        grh = rdma_ah_retrieve_grh(ah_attr);
 444        if (grh->sgid_attr)
 445                return 0;
 446
 447        sgid_attr =
 448                rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
 449        if (IS_ERR(sgid_attr))
 450                return PTR_ERR(sgid_attr);
 451
 452        /* Move ownerhip of the kref into the ah_attr */
 453        grh->sgid_attr = sgid_attr;
 454        return 0;
 455}
 456
 457static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
 458                                  const struct ib_gid_attr *old_sgid_attr)
 459{
 460        /*
 461         * Fill didn't change anything, the caller retains ownership of
 462         * whatever it passed
 463         */
 464        if (ah_attr->grh.sgid_attr == old_sgid_attr)
 465                return;
 466
 467        /*
 468         * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
 469         * doesn't see any change in the rdma_ah_attr. If we get here
 470         * old_sgid_attr is NULL.
 471         */
 472        rdma_destroy_ah_attr(ah_attr);
 473}
 474
 475static const struct ib_gid_attr *
 476rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
 477                      const struct ib_gid_attr *old_attr)
 478{
 479        if (old_attr)
 480                rdma_put_gid_attr(old_attr);
 481        if (ah_attr->ah_flags & IB_AH_GRH) {
 482                rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
 483                return ah_attr->grh.sgid_attr;
 484        }
 485        return NULL;
 486}
 487
 488static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
 489                                     struct rdma_ah_attr *ah_attr,
 490                                     struct ib_udata *udata)
 491{
 492        struct ib_ah *ah;
 493
 494        if (!pd->device->create_ah)
 495                return ERR_PTR(-EOPNOTSUPP);
 496
 497        ah = pd->device->create_ah(pd, ah_attr, udata);
 498
 499        if (!IS_ERR(ah)) {
 500                ah->device  = pd->device;
 501                ah->pd      = pd;
 502                ah->uobject = NULL;
 503                ah->type    = ah_attr->type;
 504                ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
 505
 506                atomic_inc(&pd->usecnt);
 507        }
 508
 509        return ah;
 510}
 511
 512/**
 513 * rdma_create_ah - Creates an address handle for the
 514 * given address vector.
 515 * @pd: The protection domain associated with the address handle.
 516 * @ah_attr: The attributes of the address vector.
 517 *
 518 * It returns 0 on success and returns appropriate error code on error.
 519 * The address handle is used to reference a local or global destination
 520 * in all UD QP post sends.
 521 */
 522struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
 523{
 524        const struct ib_gid_attr *old_sgid_attr;
 525        struct ib_ah *ah;
 526        int ret;
 527
 528        ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 529        if (ret)
 530                return ERR_PTR(ret);
 531
 532        ah = _rdma_create_ah(pd, ah_attr, NULL);
 533
 534        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 535        return ah;
 536}
 537EXPORT_SYMBOL(rdma_create_ah);
 538
 539/**
 540 * rdma_create_user_ah - Creates an address handle for the
 541 * given address vector.
 542 * It resolves destination mac address for ah attribute of RoCE type.
 543 * @pd: The protection domain associated with the address handle.
 544 * @ah_attr: The attributes of the address vector.
 545 * @udata: pointer to user's input output buffer information need by
 546 *         provider driver.
 547 *
 548 * It returns 0 on success and returns appropriate error code on error.
 549 * The address handle is used to reference a local or global destination
 550 * in all UD QP post sends.
 551 */
 552struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
 553                                  struct rdma_ah_attr *ah_attr,
 554                                  struct ib_udata *udata)
 555{
 556        const struct ib_gid_attr *old_sgid_attr;
 557        struct ib_ah *ah;
 558        int err;
 559
 560        err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
 561        if (err)
 562                return ERR_PTR(err);
 563
 564        if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
 565                err = ib_resolve_eth_dmac(pd->device, ah_attr);
 566                if (err) {
 567                        ah = ERR_PTR(err);
 568                        goto out;
 569                }
 570        }
 571
 572        ah = _rdma_create_ah(pd, ah_attr, udata);
 573
 574out:
 575        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 576        return ah;
 577}
 578EXPORT_SYMBOL(rdma_create_user_ah);
 579
 580int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
 581{
 582        const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
 583        struct iphdr ip4h_checked;
 584        const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
 585
 586        /* If it's IPv6, the version must be 6, otherwise, the first
 587         * 20 bytes (before the IPv4 header) are garbled.
 588         */
 589        if (ip6h->version != 6)
 590                return (ip4h->version == 4) ? 4 : 0;
 591        /* version may be 6 or 4 because the first 20 bytes could be garbled */
 592
 593        /* RoCE v2 requires no options, thus header length
 594         * must be 5 words
 595         */
 596        if (ip4h->ihl != 5)
 597                return 6;
 598
 599        /* Verify checksum.
 600         * We can't write on scattered buffers so we need to copy to
 601         * temp buffer.
 602         */
 603        memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
 604        ip4h_checked.check = 0;
 605        ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
 606        /* if IPv4 header checksum is OK, believe it */
 607        if (ip4h->check == ip4h_checked.check)
 608                return 4;
 609        return 6;
 610}
 611EXPORT_SYMBOL(ib_get_rdma_header_version);
 612
 613static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
 614                                                     u8 port_num,
 615                                                     const struct ib_grh *grh)
 616{
 617        int grh_version;
 618
 619        if (rdma_protocol_ib(device, port_num))
 620                return RDMA_NETWORK_IB;
 621
 622        grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
 623
 624        if (grh_version == 4)
 625                return RDMA_NETWORK_IPV4;
 626
 627        if (grh->next_hdr == IPPROTO_UDP)
 628                return RDMA_NETWORK_IPV6;
 629
 630        return RDMA_NETWORK_ROCE_V1;
 631}
 632
 633struct find_gid_index_context {
 634        u16 vlan_id;
 635        enum ib_gid_type gid_type;
 636};
 637
 638static bool find_gid_index(const union ib_gid *gid,
 639                           const struct ib_gid_attr *gid_attr,
 640                           void *context)
 641{
 642        struct find_gid_index_context *ctx = context;
 643
 644        if (ctx->gid_type != gid_attr->gid_type)
 645                return false;
 646
 647        if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
 648            (is_vlan_dev(gid_attr->ndev) &&
 649             vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
 650                return false;
 651
 652        return true;
 653}
 654
 655static const struct ib_gid_attr *
 656get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
 657                       u16 vlan_id, const union ib_gid *sgid,
 658                       enum ib_gid_type gid_type)
 659{
 660        struct find_gid_index_context context = {.vlan_id = vlan_id,
 661                                                 .gid_type = gid_type};
 662
 663        return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
 664                                       &context);
 665}
 666
 667int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
 668                              enum rdma_network_type net_type,
 669                              union ib_gid *sgid, union ib_gid *dgid)
 670{
 671        struct sockaddr_in  src_in;
 672        struct sockaddr_in  dst_in;
 673        __be32 src_saddr, dst_saddr;
 674
 675        if (!sgid || !dgid)
 676                return -EINVAL;
 677
 678        if (net_type == RDMA_NETWORK_IPV4) {
 679                memcpy(&src_in.sin_addr.s_addr,
 680                       &hdr->roce4grh.saddr, 4);
 681                memcpy(&dst_in.sin_addr.s_addr,
 682                       &hdr->roce4grh.daddr, 4);
 683                src_saddr = src_in.sin_addr.s_addr;
 684                dst_saddr = dst_in.sin_addr.s_addr;
 685                ipv6_addr_set_v4mapped(src_saddr,
 686                                       (struct in6_addr *)sgid);
 687                ipv6_addr_set_v4mapped(dst_saddr,
 688                                       (struct in6_addr *)dgid);
 689                return 0;
 690        } else if (net_type == RDMA_NETWORK_IPV6 ||
 691                   net_type == RDMA_NETWORK_IB) {
 692                *dgid = hdr->ibgrh.dgid;
 693                *sgid = hdr->ibgrh.sgid;
 694                return 0;
 695        } else {
 696                return -EINVAL;
 697        }
 698}
 699EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
 700
 701/* Resolve destination mac address and hop limit for unicast destination
 702 * GID entry, considering the source GID entry as well.
 703 * ah_attribute must have have valid port_num, sgid_index.
 704 */
 705static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
 706                                       struct rdma_ah_attr *ah_attr)
 707{
 708        struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
 709        const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
 710        int hop_limit = 0xff;
 711        int ret = 0;
 712
 713        /* If destination is link local and source GID is RoCEv1,
 714         * IP stack is not used.
 715         */
 716        if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
 717            sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
 718                rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
 719                                ah_attr->roce.dmac);
 720                return ret;
 721        }
 722
 723        ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
 724                                           ah_attr->roce.dmac,
 725                                           sgid_attr, &hop_limit);
 726
 727        grh->hop_limit = hop_limit;
 728        return ret;
 729}
 730
 731/*
 732 * This function initializes address handle attributes from the incoming packet.
 733 * Incoming packet has dgid of the receiver node on which this code is
 734 * getting executed and, sgid contains the GID of the sender.
 735 *
 736 * When resolving mac address of destination, the arrived dgid is used
 737 * as sgid and, sgid is used as dgid because sgid contains destinations
 738 * GID whom to respond to.
 739 *
 740 * On success the caller is responsible to call rdma_destroy_ah_attr on the
 741 * attr.
