linux/drivers/misc/mei/hw-me.c
<<
>>
Prefs
   1/*
   2 *
   3 * Intel Management Engine Interface (Intel MEI) Linux driver
   4 * Copyright (c) 2003-2012, Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 */
  16
  17#include <linux/pci.h>
  18
  19#include <linux/kthread.h>
  20#include <linux/interrupt.h>
  21#include <linux/pm_runtime.h>
  22
  23#include "mei_dev.h"
  24#include "hbm.h"
  25
  26#include "hw-me.h"
  27#include "hw-me-regs.h"
  28
  29#include "mei-trace.h"
  30
  31/**
  32 * mei_me_reg_read - Reads 32bit data from the mei device
  33 *
  34 * @hw: the me hardware structure
  35 * @offset: offset from which to read the data
  36 *
  37 * Return: register value (u32)
  38 */
  39static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
  40                               unsigned long offset)
  41{
  42        return ioread32(hw->mem_addr + offset);
  43}
  44
  45
  46/**
  47 * mei_me_reg_write - Writes 32bit data to the mei device
  48 *
  49 * @hw: the me hardware structure
  50 * @offset: offset from which to write the data
  51 * @value: register value to write (u32)
  52 */
  53static inline void mei_me_reg_write(const struct mei_me_hw *hw,
  54                                 unsigned long offset, u32 value)
  55{
  56        iowrite32(value, hw->mem_addr + offset);
  57}
  58
  59/**
  60 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
  61 *  read window register
  62 *
  63 * @dev: the device structure
  64 *
  65 * Return: ME_CB_RW register value (u32)
  66 */
  67static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
  68{
  69        return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
  70}
  71
  72/**
  73 * mei_me_hcbww_write - write 32bit data to the host circular buffer
  74 *
  75 * @dev: the device structure
  76 * @data: 32bit data to be written to the host circular buffer
  77 */
  78static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
  79{
  80        mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
  81}
  82
  83/**
  84 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
  85 *
  86 * @dev: the device structure
  87 *
  88 * Return: ME_CSR_HA register value (u32)
  89 */
  90static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
  91{
  92        u32 reg;
  93
  94        reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
  95        trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
  96
  97        return reg;
  98}
  99
 100/**
 101 * mei_hcsr_read - Reads 32bit data from the host CSR
 102 *
 103 * @dev: the device structure
 104 *
 105 * Return: H_CSR register value (u32)
 106 */
 107static inline u32 mei_hcsr_read(const struct mei_device *dev)
 108{
 109        u32 reg;
 110
 111        reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
 112        trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
 113
 114        return reg;
 115}
 116
 117/**
 118 * mei_hcsr_write - writes H_CSR register to the mei device
 119 *
 120 * @dev: the device structure
 121 * @reg: new register value
 122 */
 123static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
 124{
 125        trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
 126        mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
 127}
 128
 129/**
 130 * mei_hcsr_set - writes H_CSR register to the mei device,
 131 * and ignores the H_IS bit for it is write-one-to-zero.
 132 *
 133 * @dev: the device structure
 134 * @reg: new register value
 135 */
 136static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
 137{
 138        reg &= ~H_CSR_IS_MASK;
 139        mei_hcsr_write(dev, reg);
 140}
 141
 142/**
 143 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
 144 *
 145 * @dev: the device structure
 146 *
 147 * Return: H_D0I3C register value (u32)
 148 */
 149static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
 150{
 151        u32 reg;
 152
 153        reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
 154        trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
 155
 156        return reg;
 157}
 158
 159/**
 160 * mei_me_d0i3c_write - writes H_D0I3C register to device
 161 *
 162 * @dev: the device structure
 163 * @reg: new register value
 164 */
 165static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
 166{
 167        trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
 168        mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
 169}
 170
 171/**
 172 * mei_me_fw_status - read fw status register from pci config space
 173 *
 174 * @dev: mei device
 175 * @fw_status: fw status register values
 176 *
 177 * Return: 0 on success, error otherwise
 178 */
 179static int mei_me_fw_status(struct mei_device *dev,
 180                            struct mei_fw_status *fw_status)
 181{
 182        struct pci_dev *pdev = to_pci_dev(dev->dev);
 183        struct mei_me_hw *hw = to_me_hw(dev);
 184        const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
 185        int ret;
 186        int i;
 187
 188        if (!fw_status)
 189                return -EINVAL;
 190
 191        fw_status->count = fw_src->count;
 192        for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
 193                ret = pci_read_config_dword(pdev, fw_src->status[i],
 194                                            &fw_status->status[i]);
 195                trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
 196                                       fw_src->status[i],
 197                                       fw_status->status[i]);
 198                if (ret)
