linux/drivers/net/ethernet/intel/iavf/iavf_txrx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/prefetch.h>
   5
   6#include "iavf.h"
   7#include "iavf_trace.h"
   8#include "iavf_prototype.h"
   9
  10static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  11                                u32 td_tag)
  12{
  13        return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
  14                           ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
  15                           ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
  16                           ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
  17                           ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
  18}
  19
  20#define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
  21
  22/**
  23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
  24 * @ring:      the ring that owns the buffer
  25 * @tx_buffer: the buffer to free
  26 **/
  27static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
  28                                            struct iavf_tx_buffer *tx_buffer)
  29{
  30        if (tx_buffer->skb) {
  31                if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
  32                        kfree(tx_buffer->raw_buf);
  33                else
  34                        dev_kfree_skb_any(tx_buffer->skb);
  35                if (dma_unmap_len(tx_buffer, len))
  36                        dma_unmap_single(ring->dev,
  37                                         dma_unmap_addr(tx_buffer, dma),
  38                                         dma_unmap_len(tx_buffer, len),
  39                                         DMA_TO_DEVICE);
  40        } else if (dma_unmap_len(tx_buffer, len)) {
  41                dma_unmap_page(ring->dev,
  42                               dma_unmap_addr(tx_buffer, dma),
  43                               dma_unmap_len(tx_buffer, len),
  44                               DMA_TO_DEVICE);
  45        }
  46
  47        tx_buffer->next_to_watch = NULL;
  48        tx_buffer->skb = NULL;
  49        dma_unmap_len_set(tx_buffer, len, 0);
  50        /* tx_buffer must be completely set up in the transmit path */
  51}
  52
  53/**
  54 * iavf_clean_tx_ring - Free any empty Tx buffers
  55 * @tx_ring: ring to be cleaned
  56 **/
  57void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
  58{
  59        unsigned long bi_size;
  60        u16 i;
  61
  62        /* ring already cleared, nothing to do */
  63        if (!tx_ring->tx_bi)
  64                return;
  65
  66        /* Free all the Tx ring sk_buffs */
  67        for (i = 0; i < tx_ring->count; i++)
  68                iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  69
  70        bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
  71        memset(tx_ring->tx_bi, 0, bi_size);
  72
  73        /* Zero out the descriptor ring */
  74        memset(tx_ring->desc, 0, tx_ring->size);
  75
  76        tx_ring->next_to_use = 0;
  77        tx_ring->next_to_clean = 0;
  78
  79        if (!tx_ring->netdev)
  80                return;
  81
  82        /* cleanup Tx queue statistics */
  83        netdev_tx_reset_queue(txring_txq(tx_ring));
  84}
  85
  86/**
  87 * iavf_free_tx_resources - Free Tx resources per queue
  88 * @tx_ring: Tx descriptor ring for a specific queue
  89 *
  90 * Free all transmit software resources
  91 **/
  92void iavf_free_tx_resources(struct iavf_ring *tx_ring)
  93{
  94        iavf_clean_tx_ring(tx_ring);
  95        kfree(tx_ring->tx_bi);
  96        tx_ring->tx_bi = NULL;
  97
  98        if (tx_ring->desc) {
  99                dma_free_coherent(tx_ring->dev, tx_ring->size,
 100                                  tx_ring->desc, tx_ring->dma);
 101                tx_ring->desc = NULL;
 102        }
 103}
 104
 105/**
 106 * iavf_get_tx_pending - how many Tx descriptors not processed
 107 * @ring: the ring of descriptors
 108 * @in_sw: is tx_pending being checked in SW or HW
 109 *
 110 * Since there is no access to the ring head register
 111 * in XL710, we need to use our local copies
 112 **/
 113u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
 114{
 115        u32 head, tail;
 116
 117        head = ring->next_to_clean;
 118        tail = readl(ring->tail);
 119
 120        if (head != tail)
 121                return (head < tail) ?
 122                        tail - head : (tail + ring->count - head);
 123
 124        return 0;
 125}
 126
 127/**
 128 * iavf_detect_recover_hung - Function to detect and recover hung_queues
 129 * @vsi:  pointer to vsi struct with tx queues
 130 *
 131 * VSI has netdev and netdev has TX queues. This function is to check each of
 132 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 133 **/
 134void iavf_detect_recover_hung(struct iavf_vsi *vsi)
 135{
 136        struct iavf_ring *tx_ring = NULL;
 137        struct net_device *netdev;
 138        unsigned int i;
 139        int packets;
 140
 141        if (!vsi)
 142                return;
 143
 144        if (test_bit(__IAVF_VSI_DOWN, vsi->state))
 145                return;
 146
 147        netdev = vsi->netdev;
 148        if (!netdev)
 149                return;
 150
 151        if (!netif_carrier_ok(netdev))
 152                return;
 153
 154        for (i = 0; i < vsi->back->num_active_queues; i++) {
 155                tx_ring = &vsi->back->tx_rings[i];
 156                if (tx_ring && tx_ring->desc) {
 157                        /* If packet counter has not changed the queue is
 158                         * likely stalled, so force an interrupt for this
 159                         * queue.
 160                         *
 161                         * prev_pkt_ctr would be negative if there was no
 162                         * pending work.
 163                         */
 164                        packets = tx_ring->stats.packets & INT_MAX;
 165                        if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 166                                iavf_force_wb(vsi, tx_ring->q_vector);
 167                                continue;
 168                        }
 169
 170                        /* Memory barrier between read of packet count and call
 171                         * to iavf_get_tx_pending()
 172                         */
 173                        smp_rmb();
 174                        tx_ring->tx_stats.prev_pkt_ctr =
 175                          iavf_get_tx_pending(tx_ring, true) ? packets : -1;
 176                }
 177        }
 178}
 179
 180#define WB_STRIDE 4
 181
 182/**
 183 * iavf_clean_tx_irq - Reclaim resources after transmit completes
 184 * @vsi: the VSI we care about
 185 * @tx_ring: Tx ring to clean
 186 * @napi_budget: Used to determine if we are in netpoll
 187 *
 188 * Returns true if there's any budget left (e.g. the clean is finished)
 189 **/
 190static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
 191                              struct iavf_ring *tx_ring, int napi_budget)
 192{
 193        u16 i = tx_ring->next_to_clean;
 194        struct iavf_tx_buffer *tx_buf;
 195        struct iavf_tx_desc *tx_desc;
 196        unsigned int total_bytes = 0, total_packets = 0;
 197        unsigned int budget = vsi->work_limit;
 198
 199        tx_buf = &tx_ring->tx_bi[i];
 200        tx_desc = IAVF_TX_DESC(tx_ring, i);
 201        i -= tx_ring->count;
 202
 203        do {
 204                struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
 205
 206                /* if next_to_watch is not set then there is no work pending */
 207                if (!eop_desc)
 208                        break;
 209
 210                /* prevent any other reads prior to eop_desc */
 211                smp_rmb();
 212
 213                iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 214                /* if the descriptor isn't done, no work yet to do */
 215                if (!(eop_desc->cmd_type_offset_bsz &
 216                      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
 217                        break;
 218
 219                /* clear next_to_watch to prevent false hangs */
 220                tx_buf->next_to_watch = NULL;
 221
 222                /* update the statistics for this packet */
 223                total_bytes += tx_buf->bytecount;
 224                total_packets += tx_buf->gso_segs;
 225
 226                /* free the skb */
 227                napi_consume_skb(tx_buf->skb, napi_budget);
 228
 229                /* unmap skb header data */
 230                dma_unmap_single(tx_ring->dev,
 231                                 dma_unmap_addr(tx_buf, dma),
 232                                 dma_unmap_len(tx_buf, len),
 233                                 DMA_TO_DEVICE);
 234
 235                /* clear tx_buffer data */
 236                tx_buf->skb = NULL;
 237                dma_unmap_len_set(tx_buf, len, 0);
 238
 239                /* unmap remaining buffers */
 240                while (tx_desc != eop_desc) {
 241                        iavf_trace(clean_tx_irq_unmap,
 242                                   tx_ring, tx_desc, tx_buf);
 243
 244                        tx_buf++;
 245                        tx_desc++;
 246                        i++;
 247                        if (unlikely(!i)) {
 248                                i -= tx_ring->count;
 249                                tx_buf = tx_ring->tx_bi;
 250                                tx_desc = IAVF_TX_DESC(tx_ring, 0);
 251                        }
 252
 253                        /* unmap any remaining paged data */
 254                        if (dma_unmap_len(tx_buf, len)) {
 255                                dma_unmap_page(tx_ring->dev,
 256                                               dma_unmap_addr(tx_buf, dma),
 257                                               dma_unmap_len(tx_buf, len),
 258                                               DMA_TO_DEVICE);
 259                                dma_unmap_len_set(tx_buf, len, 0);
 260                        }
 261                }
 262
 263                /* move us one more past the eop_desc for start of next pkt */
 264                tx_buf++;
 265                tx_desc++;
 266                i++;
 267                if (unlikely(!i)) {
 268                        i -= tx_ring->count;
 269                        tx_buf = tx_ring->tx_bi;
 270                        tx_desc = IAVF_TX_DESC(tx_ring, 0);
 271                }
 272
 273                prefetch(tx_desc);
 274
 275                /* update budget accounting */
 276                budget--;
 277        } while (likely(budget));
 278
 279        i += tx_ring->count;
 280        tx_ring->next_to_clean = i;
 281        u64_stats_update_begin(&tx_ring->syncp);
 282        tx_ring->stats.bytes += total_bytes;
 283        tx_ring->stats.packets += total_packets;
 284        u64_stats_update_end(&tx_ring->syncp);
 285        tx_ring->q_vector->tx.total_bytes += total_bytes;
 286        tx_ring->q_vector->tx.total_packets += total_packets;
 287
 288        if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
 289                /* check to see if there are < 4 descriptors
 290                 * waiting to be written back, then kick the hardware to force
 291                 * them to be written back in case we stay in NAPI.