 742 */
 743int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
 744                            const struct ib_wc *wc, const struct ib_grh *grh,
 745                            struct rdma_ah_attr *ah_attr)
 746{
 747        u32 flow_class;
 748        int ret;
 749        enum rdma_network_type net_type = RDMA_NETWORK_IB;
 750        enum ib_gid_type gid_type = IB_GID_TYPE_IB;
 751        const struct ib_gid_attr *sgid_attr;
 752        int hoplimit = 0xff;
 753        union ib_gid dgid;
 754        union ib_gid sgid;
 755
 756        might_sleep();
 757
 758        memset(ah_attr, 0, sizeof *ah_attr);
 759        ah_attr->type = rdma_ah_find_type(device, port_num);
 760        if (rdma_cap_eth_ah(device, port_num)) {
 761                if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
 762                        net_type = wc->network_hdr_type;
 763                else
 764                        net_type = ib_get_net_type_by_grh(device, port_num, grh);
 765                gid_type = ib_network_to_gid_type(net_type);
 766        }
 767        ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
 768                                        &sgid, &dgid);
 769        if (ret)
 770                return ret;
 771
 772        rdma_ah_set_sl(ah_attr, wc->sl);
 773        rdma_ah_set_port_num(ah_attr, port_num);
 774
 775        if (rdma_protocol_roce(device, port_num)) {
 776                u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
 777                                wc->vlan_id : 0xffff;
 778
 779                if (!(wc->wc_flags & IB_WC_GRH))
 780                        return -EPROTOTYPE;
 781
 782                sgid_attr = get_sgid_attr_from_eth(device, port_num,
 783                                                   vlan_id, &dgid,
 784                                                   gid_type);
 785                if (IS_ERR(sgid_attr))
 786                        return PTR_ERR(sgid_attr);
 787
 788                flow_class = be32_to_cpu(grh->version_tclass_flow);
 789                rdma_move_grh_sgid_attr(ah_attr,
 790                                        &sgid,
 791                                        flow_class & 0xFFFFF,
 792                                        hoplimit,
 793                                        (flow_class >> 20) & 0xFF,
 794                                        sgid_attr);
 795
 796                ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
 797                if (ret)
 798                        rdma_destroy_ah_attr(ah_attr);
 799
 800                return ret;
 801        } else {
 802                rdma_ah_set_dlid(ah_attr, wc->slid);
 803                rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
 804
 805                if ((wc->wc_flags & IB_WC_GRH) == 0)
 806                        return 0;
 807
 808                if (dgid.global.interface_id !=
 809                                        cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
 810                        sgid_attr = rdma_find_gid_by_port(
 811                                device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
 812                } else
 813                        sgid_attr = rdma_get_gid_attr(device, port_num, 0);
 814
 815                if (IS_ERR(sgid_attr))
 816                        return PTR_ERR(sgid_attr);
 817                flow_class = be32_to_cpu(grh->version_tclass_flow);
 818                rdma_move_grh_sgid_attr(ah_attr,
 819                                        &sgid,
 820                                        flow_class & 0xFFFFF,
 821                                        hoplimit,
 822                                        (flow_class >> 20) & 0xFF,
 823                                        sgid_attr);
 824
 825                return 0;
 826        }
 827}
 828EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
 829
 830/**
 831 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
 832 * of the reference
 833 *
 834 * @attr:       Pointer to AH attribute structure
 835 * @dgid:       Destination GID
 836 * @flow_label: Flow label
 837 * @hop_limit:  Hop limit
 838 * @traffic_class: traffic class
 839 * @sgid_attr:  Pointer to SGID attribute
 840 *
 841 * This takes ownership of the sgid_attr reference. The caller must ensure
 842 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
 843 * calling this function.
 844 */
 845void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
 846                             u32 flow_label, u8 hop_limit, u8 traffic_class,
 847                             const struct ib_gid_attr *sgid_attr)
 848{
 849        rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
 850                        traffic_class);
 851        attr->grh.sgid_attr = sgid_attr;
 852}
 853EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
 854
 855/**
 856 * rdma_destroy_ah_attr - Release reference to SGID attribute of
 857 * ah attribute.
 858 * @ah_attr: Pointer to ah attribute
 859 *
 860 * Release reference to the SGID attribute of the ah attribute if it is
 861 * non NULL. It is safe to call this multiple times, and safe to call it on
 862 * a zero initialized ah_attr.
 863 */
 864void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
 865{
 866        if (ah_attr->grh.sgid_attr) {
 867                rdma_put_gid_attr(ah_attr->grh.sgid_attr);
 868                ah_attr->grh.sgid_attr = NULL;
 869        }
 870}
 871EXPORT_SYMBOL(rdma_destroy_ah_attr);
 872
 873struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
 874                                   const struct ib_grh *grh, u8 port_num)
 875{
 876        struct rdma_ah_attr ah_attr;
 877        struct ib_ah *ah;
 878        int ret;
 879
 880        ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
 881        if (ret)
 882                return ERR_PTR(ret);
 883
 884        ah = rdma_create_ah(pd, &ah_attr);
 885
 886        rdma_destroy_ah_attr(&ah_attr);
 887        return ah;
 888}
 889EXPORT_SYMBOL(ib_create_ah_from_wc);
 890
 891int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 892{
 893        const struct ib_gid_attr *old_sgid_attr;
 894        int ret;
 895
 896        if (ah->type != ah_attr->type)
 897                return -EINVAL;
 898
 899        ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
 900        if (ret)
 901                return ret;
 902
 903        ret = ah->device->modify_ah ?
 904                ah->device->modify_ah(ah, ah_attr) :
 905                -EOPNOTSUPP;
 906
 907        ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
 908        rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
 909        return ret;
 910}
 911EXPORT_SYMBOL(rdma_modify_ah);
 912
 913int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
 914{
 915        ah_attr->grh.sgid_attr = NULL;
 916
 917        return ah->device->query_ah ?
 918                ah->device->query_ah(ah, ah_attr) :
 919                -EOPNOTSUPP;
 920}
 921EXPORT_SYMBOL(rdma_query_ah);
 922
 923int rdma_destroy_ah(struct ib_ah *ah)
 924{
 925        const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
 926        struct ib_pd *pd;
 927        int ret;
 928
 929        pd = ah->pd;
 930        ret = ah->device->destroy_ah(ah);
 931        if (!ret) {
 932                atomic_dec(&pd->usecnt);
 933                if (sgid_attr)
 934                        rdma_put_gid_attr(sgid_attr);
 935        }
 936
 937        return ret;
 938}
 939EXPORT_SYMBOL(rdma_destroy_ah);
 940
 941/* Shared receive queues */
 942
 943struct ib_srq *ib_create_srq(struct ib_pd *pd,
 944                             struct ib_srq_init_attr *srq_init_attr)
 945{
 946        struct ib_srq *srq;
 947
 948        if (!pd->device->create_srq)
 949                return ERR_PTR(-EOPNOTSUPP);
 950
 951        srq = pd->device->create_srq(pd, srq_init_attr, NULL);
 952
 953        if (!IS_ERR(srq)) {
 954                srq->device        = pd->device;
 955                srq->pd            = pd;
 956                srq->uobject       = NULL;
 957                srq->event_handler = srq_init_attr->event_handler;
 958                srq->srq_context   = srq_init_attr->srq_context;
 959                srq->srq_type      = srq_init_attr->srq_type;
 960                if (ib_srq_has_cq(srq->srq_type)) {
 961                        srq->ext.cq   = srq_init_attr->ext.cq;
 962                        atomic_inc(&srq->ext.cq->usecnt);
 963                }
 964                if (srq->srq_type == IB_SRQT_XRC) {
 965                        srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
 966                        atomic_inc(&srq->ext.xrc.xrcd->usecnt);
 967                }
 968                atomic_inc(&pd->usecnt);
 969                atomic_set(&srq->usecnt, 0);
 970        }
 971
 972        return srq;
 973}
 974EXPORT_SYMBOL(ib_create_srq);
 975
 976int ib_modify_srq(struct ib_srq *srq,
 977                  struct ib_srq_attr *srq_attr,
 978                  enum ib_srq_attr_mask srq_attr_mask)
 979{
 980        return srq->device->modify_srq ?
 981                srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
 982                -EOPNOTSUPP;
 983}
 984EXPORT_SYMBOL(ib_modify_srq);
 985
 986int ib_query_srq(struct ib_srq *srq,
 987                 struct ib_srq_attr *srq_attr)
 988{
 989        return srq->device->query_srq ?