 199                        return ret;
 200        }
 201
 202        return 0;
 203}
 204
 205/**
 206 * mei_me_hw_config - configure hw dependent settings
 207 *
 208 * @dev: mei device
 209 */
 210static void mei_me_hw_config(struct mei_device *dev)
 211{
 212        struct pci_dev *pdev = to_pci_dev(dev->dev);
 213        struct mei_me_hw *hw = to_me_hw(dev);
 214        u32 hcsr, reg;
 215
 216        /* Doesn't change in runtime */
 217        hcsr = mei_hcsr_read(dev);
 218        dev->hbuf_depth = (hcsr & H_CBD) >> 24;
 219
 220        reg = 0;
 221        pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
 222        trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
 223        hw->d0i3_supported =
 224                ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
 225
 226        hw->pg_state = MEI_PG_OFF;
 227        if (hw->d0i3_supported) {
 228                reg = mei_me_d0i3c_read(dev);
 229                if (reg & H_D0I3C_I3)
 230                        hw->pg_state = MEI_PG_ON;
 231        }
 232}
 233
 234/**
 235 * mei_me_pg_state  - translate internal pg state
 236 *   to the mei power gating state
 237 *
 238 * @dev:  mei device
 239 *
 240 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
 241 */
 242static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
 243{
 244        struct mei_me_hw *hw = to_me_hw(dev);
 245
 246        return hw->pg_state;
 247}
 248
 249/**
 250 * mei_me_intr_clear - clear and stop interrupts
 251 *
 252 * @dev: the device structure
 253 */
 254static void mei_me_intr_clear(struct mei_device *dev)
 255{
 256        u32 hcsr = mei_hcsr_read(dev);
 257
 258        if (hcsr & H_CSR_IS_MASK)
 259                mei_hcsr_write(dev, hcsr);
 260}
 261/**
 262 * mei_me_intr_enable - enables mei device interrupts
 263 *
 264 * @dev: the device structure
 265 */
 266static void mei_me_intr_enable(struct mei_device *dev)
 267{
 268        u32 hcsr = mei_hcsr_read(dev);
 269
 270        hcsr |= H_CSR_IE_MASK;
 271        mei_hcsr_set(dev, hcsr);
 272}
 273
 274/**
 275 * mei_me_intr_disable - disables mei device interrupts
 276 *
 277 * @dev: the device structure
 278 */
 279static void mei_me_intr_disable(struct mei_device *dev)
 280{
 281        u32 hcsr = mei_hcsr_read(dev);
 282
 283        hcsr  &= ~H_CSR_IE_MASK;
 284        mei_hcsr_set(dev, hcsr);
 285}
 286
 287/**
 288 * mei_me_hw_reset_release - release device from the reset
 289 *
 290 * @dev: the device structure
 291 */
 292static void mei_me_hw_reset_release(struct mei_device *dev)
 293{
 294        u32 hcsr = mei_hcsr_read(dev);
 295
 296        hcsr |= H_IG;
 297        hcsr &= ~H_RST;
 298        mei_hcsr_set(dev, hcsr);
 299
 300        /* complete this write before we set host ready on another CPU */
 301        mmiowb();
 302}
 303
 304/**
 305 * mei_me_host_set_ready - enable device
 306 *
 307 * @dev: mei device
 308 */
 309static void mei_me_host_set_ready(struct mei_device *dev)
 310{
 311        u32 hcsr = mei_hcsr_read(dev);
 312
 313        hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
 314        mei_hcsr_set(dev, hcsr);
 315}
 316
 317/**
 318 * mei_me_host_is_ready - check whether the host has turned ready
 319 *
 320 * @dev: mei device
 321 * Return: bool
 322 */
 323static bool mei_me_host_is_ready(struct mei_device *dev)
 324{
 325        u32 hcsr = mei_hcsr_read(dev);
 326
 327        return (hcsr & H_RDY) == H_RDY;
 328}
 329
 330/**
 331 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
 332 *
 333 * @dev: mei device
 334 * Return: bool
 335 */
 336static bool mei_me_hw_is_ready(struct mei_device *dev)
 337{
 338        u32 mecsr = mei_me_mecsr_read(dev);
 339
 340        return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
 341}
 342
 343/**
 344 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
 345 *  or timeout is reached
 346 *
 347 * @dev: mei device
 348 * Return: 0 on success, error otherwise
 349 */
 350static int mei_me_hw_ready_wait(struct mei_device *dev)
 351{
 352        mutex_unlock(&dev->device_lock);
 353        wait_event_timeout(dev->wait_hw_ready,
 354                        dev->recvd_hw_ready,
 355                        mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
 356        mutex_lock(&dev->device_lock);
 357        if (!dev->recvd_hw_ready) {
 358                dev_err(dev->dev, "wait hw ready failed\n");
 359                return -ETIME;
 360        }
 361
 362        mei_me_hw_reset_release(dev);
 363        dev->recvd_hw_ready = false;
 364        return 0;
 365}
 366
 367/**
 368 * mei_me_hw_start - hw start routine
 369 *
 370 * @dev: mei device
 371 * Return: 0 on success, error otherwise
 372 */
 373static int mei_me_hw_start(struct mei_device *dev)
 374{
 375        int ret = mei_me_hw_ready_wait(dev);
 376
 377        if (ret)
 378                return ret;
 379        dev_dbg(dev->dev, "hw is ready\n");
 380
 381        mei_me_host_set_ready(dev);
 382        return ret;
 383}
 384
 385
 386/**
 387 * mei_hbuf_filled_slots - gets number of device filled buffer slots
 388 *
 389 * @dev: the device structure
 390 *
 391 * Return: number of filled slots
 392 */
 393static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
 394{
 395        u32 hcsr;
 396        char read_ptr, write_ptr;
 397
 398        hcsr = mei_hcsr_read(dev);
 399
 400        read_ptr = (char) ((hcsr & H_CBRP) >> 8);
 401        write_ptr = (char) ((hcsr & H_CBWP) >> 16);
 402
 403        return (unsigned char) (write_ptr - read_ptr);
 404}
 405
 406/**
 407 * mei_me_hbuf_is_empty - checks if host buffer is empty.