 292                 * In this mode on X722 we do not enable Interrupt.
 293                 */
 294                unsigned int j = iavf_get_tx_pending(tx_ring, false);
 295
 296                if (budget &&
 297                    ((j / WB_STRIDE) == 0) && (j > 0) &&
 298                    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
 299                    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
 300                        tx_ring->arm_wb = true;
 301        }
 302
 303        /* notify netdev of completed buffers */
 304        netdev_tx_completed_queue(txring_txq(tx_ring),
 305                                  total_packets, total_bytes);
 306
 307#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 308        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 309                     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 310                /* Make sure that anybody stopping the queue after this
 311                 * sees the new next_to_clean.
 312                 */
 313                smp_mb();
 314                if (__netif_subqueue_stopped(tx_ring->netdev,
 315                                             tx_ring->queue_index) &&
 316                   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
 317                        netif_wake_subqueue(tx_ring->netdev,
 318                                            tx_ring->queue_index);
 319                        ++tx_ring->tx_stats.restart_queue;
 320                }
 321        }
 322
 323        return !!budget;
 324}
 325
 326/**
 327 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 328 * @vsi: the VSI we care about
 329 * @q_vector: the vector on which to enable writeback
 330 *
 331 **/
 332static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
 333                                  struct iavf_q_vector *q_vector)
 334{
 335        u16 flags = q_vector->tx.ring[0].flags;
 336        u32 val;
 337
 338        if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
 339                return;
 340
 341        if (q_vector->arm_wb_state)
 342                return;
 343
 344        val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
 345              IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
 346
 347        wr32(&vsi->back->hw,
 348             IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
 349        q_vector->arm_wb_state = true;
 350}
 351
 352/**
 353 * iavf_force_wb - Issue SW Interrupt so HW does a wb
 354 * @vsi: the VSI we care about
 355 * @q_vector: the vector  on which to force writeback
 356 *
 357 **/
 358void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
 359{
 360        u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 361                  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
 362                  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
 363                  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
 364                  /* allow 00 to be written to the index */;
 365
 366        wr32(&vsi->back->hw,
 367             IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
 368             val);
 369}
 370
 371static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
 372                                        struct iavf_ring_container *rc)
 373{
 374        return &q_vector->rx == rc;
 375}
 376
 377static inline unsigned int iavf_itr_divisor(struct iavf_q_vector *q_vector)
 378{
 379        unsigned int divisor;
 380
 381        switch (q_vector->adapter->link_speed) {
 382        case I40E_LINK_SPEED_40GB:
 383                divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 1024;
 384                break;
 385        case I40E_LINK_SPEED_25GB:
 386        case I40E_LINK_SPEED_20GB:
 387                divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 512;
 388                break;
 389        default:
 390        case I40E_LINK_SPEED_10GB:
 391                divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 256;
 392                break;
 393        case I40E_LINK_SPEED_1GB:
 394        case I40E_LINK_SPEED_100MB:
 395                divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 32;
 396                break;
 397        }
 398
 399        return divisor;
 400}
 401
 402/**
 403 * iavf_update_itr - update the dynamic ITR value based on statistics
 404 * @q_vector: structure containing interrupt and ring information
 405 * @rc: structure containing ring performance data
 406 *
 407 * Stores a new ITR value based on packets and byte
 408 * counts during the last interrupt.  The advantage of per interrupt
 409 * computation is faster updates and more accurate ITR for the current
 410 * traffic pattern.  Constants in this function were computed
 411 * based on theoretical maximum wire speed and thresholds were set based
 412 * on testing data as well as attempting to minimize response time
 413 * while increasing bulk throughput.
 414 **/
 415static void iavf_update_itr(struct iavf_q_vector *q_vector,
 416                            struct iavf_ring_container *rc)
 417{
 418        unsigned int avg_wire_size, packets, bytes, itr;
 419        unsigned long next_update = jiffies;
 420
 421        /* If we don't have any rings just leave ourselves set for maximum
 422         * possible latency so we take ourselves out of the equation.
 423         */
 424        if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
 425                return;
 426
 427        /* For Rx we want to push the delay up and default to low latency.
 428         * for Tx we want to pull the delay down and default to high latency.
 429         */
 430        itr = iavf_container_is_rx(q_vector, rc) ?
 431              IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
 432              IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
 433
 434        /* If we didn't update within up to 1 - 2 jiffies we can assume
 435         * that either packets are coming in so slow there hasn't been
 436         * any work, or that there is so much work that NAPI is dealing
 437         * with interrupt moderation and we don't need to do anything.
 438         */
 439        if (time_after(next_update, rc->next_update))
 440                goto clear_counts;
 441
 442        /* If itr_countdown is set it means we programmed an ITR within
 443         * the last 4 interrupt cycles. This has a side effect of us
 444         * potentially firing an early interrupt. In order to work around
 445         * this we need to throw out any data received for a few
 446         * interrupts following the update.
 447         */
 448        if (q_vector->itr_countdown) {
 449                itr = rc->target_itr;
 450                goto clear_counts;
 451        }
 452
 453        packets = rc->total_packets;
 454        bytes = rc->total_bytes;
 455
 456        if (iavf_container_is_rx(q_vector, rc)) {
 457                /* If Rx there are 1 to 4 packets and bytes are less than
 458                 * 9000 assume insufficient data to use bulk rate limiting
 459                 * approach unless Tx is already in bulk rate limiting. We
 460                 * are likely latency driven.
 461                 */
 462                if (packets && packets < 4 && bytes < 9000 &&
 463                    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
 464                        itr = IAVF_ITR_ADAPTIVE_LATENCY;
 465                        goto adjust_by_size;
 466                }
 467        } else if (packets < 4) {
 468                /* If we have Tx and Rx ITR maxed and Tx ITR is running in
 469                 * bulk mode and we are receiving 4 or fewer packets just
 470                 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
 471                 * that the Rx can relax.
 472                 */
 473                if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
 474                    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
 475                     IAVF_ITR_ADAPTIVE_MAX_USECS)
 476                        goto clear_counts;
 477        } else if (packets > 32) {
 478                /* If we have processed over 32 packets in a single interrupt
 479                 * for Tx assume we need to switch over to "bulk" mode.
 480                 */
 481                rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
 482        }
 483
 484        /* We have no packets to actually measure against. This means
 485         * either one of the other queues on this vector is active or
 486         * we are a Tx queue doing TSO with too high of an interrupt rate.
 487         *
 488         * Between 4 and 56 we can assume that our current interrupt delay
 489         * is only slightly too low. As such we should increase it by a small
 490         * fixed amount.
 491         */
 492        if (packets < 56) {
 493                itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
 494                if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 495                        itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 496                        itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 497                }
 498                goto clear_counts;
 499        }
 500
 501        if (packets <= 256) {
 502                itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
 503                itr &= IAVF_ITR_MASK;
 504
 505                /* Between 56 and 112 is our "goldilocks" zone where we are
 506                 * working out "just right". Just report that our current
 507                 * ITR is good for us.
 508                 */
 509                if (packets <= 112)
 510                        goto clear_counts;
 511
 512                /* If packet count is 128 or greater we are likely looking
 513                 * at a slight overrun of the delay we want. Try halving
 514                 * our delay to see if that will cut the number of packets
 515                 * in half per interrupt.
 516                 */
 517                itr /= 2;
 518                itr &= IAVF_ITR_MASK;
 519                if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
 520                        itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
 521
 522                goto clear_counts;
 523        }
 524
 525        /* The paths below assume we are dealing with a bulk ITR since
 526         * number of packets is greater than 256. We are just going to have
 527         * to compute a value and try to bring the count under control,
 528         * though for smaller packet sizes there isn't much we can do as
 529         * NAPI polling will likely be kicking in sooner rather than later.
 530         */
 531        itr = IAVF_ITR_ADAPTIVE_BULK;
 532
 533adjust_by_size:
 534        /* If packet counts are 256 or greater we can assume we have a gross
 535         * overestimation of what the rate should be. Instead of trying to fine
 536         * tune it just use the formula below to try and dial in an exact value
 537         * give the current packet size of the frame.