 990                srq->device->query_srq(srq, srq_attr) : -EOPNOTSUPP;
 991}
 992EXPORT_SYMBOL(ib_query_srq);
 993
 994int ib_destroy_srq(struct ib_srq *srq)
 995{
 996        struct ib_pd *pd;
 997        enum ib_srq_type srq_type;
 998        struct ib_xrcd *uninitialized_var(xrcd);
 999        struct ib_cq *uninitialized_var(cq);
1000        int ret;
1001
1002        if (atomic_read(&srq->usecnt))
1003                return -EBUSY;
1004
1005        pd = srq->pd;
1006        srq_type = srq->srq_type;
1007        if (ib_srq_has_cq(srq_type))
1008                cq = srq->ext.cq;
1009        if (srq_type == IB_SRQT_XRC)
1010                xrcd = srq->ext.xrc.xrcd;
1011
1012        ret = srq->device->destroy_srq(srq);
1013        if (!ret) {
1014                atomic_dec(&pd->usecnt);
1015                if (srq_type == IB_SRQT_XRC)
1016                        atomic_dec(&xrcd->usecnt);
1017                if (ib_srq_has_cq(srq_type))
1018                        atomic_dec(&cq->usecnt);
1019        }
1020
1021        return ret;
1022}
1023EXPORT_SYMBOL(ib_destroy_srq);
1024
1025/* Queue pairs */
1026
1027static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1028{
1029        struct ib_qp *qp = context;
1030        unsigned long flags;
1031
1032        spin_lock_irqsave(&qp->device->event_handler_lock, flags);
1033        list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1034                if (event->element.qp->event_handler)
1035                        event->element.qp->event_handler(event, event->element.qp->qp_context);
1036        spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
1037}
1038
1039static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
1040{
1041        mutex_lock(&xrcd->tgt_qp_mutex);
1042        list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
1043        mutex_unlock(&xrcd->tgt_qp_mutex);
1044}
1045
1046static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1047                                  void (*event_handler)(struct ib_event *, void *),
1048                                  void *qp_context)
1049{
1050        struct ib_qp *qp;
1051        unsigned long flags;
1052        int err;
1053
1054        qp = kzalloc(sizeof *qp, GFP_KERNEL);
1055        if (!qp)
1056                return ERR_PTR(-ENOMEM);
1057
1058        qp->real_qp = real_qp;
1059        err = ib_open_shared_qp_security(qp, real_qp->device);
1060        if (err) {
1061                kfree(qp);
1062                return ERR_PTR(err);
1063        }
1064
1065        qp->real_qp = real_qp;
1066        atomic_inc(&real_qp->usecnt);
1067        qp->device = real_qp->device;
1068        qp->event_handler = event_handler;
1069        qp->qp_context = qp_context;
1070        qp->qp_num = real_qp->qp_num;
1071        qp->qp_type = real_qp->qp_type;
1072
1073        spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1074        list_add(&qp->open_list, &real_qp->open_list);
1075        spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1076
1077        return qp;
1078}
1079
1080struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1081                         struct ib_qp_open_attr *qp_open_attr)
1082{
1083        struct ib_qp *qp, *real_qp;
1084
1085        if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1086                return ERR_PTR(-EINVAL);
1087
1088        qp = ERR_PTR(-EINVAL);
1089        mutex_lock(&xrcd->tgt_qp_mutex);
1090        list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
1091                if (real_qp->qp_num == qp_open_attr->qp_num) {
1092                        qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1093                                          qp_open_attr->qp_context);
1094                        break;
1095                }
1096        }
1097        mutex_unlock(&xrcd->tgt_qp_mutex);
1098        return qp;
1099}
1100EXPORT_SYMBOL(ib_open_qp);
1101
1102static struct ib_qp *create_xrc_qp(struct ib_qp *qp,
1103                                   struct ib_qp_init_attr *qp_init_attr)
1104{
1105        struct ib_qp *real_qp = qp;
1106
1107        qp->event_handler = __ib_shared_qp_event_handler;
1108        qp->qp_context = qp;
1109        qp->pd = NULL;
1110        qp->send_cq = qp->recv_cq = NULL;
1111        qp->srq = NULL;
1112        qp->xrcd = qp_init_attr->xrcd;
1113        atomic_inc(&qp_init_attr->xrcd->usecnt);
1114        INIT_LIST_HEAD(&qp->open_list);
1115
1116        qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1117                          qp_init_attr->qp_context);
1118        if (IS_ERR(qp))
1119                return qp;
1120
1121        __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
1122        return qp;
1123}
1124
1125struct ib_qp *ib_create_qp(struct ib_pd *pd,
1126                           struct ib_qp_init_attr *qp_init_attr)
1127{
1128        struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1129        struct ib_qp *qp;
1130        int ret;
1131
1132        if (qp_init_attr->rwq_ind_tbl &&
1133            (qp_init_attr->recv_cq ||
1134            qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1135            qp_init_attr->cap.max_recv_sge))
1136                return ERR_PTR(-EINVAL);
1137
1138        /*
1139         * If the callers is using the RDMA API calculate the resources
1140         * needed for the RDMA READ/WRITE operations.
1141         *
1142         * Note that these callers need to pass in a port number.
1143         */
1144        if (qp_init_attr->cap.max_rdma_ctxs)
1145                rdma_rw_init_qp(device, qp_init_attr);
1146
1147        qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1148        if (IS_ERR(qp))
1149                return qp;
1150
1151        ret = ib_create_qp_security(qp, device);
1152        if (ret)
1153                goto err;
1154
1155        qp->real_qp    = qp;
1156        qp->qp_type    = qp_init_attr->qp_type;
1157        qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
1158
1159        atomic_set(&qp->usecnt, 0);
1160        qp->mrs_used = 0;
1161        spin_lock_init(&qp->mr_lock);
1162        INIT_LIST_HEAD(&qp->rdma_mrs);
1163        INIT_LIST_HEAD(&qp->sig_mrs);
1164        qp->port = 0;
1165
1166        if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1167                struct ib_qp *xrc_qp = create_xrc_qp(qp, qp_init_attr);
1168
1169                if (IS_ERR(xrc_qp)) {
1170                        ret = PTR_ERR(xrc_qp);
1171                        goto err;
1172                }
1173                return xrc_qp;
1174        }
1175
1176        qp->event_handler = qp_init_attr->event_handler;
1177        qp->qp_context = qp_init_attr->qp_context;
1178        if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1179                qp->recv_cq = NULL;
1180                qp->srq = NULL;
1181        } else {
1182                qp->recv_cq = qp_init_attr->recv_cq;
1183                if (qp_init_attr->recv_cq)
1184                        atomic_inc(&qp_init_attr->recv_cq->usecnt);
1185                qp->srq = qp_init_attr->srq;
1186                if (qp->srq)
1187                        atomic_inc(&qp_init_attr->srq->usecnt);
1188        }
1189
1190        qp->send_cq = qp_init_attr->send_cq;
1191        qp->xrcd    = NULL;
1192
1193        atomic_inc(&pd->usecnt);
1194        if (qp_init_attr->send_cq)
1195                atomic_inc(&qp_init_attr->send_cq->usecnt);
1196        if (qp_init_attr->rwq_ind_tbl)
1197                atomic_inc(&qp->rwq_ind_tbl->usecnt);
1198
1199        if (qp_init_attr->cap.max_rdma_ctxs) {
1200                ret = rdma_rw_init_mrs(qp, qp_init_attr);
1201                if (ret)
1202                        goto err;
1203        }
1204
1205        /*
1206         * Note: all hw drivers guarantee that max_send_sge is lower than
1207         * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1208         * max_send_sge <= max_sge_rd.