 408 *
 409 * @dev: the device structure
 410 *
 411 * Return: true if empty, false - otherwise.
 412 */
 413static bool mei_me_hbuf_is_empty(struct mei_device *dev)
 414{
 415        return mei_hbuf_filled_slots(dev) == 0;
 416}
 417
 418/**
 419 * mei_me_hbuf_empty_slots - counts write empty slots.
 420 *
 421 * @dev: the device structure
 422 *
 423 * Return: -EOVERFLOW if overflow, otherwise empty slots count
 424 */
 425static int mei_me_hbuf_empty_slots(struct mei_device *dev)
 426{
 427        unsigned char filled_slots, empty_slots;
 428
 429        filled_slots = mei_hbuf_filled_slots(dev);
 430        empty_slots = dev->hbuf_depth - filled_slots;
 431
 432        /* check for overflow */
 433        if (filled_slots > dev->hbuf_depth)
 434                return -EOVERFLOW;
 435
 436        return empty_slots;
 437}
 438
 439/**
 440 * mei_me_hbuf_max_len - returns size of hw buffer.
 441 *
 442 * @dev: the device structure
 443 *
 444 * Return: size of hw buffer in bytes
 445 */
 446static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
 447{
 448        return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
 449}
 450
 451
 452/**
 453 * mei_me_write_message - writes a message to mei device.
 454 *
 455 * @dev: the device structure
 456 * @header: mei HECI header of message
 457 * @buf: message payload will be written
 458 *
 459 * Return: -EIO if write has failed
 460 */
 461static int mei_me_write_message(struct mei_device *dev,
 462                        struct mei_msg_hdr *header,
 463                        unsigned char *buf)
 464{
 465        unsigned long rem;
 466        unsigned long length = header->length;
 467        u32 *reg_buf = (u32 *)buf;
 468        u32 hcsr;
 469        u32 dw_cnt;
 470        int i;
 471        int empty_slots;
 472
 473        dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
 474
 475        empty_slots = mei_hbuf_empty_slots(dev);
 476        dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
 477
 478        dw_cnt = mei_data2slots(length);
 479        if (empty_slots < 0 || dw_cnt > empty_slots)
 480                return -EMSGSIZE;
 481
 482        mei_me_hcbww_write(dev, *((u32 *) header));
 483
 484        for (i = 0; i < length / 4; i++)
 485                mei_me_hcbww_write(dev, reg_buf[i]);
 486
 487        rem = length & 0x3;
 488        if (rem > 0) {
 489                u32 reg = 0;
 490
 491                memcpy(&reg, &buf[length - rem], rem);
 492                mei_me_hcbww_write(dev, reg);
 493        }
 494
 495        hcsr = mei_hcsr_read(dev) | H_IG;
 496        mei_hcsr_set(dev, hcsr);
 497        if (!mei_me_hw_is_ready(dev))
 498                return -EIO;
 499
 500        return 0;
 501}
 502
 503/**
 504 * mei_me_count_full_read_slots - counts read full slots.
 505 *
 506 * @dev: the device structure
 507 *
 508 * Return: -EOVERFLOW if overflow, otherwise filled slots count
 509 */
 510static int mei_me_count_full_read_slots(struct mei_device *dev)
 511{
 512        u32 me_csr;
 513        char read_ptr, write_ptr;
 514        unsigned char buffer_depth, filled_slots;
 515
 516        me_csr = mei_me_mecsr_read(dev);
 517        buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
 518        read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
 519        write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
 520        filled_slots = (unsigned char) (write_ptr - read_ptr);
 521
 522        /* check for overflow */
 523        if (filled_slots > buffer_depth)
 524                return -EOVERFLOW;
 525
 526        dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
 527        return (int)filled_slots;
 528}
 529
 530/**
 531 * mei_me_read_slots - reads a message from mei device.