 538         */
 539        avg_wire_size = bytes / packets;
 540
 541        /* The following is a crude approximation of:
 542         *  wmem_default / (size + overhead) = desired_pkts_per_int
 543         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
 544         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
 545         *
 546         * Assuming wmem_default is 212992 and overhead is 640 bytes per
 547         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
 548         * formula down to
 549         *
 550         *  (170 * (size + 24)) / (size + 640) = ITR
 551         *
 552         * We first do some math on the packet size and then finally bitshift
 553         * by 8 after rounding up. We also have to account for PCIe link speed
 554         * difference as ITR scales based on this.
 555         */
 556        if (avg_wire_size <= 60) {
 557                /* Start at 250k ints/sec */
 558                avg_wire_size = 4096;
 559        } else if (avg_wire_size <= 380) {
 560                /* 250K ints/sec to 60K ints/sec */
 561                avg_wire_size *= 40;
 562                avg_wire_size += 1696;
 563        } else if (avg_wire_size <= 1084) {
 564                /* 60K ints/sec to 36K ints/sec */
 565                avg_wire_size *= 15;
 566                avg_wire_size += 11452;
 567        } else if (avg_wire_size <= 1980) {
 568                /* 36K ints/sec to 30K ints/sec */
 569                avg_wire_size *= 5;
 570                avg_wire_size += 22420;
 571        } else {
 572                /* plateau at a limit of 30K ints/sec */
 573                avg_wire_size = 32256;
 574        }
 575
 576        /* If we are in low latency mode halve our delay which doubles the
 577         * rate to somewhere between 100K to 16K ints/sec
 578         */
 579        if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
 580                avg_wire_size /= 2;
 581
 582        /* Resultant value is 256 times larger than it needs to be. This
 583         * gives us room to adjust the value as needed to either increase
 584         * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
 585         *
 586         * Use addition as we have already recorded the new latency flag
 587         * for the ITR value.
 588         */
 589        itr += DIV_ROUND_UP(avg_wire_size, iavf_itr_divisor(q_vector)) *
 590               IAVF_ITR_ADAPTIVE_MIN_INC;
 591
 592        if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 593                itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 594                itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 595        }
 596
 597clear_counts:
 598        /* write back value */
 599        rc->target_itr = itr;
 600
 601        /* next update should occur within next jiffy */
 602        rc->next_update = next_update + 1;
 603
 604        rc->total_bytes = 0;
 605        rc->total_packets = 0;
 606}
 607
 608/**
 609 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
 610 * @tx_ring: the tx ring to set up
 611 *
 612 * Return 0 on success, negative on error
 613 **/
 614int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
 615{
 616        struct device *dev = tx_ring->dev;
 617        int bi_size;
 618
 619        if (!dev)
 620                return -ENOMEM;
 621
 622        /* warn if we are about to overwrite the pointer */
 623        WARN_ON(tx_ring->tx_bi);
 624        bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
 625        tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 626        if (!tx_ring->tx_bi)
 627                goto err;
 628
 629        /* round up to nearest 4K */
 630        tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
 631        tx_ring->size = ALIGN(tx_ring->size, 4096);
 632        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 633                                           &tx_ring->dma, GFP_KERNEL);
 634        if (!tx_ring->desc) {
 635                dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 636                         tx_ring->size);
 637                goto err;
 638        }
 639
 640        tx_ring->next_to_use = 0;
 641        tx_ring->next_to_clean = 0;
 642        tx_ring->tx_stats.prev_pkt_ctr = -1;
 643        return 0;
 644
 645err:
 646        kfree(tx_ring->tx_bi);
 647        tx_ring->tx_bi = NULL;
 648        return -ENOMEM;
 649}
 650
 651/**
 652 * iavf_clean_rx_ring - Free Rx buffers
 653 * @rx_ring: ring to be cleaned
 654 **/
 655void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
 656{
 657        unsigned long bi_size;
 658        u16 i;
 659        DEFINE_DMA_ATTRS(attrs);
 660
 661        /* ring already cleared, nothing to do */
 662        if (!rx_ring->rx_bi)
 663                return;
 664
 665        if (rx_ring->skb) {
 666                dev_kfree_skb(rx_ring->skb);
 667                rx_ring->skb = NULL;
 668        }
 669
 670        /* Free all the Rx ring sk_buffs */
 671        for (i = 0; i < rx_ring->count; i++) {
 672                struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
 673
 674                if (!rx_bi->page)
 675                        continue;
 676
 677                /* Invalidate cache lines that may have been written to by
 678                 * device so that we avoid corrupting memory.
 679                 */
 680                dma_sync_single_range_for_cpu(rx_ring->dev,
 681                                              rx_bi->dma,
 682                                              rx_bi->page_offset,
 683                                              rx_ring->rx_buf_len,
 684                                              DMA_FROM_DEVICE);
 685
 686                /* free resources associated with mapping */
 687                dma_set_attr(DMA_ATTR_SKIP_CPU_SYNC, &attrs);
 688                dma_set_attr(DMA_ATTR_WEAK_ORDERING, &attrs);
 689                dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
 690                                     iavf_rx_pg_size(rx_ring),
 691                                     DMA_FROM_DEVICE,
 692                                     &attrs);
 693
 694                __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
 695
 696                rx_bi->page = NULL;
 697                rx_bi->page_offset = 0;
 698        }
 699
 700        bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
 701        memset(rx_ring->rx_bi, 0, bi_size);
 702
 703        /* Zero out the descriptor ring */
 704        memset(rx_ring->desc, 0, rx_ring->size);
 705
 706        rx_ring->next_to_alloc = 0;
 707        rx_ring->next_to_clean = 0;
 708        rx_ring->next_to_use = 0;
 709}
 710
 711/**
 712 * iavf_free_rx_resources - Free Rx resources
 713 * @rx_ring: ring to clean the resources from
 714 *
 715 * Free all receive software resources
 716 **/
 717void iavf_free_rx_resources(struct iavf_ring *rx_ring)
 718{
 719        iavf_clean_rx_ring(rx_ring);
 720        kfree(rx_ring->rx_bi);
 721        rx_ring->rx_bi = NULL;
 722
 723        if (rx_ring->desc) {
 724                dma_free_coherent(rx_ring->dev, rx_ring->size,
 725                                  rx_ring->desc, rx_ring->dma);
 726                rx_ring->desc = NULL;
 727        }
 728}
 729
 730/**
 731 * iavf_setup_rx_descriptors - Allocate Rx descriptors
 732 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 733 *
 734 * Returns 0 on success, negative on failure
 735 **/
 736int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
 737{
 738        struct device *dev = rx_ring->dev;
 739        int bi_size;
 740
 741        /* warn if we are about to overwrite the pointer */
 742        WARN_ON(rx_ring->rx_bi);
 743        bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
 744        rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
 745        if (!rx_ring->rx_bi)
 746                goto err;
 747
 748        u64_stats_init(&rx_ring->syncp);
 749
 750        /* Round up to nearest 4K */
 751        rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
 752        rx_ring->size = ALIGN(rx_ring->size, 4096);
 753        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 754                                           &rx_ring->dma, GFP_KERNEL);
 755
 756        if (!rx_ring->desc) {
 757                dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 758                         rx_ring->size);
 759                goto err;
 760        }
 761
 762        rx_ring->next_to_alloc = 0;
 763        rx_ring->next_to_clean = 0;
 764        rx_ring->next_to_use = 0;
 765
 766        return 0;
 767err:
 768        kfree(rx_ring->rx_bi);
 769        rx_ring->rx_bi = NULL;
 770        return -ENOMEM;
 771}
 772
 773/**
 774 * iavf_release_rx_desc - Store the new tail and head values
 775 * @rx_ring: ring to bump
 776 * @val: new head index
 777 **/
 778static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
 779{
 780        rx_ring->next_to_use = val;
 781
 782        /* update next to alloc since we have filled the ring */
 783        rx_ring->next_to_alloc = val;
 784
 785        /* Force memory writes to complete before letting h/w
 786         * know there are new descriptors to fetch.  (Only
 787         * applicable for weak-ordered memory model archs,
 788         * such as IA-64).
 789         */
 790        wmb();
 791        writel(val, rx_ring->tail);
 792}
 793
 794/**
 795 * iavf_rx_offset - Return expected offset into page to access data
 796 * @rx_ring: Ring we are requesting offset of
 797 *
 798 * Returns the offset value for ring into the data buffer.
 799 */
 800static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
 801{
 802        return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
 803}
 804
 805/**
 806 * iavf_alloc_mapped_page - recycle or make a new page
 807 * @rx_ring: ring to use
 808 * @bi: rx_buffer struct to modify
 809 *
 810 * Returns true if the page was successfully allocated or
 811 * reused.