1209         */
1210        qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1211        qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1212                                 device->attrs.max_sge_rd);
1213
1214        return qp;
1215
1216err:
1217        ib_destroy_qp(qp);
1218        return ERR_PTR(ret);
1219
1220}
1221EXPORT_SYMBOL(ib_create_qp);
1222
1223static const struct {
1224        int                     valid;
1225        enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1226        enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1227} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1228        [IB_QPS_RESET] = {
1229                [IB_QPS_RESET] = { .valid = 1 },
1230                [IB_QPS_ERR] =   { .valid = 1 },
1231                [IB_QPS_INIT]  = {
1232                        .valid = 1,
1233                        .req_param = {
1234                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1235                                                IB_QP_PORT                      |
1236                                                IB_QP_QKEY),
1237                                [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1238                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1239                                                IB_QP_PORT                      |
1240                                                IB_QP_ACCESS_FLAGS),
1241                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1242                                                IB_QP_PORT                      |
1243                                                IB_QP_ACCESS_FLAGS),
1244                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1245                                                IB_QP_PORT                      |
1246                                                IB_QP_ACCESS_FLAGS),
1247                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1248                                                IB_QP_PORT                      |
1249                                                IB_QP_ACCESS_FLAGS),
1250                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1251                                                IB_QP_QKEY),
1252                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1253                                                IB_QP_QKEY),
1254                        }
1255                },
1256        },
1257        [IB_QPS_INIT]  = {
1258                [IB_QPS_RESET] = { .valid = 1 },
1259                [IB_QPS_ERR] =   { .valid = 1 },
1260                [IB_QPS_INIT]  = {
1261                        .valid = 1,
1262                        .opt_param = {
1263                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1264                                                IB_QP_PORT                      |
1265                                                IB_QP_QKEY),
1266                                [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1267                                                IB_QP_PORT                      |
1268                                                IB_QP_ACCESS_FLAGS),
1269                                [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1270                                                IB_QP_PORT                      |
1271                                                IB_QP_ACCESS_FLAGS),
1272                                [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1273                                                IB_QP_PORT                      |
1274                                                IB_QP_ACCESS_FLAGS),
1275                                [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1276                                                IB_QP_PORT                      |
1277                                                IB_QP_ACCESS_FLAGS),
1278                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1279                                                IB_QP_QKEY),
1280                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1281                                                IB_QP_QKEY),
1282                        }
1283                },
1284                [IB_QPS_RTR]   = {
1285                        .valid = 1,
1286                        .req_param = {
1287                                [IB_QPT_UC]  = (IB_QP_AV                        |
1288                                                IB_QP_PATH_MTU                  |
1289                                                IB_QP_DEST_QPN                  |
1290                                                IB_QP_RQ_PSN),
1291                                [IB_QPT_RC]  = (IB_QP_AV                        |
1292                                                IB_QP_PATH_MTU                  |
1293                                                IB_QP_DEST_QPN                  |
1294                                                IB_QP_RQ_PSN                    |
1295                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1296                                                IB_QP_MIN_RNR_TIMER),
1297                                [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1298                                                IB_QP_PATH_MTU                  |
1299                                                IB_QP_DEST_QPN                  |
1300                                                IB_QP_RQ_PSN),
1301                                [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1302                                                IB_QP_PATH_MTU                  |
1303                                                IB_QP_DEST_QPN                  |
1304                                                IB_QP_RQ_PSN                    |
1305                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1306                                                IB_QP_MIN_RNR_TIMER),
1307                        },
1308                        .opt_param = {
1309                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1310                                                 IB_QP_QKEY),
1311                                 [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1312                                                 IB_QP_ACCESS_FLAGS             |
1313                                                 IB_QP_PKEY_INDEX),
1314                                 [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1315                                                 IB_QP_ACCESS_FLAGS             |
1316                                                 IB_QP_PKEY_INDEX),
1317                                 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1318                                                 IB_QP_ACCESS_FLAGS             |
1319                                                 IB_QP_PKEY_INDEX),
1320                                 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1321                                                 IB_QP_ACCESS_FLAGS             |
1322                                                 IB_QP_PKEY_INDEX),
1323                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1324                                                 IB_QP_QKEY),
1325                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1326                                                 IB_QP_QKEY),
1327                         },
1328                },
1329        },
1330        [IB_QPS_RTR]   = {
1331                [IB_QPS_RESET] = { .valid = 1 },
1332                [IB_QPS_ERR] =   { .valid = 1 },
1333                [IB_QPS_RTS]   = {
1334                        .valid = 1,
1335                        .req_param = {
1336                                [IB_QPT_UD]  = IB_QP_SQ_PSN,
1337                                [IB_QPT_UC]  = IB_QP_SQ_PSN,
1338                                [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1339                                                IB_QP_RETRY_CNT                 |
1340                                                IB_QP_RNR_RETRY                 |
1341                                                IB_QP_SQ_PSN                    |
1342                                                IB_QP_MAX_QP_RD_ATOMIC),
1343                                [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1344                                                IB_QP_RETRY_CNT                 |
1345                                                IB_QP_RNR_RETRY                 |
1346                                                IB_QP_SQ_PSN                    |
1347                                                IB_QP_MAX_QP_RD_ATOMIC),
1348                                [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1349                                                IB_QP_SQ_PSN),
1350                                [IB_QPT_SMI] = IB_QP_SQ_PSN,
1351                                [IB_QPT_GSI] = IB_QP_SQ_PSN,
1352                        },
1353                        .opt_param = {
1354                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1355                                                 IB_QP_QKEY),
1356                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1357                                                 IB_QP_ALT_PATH                 |
1358                                                 IB_QP_ACCESS_FLAGS             |
1359                                                 IB_QP_PATH_MIG_STATE),
1360                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1361                                                 IB_QP_ALT_PATH                 |
1362                                                 IB_QP_ACCESS_FLAGS             |
1363                                                 IB_QP_MIN_RNR_TIMER            |
1364                                                 IB_QP_PATH_MIG_STATE),
1365                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1366                                                 IB_QP_ALT_PATH                 |
1367                                                 IB_QP_ACCESS_FLAGS             |
1368                                                 IB_QP_PATH_MIG_STATE),
1369                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1370                                                 IB_QP_ALT_PATH                 |
1371                                                 IB_QP_ACCESS_FLAGS             |
1372                                                 IB_QP_MIN_RNR_TIMER            |
1373                                                 IB_QP_PATH_MIG_STATE),
1374                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1375                                                 IB_QP_QKEY),
1376                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1377                                                 IB_QP_QKEY),
1378                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1379                         }
1380                }
1381        },
1382        [IB_QPS_RTS]   = {
1383                [IB_QPS_RESET] = { .valid = 1 },
1384                [IB_QPS_ERR] =   { .valid = 1 },
1385                [IB_QPS_RTS]   = {
1386                        .valid = 1,
1387                        .opt_param = {
1388                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1389                                                IB_QP_QKEY),
1390                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1391                                                IB_QP_ACCESS_FLAGS              |
1392                                                IB_QP_ALT_PATH                  |
1393                                                IB_QP_PATH_MIG_STATE),
1394                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1395                                                IB_QP_ACCESS_FLAGS              |
1396                                                IB_QP_ALT_PATH                  |
1397                                                IB_QP_PATH_MIG_STATE            |
1398                                                IB_QP_MIN_RNR_TIMER),
1399                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1400                                                IB_QP_ACCESS_FLAGS              |
1401                                                IB_QP_ALT_PATH                  |
1402                                                IB_QP_PATH_MIG_STATE),
1403                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1404                                                IB_QP_ACCESS_FLAGS              |
1405                                                IB_QP_ALT_PATH                  |
1406                                                IB_QP_PATH_MIG_STATE            |
1407                                                IB_QP_MIN_RNR_TIMER),
1408                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1409                                                IB_QP_QKEY),
1410                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1411                                                IB_QP_QKEY),
1412                                [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1413                        }
1414                },
1415                [IB_QPS_SQD]   = {
1416                        .valid = 1,
1417                        .opt_param = {
1418                                [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1419                                [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1420                                [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1421                                [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1422                                [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1423                                [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1424                                [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1425                        }
1426                },
1427        },
1428        [IB_QPS_SQD]   = {
1429                [IB_QPS_RESET] = { .valid = 1 },
1430                [IB_QPS_ERR] =   { .valid = 1 },
1431                [IB_QPS_RTS]   = {
1432                        .valid = 1,
1433                        .opt_param = {
1434                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1435                                                IB_QP_QKEY),
1436                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1437                                                IB_QP_ALT_PATH                  |
1438                                                IB_QP_ACCESS_FLAGS              |
1439                                                IB_QP_PATH_MIG_STATE),
1440                                [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1441                                                IB_QP_ALT_PATH                  |
1442                                                IB_QP_ACCESS_FLAGS              |
1443                                                IB_QP_MIN_RNR_TIMER             |
1444                                                IB_QP_PATH_MIG_STATE),
1445                                [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1446                                                IB_QP_ALT_PATH                  |
1447                                                IB_QP_ACCESS_FLAGS              |
1448                                                IB_QP_PATH_MIG_STATE),
1449                                [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1450                                                IB_QP_ALT_PATH                  |
1451                                                IB_QP_ACCESS_FLAGS              |
1452                                                IB_QP_MIN_RNR_TIMER             |
1453                                                IB_QP_PATH_MIG_STATE),
1454                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1455                                                IB_QP_QKEY),
1456                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1457                                                IB_QP_QKEY),
1458                        }
1459                },
1460                [IB_QPS_SQD]   = {
1461                        .valid = 1,
1462                        .opt_param = {
1463                                [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1464                                                IB_QP_QKEY),
1465                                [IB_QPT_UC]  = (IB_QP_AV                        |
1466                                                IB_QP_ALT_PATH                  |
1467                                                IB_QP_ACCESS_FLAGS              |
1468                                                IB_QP_PKEY_INDEX                |
1469                                                IB_QP_PATH_MIG_STATE),
1470                                [IB_QPT_RC]  = (IB_QP_PORT                      |
1471                                                IB_QP_AV                        |
1472                                                IB_QP_TIMEOUT                   |
1473                                                IB_QP_RETRY_CNT                 |
1474                                                IB_QP_RNR_RETRY                 |
1475                                                IB_QP_MAX_QP_RD_ATOMIC          |
1476                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1477                                                IB_QP_ALT_PATH                  |
1478                                                IB_QP_ACCESS_FLAGS              |
1479                                                IB_QP_PKEY_INDEX                |
1480                                                IB_QP_MIN_RNR_TIMER             |
1481                                                IB_QP_PATH_MIG_STATE),
1482                                [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1483                                                IB_QP_AV                        |
1484                                                IB_QP_TIMEOUT                   |
1485                                                IB_QP_RETRY_CNT                 |
1486                                                IB_QP_RNR_RETRY                 |
1487                                                IB_QP_MAX_QP_RD_ATOMIC          |
1488                                                IB_QP_ALT_PATH                  |
1489                                                IB_QP_ACCESS_FLAGS              |
1490                                                IB_QP_PKEY_INDEX                |
1491                                                IB_QP_PATH_MIG_STATE),
1492                                [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1493                                                IB_QP_AV                        |
1494                                                IB_QP_TIMEOUT                   |
1495                                                IB_QP_MAX_DEST_RD_ATOMIC        |
1496                                                IB_QP_ALT_PATH                  |
1497                                                IB_QP_ACCESS_FLAGS              |
1498                                                IB_QP_PKEY_INDEX                |
1499                                                IB_QP_MIN_RNR_TIMER             |
1500                                                IB_QP_PATH_MIG_STATE),
1501                                [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1502                                                IB_QP_QKEY),
1503                                [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1504                                                IB_QP_QKEY),
1505                        }
1506                }
1507        },
1508        [IB_QPS_SQE]   = {
1509                [IB_QPS_RESET] = { .valid = 1 },
1510                [IB_QPS_ERR] =   { .valid = 1 },
1511                [IB_QPS_RTS]   = {
1512                        .valid = 1,
1513                        .opt_param = {
1514                                [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1515                                                IB_QP_QKEY),
1516                                [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1517                                                IB_QP_ACCESS_FLAGS),
1518                                [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1519                                                IB_QP_QKEY),
1520                                [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1521                                                IB_QP_QKEY),
1522                        }
1523                }
1524        },
1525        [IB_QPS_ERR] = {
1526                [IB_QPS_RESET] = { .valid = 1 },
1527                [IB_QPS_ERR] =   { .valid = 1 }
1528        }
1529};
1530
1531bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1532                        enum ib_qp_type type, enum ib_qp_attr_mask mask)
1533{
1534        enum ib_qp_attr_mask req_param, opt_param;
1535
1536        if (mask & IB_QP_CUR_STATE  &&
1537            cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1538            cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1539                return false;
1540
1541        if (!qp_state_table[cur_state][next_state].valid)
1542                return false;
1543
1544        req_param = qp_state_table[cur_state][next_state].req_param[type];
1545        opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1546
1547        if ((mask & req_param) != req_param)
1548                return false;
1549
1550        if (mask & ~(req_param | opt_param | IB_QP_STATE))
1551                return false;
1552
1553        return true;
1554}
1555EXPORT_SYMBOL(ib_modify_qp_is_ok);
1556
1557/**
1558 * ib_resolve_eth_dmac - Resolve destination mac address
1559 * @device:             Device to consider
1560 * @ah_attr:            address handle attribute which describes the
1561 *                      source and destination parameters
1562 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1563 * returns 0 on success or appropriate error code. It initializes the
1564 * necessary ah_attr fields when call is successful.