 532 *
 533 * @dev: the device structure
 534 * @buffer: message buffer will be written
 535 * @buffer_length: message size will be read
 536 *
 537 * Return: always 0
 538 */
 539static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
 540                    unsigned long buffer_length)
 541{
 542        u32 *reg_buf = (u32 *)buffer;
 543        u32 hcsr;
 544
 545        for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
 546                *reg_buf++ = mei_me_mecbrw_read(dev);
 547
 548        if (buffer_length > 0) {
 549                u32 reg = mei_me_mecbrw_read(dev);
 550
 551                memcpy(reg_buf, &reg, buffer_length);
 552        }
 553
 554        hcsr = mei_hcsr_read(dev) | H_IG;
 555        mei_hcsr_set(dev, hcsr);
 556        return 0;
 557}
 558
 559/**
 560 * mei_me_pg_set - write pg enter register
 561 *
 562 * @dev: the device structure
 563 */
 564static void mei_me_pg_set(struct mei_device *dev)
 565{
 566        struct mei_me_hw *hw = to_me_hw(dev);
 567        u32 reg;
 568
 569        reg = mei_me_reg_read(hw, H_HPG_CSR);
 570        trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 571
 572        reg |= H_HPG_CSR_PGI;
 573
 574        trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 575        mei_me_reg_write(hw, H_HPG_CSR, reg);
 576}
 577
 578/**
 579 * mei_me_pg_unset - write pg exit register
 580 *
 581 * @dev: the device structure
 582 */
 583static void mei_me_pg_unset(struct mei_device *dev)
 584{
 585        struct mei_me_hw *hw = to_me_hw(dev);
 586        u32 reg;
 587
 588        reg = mei_me_reg_read(hw, H_HPG_CSR);
 589        trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 590
 591        WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
 592
 593        reg |= H_HPG_CSR_PGIHEXR;
 594
 595        trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
 596        mei_me_reg_write(hw, H_HPG_CSR, reg);
 597}
 598
 599/**
 600 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
 601 *
 602 * @dev: the device structure
 603 *
 604 * Return: 0 on success an error code otherwise
 605 */
 606static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
 607{
 608        struct mei_me_hw *hw = to_me_hw(dev);
 609        unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 610        int ret;
 611
 612        dev->pg_event = MEI_PG_EVENT_WAIT;
 613
 614        ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
 615        if (ret)
 616                return ret;
 617
 618        mutex_unlock(&dev->device_lock);
 619        wait_event_timeout(dev->wait_pg,
 620                dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 621        mutex_lock(&dev->device_lock);
 622
 623        if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
 624                mei_me_pg_set(dev);
 625                ret = 0;
 626        } else {
 627                ret = -ETIME;
 628        }
 629
 630        dev->pg_event = MEI_PG_EVENT_IDLE;
 631        hw->pg_state = MEI_PG_ON;
 632
 633        return ret;
 634}
 635
 636/**
 637 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
 638 *
 639 * @dev: the device structure
 640 *
 641 * Return: 0 on success an error code otherwise
 642 */
 643static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
 644{
 645        struct mei_me_hw *hw = to_me_hw(dev);
 646        unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 647        int ret;
 648
 649        if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
 650                goto reply;
 651
 652        dev->pg_event = MEI_PG_EVENT_WAIT;
 653
 654        mei_me_pg_unset(dev);
 655
 656        mutex_unlock(&dev->device_lock);
 657        wait_event_timeout(dev->wait_pg,
 658                dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 659        mutex_lock(&dev->device_lock);
 660
 661reply:
 662        if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
 663                ret = -ETIME;
 664                goto out;
 665        }
 666
 667        dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 668        ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
 669        if (ret)
 670                return ret;
 671
 672        mutex_unlock(&dev->device_lock);
 673        wait_event_timeout(dev->wait_pg,
 674                dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
 675        mutex_lock(&dev->device_lock);
 676
 677        if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
 678                ret = 0;
 679        else
 680                ret = -ETIME;
 681
 682out:
 683        dev->pg_event = MEI_PG_EVENT_IDLE;
 684        hw->pg_state = MEI_PG_OFF;
 685
 686        return ret;
 687}
 688
 689/**
 690 * mei_me_pg_in_transition - is device now in pg transition
 691 *
 692 * @dev: the device structure
 693 *
 694 * Return: true if in pg transition, false otherwise
 695 */
 696static bool mei_me_pg_in_transition(struct mei_device *dev)
 697{
 698        return dev->pg_event >= MEI_PG_EVENT_WAIT &&
 699               dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
 700}
 701
 702/**
 703 * mei_me_pg_is_enabled - detect if PG is supported by HW
 704 *
 705 * @dev: the device structure
 706 *
 707 * Return: true is pg supported, false otherwise
 708 */
 709static bool mei_me_pg_is_enabled(struct mei_device *dev)
 710{
 711        struct mei_me_hw *hw = to_me_hw(dev);
 712        u32 reg = mei_me_mecsr_read(dev);
 713
 714        if (hw->d0i3_supported)
 715                return true;
 716
 717        if ((reg & ME_PGIC_HRA) == 0)
 718                goto notsupported;
 719
 720        if (!dev->hbm_f_pg_supported)
 721                goto notsupported;
 722
 723        return true;
 724
 725notsupported:
 726        dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
 727                hw->d0i3_supported,
 728                !!(reg & ME_PGIC_HRA),
 729                dev->version.major_version,
 730                dev->version.minor_version,
 731                HBM_MAJOR_VERSION_PGI,
 732                HBM_MINOR_VERSION_PGI);
 733
 734        return false;
 735}
 736
 737/**
 738 * mei_me_d0i3_set - write d0i3 register bit on mei device.