 812 **/
 813static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
 814                                   struct iavf_rx_buffer *bi)
 815{
 816        struct page *page = bi->page;
 817        dma_addr_t dma;
 818        DEFINE_DMA_ATTRS(attrs);
 819
 820        /* since we are recycling buffers we should seldom need to alloc */
 821        if (likely(page)) {
 822                rx_ring->rx_stats.page_reuse_count++;
 823                return true;
 824        }
 825
 826        /* alloc new page for storage */
 827        page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
 828        if (unlikely(!page)) {
 829                rx_ring->rx_stats.alloc_page_failed++;
 830                return false;
 831        }
 832
 833        /* map page for use */
 834        dma_set_attr(DMA_ATTR_SKIP_CPU_SYNC, &attrs);
 835        dma_set_attr(DMA_ATTR_WEAK_ORDERING, &attrs);
 836        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
 837                                 iavf_rx_pg_size(rx_ring),
 838                                 DMA_FROM_DEVICE,
 839                                 &attrs);
 840
 841        /* if mapping failed free memory back to system since
 842         * there isn't much point in holding memory we can't use
 843         */
 844        if (dma_mapping_error(rx_ring->dev, dma)) {
 845                __free_pages(page, iavf_rx_pg_order(rx_ring));
 846                rx_ring->rx_stats.alloc_page_failed++;
 847                return false;
 848        }
 849
 850        bi->dma = dma;
 851        bi->page = page;
 852        bi->page_offset = iavf_rx_offset(rx_ring);
 853
 854        /* initialize pagecnt_bias to 1 representing we fully own page */
 855        bi->pagecnt_bias = 1;
 856
 857        return true;
 858}
 859
 860/**
 861 * iavf_receive_skb - Send a completed packet up the stack
 862 * @rx_ring:  rx ring in play
 863 * @skb: packet to send up
 864 * @vlan_tag: vlan tag for packet
 865 **/
 866static void iavf_receive_skb(struct iavf_ring *rx_ring,
 867                             struct sk_buff *skb, u16 vlan_tag)
 868{
 869        struct iavf_q_vector *q_vector = rx_ring->q_vector;
 870
 871        if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 872            (vlan_tag & VLAN_VID_MASK))
 873                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 874
 875        napi_gro_receive(&q_vector->napi, skb);
 876}
 877
 878/**
 879 * iavf_alloc_rx_buffers - Replace used receive buffers
 880 * @rx_ring: ring to place buffers on
 881 * @cleaned_count: number of buffers to replace
 882 *
 883 * Returns false if all allocations were successful, true if any fail
 884 **/
 885bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
 886{
 887        u16 ntu = rx_ring->next_to_use;
 888        union iavf_rx_desc *rx_desc;
 889        struct iavf_rx_buffer *bi;
 890
 891        /* do nothing if no valid netdev defined */
 892        if (!rx_ring->netdev || !cleaned_count)
 893                return false;
 894
 895        rx_desc = IAVF_RX_DESC(rx_ring, ntu);
 896        bi = &rx_ring->rx_bi[ntu];
 897
 898        do {
 899                if (!iavf_alloc_mapped_page(rx_ring, bi))
 900                        goto no_buffers;
 901
 902                /* sync the buffer for use by the device */
 903                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 904                                                 bi->page_offset,
 905                                                 rx_ring->rx_buf_len,
 906                                                 DMA_FROM_DEVICE);
 907
 908                /* Refresh the desc even if buffer_addrs didn't change
 909                 * because each write-back erases this info.
 910                 */
 911                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 912
 913                rx_desc++;
 914                bi++;
 915                ntu++;
 916                if (unlikely(ntu == rx_ring->count)) {
 917                        rx_desc = IAVF_RX_DESC(rx_ring, 0);
 918                        bi = rx_ring->rx_bi;
 919                        ntu = 0;
 920                }
 921
 922                /* clear the status bits for the next_to_use descriptor */
 923                rx_desc->wb.qword1.status_error_len = 0;
 924
 925                cleaned_count--;
 926        } while (cleaned_count);
 927
 928        if (rx_ring->next_to_use != ntu)
 929                iavf_release_rx_desc(rx_ring, ntu);
 930
 931        return false;
 932
 933no_buffers:
 934        if (rx_ring->next_to_use != ntu)
 935                iavf_release_rx_desc(rx_ring, ntu);
 936
 937        /* make sure to come back via polling to try again after
 938         * allocation failure
 939         */
 940        return true;
 941}
 942
 943/**
 944 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
 945 * @vsi: the VSI we care about
 946 * @skb: skb currently being received and modified
 947 * @rx_desc: the receive descriptor
 948 **/
 949static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
 950                                    struct sk_buff *skb,
 951                                    union iavf_rx_desc *rx_desc)
 952{
 953        struct iavf_rx_ptype_decoded decoded;
 954        u32 rx_error, rx_status;
 955        bool ipv4, ipv6;
 956        u8 ptype;
 957        u64 qword;
 958
 959        qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 960        ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
 961        rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
 962                   IAVF_RXD_QW1_ERROR_SHIFT;
 963        rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
 964                    IAVF_RXD_QW1_STATUS_SHIFT;
 965        decoded = decode_rx_desc_ptype(ptype);
 966
 967        skb->ip_summed = CHECKSUM_NONE;
 968
 969        skb_checksum_none_assert(skb);
 970
 971        /* Rx csum enabled and ip headers found? */
 972        if (!(vsi->netdev->features & NETIF_F_RXCSUM))
 973                return;
 974
 975        /* did the hardware decode the packet and checksum? */
 976        if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
 977                return;
 978
 979        /* both known and outer_ip must be set for the below code to work */
 980        if (!(decoded.known && decoded.outer_ip))
 981                return;
 982
 983        ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
 984               (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
 985        ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
 986               (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
 987
 988        if (ipv4 &&
 989            (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
 990                         BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
 991                goto checksum_fail;
 992
 993        /* likely incorrect csum if alternate IP extension headers found */
 994        if (ipv6 &&
 995            rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
 996                /* don't increment checksum err here, non-fatal err */
 997                return;
 998
 999        /* there was some L4 error, count error and punt packet to the stack */
1000        if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
1001                goto checksum_fail;
1002
1003        /* handle packets that were not able to be checksummed due
1004         * to arrival speed, in this case the stack can compute
1005         * the csum.
1006         */
1007        if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1008                return;
1009
1010        /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1011        switch (decoded.inner_prot) {
1012        case IAVF_RX_PTYPE_INNER_PROT_TCP:
1013        case IAVF_RX_PTYPE_INNER_PROT_UDP:
1014        case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1015                skb->ip_summed = CHECKSUM_UNNECESSARY;
1016                /* fall though */
1017        default:
1018                break;
1019        }
1020
1021        return;
1022
1023checksum_fail:
1024        vsi->back->hw_csum_rx_error++;
1025}
1026
1027/**
1028 * iavf_ptype_to_htype - get a hash type
1029 * @ptype: the ptype value from the descriptor
1030 *
1031 * Returns a hash type to be used by skb_set_hash
1032 **/
1033static inline int iavf_ptype_to_htype(u8 ptype)
1034{
1035        struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1036
1037        if (!decoded.known)
1038                return PKT_HASH_TYPE_NONE;
1039
1040        if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1041            decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1042                return PKT_HASH_TYPE_L4;
1043        else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1044                 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1045                return PKT_HASH_TYPE_L3;
1046        else
1047                return PKT_HASH_TYPE_L2;
1048}
1049
1050/**
1051 * iavf_rx_hash - set the hash value in the skb
1052 * @ring: descriptor ring
1053 * @rx_desc: specific descriptor
1054 * @skb: skb currently being received and modified
1055 * @rx_ptype: Rx packet type
1056 **/
1057static inline void iavf_rx_hash(struct iavf_ring *ring,
1058                                union iavf_rx_desc *rx_desc,
1059                                struct sk_buff *skb,
1060                                u8 rx_ptype)
1061{
1062        u32 hash;
1063        const __le64 rss_mask =
1064                cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1065                            IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1066
1067        if (ring->netdev->features & NETIF_F_RXHASH)
1068                return;
1069
1070        if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1071                hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1072                skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1073        }
1074}
1075
1076/**
1077 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1078 * @rx_ring: rx descriptor ring packet is being transacted on
1079 * @rx_desc: pointer to the EOP Rx descriptor
1080 * @skb: pointer to current skb being populated
1081 * @rx_ptype: the packet type decoded by hardware
1082 *
1083 * This function checks the ring, descriptor, and packet information in
1084 * order to populate the hash, checksum, VLAN, protocol, and
1085 * other fields within the skb.
1086 **/
1087static inline
1088void iavf_process_skb_fields(struct iavf_ring *rx_ring,
1089                             union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1090                             u8 rx_ptype)
1091{
1092        iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1093
1094        iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1095
1096        skb_record_rx_queue(skb, rx_ring->queue_index);
1097
1098        /* modifies the skb - consumes the enet header */
1099        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1100}
1101
1102/**
1103 * iavf_cleanup_headers - Correct empty headers
1104 * @rx_ring: rx descriptor ring packet is being transacted on
1105 * @skb: pointer to current skb being fixed
1106 *
1107 * Also address the case where we are pulling data in on pages only
1108 * and as such no data is present in the skb header.