1565 */
1566static int ib_resolve_eth_dmac(struct ib_device *device,
1567                               struct rdma_ah_attr *ah_attr)
1568{
1569        int ret = 0;
1570
1571        if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1572                if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1573                        __be32 addr = 0;
1574
1575                        memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1576                        ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1577                } else {
1578                        ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1579                                        (char *)ah_attr->roce.dmac);
1580                }
1581        } else {
1582                ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1583        }
1584        return ret;
1585}
1586
1587static bool is_qp_type_connected(const struct ib_qp *qp)
1588{
1589        return (qp->qp_type == IB_QPT_UC ||
1590                qp->qp_type == IB_QPT_RC ||
1591                qp->qp_type == IB_QPT_XRC_INI ||
1592                qp->qp_type == IB_QPT_XRC_TGT);
1593}
1594
1595/**
1596 * IB core internal function to perform QP attributes modification.
1597 */
1598static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1599                         int attr_mask, struct ib_udata *udata)
1600{
1601        u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1602        const struct ib_gid_attr *old_sgid_attr_av;
1603        const struct ib_gid_attr *old_sgid_attr_alt_av;
1604        int ret;
1605
1606        if (attr_mask & IB_QP_AV) {
1607                ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1608                                          &old_sgid_attr_av);
1609                if (ret)
1610                        return ret;
1611        }
1612        if (attr_mask & IB_QP_ALT_PATH) {
1613                /*
1614                 * FIXME: This does not track the migration state, so if the
1615                 * user loads a new alternate path after the HW has migrated
1616                 * from primary->alternate we will keep the wrong
1617                 * references. This is OK for IB because the reference
1618                 * counting does not serve any functional purpose.
1619                 */
1620                ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1621                                          &old_sgid_attr_alt_av);
1622                if (ret)
1623                        goto out_av;
1624
1625                /*
1626                 * Today the core code can only handle alternate paths and APM
1627                 * for IB. Ban them in roce mode.
1628                 */
1629                if (!(rdma_protocol_ib(qp->device,
1630                                       attr->alt_ah_attr.port_num) &&
1631                      rdma_protocol_ib(qp->device, port))) {
1632                        ret = EINVAL;
1633                        goto out;
1634                }
1635        }
1636
1637        /*
1638         * If the user provided the qp_attr then we have to resolve it. Kernel
1639         * users have to provide already resolved rdma_ah_attr's
1640         */
1641        if (udata && (attr_mask & IB_QP_AV) &&
1642            attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1643            is_qp_type_connected(qp)) {
1644                ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1645                if (ret)
1646                        goto out;
1647        }
1648
1649        if (rdma_ib_or_roce(qp->device, port)) {
1650                if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1651                        dev_warn(&qp->device->dev,
1652                                 "%s rq_psn overflow, masking to 24 bits\n",
1653                                 __func__);
1654                        attr->rq_psn &= 0xffffff;
1655                }
1656
1657                if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1658                        dev_warn(&qp->device->dev,
1659                                 " %s sq_psn overflow, masking to 24 bits\n",
1660                                 __func__);
1661                        attr->sq_psn &= 0xffffff;
1662                }
1663        }
1664
1665        ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1666        if (ret)
1667                goto out;
1668
1669        if (attr_mask & IB_QP_PORT)
1670                qp->port = attr->port_num;
1671        if (attr_mask & IB_QP_AV)
1672                qp->av_sgid_attr =
1673                        rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1674        if (attr_mask & IB_QP_ALT_PATH)
1675                qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1676                        &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1677
1678out:
1679        if (attr_mask & IB_QP_ALT_PATH)
1680                rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1681out_av:
1682        if (attr_mask & IB_QP_AV)
1683                rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1684        return ret;
1685}
1686
1687/**
1688 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1689 * @ib_qp: The QP to modify.
1690 * @attr: On input, specifies the QP attributes to modify.  On output,
1691 *   the current values of selected QP attributes are returned.
1692 * @attr_mask: A bit-mask used to specify which attributes of the QP
1693 *   are being modified.
1694 * @udata: pointer to user's input output buffer information
1695 *   are being modified.
1696 * It returns 0 on success and returns appropriate error code on error.
1697 */
1698int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1699                            int attr_mask, struct ib_udata *udata)
1700{
1701        return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1702}
1703EXPORT_SYMBOL(ib_modify_qp_with_udata);
1704
1705int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1706{
1707        int rc;
1708        u32 netdev_speed;
1709        struct net_device *netdev;
1710        struct ethtool_link_ksettings lksettings;
1711
1712        if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1713                return -EINVAL;
1714
1715        if (!dev->get_netdev)
1716                return -EOPNOTSUPP;
1717
1718        netdev = dev->get_netdev(dev, port_num);
1719        if (!netdev)
1720                return -ENODEV;
1721
1722        rtnl_lock();
1723        rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1724        rtnl_unlock();
1725
1726        dev_put(netdev);
1727
1728        if (!rc) {
1729                netdev_speed = lksettings.base.speed;
1730        } else {
1731                netdev_speed = SPEED_1000;
1732                pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1733                        netdev_speed);
1734        }
1735
1736        if (netdev_speed <= SPEED_1000) {
1737                *width = IB_WIDTH_1X;
1738                *speed = IB_SPEED_SDR;
1739        } else if (netdev_speed <= SPEED_10000) {
1740                *width = IB_WIDTH_1X;
1741                *speed = IB_SPEED_FDR10;
1742        } else if (netdev_speed <= SPEED_20000) {
1743                *width = IB_WIDTH_4X;
1744                *speed = IB_SPEED_DDR;
1745        } else if (netdev_speed <= SPEED_25000) {
1746                *width = IB_WIDTH_1X;
1747                *speed = IB_SPEED_EDR;
1748        } else if (netdev_speed <= SPEED_40000) {
1749                *width = IB_WIDTH_4X;
1750                *speed = IB_SPEED_FDR10;
1751        } else {
1752                *width = IB_WIDTH_4X;
1753                *speed = IB_SPEED_EDR;
1754        }
1755
1756        return 0;
1757}
1758EXPORT_SYMBOL(ib_get_eth_speed);
1759
1760int ib_modify_qp(struct ib_qp *qp,
1761                 struct ib_qp_attr *qp_attr,
1762                 int qp_attr_mask)
1763{
1764        return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1765}
1766EXPORT_SYMBOL(ib_modify_qp);
1767
1768int ib_query_qp(struct ib_qp *qp,
1769                struct ib_qp_attr *qp_attr,
1770                int qp_attr_mask,
1771                struct ib_qp_init_attr *qp_init_attr)
1772{
1773        qp_attr->ah_attr.grh.sgid_attr = NULL;
1774        qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1775
1776        return qp->device->query_qp ?