 739 *
 740 * @dev: the device structure
 741 * @intr: ask for interrupt
 742 *
 743 * Return: D0I3C register value
 744 */
 745static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
 746{
 747        u32 reg = mei_me_d0i3c_read(dev);
 748
 749        reg |= H_D0I3C_I3;
 750        if (intr)
 751                reg |= H_D0I3C_IR;
 752        else
 753                reg &= ~H_D0I3C_IR;
 754        mei_me_d0i3c_write(dev, reg);
 755        /* read it to ensure HW consistency */
 756        reg = mei_me_d0i3c_read(dev);
 757        return reg;
 758}
 759
 760/**
 761 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
 762 *
 763 * @dev: the device structure
 764 *
 765 * Return: D0I3C register value
 766 */
 767static u32 mei_me_d0i3_unset(struct mei_device *dev)
 768{
 769        u32 reg = mei_me_d0i3c_read(dev);
 770
 771        reg &= ~H_D0I3C_I3;
 772        reg |= H_D0I3C_IR;
 773        mei_me_d0i3c_write(dev, reg);
 774        /* read it to ensure HW consistency */
 775        reg = mei_me_d0i3c_read(dev);
 776        return reg;
 777}
 778
 779/**
 780 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
 781 *
 782 * @dev: the device structure
 783 *
 784 * Return: 0 on success an error code otherwise
 785 */
 786static int mei_me_d0i3_enter_sync(struct mei_device *dev)
 787{
 788        struct mei_me_hw *hw = to_me_hw(dev);
 789        unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
 790        unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
 791        int ret;
 792        u32 reg;
 793
 794        reg = mei_me_d0i3c_read(dev);
 795        if (reg & H_D0I3C_I3) {
 796                /* we are in d0i3, nothing to do */
 797                dev_dbg(dev->dev, "d0i3 set not needed\n");
 798                ret = 0;
 799                goto on;
 800        }
 801
 802        /* PGI entry procedure */
 803        dev->pg_event = MEI_PG_EVENT_WAIT;
 804
 805        ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
 806        if (ret)
 807                /* FIXME: should we reset here? */
 808                goto out;
 809
 810        mutex_unlock(&dev->device_lock);
 811        wait_event_timeout(dev->wait_pg,
 812                dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
 813        mutex_lock(&dev->device_lock);
 814
 815        if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
 816                ret = -ETIME;
 817                goto out;
 818        }
 819        /* end PGI entry procedure */
 820
 821        dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 822
 823        reg = mei_me_d0i3_set(dev, true);
 824        if (!(reg & H_D0I3C_CIP)) {
 825                dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
 826                ret = 0;
 827                goto on;
 828        }
 829
 830        mutex_unlock(&dev->device_lock);
 831        wait_event_timeout(dev->wait_pg,
 832                dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
 833        mutex_lock(&dev->device_lock);
 834
 835        if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
 836                reg = mei_me_d0i3c_read(dev);
 837                if (!(reg & H_D0I3C_I3)) {
 838                        ret = -ETIME;
 839                        goto out;
 840                }
 841        }
 842
 843        ret = 0;
 844on:
 845        hw->pg_state = MEI_PG_ON;
 846out:
 847        dev->pg_event = MEI_PG_EVENT_IDLE;
 848        dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
 849        return ret;
 850}
 851
 852/**
 853 * mei_me_d0i3_enter - perform d0i3 entry procedure
 854 *   no hbm PG handshake
 855 *   no waiting for confirmation; runs with interrupts
 856 *   disabled
 857 *
 858 * @dev: the device structure
 859 *
 860 * Return: 0 on success an error code otherwise
 861 */
 862static int mei_me_d0i3_enter(struct mei_device *dev)
 863{
 864        struct mei_me_hw *hw = to_me_hw(dev);
 865        u32 reg;
 866
 867        reg = mei_me_d0i3c_read(dev);
 868        if (reg & H_D0I3C_I3) {
 869                /* we are in d0i3, nothing to do */
 870                dev_dbg(dev->dev, "already d0i3 : set not needed\n");
 871                goto on;
 872        }
 873
 874        mei_me_d0i3_set(dev, false);
 875on:
 876        hw->pg_state = MEI_PG_ON;
 877        dev->pg_event = MEI_PG_EVENT_IDLE;
 878        dev_dbg(dev->dev, "d0i3 enter\n");
 879        return 0;
 880}
 881
 882/**
 883 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
 884 *
 885 * @dev: the device structure
 886 *
 887 * Return: 0 on success an error code otherwise
 888 */
 889static int mei_me_d0i3_exit_sync(struct mei_device *dev)
 890{
 891        struct mei_me_hw *hw = to_me_hw(dev);
 892        unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
 893        int ret;
 894        u32 reg;
 895
 896        dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
 897
 898        reg = mei_me_d0i3c_read(dev);