1109 *
1110 * In addition if skb is not at least 60 bytes we need to pad it so that
1111 * it is large enough to qualify as a valid Ethernet frame.
1112 *
1113 * Returns true if an error was encountered and skb was freed.
1114 **/
1115static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1116{
1117        /* if eth_skb_pad returns an error the skb was freed */
1118        if (eth_skb_pad(skb))
1119                return true;
1120
1121        return false;
1122}
1123
1124/**
1125 * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1126 * @rx_ring: rx descriptor ring to store buffers on
1127 * @old_buff: donor buffer to have page reused
1128 *
1129 * Synchronizes page for reuse by the adapter
1130 **/
1131static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1132                               struct iavf_rx_buffer *old_buff)
1133{
1134        struct iavf_rx_buffer *new_buff;
1135        u16 nta = rx_ring->next_to_alloc;
1136
1137        new_buff = &rx_ring->rx_bi[nta];
1138
1139        /* update, and store next to alloc */
1140        nta++;
1141        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1142
1143        /* transfer page from old buffer to new buffer */
1144        new_buff->dma           = old_buff->dma;
1145        new_buff->page          = old_buff->page;
1146        new_buff->page_offset   = old_buff->page_offset;
1147        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
1148}
1149
1150/**
1151 * iavf_page_is_reusable - check if any reuse is possible
1152 * @page: page struct to check
1153 *
1154 * A page is not reusable if it was allocated under low memory
1155 * conditions, or it's not in the same NUMA node as this CPU.
1156 */
1157static inline bool iavf_page_is_reusable(struct page *page)
1158{
1159        return (page_to_nid(page) == numa_mem_id()) &&
1160                !page_is_pfmemalloc(page);
1161}
1162
1163/**
1164 * iavf_can_reuse_rx_page - Determine if this page can be reused by
1165 * the adapter for another receive
1166 *
1167 * @rx_buffer: buffer containing the page
1168 *
1169 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1170 * an unused region in the page.
1171 *
1172 * For small pages, @truesize will be a constant value, half the size
1173 * of the memory at page.  We'll attempt to alternate between high and
1174 * low halves of the page, with one half ready for use by the hardware
1175 * and the other half being consumed by the stack.  We use the page
1176 * ref count to determine whether the stack has finished consuming the
1177 * portion of this page that was passed up with a previous packet.  If
1178 * the page ref count is >1, we'll assume the "other" half page is
1179 * still busy, and this page cannot be reused.
1180 *
1181 * For larger pages, @truesize will be the actual space used by the
1182 * received packet (adjusted upward to an even multiple of the cache
1183 * line size).  This will advance through the page by the amount
1184 * actually consumed by the received packets while there is still
1185 * space for a buffer.  Each region of larger pages will be used at
1186 * most once, after which the page will not be reused.
1187 *
1188 * In either case, if the page is reusable its refcount is increased.
1189 **/
1190static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1191{
1192        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1193        struct page *page = rx_buffer->page;
1194
1195        /* Is any reuse possible? */
1196        if (unlikely(!iavf_page_is_reusable(page)))
1197                return false;
1198
1199#if (PAGE_SIZE < 8192)
1200        /* if we are only owner of page we can reuse it */
1201        if (unlikely((page_count(page) - pagecnt_bias) > 1))
1202                return false;
1203#else
1204#define IAVF_LAST_OFFSET \
1205        (SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1206        if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1207                return false;
1208#endif
1209
1210        /* If we have drained the page fragment pool we need to update
1211         * the pagecnt_bias and page count so that we fully restock the
1212         * number of references the driver holds.
1213         */
1214        if (unlikely(!pagecnt_bias)) {
1215                page_ref_add(page, USHRT_MAX);
1216                rx_buffer->pagecnt_bias = USHRT_MAX;
1217        }
1218
1219        return true;
1220}
1221
1222/**
1223 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1224 * @rx_ring: rx descriptor ring to transact packets on
1225 * @rx_buffer: buffer containing page to add
1226 * @skb: sk_buff to place the data into
1227 * @size: packet length from rx_desc
1228 *
1229 * This function will add the data contained in rx_buffer->page to the skb.
1230 * It will just attach the page as a frag to the skb.
1231 *
1232 * The function will then update the page offset.
1233 **/
1234static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1235                             struct iavf_rx_buffer *rx_buffer,
1236                             struct sk_buff *skb,
1237                             unsigned int size)
1238{
1239#if (PAGE_SIZE < 8192)
1240        unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1241#else
1242        unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1243#endif
1244
1245        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1246                        rx_buffer->page_offset, size, truesize);
1247
1248        /* page is being used so we must update the page offset */
1249#if (PAGE_SIZE < 8192)
1250        rx_buffer->page_offset ^= truesize;
1251#else
1252        rx_buffer->page_offset += truesize;
1253#endif
1254}
1255
1256/**
1257 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1258 * @rx_ring: rx descriptor ring to transact packets on
1259 * @size: size of buffer to add to skb
1260 *
1261 * This function will pull an Rx buffer from the ring and synchronize it
1262 * for use by the CPU.
1263 */
1264static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1265                                                 const unsigned int size)
1266{
1267        struct iavf_rx_buffer *rx_buffer;
1268
1269        rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1270        prefetchw(rx_buffer->page);
1271
1272        /* we are reusing so sync this buffer for CPU use */
1273        dma_sync_single_range_for_cpu(rx_ring->dev,
1274                                      rx_buffer->dma,
1275                                      rx_buffer->page_offset,
1276                                      size,
1277                                      DMA_FROM_DEVICE);
1278
1279        /* We have pulled a buffer for use, so decrement pagecnt_bias */
1280        rx_buffer->pagecnt_bias--;
1281
1282        return rx_buffer;
1283}
1284
1285/**
1286 * iavf_construct_skb - Allocate skb and populate it
1287 * @rx_ring: rx descriptor ring to transact packets on
1288 * @rx_buffer: rx buffer to pull data from
1289 * @size: size of buffer to add to skb
1290 *
1291 * This function allocates an skb.  It then populates it with the page
1292 * data from the current receive descriptor, taking care to set up the
1293 * skb correctly.
1294 */
1295static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1296                                          struct iavf_rx_buffer *rx_buffer,
1297                                          unsigned int size)
1298{
1299        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1300#if (PAGE_SIZE < 8192)
1301        unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1302#else
1303        unsigned int truesize = SKB_DATA_ALIGN(size);
1304#endif
1305        unsigned int headlen;
1306        struct sk_buff *skb;
1307
1308        /* prefetch first cache line of first page */
1309        prefetch(va);
1310#if L1_CACHE_BYTES < 128
1311        prefetch(va + L1_CACHE_BYTES);
1312#endif
1313
1314        /* allocate a skb to store the frags */
1315        skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1316                               IAVF_RX_HDR_SIZE,
1317                               GFP_ATOMIC | __GFP_NOWARN);
1318        if (unlikely(!skb))
1319                return NULL;
1320
1321        /* Determine available headroom for copy */
1322        headlen = size;
1323        if (headlen > IAVF_RX_HDR_SIZE)
1324                headlen = eth_get_headlen(va, IAVF_RX_HDR_SIZE);
1325
1326        /* align pull length to size of long to optimize memcpy performance */
1327        memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1328
1329        /* update all of the pointers */
1330        size -= headlen;
1331        if (size) {
1332                skb_add_rx_frag(skb, 0, rx_buffer->page,
1333                                rx_buffer->page_offset + headlen,
1334                                size, truesize);
1335
1336                /* buffer is used by skb, update page_offset */
1337#if (PAGE_SIZE < 8192)
1338                rx_buffer->page_offset ^= truesize;
1339#else
1340                rx_buffer->page_offset += truesize;
1341#endif
1342        } else {
1343                /* buffer is unused, reset bias back to rx_buffer */
1344                rx_buffer->pagecnt_bias++;
1345        }
1346
1347        return skb;
1348}
1349
1350/**
1351 * iavf_build_skb - Build skb around an existing buffer
1352 * @rx_ring: Rx descriptor ring to transact packets on
1353 * @rx_buffer: Rx buffer to pull data from
1354 * @size: size of buffer to add to skb
1355 *
1356 * This function builds an skb around an existing Rx buffer, taking care
1357 * to set up the skb correctly and avoid any memcpy overhead.