1777                qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1778                -EOPNOTSUPP;
1779}
1780EXPORT_SYMBOL(ib_query_qp);
1781
1782int ib_close_qp(struct ib_qp *qp)
1783{
1784        struct ib_qp *real_qp;
1785        unsigned long flags;
1786
1787        real_qp = qp->real_qp;
1788        if (real_qp == qp)
1789                return -EINVAL;
1790
1791        spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1792        list_del(&qp->open_list);
1793        spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1794
1795        atomic_dec(&real_qp->usecnt);
1796        if (qp->qp_sec)
1797                ib_close_shared_qp_security(qp->qp_sec);
1798        kfree(qp);
1799
1800        return 0;
1801}
1802EXPORT_SYMBOL(ib_close_qp);
1803
1804static int __ib_destroy_shared_qp(struct ib_qp *qp)
1805{
1806        struct ib_xrcd *xrcd;
1807        struct ib_qp *real_qp;
1808        int ret;
1809
1810        real_qp = qp->real_qp;
1811        xrcd = real_qp->xrcd;
1812
1813        mutex_lock(&xrcd->tgt_qp_mutex);
1814        ib_close_qp(qp);
1815        if (atomic_read(&real_qp->usecnt) == 0)
1816                list_del(&real_qp->xrcd_list);
1817        else
1818                real_qp = NULL;
1819        mutex_unlock(&xrcd->tgt_qp_mutex);
1820
1821        if (real_qp) {
1822                ret = ib_destroy_qp(real_qp);
1823                if (!ret)
1824                        atomic_dec(&xrcd->usecnt);
1825                else
1826                        __ib_insert_xrcd_qp(xrcd, real_qp);
1827        }
1828
1829        return 0;
1830}
1831
1832int ib_destroy_qp(struct ib_qp *qp)
1833{
1834        const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1835        const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1836        struct ib_pd *pd;
1837        struct ib_cq *scq, *rcq;
1838        struct ib_srq *srq;
1839        struct ib_rwq_ind_table *ind_tbl;
1840        struct ib_qp_security *sec;
1841        int ret;
1842
1843        WARN_ON_ONCE(qp->mrs_used > 0);
1844
1845        if (atomic_read(&qp->usecnt))
1846                return -EBUSY;
1847
1848        if (qp->real_qp != qp)
1849                return __ib_destroy_shared_qp(qp);
1850
1851        pd   = qp->pd;
1852        scq  = qp->send_cq;
1853        rcq  = qp->recv_cq;
1854        srq  = qp->srq;
1855        ind_tbl = qp->rwq_ind_tbl;
1856        sec  = qp->qp_sec;
1857        if (sec)
1858                ib_destroy_qp_security_begin(sec);
1859
1860        if (!qp->uobject)
1861                rdma_rw_cleanup_mrs(qp);
1862
1863        rdma_restrack_del(&qp->res);
1864        ret = qp->device->destroy_qp(qp);
1865        if (!ret) {
1866                if (alt_path_sgid_attr)
1867                        rdma_put_gid_attr(alt_path_sgid_attr);
1868                if (av_sgid_attr)
1869                        rdma_put_gid_attr(av_sgid_attr);
1870                if (pd)
1871                        atomic_dec(&pd->usecnt);
1872                if (scq)
1873                        atomic_dec(&scq->usecnt);
1874                if (rcq)
1875                        atomic_dec(&rcq->usecnt);
1876                if (srq)
1877                        atomic_dec(&srq->usecnt);
1878                if (ind_tbl)
1879                        atomic_dec(&ind_tbl->usecnt);
1880                if (sec)
1881                        ib_destroy_qp_security_end(sec);
1882        } else {
1883                if (sec)
1884                        ib_destroy_qp_security_abort(sec);
1885        }
1886
1887        return ret;
1888}
1889EXPORT_SYMBOL(ib_destroy_qp);
1890
1891/* Completion queues */
1892
1893struct ib_cq *__ib_create_cq(struct ib_device *device,
1894                             ib_comp_handler comp_handler,
1895                             void (*event_handler)(struct ib_event *, void *),
1896                             void *cq_context,
1897                             const struct ib_cq_init_attr *cq_attr,
1898                             const char *caller)
1899{
1900        struct ib_cq *cq;
1901
1902        cq = device->create_cq(device, cq_attr, NULL, NULL);
1903
1904        if (!IS_ERR(cq)) {
1905                cq->device        = device;
1906                cq->uobject       = NULL;
1907                cq->comp_handler  = comp_handler;
1908                cq->event_handler = event_handler;
1909                cq->cq_context    = cq_context;
1910                atomic_set(&cq->usecnt, 0);
1911                cq->res.type = RDMA_RESTRACK_CQ;
1912                rdma_restrack_set_task(&cq->res, caller);
1913                rdma_restrack_add(&cq->res);
1914        }
1915
1916        return cq;
1917}
1918EXPORT_SYMBOL(__ib_create_cq);
1919
1920int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1921{
1922        return cq->device->modify_cq ?
1923                cq->device->modify_cq(cq, cq_count, cq_period) : -EOPNOTSUPP;
1924}
1925EXPORT_SYMBOL(rdma_set_cq_moderation);
1926
1927int ib_destroy_cq(struct ib_cq *cq)
1928{
1929        if (atomic_read(&cq->usecnt))
1930                return -EBUSY;
1931
1932        rdma_restrack_del(&cq->res);
1933        return cq->device->destroy_cq(cq);
1934}
1935EXPORT_SYMBOL(ib_destroy_cq);
1936
1937int ib_resize_cq(struct ib_cq *cq, int cqe)
1938{
1939        return cq->device->resize_cq ?
1940                cq->device->resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
1941}
1942EXPORT_SYMBOL(ib_resize_cq);
1943
1944/* Memory regions */
1945
1946int ib_dereg_mr(struct ib_mr *mr)
1947{
1948        struct ib_pd *pd = mr->pd;
1949        struct ib_dm *dm = mr->dm;
1950        int ret;
1951
1952        rdma_restrack_del(&mr->res);
1953        ret = mr->device->dereg_mr(mr);
1954        if (!ret) {
1955                atomic_dec(&pd->usecnt);
1956                if (dm)
1957                        atomic_dec(&dm->usecnt);
1958        }
1959
1960        return ret;
1961}
1962EXPORT_SYMBOL(ib_dereg_mr);
1963
1964/**
1965 * ib_alloc_mr() - Allocates a memory region
1966 * @pd:            protection domain associated with the region
1967 * @mr_type:       memory region type
1968 * @max_num_sg:    maximum sg entries available for registration.
1969 *
1970 * Notes:
1971 * Memory registeration page/sg lists must not exceed max_num_sg.
1972 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1973 * max_num_sg * used_page_size.
1974 *
1975 */
1976struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1977                          enum ib_mr_type mr_type,
1978                          u32 max_num_sg)
1979{
1980        struct ib_mr *mr;
1981
1982        if (!pd->device->alloc_mr)
1983                return ERR_PTR(-EOPNOTSUPP);
1984
1985        mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1986        if (!IS_ERR(mr)) {
1987                mr->device  = pd->device;
1988                mr->pd      = pd;
1989                mr->dm      = NULL;
1990                mr->uobject = NULL;
1991                atomic_inc(&pd->usecnt);
1992                mr->need_inval = false;
1993                mr->res.type = RDMA_RESTRACK_MR;
1994                rdma_restrack_add(&mr->res);
1995        }
1996
1997        return mr;
1998}
1999EXPORT_SYMBOL(ib_alloc_mr);
2000
2001/* "Fast" memory regions */
2002
2003struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2004                            int mr_access_flags,
2005                            struct ib_fmr_attr *fmr_attr)
2006{
2007        struct ib_fmr *fmr;
2008
2009        if (!pd->device->alloc_fmr)
2010                return ERR_PTR(-EOPNOTSUPP);
2011
2012        fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
2013        if (!IS_ERR(fmr)) {
2014                fmr->device = pd->device;
2015                fmr->pd     = pd;
2016                atomic_inc(&pd->usecnt);
2017        }
2018
2019        return fmr;
2020}
2021EXPORT_SYMBOL(ib_alloc_fmr);
2022
2023int ib_unmap_fmr(struct list_head *fmr_list)
2024{
2025        struct ib_fmr *fmr;
2026
2027        if (list_empty(fmr_list))
2028                return 0;
2029
2030        fmr = list_entry(fmr_list->next, struct ib_fmr, list);
2031        return fmr->device->unmap_fmr(fmr_list);
2032}
2033EXPORT_SYMBOL(ib_unmap_fmr);
2034
2035int ib_dealloc_fmr(struct ib_fmr *fmr)
2036{
2037        struct ib_pd *pd;
2038        int ret;
2039
2040        pd = fmr->pd;
2041        ret = fmr->device->dealloc_fmr(fmr);
2042        if (!ret)
2043                atomic_dec(&pd->usecnt);
2044
2045        return ret;
2046}
2047EXPORT_SYMBOL(ib_dealloc_fmr);
2048
2049/* Multicast groups */
2050
2051static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2052{
2053        struct ib_qp_init_attr init_attr = {};
2054        struct ib_qp_attr attr = {};
2055        int num_eth_ports = 0;
2056        int port;
2057
2058        /* If QP state >= init, it is assigned to a port and we can check this
2059         * port only.
2060         */
2061        if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2062                if (attr.qp_state >= IB_QPS_INIT) {
2063                        if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2064                            IB_LINK_LAYER_INFINIBAND)
2065                                return true;
2066                        goto lid_check;
2067                }
2068        }
2069
2070        /* Can't get a quick answer, iterate over all ports */
2071        for (port = 0; port < qp->device->phys_port_cnt; port++)
2072                if (rdma_port_get_link_layer(qp->device, port) !=
2073                    IB_LINK_LAYER_INFINIBAND)
2074                        num_eth_ports++;
2075
2076        /* If we have at lease one Ethernet port, RoCE annex declares that
2077         * multicast LID should be ignored. We can't tell at this step if the
2078         * QP belongs to an IB or Ethernet port.