 899        if (!(reg & H_D0I3C_I3)) {
 900                /* we are not in d0i3, nothing to do */
 901                dev_dbg(dev->dev, "d0i3 exit not needed\n");
 902                ret = 0;
 903                goto off;
 904        }
 905
 906        reg = mei_me_d0i3_unset(dev);
 907        if (!(reg & H_D0I3C_CIP)) {
 908                dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
 909                ret = 0;
 910                goto off;
 911        }
 912
 913        mutex_unlock(&dev->device_lock);
 914        wait_event_timeout(dev->wait_pg,
 915                dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
 916        mutex_lock(&dev->device_lock);
 917
 918        if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
 919                reg = mei_me_d0i3c_read(dev);
 920                if (reg & H_D0I3C_I3) {
 921                        ret = -ETIME;
 922                        goto out;
 923                }
 924        }
 925
 926        ret = 0;
 927off:
 928        hw->pg_state = MEI_PG_OFF;
 929out:
 930        dev->pg_event = MEI_PG_EVENT_IDLE;
 931
 932        dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
 933        return ret;
 934}
 935
 936/**
 937 * mei_me_pg_legacy_intr - perform legacy pg processing
 938 *                         in interrupt thread handler
 939 *
 940 * @dev: the device structure
 941 */
 942static void mei_me_pg_legacy_intr(struct mei_device *dev)
 943{
 944        struct mei_me_hw *hw = to_me_hw(dev);
 945
 946        if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
 947                return;
 948
 949        dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
 950        hw->pg_state = MEI_PG_OFF;
 951        if (waitqueue_active(&dev->wait_pg))
 952                wake_up(&dev->wait_pg);
 953}
 954
 955/**
 956 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
 957 *
 958 * @dev: the device structure
 959 */
 960static void mei_me_d0i3_intr(struct mei_device *dev)
 961{
 962        struct mei_me_hw *hw = to_me_hw(dev);
 963
 964        if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
 965            (hw->intr_source & H_D0I3C_IS)) {
 966                dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
 967                if (hw->pg_state == MEI_PG_ON) {
 968                        hw->pg_state = MEI_PG_OFF;
 969                        if (dev->hbm_state != MEI_HBM_IDLE) {
 970                                /*
 971                                 * force H_RDY because it could be
 972                                 * wiped off during PG
 973                                 */
 974                                dev_dbg(dev->dev, "d0i3 set host ready\n");
 975                                mei_me_host_set_ready(dev);
 976                        }
 977                } else {
 978                        hw->pg_state = MEI_PG_ON;
 979                }
 980
 981                wake_up(&dev->wait_pg);
 982        }
 983
 984        if (hw->pg_state == MEI_PG_ON && (hw->intr_source & H_IS)) {
 985                /*
 986                 * HW sent some data and we are in D0i3, so
 987                 * we got here because of HW initiated exit from D0i3.
 988                 * Start runtime pm resume sequence to exit low power state.
 989                 */
 990                dev_dbg(dev->dev, "d0i3 want resume\n");
 991                mei_hbm_pg_resume(dev);
 992        }
 993}
 994
 995/**
 996 * mei_me_pg_intr - perform pg processing in interrupt thread handler
 997 *
 998 * @dev: the device structure
 999 */
1000static void mei_me_pg_intr(struct mei_device *dev)
1001{
1002        struct mei_me_hw *hw = to_me_hw(dev);
1003
1004        if (hw->d0i3_supported)
1005                mei_me_d0i3_intr(dev);
1006        else
1007                mei_me_pg_legacy_intr(dev);
1008}
1009
1010/**
1011 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1012 *
1013 * @dev: the device structure
1014 *
1015 * Return: 0 on success an error code otherwise
1016 */
1017int mei_me_pg_enter_sync(struct mei_device *dev)
1018{
1019        struct mei_me_hw *hw = to_me_hw(dev);
1020
1021        if (hw->d0i3_supported)
1022                return mei_me_d0i3_enter_sync(dev);
1023        else
1024                return mei_me_pg_legacy_enter_sync(dev);
1025}
1026
1027/**
1028 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1029 *
1030 * @dev: the device structure
1031 *
1032 * Return: 0 on success an error code otherwise
1033 */
1034int mei_me_pg_exit_sync(struct mei_device *dev)
1035{
1036        struct mei_me_hw *hw = to_me_hw(dev);
1037
1038        if (hw->d0i3_supported)
1039                return mei_me_d0i3_exit_sync(dev);
1040        else
1041                return mei_me_pg_legacy_exit_sync(dev);
1042}
1043
1044/**
1045 * mei_me_hw_reset - resets fw via mei csr register.
1046 *
1047 * @dev: the device structure
1048 * @intr_enable: if interrupt should be enabled after reset.