1358 */
1359static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1360                                      struct iavf_rx_buffer *rx_buffer,
1361                                      unsigned int size)
1362{
1363        void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1364#if (PAGE_SIZE < 8192)
1365        unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1366#else
1367        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1368                                SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1369#endif
1370        struct sk_buff *skb;
1371
1372        /* prefetch first cache line of first page */
1373        prefetch(va);
1374#if L1_CACHE_BYTES < 128
1375        prefetch(va + L1_CACHE_BYTES);
1376#endif
1377        /* build an skb around the page buffer */
1378        skb = build_skb(va - IAVF_SKB_PAD, truesize);
1379        if (unlikely(!skb))
1380                return NULL;
1381
1382        /* update pointers within the skb to store the data */
1383        skb_reserve(skb, IAVF_SKB_PAD);
1384        __skb_put(skb, size);
1385
1386        /* buffer is used by skb, update page_offset */
1387#if (PAGE_SIZE < 8192)
1388        rx_buffer->page_offset ^= truesize;
1389#else
1390        rx_buffer->page_offset += truesize;
1391#endif
1392
1393        return skb;
1394}
1395
1396/**
1397 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1398 * @rx_ring: rx descriptor ring to transact packets on
1399 * @rx_buffer: rx buffer to pull data from
1400 *
1401 * This function will clean up the contents of the rx_buffer.  It will
1402 * either recycle the buffer or unmap it and free the associated resources.
1403 */
1404static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1405                               struct iavf_rx_buffer *rx_buffer)
1406{
1407        DEFINE_DMA_ATTRS(attrs);
1408
1409        if (iavf_can_reuse_rx_page(rx_buffer)) {
1410                /* hand second half of page back to the ring */
1411                iavf_reuse_rx_page(rx_ring, rx_buffer);
1412                rx_ring->rx_stats.page_reuse_count++;
1413        } else {
1414                /* we are not reusing the buffer so unmap it */
1415                dma_set_attr(DMA_ATTR_SKIP_CPU_SYNC, &attrs);
1416                dma_set_attr(DMA_ATTR_WEAK_ORDERING, &attrs);
1417                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1418                                     iavf_rx_pg_size(rx_ring),
1419                                     DMA_FROM_DEVICE, &attrs);
1420                __page_frag_cache_drain(rx_buffer->page,
1421                                        rx_buffer->pagecnt_bias);
1422        }
1423
1424        /* clear contents of buffer_info */
1425        rx_buffer->page = NULL;
1426}
1427
1428/**
1429 * iavf_is_non_eop - process handling of non-EOP buffers
1430 * @rx_ring: Rx ring being processed
1431 * @rx_desc: Rx descriptor for current buffer
1432 * @skb: Current socket buffer containing buffer in progress
1433 *
1434 * This function updates next to clean.  If the buffer is an EOP buffer
1435 * this function exits returning false, otherwise it will place the
1436 * sk_buff in the next buffer to be chained and return true indicating
1437 * that this is in fact a non-EOP buffer.
1438 **/
1439static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1440                            union iavf_rx_desc *rx_desc,
1441                            struct sk_buff *skb)
1442{
1443        u32 ntc = rx_ring->next_to_clean + 1;
1444
1445        /* fetch, update, and store next to clean */
1446        ntc = (ntc < rx_ring->count) ? ntc : 0;
1447        rx_ring->next_to_clean = ntc;
1448
1449        prefetch(IAVF_RX_DESC(rx_ring, ntc));
1450
1451        /* if we are the last buffer then there is nothing else to do */
1452#define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1453        if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1454                return false;
1455
1456        rx_ring->rx_stats.non_eop_descs++;
1457
1458        return true;
1459}
1460
1461/**
1462 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1463 * @rx_ring: rx descriptor ring to transact packets on
1464 * @budget: Total limit on number of packets to process
1465 *
1466 * This function provides a "bounce buffer" approach to Rx interrupt
1467 * processing.  The advantage to this is that on systems that have
1468 * expensive overhead for IOMMU access this provides a means of avoiding
1469 * it by maintaining the mapping of the page to the system.
1470 *
1471 * Returns amount of work completed
1472 **/
1473static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1474{
1475        unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1476        struct sk_buff *skb = rx_ring->skb;
1477        u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1478        bool failure = false;
1479
1480        while (likely(total_rx_packets < (unsigned int)budget)) {
1481                struct iavf_rx_buffer *rx_buffer;
1482                union iavf_rx_desc *rx_desc;
1483                unsigned int size;
1484                u16 vlan_tag;
1485                u8 rx_ptype;
1486                u64 qword;
1487
1488                /* return some buffers to hardware, one at a time is too slow */
1489                if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1490                        failure = failure ||
1491                                  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1492                        cleaned_count = 0;
1493                }
1494
1495                rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1496
1497                /* status_error_len will always be zero for unused descriptors
1498                 * because it's cleared in cleanup, and overlaps with hdr_addr
1499                 * which is always zero because packet split isn't used, if the
1500                 * hardware wrote DD then the length will be non-zero
1501                 */
1502                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1503
1504                /* This memory barrier is needed to keep us from reading
1505                 * any other fields out of the rx_desc until we have
1506                 * verified the descriptor has been written back.
1507                 */
1508                dma_rmb();
1509
1510                size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1511                       IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1512                if (!size)
1513                        break;
1514
1515                iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1516                rx_buffer = iavf_get_rx_buffer(rx_ring, size);
1517
1518                /* retrieve a buffer from the ring */
1519                if (skb)
1520                        iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1521                else if (ring_uses_build_skb(rx_ring))
1522                        skb = iavf_build_skb(rx_ring, rx_buffer, size);
1523                else
1524                        skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1525
1526                /* exit if we failed to retrieve a buffer */
1527                if (!skb) {
1528                        rx_ring->rx_stats.alloc_buff_failed++;
1529                        rx_buffer->pagecnt_bias++;
1530                        break;
1531                }
1532
1533                iavf_put_rx_buffer(rx_ring, rx_buffer);
1534                cleaned_count++;
1535
1536                if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1537                        continue;
1538
1539                /* ERR_MASK will only have valid bits if EOP set, and
1540                 * what we are doing here is actually checking
1541                 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1542                 * the error field
1543                 */
1544                if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1545                        dev_kfree_skb_any(skb);
1546                        skb = NULL;
1547                        continue;
1548                }
1549
1550                if (iavf_cleanup_headers(rx_ring, skb)) {
1551                        skb = NULL;
1552                        continue;
1553                }
1554
1555                /* probably a little skewed due to removing CRC */
1556                total_rx_bytes += skb->len;
1557
1558                qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1559                rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1560                           IAVF_RXD_QW1_PTYPE_SHIFT;
1561
1562                /* populate checksum, VLAN, and protocol */
1563                iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1564
1565
1566                vlan_tag = (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1567                           le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1568
1569                iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1570                iavf_receive_skb(rx_ring, skb, vlan_tag);
1571                skb = NULL;
1572
1573                /* update budget accounting */
1574                total_rx_packets++;
1575        }
1576
1577        rx_ring->skb = skb;
1578
1579        u64_stats_update_begin(&rx_ring->syncp);
1580        rx_ring->stats.packets += total_rx_packets;
1581        rx_ring->stats.bytes += total_rx_bytes;
1582        u64_stats_update_end(&rx_ring->syncp);
1583        rx_ring->q_vector->rx.total_packets += total_rx_packets;
1584        rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1585
1586        /* guarantee a trip back through this routine if there was a failure */
1587        return failure ? budget : (int)total_rx_packets;
1588}
1589
1590static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1591{
1592        u32 val;
1593
1594        /* We don't bother with setting the CLEARPBA bit as the data sheet
1595         * points out doing so is "meaningless since it was already
1596         * auto-cleared". The auto-clearing happens when the interrupt is
1597         * asserted.
1598         *
1599         * Hardware errata 28 for also indicates that writing to a
1600         * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1601         * an event in the PBA anyway so we need to rely on the automask
1602         * to hold pending events for us until the interrupt is re-enabled
1603         *
1604         * The itr value is reported in microseconds, and the register
1605         * value is recorded in 2 microsecond units. For this reason we
1606         * only need to shift by the interval shift - 1 instead of the
1607         * full value.
1608         */
1609        itr &= IAVF_ITR_MASK;
1610
1611        val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1612              (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1613              (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1614
1615        return val;
1616}
1617
1618/* a small macro to shorten up some long lines */
1619#define INTREG IAVF_VFINT_DYN_CTLN1
1620
1621/* The act of updating the ITR will cause it to immediately trigger. In order
1622 * to prevent this from throwing off adaptive update statistics we defer the
1623 * update so that it can only happen so often. So after either Tx or Rx are
1624 * updated we make the adaptive scheme wait until either the ITR completely
1625 * expires via the next_update expiration or we have been through at least
1626 * 3 interrupts.
1627 */
1628#define ITR_COUNTDOWN_START 3
1629
1630/**
1631 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1632 * @vsi: the VSI we care about
1633 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1634 *
1635 **/
1636static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
1637                                          struct iavf_q_vector *q_vector)
1638{
1639        struct iavf_hw *hw = &vsi->back->hw;
1640        u32 intval;
1641
1642        /* These will do nothing if dynamic updates are not enabled */
1643        iavf_update_itr(q_vector, &q_vector->tx);
1644        iavf_update_itr(q_vector, &q_vector->rx);
1645
1646        /* This block of logic allows us to get away with only updating
1647         * one ITR value with each interrupt. The idea is to perform a
1648         * pseudo-lazy update with the following criteria.