2079         */
2080        if (num_eth_ports)
2081                return true;
2082
2083        /* If all the ports are IB, we can check according to IB spec. */
2084lid_check:
2085        return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2086                 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2087}
2088
2089int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2090{
2091        int ret;
2092
2093        if (!qp->device->attach_mcast)
2094                return -EOPNOTSUPP;
2095
2096        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2097            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2098                return -EINVAL;
2099
2100        ret = qp->device->attach_mcast(qp, gid, lid);
2101        if (!ret)
2102                atomic_inc(&qp->usecnt);
2103        return ret;
2104}
2105EXPORT_SYMBOL(ib_attach_mcast);
2106
2107int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2108{
2109        int ret;
2110
2111        if (!qp->device->detach_mcast)
2112                return -EOPNOTSUPP;
2113
2114        if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2115            qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2116                return -EINVAL;
2117
2118        ret = qp->device->detach_mcast(qp, gid, lid);
2119        if (!ret)
2120                atomic_dec(&qp->usecnt);
2121        return ret;
2122}
2123EXPORT_SYMBOL(ib_detach_mcast);
2124
2125struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
2126{
2127        struct ib_xrcd *xrcd;
2128
2129        if (!device->alloc_xrcd)
2130                return ERR_PTR(-EOPNOTSUPP);
2131
2132        xrcd = device->alloc_xrcd(device, NULL, NULL);
2133        if (!IS_ERR(xrcd)) {
2134                xrcd->device = device;
2135                xrcd->inode = NULL;
2136                atomic_set(&xrcd->usecnt, 0);
2137                mutex_init(&xrcd->tgt_qp_mutex);
2138                INIT_LIST_HEAD(&xrcd->tgt_qp_list);
2139        }
2140
2141        return xrcd;
2142}
2143EXPORT_SYMBOL(__ib_alloc_xrcd);
2144
2145int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
2146{
2147        struct ib_qp *qp;
2148        int ret;
2149
2150        if (atomic_read(&xrcd->usecnt))
2151                return -EBUSY;
2152
2153        while (!list_empty(&xrcd->tgt_qp_list)) {
2154                qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
2155                ret = ib_destroy_qp(qp);
2156                if (ret)
2157                        return ret;
2158        }
2159
2160        return xrcd->device->dealloc_xrcd(xrcd);
2161}
2162EXPORT_SYMBOL(ib_dealloc_xrcd);
2163
2164/**
2165 * ib_create_wq - Creates a WQ associated with the specified protection
2166 * domain.
2167 * @pd: The protection domain associated with the WQ.
2168 * @wq_attr: A list of initial attributes required to create the
2169 * WQ. If WQ creation succeeds, then the attributes are updated to
2170 * the actual capabilities of the created WQ.
2171 *
2172 * wq_attr->max_wr and wq_attr->max_sge determine
2173 * the requested size of the WQ, and set to the actual values allocated
2174 * on return.
2175 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2176 * at least as large as the requested values.
2177 */
2178struct ib_wq *ib_create_wq(struct ib_pd *pd,
2179                           struct ib_wq_init_attr *wq_attr)
2180{
2181        struct ib_wq *wq;
2182
2183        if (!pd->device->create_wq)
2184                return ERR_PTR(-EOPNOTSUPP);
2185
2186        wq = pd->device->create_wq(pd, wq_attr, NULL);
2187        if (!IS_ERR(wq)) {
2188                wq->event_handler = wq_attr->event_handler;
2189                wq->wq_context = wq_attr->wq_context;
2190                wq->wq_type = wq_attr->wq_type;
2191                wq->cq = wq_attr->cq;
2192                wq->device = pd->device;
2193                wq->pd = pd;
2194                wq->uobject = NULL;
2195                atomic_inc(&pd->usecnt);
2196                atomic_inc(&wq_attr->cq->usecnt);
2197                atomic_set(&wq->usecnt, 0);
2198        }
2199        return wq;
2200}
2201EXPORT_SYMBOL(ib_create_wq);
2202
2203/**
2204 * ib_destroy_wq - Destroys the specified WQ.
2205 * @wq: The WQ to destroy.
2206 */
2207int ib_destroy_wq(struct ib_wq *wq)
2208{
2209        int err;
2210        struct ib_cq *cq = wq->cq;
2211        struct ib_pd *pd = wq->pd;
2212
2213        if (atomic_read(&wq->usecnt))
2214                return -EBUSY;
2215
2216        err = wq->device->destroy_wq(wq);
2217        if (!err) {
2218                atomic_dec(&pd->usecnt);
2219                atomic_dec(&cq->usecnt);
2220        }
2221        return err;
2222}
2223EXPORT_SYMBOL(ib_destroy_wq);
2224
2225/**
2226 * ib_modify_wq - Modifies the specified WQ.
2227 * @wq: The WQ to modify.
2228 * @wq_attr: On input, specifies the WQ attributes to modify.
2229 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2230 *   are being modified.
2231 * On output, the current values of selected WQ attributes are returned.
2232 */
2233int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2234                 u32 wq_attr_mask)
2235{
2236        int err;
2237
2238        if (!wq->device->modify_wq)
2239                return -EOPNOTSUPP;
2240
2241        err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2242        return err;
2243}
2244EXPORT_SYMBOL(ib_modify_wq);
2245
2246/*
2247 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2248 * @device: The device on which to create the rwq indirection table.
2249 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2250 * create the Indirection Table.
2251 *
2252 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2253 *      than the created ib_rwq_ind_table object and the caller is responsible
2254 *      for its memory allocation/free.
2255 */
2256struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
2257                                                 struct ib_rwq_ind_table_init_attr *init_attr)
2258{
2259        struct ib_rwq_ind_table *rwq_ind_table;
2260        int i;
2261        u32 table_size;
2262
2263        if (!device->create_rwq_ind_table)
2264                return ERR_PTR(-EOPNOTSUPP);
2265
2266        table_size = (1 << init_attr->log_ind_tbl_size);
2267        rwq_ind_table = device->create_rwq_ind_table(device,
2268                                init_attr, NULL);
2269        if (IS_ERR(rwq_ind_table))
2270                return rwq_ind_table;
2271
2272        rwq_ind_table->ind_tbl = init_attr->ind_tbl;
2273        rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
2274        rwq_ind_table->device = device;
2275        rwq_ind_table->uobject = NULL;
2276        atomic_set(&rwq_ind_table->usecnt, 0);
2277
2278        for (i = 0; i < table_size; i++)
2279                atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
2280
2281        return rwq_ind_table;
2282}
2283EXPORT_SYMBOL(ib_create_rwq_ind_table);
2284
2285/*
2286 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2287 * @wq_ind_table: The Indirection Table to destroy.
2288*/
2289int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2290{
2291        int err, i;
2292        u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2293        struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2294
2295        if (atomic_read(&rwq_ind_table->usecnt))
2296                return -EBUSY;
2297
2298        err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
2299        if (!err) {
2300                for (i = 0; i < table_size; i++)
2301                        atomic_dec(&ind_tbl[i]->usecnt);
2302        }
2303
2304        return err;
2305}
2306EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2307
2308int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2309                       struct ib_mr_status *mr_status)
2310{
2311        return mr->device->check_mr_status ?
2312                mr->device->check_mr_status(mr, check_mask, mr_status) : -EOPNOTSUPP;
2313}
2314EXPORT_SYMBOL(ib_check_mr_status);
2315
2316int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2317                         int state)
2318{
2319        if (!device->set_vf_link_state)
2320                return -EOPNOTSUPP;
2321
2322        return device->set_vf_link_state(device, vf, port, state);
2323}
2324EXPORT_SYMBOL(ib_set_vf_link_state);
2325
2326int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2327                     struct ifla_vf_info *info)
2328{
2329        if (!device->get_vf_config)
2330                return -EOPNOTSUPP;
2331
2332        return device->get_vf_config(device, vf, port, info);
2333}
2334EXPORT_SYMBOL(ib_get_vf_config);
2335
2336int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2337                    struct ifla_vf_stats *stats)
2338{
2339        if (!device->get_vf_stats)
2340                return -EOPNOTSUPP;
2341
2342        return device->get_vf_stats(device, vf, port, stats);
2343}
2344EXPORT_SYMBOL(ib_get_vf_stats);
2345
2346int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2347                   int type)
2348{
2349        if (!device->set_vf_guid)
2350                return -EOPNOTSUPP;
2351
2352        return device->set_vf_guid(device, vf, port, guid, type);
2353}
2354EXPORT_SYMBOL(ib_set_vf_guid);
2355
2356/**
2357 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2358 *     and set it the memory region.
2359 * @mr:            memory region
2360 * @sg:            dma mapped scatterlist
2361 * @sg_nents:      number of entries in sg
2362 * @sg_offset:     offset in bytes into sg
2363 * @page_size:     page vector desired page size
2364 *
2365 * Constraints:
2366 * - The first sg element is allowed to have an offset.
2367 * - Each sg element must either be aligned to page_size or virtually
2368 *   contiguous to the previous element. In case an sg element has a
2369 *   non-contiguous offset, the mapping prefix will not include it.
2370 * - The last sg element is allowed to have length less than page_size.
2371 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2372 *   then only max_num_sg entries will be mapped.
2373 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2374 *   constraints holds and the page_size argument is ignored.
2375 *
2376 * Returns the number of sg elements that were mapped to the memory region.
2377 *
2378 * After this completes successfully, the  memory region
2379 * is ready for registration.