1049 *
1050 * Return: 0 on success an error code otherwise
1051 */
1052static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1053{
1054        struct mei_me_hw *hw = to_me_hw(dev);
1055        int ret;
1056        u32 hcsr;
1057
1058        if (intr_enable) {
1059                mei_me_intr_enable(dev);
1060                if (hw->d0i3_supported) {
1061                        ret = mei_me_d0i3_exit_sync(dev);
1062                        if (ret)
1063                                return ret;
1064                }
1065        }
1066
1067        pm_runtime_set_active(dev->dev);
1068
1069        hcsr = mei_hcsr_read(dev);
1070        /* H_RST may be found lit before reset is started,
1071         * for example if preceding reset flow hasn't completed.
1072         * In that case asserting H_RST will be ignored, therefore
1073         * we need to clean H_RST bit to start a successful reset sequence.
1074         */
1075        if ((hcsr & H_RST) == H_RST) {
1076                dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1077                hcsr &= ~H_RST;
1078                mei_hcsr_set(dev, hcsr);
1079                hcsr = mei_hcsr_read(dev);
1080        }
1081
1082        hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1083
1084        if (!intr_enable)
1085                hcsr &= ~H_CSR_IE_MASK;
1086
1087        dev->recvd_hw_ready = false;
1088        mei_hcsr_write(dev, hcsr);
1089
1090        /*
1091         * Host reads the H_CSR once to ensure that the
1092         * posted write to H_CSR completes.
1093         */
1094        hcsr = mei_hcsr_read(dev);
1095
1096        if ((hcsr & H_RST) == 0)
1097                dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1098
1099        if ((hcsr & H_RDY) == H_RDY)
1100                dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1101
1102        if (!intr_enable) {
1103                mei_me_hw_reset_release(dev);
1104                if (hw->d0i3_supported) {
1105                        ret = mei_me_d0i3_enter(dev);
1106                        if (ret)
1107                                return ret;
1108                }
1109        }
1110
1111        return 0;
1112}
1113
1114
1115/**
1116 * mei_me_irq_quick_handler - The ISR of the MEI device
1117 *
1118 * @irq: The irq number
1119 * @dev_id: pointer to the device structure
1120 *
1121 * Return: irqreturn_t
1122 */
1123irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1124{
1125        struct mei_device *dev = (struct mei_device *)dev_id;
1126        struct mei_me_hw *hw = to_me_hw(dev);
1127        u32 hcsr;
1128
1129        hcsr = mei_hcsr_read(dev);
1130        if (!(hcsr & H_CSR_IS_MASK))
1131                return IRQ_NONE;
1132
1133        hw->intr_source = hcsr & H_CSR_IS_MASK;
1134        dev_dbg(dev->dev, "interrupt source 0x%08X.\n", hw->intr_source);
1135
1136        /* clear H_IS and H_D0I3C_IS bits in H_CSR to clear the interrupts */
1137        mei_hcsr_write(dev, hcsr);
1138
1139        return IRQ_WAKE_THREAD;
1140}
1141
1142/**
1143 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1144 * processing.
1145 *
1146 * @irq: The irq number
1147 * @dev_id: pointer to the device structure
1148 *
1149 * Return: irqreturn_t
1150 *
1151 */
1152irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1153{
1154        struct mei_device *dev = (struct mei_device *) dev_id;
1155        struct list_head cmpl_list;
1156        s32 slots;
1157        int rets = 0;
1158
1159        dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1160        /* initialize our complete list */
1161        mutex_lock(&dev->device_lock);
1162        INIT_LIST_HEAD(&cmpl_list);
1163
1164        /* check if ME wants a reset */
1165        if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1166                dev_warn(dev->dev, "FW not ready: resetting.\n");
1167                schedule_work(&dev->reset_work);
1168                goto end;
1169        }
1170
1171        mei_me_pg_intr(dev);
1172
1173        /*  check if we need to start the dev */
1174        if (!mei_host_is_ready(dev)) {
1175                if (mei_hw_is_ready(dev)) {
1176                        dev_dbg(dev->dev, "we need to start the dev.\n");
1177                        dev->recvd_hw_ready = true;
1178                        wake_up(&dev->wait_hw_ready);
1179                } else {
1180                        dev_dbg(dev->dev, "Spurious Interrupt\n");
1181                }
1182                goto end;
1183        }
1184        /* check slots available for reading */
1185        slots = mei_count_full_read_slots(dev);
1186        while (slots > 0) {
1187                dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1188                rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1189                /* There is a race between ME write and interrupt delivery:
1190                 * Not all data is always available immediately after the
1191                 * interrupt, so try to read again on the next interrupt.