1649         *
1650         * 1. Rx is given higher priority than Tx if both are in same state
1651         * 2. If we must reduce an ITR that is given highest priority.
1652         * 3. We then give priority to increasing ITR based on amount.
1653         */
1654        if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1655                /* Rx ITR needs to be reduced, this is highest priority */
1656                intval = iavf_buildreg_itr(IAVF_RX_ITR,
1657                                           q_vector->rx.target_itr);
1658                q_vector->rx.current_itr = q_vector->rx.target_itr;
1659                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1660        } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1661                   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1662                    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1663                /* Tx ITR needs to be reduced, this is second priority
1664                 * Tx ITR needs to be increased more than Rx, fourth priority
1665                 */
1666                intval = iavf_buildreg_itr(IAVF_TX_ITR,
1667                                           q_vector->tx.target_itr);
1668                q_vector->tx.current_itr = q_vector->tx.target_itr;
1669                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1670        } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1671                /* Rx ITR needs to be increased, third priority */
1672                intval = iavf_buildreg_itr(IAVF_RX_ITR,
1673                                           q_vector->rx.target_itr);
1674                q_vector->rx.current_itr = q_vector->rx.target_itr;
1675                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1676        } else {
1677                /* No ITR update, lowest priority */
1678                intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1679                if (q_vector->itr_countdown)
1680                        q_vector->itr_countdown--;
1681        }
1682
1683        if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1684                wr32(hw, INTREG(q_vector->reg_idx), intval);
1685}
1686
1687/**
1688 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1689 * @napi: napi struct with our devices info in it
1690 * @budget: amount of work driver is allowed to do this pass, in packets
1691 *
1692 * This function will clean all queues associated with a q_vector.
1693 *
1694 * Returns the amount of work done
1695 **/
1696int iavf_napi_poll(struct napi_struct *napi, int budget)
1697{
1698        struct iavf_q_vector *q_vector =
1699                               container_of(napi, struct iavf_q_vector, napi);
1700        struct iavf_vsi *vsi = q_vector->vsi;
1701        struct iavf_ring *ring;
1702        bool clean_complete = true;
1703        bool arm_wb = false;
1704        int budget_per_ring;
1705        int work_done = 0;
1706
1707        if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1708                napi_complete(napi);
1709                return 0;
1710        }
1711
1712        /* Since the actual Tx work is minimal, we can give the Tx a larger
1713         * budget and be more aggressive about cleaning up the Tx descriptors.
1714         */
1715        iavf_for_each_ring(ring, q_vector->tx) {
1716                if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1717                        clean_complete = false;
1718                        continue;
1719                }
1720                arm_wb |= ring->arm_wb;
1721                ring->arm_wb = false;
1722        }
1723
1724        /* Handle case where we are called by netpoll with a budget of 0 */
1725        if (budget <= 0)
1726                goto tx_only;
1727
1728        /* We attempt to distribute budget to each Rx queue fairly, but don't
1729         * allow the budget to go below 1 because that would exit polling early.
1730         */
1731        budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1732
1733        iavf_for_each_ring(ring, q_vector->rx) {
1734                int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1735
1736                work_done += cleaned;
1737                /* if we clean as many as budgeted, we must not be done */
1738                if (cleaned >= budget_per_ring)
1739                        clean_complete = false;
1740        }
1741
1742        /* If work not completed, return budget and polling will return */
1743        if (!clean_complete) {
1744                int cpu_id = smp_processor_id();
1745
1746                /* It is possible that the interrupt affinity has changed but,
1747                 * if the cpu is pegged at 100%, polling will never exit while
1748                 * traffic continues and the interrupt will be stuck on this
1749                 * cpu.  We check to make sure affinity is correct before we
1750                 * continue to poll, otherwise we must stop polling so the
1751                 * interrupt can move to the correct cpu.
1752                 */
1753                if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1754                        /* Tell napi that we are done polling */
1755                        napi_complete_done(napi, work_done);
1756
1757                        /* Force an interrupt */
1758                        iavf_force_wb(vsi, q_vector);
1759
1760                        /* Return budget-1 so that polling stops */
1761                        return budget - 1;
1762                }
1763tx_only:
1764                if (arm_wb) {
1765                        q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1766                        iavf_enable_wb_on_itr(vsi, q_vector);
1767                }
1768                return budget;
1769        }
1770
1771        if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1772                q_vector->arm_wb_state = false;
1773
1774        /* Exit the polling mode, but don't re-enable interrupts if stack might
1775         * poll us due to busy-polling
1776         */
1777        if (likely(napi_complete_done(napi, work_done)))
1778                iavf_update_enable_itr(vsi, q_vector);
1779
1780        return min(work_done, budget - 1);
1781}
1782
1783/**
1784 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1785 * @skb:     send buffer
1786 * @tx_ring: ring to send buffer on
1787 * @flags:   the tx flags to be set
1788 *
1789 * Checks the skb and set up correspondingly several generic transmit flags
1790 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1791 *
1792 * Returns error code indicate the frame should be dropped upon error and the
1793 * otherwise  returns 0 to indicate the flags has been set properly.
1794 **/
1795static inline int iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1796                                             struct iavf_ring *tx_ring,
1797                                             u32 *flags)
1798{
1799        __be16 protocol = skb->protocol;
1800        u32  tx_flags = 0;
1801
1802        if (protocol == htons(ETH_P_8021Q) &&
1803            !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1804                /* When HW VLAN acceleration is turned off by the user the
1805                 * stack sets the protocol to 8021q so that the driver
1806                 * can take any steps required to support the SW only
1807                 * VLAN handling.  In our case the driver doesn't need
1808                 * to take any further steps so just set the protocol
1809                 * to the encapsulated ethertype.
1810                 */
1811                skb->protocol = vlan_get_protocol(skb);
1812                goto out;
1813        }
1814
1815        /* if we have a HW VLAN tag being added, default to the HW one */
1816        if (skb_vlan_tag_present(skb)) {
1817                tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1818                tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1819        /* else if it is a SW VLAN, check the next protocol and store the tag */
1820        } else if (protocol == htons(ETH_P_8021Q)) {
1821                struct vlan_hdr *vhdr, _vhdr;
1822
1823                vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1824                if (!vhdr)
1825                        return -EINVAL;
1826
1827                protocol = vhdr->h_vlan_encapsulated_proto;
1828                tx_flags |= ntohs(vhdr->h_vlan_TCI) << IAVF_TX_FLAGS_VLAN_SHIFT;
1829                tx_flags |= IAVF_TX_FLAGS_SW_VLAN;
1830        }
1831
1832out:
1833        *flags = tx_flags;
1834        return 0;
1835}
1836
1837/**
1838 * iavf_tso - set up the tso context descriptor
1839 * @first:    pointer to first Tx buffer for xmit
1840 * @hdr_len:  ptr to the size of the packet header
1841 * @cd_type_cmd_tso_mss: Quad Word 1
1842 *
1843 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1844 **/
1845static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1846                    u64 *cd_type_cmd_tso_mss)
1847{
1848        struct sk_buff *skb = first->skb;
1849        u64 cd_cmd, cd_tso_len, cd_mss;
1850        union {
1851                struct iphdr *v4;
1852                struct ipv6hdr *v6;
1853                unsigned char *hdr;
1854        } ip;
1855        union {
1856                struct tcphdr *tcp;
1857                struct udphdr *udp;
1858                unsigned char *hdr;
1859        } l4;
1860        u32 paylen, l4_offset;
1861        u16 gso_segs, gso_size;
1862        int err;
1863
1864        if (skb->ip_summed != CHECKSUM_PARTIAL)
1865                return 0;
1866
1867        if (!skb_is_gso(skb))
1868                return 0;
1869
1870        err = skb_cow_head(skb, 0);
1871        if (err < 0)
1872                return err;
1873
1874        ip.hdr = skb_network_header(skb);
1875        l4.hdr = skb_transport_header(skb);
1876
1877        /* initialize outer IP header fields */
1878        if (ip.v4->version == 4) {
1879                ip.v4->tot_len = 0;
1880                ip.v4->check = 0;
1881        } else {
1882                ip.v6->payload_len = 0;
1883        }
1884
1885        if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1886                                         SKB_GSO_GRE_CSUM |
1887                                         SKB_GSO_IPIP |
1888                                         SKB_GSO_SIT |
1889                                         SKB_GSO_UDP_TUNNEL |
1890                                         SKB_GSO_UDP_TUNNEL_CSUM)) {
1891                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1892                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1893                        l4.udp->len = 0;
1894
1895                        /* determine offset of outer transport header */
1896                        l4_offset = l4.hdr - skb->data;
1897
1898                        /* remove payload length from outer checksum */
1899                        paylen = skb->len - l4_offset;
1900                        csum_replace_by_diff(&l4.udp->check,
1901                                             (__force __wsum)htonl(paylen));
1902                }
1903
1904                /* reset pointers to inner headers */
1905                ip.hdr = skb_inner_network_header(skb);
1906                l4.hdr = skb_inner_transport_header(skb);
1907
1908                /* initialize inner IP header fields */
1909                if (ip.v4->version == 4) {
1910                        ip.v4->tot_len = 0;
1911                        ip.v4->check = 0;
1912                } else {