2380 */
2381int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2382                 unsigned int *sg_offset, unsigned int page_size)
2383{
2384        if (unlikely(!mr->device->map_mr_sg))
2385                return -EOPNOTSUPP;
2386
2387        mr->page_size = page_size;
2388
2389        return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2390}
2391EXPORT_SYMBOL(ib_map_mr_sg);
2392
2393/**
2394 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2395 *     to a page vector
2396 * @mr:            memory region
2397 * @sgl:           dma mapped scatterlist
2398 * @sg_nents:      number of entries in sg
2399 * @sg_offset_p:   IN:  start offset in bytes into sg
2400 *                 OUT: offset in bytes for element n of the sg of the first
2401 *                      byte that has not been processed where n is the return
2402 *                      value of this function.
2403 * @set_page:      driver page assignment function pointer
2404 *
2405 * Core service helper for drivers to convert the largest
2406 * prefix of given sg list to a page vector. The sg list
2407 * prefix converted is the prefix that meet the requirements
2408 * of ib_map_mr_sg.
2409 *
2410 * Returns the number of sg elements that were assigned to
2411 * a page vector.
2412 */
2413int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2414                unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2415{
2416        struct scatterlist *sg;
2417        u64 last_end_dma_addr = 0;
2418        unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2419        unsigned int last_page_off = 0;
2420        u64 page_mask = ~((u64)mr->page_size - 1);
2421        int i, ret;
2422
2423        if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2424                return -EINVAL;
2425
2426        mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2427        mr->length = 0;
2428
2429        for_each_sg(sgl, sg, sg_nents, i) {
2430                u64 dma_addr = sg_dma_address(sg) + sg_offset;
2431                u64 prev_addr = dma_addr;
2432                unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2433                u64 end_dma_addr = dma_addr + dma_len;
2434                u64 page_addr = dma_addr & page_mask;
2435
2436                /*
2437                 * For the second and later elements, check whether either the
2438                 * end of element i-1 or the start of element i is not aligned
2439                 * on a page boundary.
2440                 */
2441                if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2442                        /* Stop mapping if there is a gap. */
2443                        if (last_end_dma_addr != dma_addr)
2444                                break;
2445
2446                        /*
2447                         * Coalesce this element with the last. If it is small
2448                         * enough just update mr->length. Otherwise start
2449                         * mapping from the next page.
2450                         */
2451                        goto next_page;
2452                }
2453
2454                do {
2455                        ret = set_page(mr, page_addr);
2456                        if (unlikely(ret < 0)) {
2457                                sg_offset = prev_addr - sg_dma_address(sg);
2458                                mr->length += prev_addr - dma_addr;
2459                                if (sg_offset_p)
2460                                        *sg_offset_p = sg_offset;
2461                                return i || sg_offset ? i : ret;
2462                        }
2463                        prev_addr = page_addr;
2464next_page:
2465                        page_addr += mr->page_size;
2466                } while (page_addr < end_dma_addr);
2467
2468                mr->length += dma_len;
2469                last_end_dma_addr = end_dma_addr;
2470                last_page_off = end_dma_addr & ~page_mask;
2471
2472                sg_offset = 0;
2473        }
2474
2475        if (sg_offset_p)
2476                *sg_offset_p = 0;
2477        return i;
2478}
2479EXPORT_SYMBOL(ib_sg_to_pages);
2480
2481struct ib_drain_cqe {
2482        struct ib_cqe cqe;
2483        struct completion done;
2484};
2485
2486static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2487{
2488        struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2489                                                cqe);
2490
2491        complete(&cqe->done);
2492}
2493
2494/*
2495 * Post a WR and block until its completion is reaped for the SQ.
2496 */
2497static void __ib_drain_sq(struct ib_qp *qp)
2498{
2499        struct ib_cq *cq = qp->send_cq;
2500        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2501        struct ib_drain_cqe sdrain;
2502        struct ib_rdma_wr swr = {
2503                .wr = {
2504                        .next = NULL,
2505                        { .wr_cqe       = &sdrain.cqe, },
2506                        .opcode = IB_WR_RDMA_WRITE,
2507                },
2508        };
2509        int ret;
2510
2511        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2512        if (ret) {
2513                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2514                return;
2515        }
2516
2517        sdrain.cqe.done = ib_drain_qp_done;
2518        init_completion(&sdrain.done);
2519
2520        ret = ib_post_send(qp, &swr.wr, NULL);
2521        if (ret) {
2522                WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2523                return;
2524        }
2525
2526        if (cq->poll_ctx == IB_POLL_DIRECT)
2527                while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2528                        ib_process_cq_direct(cq, -1);
2529        else
2530                wait_for_completion(&sdrain.done);
2531}
2532
2533/*
2534 * Post a WR and block until its completion is reaped for the RQ.
2535 */
2536static void __ib_drain_rq(struct ib_qp *qp)
2537{
2538        struct ib_cq *cq = qp->recv_cq;
2539        struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2540        struct ib_drain_cqe rdrain;
2541        struct ib_recv_wr rwr = {};
2542        int ret;
2543
2544        ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2545        if (ret) {
2546                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2547                return;
2548        }
2549
2550        rwr.wr_cqe = &rdrain.cqe;
2551        rdrain.cqe.done = ib_drain_qp_done;
2552        init_completion(&rdrain.done);
2553
2554        ret = ib_post_recv(qp, &rwr, NULL);
2555        if (ret) {
2556                WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2557                return;
2558        }
2559
2560        if (cq->poll_ctx == IB_POLL_DIRECT)
2561                while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2562                        ib_process_cq_direct(cq, -1);
2563        else
2564                wait_for_completion(&rdrain.done);
2565}
2566
2567/**
2568 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2569 *                 application.
2570 * @qp:            queue pair to drain
2571 *
2572 * If the device has a provider-specific drain function, then
2573 * call that.  Otherwise call the generic drain function
2574 * __ib_drain_sq().
2575 *
2576 * The caller must:
2577 *
2578 * ensure there is room in the CQ and SQ for the drain work request and
2579 * completion.
2580 *
2581 * allocate the CQ using ib_alloc_cq().
2582 *
2583 * ensure that there are no other contexts that are posting WRs concurrently.
2584 * Otherwise the drain is not guaranteed.
2585 */
2586void ib_drain_sq(struct ib_qp *qp)
2587{
2588        if (qp->device->drain_sq)
2589                qp->device->drain_sq(qp);
2590        else
2591                __ib_drain_sq(qp);
2592}
2593EXPORT_SYMBOL(ib_drain_sq);
2594
2595/**
2596 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2597 *                 application.
2598 * @qp:            queue pair to drain
2599 *
2600 * If the device has a provider-specific drain function, then
2601 * call that.  Otherwise call the generic drain function
2602 * __ib_drain_rq().
2603 *
2604 * The caller must:
2605 *
2606 * ensure there is room in the CQ and RQ for the drain work request and
2607 * completion.
2608 *
2609 * allocate the CQ using ib_alloc_cq().
2610 *
2611 * ensure that there are no other contexts that are posting WRs concurrently.
2612 * Otherwise the drain is not guaranteed.
2613 */
2614void ib_drain_rq(struct ib_qp *qp)
2615{
2616        if (qp->device->drain_rq)
2617                qp->device->drain_rq(qp);
2618        else
2619                __ib_drain_rq(qp);
2620}
2621EXPORT_SYMBOL(ib_drain_rq);
2622
2623/**
2624 * ib_drain_qp() - Block until all CQEs have been consumed by the
2625 *                 application on both the RQ and SQ.
2626 * @qp:            queue pair to drain
2627 *
2628 * The caller must:
2629 *
2630 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2631 * and completions.
2632 *
2633 * allocate the CQs using ib_alloc_cq().
2634 *
2635 * ensure that there are no other contexts that are posting WRs concurrently.
2636 * Otherwise the drain is not guaranteed.
2637 */
2638void ib_drain_qp(struct ib_qp *qp)
2639{
2640        ib_drain_sq(qp);
2641        if (!qp->srq)
2642                ib_drain_rq(qp);
2643}
2644EXPORT_SYMBOL(ib_drain_qp);
2645
2646struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2647                                     enum rdma_netdev_t type, const char *name,
2648                                     unsigned char name_assign_type,
2649                                     void (*setup)(struct net_device *))
2650{
2651        struct rdma_netdev_alloc_params params;
2652        struct net_device *netdev;
2653        int rc;
2654
2655        if (!device->rdma_netdev_get_params)
2656                return ERR_PTR(-EOPNOTSUPP);
2657
2658        rc = device->rdma_netdev_get_params(device, port_num, type, &params);
2659        if (rc)
2660                return ERR_PTR(rc);
2661
2662        netdev = alloc_netdev_mqs(params.sizeof_priv, name,
2663                                  setup, params.txqs, params.rxqs);
2664        if (!netdev)
2665                return ERR_PTR(-ENOMEM);
2666
2667        return netdev;
2668}
2669EXPORT_SYMBOL(rdma_alloc_netdev);
2670
2671int rdma_init_netdev(struct ib_device *device, u8 port_num,
2672                     enum rdma_netdev_t type, const char *name,
2673                     unsigned char name_assign_type,
2674                     void (*setup)(struct net_device *),
2675                     struct net_device *netdev)
2676{
2677        struct rdma_netdev_alloc_params params;
2678        int rc;
2679
2680        if (!device->rdma_netdev_get_params)
2681                return -EOPNOTSUPP;
2682
2683        rc = device->rdma_netdev_get_params(device, port_num, type, &params);
2684        if (rc)
2685                return rc;
2686
2687        return params.initialize_rdma_netdev(device, port_num,
2688                                             netdev, params.param);
2689}
2690EXPORT_SYMBOL(rdma_init_netdev);
2691