1192                 */
1193                if (rets == -ENODATA)
1194                        break;
1195
1196                if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1197                        dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1198                                                rets);
1199                        schedule_work(&dev->reset_work);
1200                        goto end;
1201                }
1202        }
1203
1204        dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1205
1206        /*
1207         * During PG handshake only allowed write is the replay to the
1208         * PG exit message, so block calling write function
1209         * if the pg event is in PG handshake
1210         */
1211        if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1212            dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1213                rets = mei_irq_write_handler(dev, &cmpl_list);
1214                dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1215        }
1216
1217        mei_irq_compl_handler(dev, &cmpl_list);
1218
1219end:
1220        dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1221        mutex_unlock(&dev->device_lock);
1222        return IRQ_HANDLED;
1223}
1224
1225static const struct mei_hw_ops mei_me_hw_ops = {
1226
1227        .fw_status = mei_me_fw_status,
1228        .pg_state  = mei_me_pg_state,
1229
1230        .host_is_ready = mei_me_host_is_ready,
1231
1232        .hw_is_ready = mei_me_hw_is_ready,
1233        .hw_reset = mei_me_hw_reset,
1234        .hw_config = mei_me_hw_config,
1235        .hw_start = mei_me_hw_start,
1236
1237        .pg_in_transition = mei_me_pg_in_transition,
1238        .pg_is_enabled = mei_me_pg_is_enabled,
1239
1240        .intr_clear = mei_me_intr_clear,
1241        .intr_enable = mei_me_intr_enable,
1242        .intr_disable = mei_me_intr_disable,
1243
1244        .hbuf_free_slots = mei_me_hbuf_empty_slots,
1245        .hbuf_is_ready = mei_me_hbuf_is_empty,
1246        .hbuf_max_len = mei_me_hbuf_max_len,
1247
1248        .write = mei_me_write_message,
1249
1250        .rdbuf_full_slots = mei_me_count_full_read_slots,
1251        .read_hdr = mei_me_mecbrw_read,
1252        .read = mei_me_read_slots
1253};
1254
1255static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1256{
1257        u32 reg;
1258
1259        pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1260        trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1261        /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1262        return (reg & 0x600) == 0x200;
1263}
1264
1265#define MEI_CFG_FW_NM                           \
1266        .quirk_probe = mei_me_fw_type_nm
1267
1268static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1269{
1270        u32 reg;
1271        unsigned int devfn;
1272
1273        /*
1274         * Read ME FW Status register to check for SPS Firmware
1275         * The SPS FW is only signaled in pci function 0
1276         */
1277        devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1278        pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1279        trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1280        /* if bits [19:16] = 15, running SPS Firmware */
1281        return (reg & 0xf0000) == 0xf0000;
1282}
1283
1284#define MEI_CFG_FW_SPS                           \
1285        .quirk_probe = mei_me_fw_type_sps
1286
1287
1288#define MEI_CFG_LEGACY_HFS                      \
1289        .fw_status.count = 0
1290
1291#define MEI_CFG_ICH_HFS                        \
1292        .fw_status.count = 1,                   \
1293        .fw_status.status[0] = PCI_CFG_HFS_1
1294
1295#define MEI_CFG_PCH_HFS                         \
1296        .fw_status.count = 2,                   \
1297        .fw_status.status[0] = PCI_CFG_HFS_1,   \
1298        .fw_status.status[1] = PCI_CFG_HFS_2
1299
1300#define MEI_CFG_PCH8_HFS                        \
1301        .fw_status.count = 6,                   \
1302        .fw_status.status[0] = PCI_CFG_HFS_1,   \
1303        .fw_status.status[1] = PCI_CFG_HFS_2,   \
1304        .fw_status.status[2] = PCI_CFG_HFS_3,   \
1305        .fw_status.status[3] = PCI_CFG_HFS_4,   \
1306        .fw_status.status[4] = PCI_CFG_HFS_5,   \
1307        .fw_status.status[5] = PCI_CFG_HFS_6
1308
1309/* ICH Legacy devices */
1310const struct mei_cfg mei_me_legacy_cfg = {
1311        MEI_CFG_LEGACY_HFS,
1312};
1313
1314/* ICH devices */
1315const struct mei_cfg mei_me_ich_cfg = {
1316        MEI_CFG_ICH_HFS,
1317};
1318
1319/* PCH devices */
1320const struct mei_cfg mei_me_pch_cfg = {
1321        MEI_CFG_PCH_HFS,
1322};
1323
1324
1325/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1326const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1327        MEI_CFG_PCH_HFS,
1328        MEI_CFG_FW_NM,
1329};
1330
1331/* PCH8 Lynx Point and newer devices */
1332const struct mei_cfg mei_me_pch8_cfg = {
1333        MEI_CFG_PCH8_HFS,
1334};
1335
1336/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1337const struct mei_cfg mei_me_pch8_sps_cfg = {
1338        MEI_CFG_PCH8_HFS,
1339        MEI_CFG_FW_SPS,
1340};
1341
1342/**
1343 * mei_me_dev_init - allocates and initializes the mei device structure
1344 *
1345 * @pdev: The pci device structure
1346 * @cfg: per device generation config
1347 *
1348 * Return: The mei_device_device pointer on success, NULL on failure.
1349 */
1350struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1351                                   const struct mei_cfg *cfg)
1352{
1353        struct mei_device *dev;
1354        struct mei_me_hw *hw;
1355
1356        dev = kzalloc(sizeof(struct mei_device) +
1357                         sizeof(struct mei_me_hw), GFP_KERNEL);
1358        if (!dev)
1359                return NULL;
1360        hw = to_me_hw(dev);
1361
1362        mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1363        hw->cfg = cfg;
1364        return dev;
1365}
1366
1367