1913                        ip.v6->payload_len = 0;
1914                }
1915        }
1916
1917        /* determine offset of inner transport header */
1918        l4_offset = l4.hdr - skb->data;
1919
1920        /* remove payload length from inner checksum */
1921        paylen = skb->len - l4_offset;
1922        csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1923
1924        /* compute length of segmentation header */
1925        *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1926
1927        /* pull values out of skb_shinfo */
1928        gso_size = skb_shinfo(skb)->gso_size;
1929        gso_segs = skb_shinfo(skb)->gso_segs;
1930
1931        /* update GSO size and bytecount with header size */
1932        first->gso_segs = gso_segs;
1933        first->bytecount += (first->gso_segs - 1) * *hdr_len;
1934
1935        /* find the field values */
1936        cd_cmd = IAVF_TX_CTX_DESC_TSO;
1937        cd_tso_len = skb->len - *hdr_len;
1938        cd_mss = gso_size;
1939        *cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1940                                (cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1941                                (cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1942        return 1;
1943}
1944
1945/**
1946 * iavf_tx_enable_csum - Enable Tx checksum offloads
1947 * @skb: send buffer
1948 * @tx_flags: pointer to Tx flags currently set
1949 * @td_cmd: Tx descriptor command bits to set
1950 * @td_offset: Tx descriptor header offsets to set
1951 * @tx_ring: Tx descriptor ring
1952 * @cd_tunneling: ptr to context desc bits
1953 **/
1954static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1955                               u32 *td_cmd, u32 *td_offset,
1956                               struct iavf_ring *tx_ring,
1957                               u32 *cd_tunneling)
1958{
1959        union {
1960                struct iphdr *v4;
1961                struct ipv6hdr *v6;
1962                unsigned char *hdr;
1963        } ip;
1964        union {
1965                struct tcphdr *tcp;
1966                struct udphdr *udp;
1967                unsigned char *hdr;
1968        } l4;
1969        unsigned char *exthdr;
1970        u32 offset, cmd = 0;
1971        __be16 frag_off;
1972        u8 l4_proto = 0;
1973
1974        if (skb->ip_summed != CHECKSUM_PARTIAL)
1975                return 0;
1976
1977        ip.hdr = skb_network_header(skb);
1978        l4.hdr = skb_transport_header(skb);
1979
1980        /* compute outer L2 header size */
1981        offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1982
1983        if (skb->encapsulation) {
1984                u32 tunnel = 0;
1985                /* define outer network header type */
1986                if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1987                        tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1988                                  IAVF_TX_CTX_EXT_IP_IPV4 :
1989                                  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1990
1991                        l4_proto = ip.v4->protocol;
1992                } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1993                        tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
1994
1995                        exthdr = ip.hdr + sizeof(*ip.v6);
1996                        l4_proto = ip.v6->nexthdr;
1997                        if (l4.hdr != exthdr)
1998                                ipv6_skip_exthdr(skb, exthdr - skb->data,
1999                                                 &l4_proto, &frag_off);
2000                }
2001
2002                /* define outer transport */
2003                switch (l4_proto) {
2004                case IPPROTO_UDP:
2005                        tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2006                        *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2007                        break;
2008                case IPPROTO_GRE:
2009                        tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2010                        *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2011                        break;
2012                case IPPROTO_IPIP:
2013                case IPPROTO_IPV6:
2014                        *tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2015                        l4.hdr = skb_inner_network_header(skb);
2016                        break;
2017                default:
2018                        if (*tx_flags & IAVF_TX_FLAGS_TSO)
2019                                return -1;
2020
2021                        skb_checksum_help(skb);
2022                        return 0;
2023                }
2024
2025                /* compute outer L3 header size */
2026                tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2027                          IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2028
2029                /* switch IP header pointer from outer to inner header */
2030                ip.hdr = skb_inner_network_header(skb);
2031
2032                /* compute tunnel header size */
2033                tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2034                          IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2035
2036                /* indicate if we need to offload outer UDP header */
2037                if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2038                    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2039                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2040                        tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2041
2042                /* record tunnel offload values */
2043                *cd_tunneling |= tunnel;
2044
2045                /* switch L4 header pointer from outer to inner */
2046                l4.hdr = skb_inner_transport_header(skb);
2047                l4_proto = 0;
2048
2049                /* reset type as we transition from outer to inner headers */
2050                *tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2051                if (ip.v4->version == 4)
2052                        *tx_flags |= IAVF_TX_FLAGS_IPV4;
2053                if (ip.v6->version == 6)
2054                        *tx_flags |= IAVF_TX_FLAGS_IPV6;
2055        }
2056
2057        /* Enable IP checksum offloads */
2058        if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2059                l4_proto = ip.v4->protocol;
2060                /* the stack computes the IP header already, the only time we
2061                 * need the hardware to recompute it is in the case of TSO.
2062                 */
2063                cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2064                       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2065                       IAVF_TX_DESC_CMD_IIPT_IPV4;
2066        } else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2067                cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2068
2069                exthdr = ip.hdr + sizeof(*ip.v6);
2070                l4_proto = ip.v6->nexthdr;
2071                if (l4.hdr != exthdr)
2072                        ipv6_skip_exthdr(skb, exthdr - skb->data,
2073                                         &l4_proto, &frag_off);
2074        }
2075
2076        /* compute inner L3 header size */
2077        offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2078
2079        /* Enable L4 checksum offloads */
2080        switch (l4_proto) {
2081        case IPPROTO_TCP:
2082                /* enable checksum offloads */
2083                cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2084                offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2085                break;
2086        case IPPROTO_SCTP:
2087                /* enable SCTP checksum offload */
2088                cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2089                offset |= (sizeof(struct sctphdr) >> 2) <<
2090                          IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2091                break;
2092        case IPPROTO_UDP:
2093                /* enable UDP checksum offload */
2094                cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2095                offset |= (sizeof(struct udphdr) >> 2) <<
2096                          IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2097                break;
2098        default:
2099                if (*tx_flags & IAVF_TX_FLAGS_TSO)
2100                        return -1;
2101                skb_checksum_help(skb);
2102                return 0;
2103        }
2104
2105        *td_cmd |= cmd;
2106        *td_offset |= offset;
2107
2108        return 1;
2109}
2110
2111/**
2112 * iavf_create_tx_ctx Build the Tx context descriptor
2113 * @tx_ring:  ring to create the descriptor on
2114 * @cd_type_cmd_tso_mss: Quad Word 1
2115 * @cd_tunneling: Quad Word 0 - bits 0-31
2116 * @cd_l2tag2: Quad Word 0 - bits 32-63
2117 **/
2118static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2119                               const u64 cd_type_cmd_tso_mss,
2120                               const u32 cd_tunneling, const u32 cd_l2tag2)
2121{
2122        struct iavf_tx_context_desc *context_desc;
2123        int i = tx_ring->next_to_use;
2124
2125        if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2126            !cd_tunneling && !cd_l2tag2)
2127                return;
2128
2129        /* grab the next descriptor */
2130        context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2131
2132        i++;
2133        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2134
2135        /* cpu_to_le32 and assign to struct fields */
2136        context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2137        context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2138        context_desc->rsvd = cpu_to_le16(0);
2139        context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2140}
2141
2142/**
2143 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2144 * @skb:      send buffer
2145 *
2146 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2147 * and so we need to figure out the cases where we need to linearize the skb.
2148 *
2149 * For TSO we need to count the TSO header and segment payload separately.
2150 * As such we need to check cases where we have 7 fragments or more as we
2151 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2152 * the segment payload in the first descriptor, and another 7 for the
2153 * fragments.
2154 **/
2155bool __iavf_chk_linearize(struct sk_buff *skb)
2156{
2157        const struct skb_frag_struct *frag, *stale;
2158        int nr_frags, sum;
2159
2160        /* no need to check if number of frags is less than 7 */
2161        nr_frags = skb_shinfo(skb)->nr_frags;
2162        if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2163                return false;
2164
2165        /* We need to walk through the list and validate that each group
2166         * of 6 fragments totals at least gso_size.
2167         */
2168        nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2169        frag = &skb_shinfo(skb)->frags[0];
2170
2171        /* Initialize size to the negative value of gso_size minus 1.  We
2172         * use this as the worst case scenerio in which the frag ahead
2173         * of us only provides one byte which is why we are limited to 6
2174         * descriptors for a single transmit as the header and previous
2175         * fragment are already consuming 2 descriptors.
2176         */
2177        sum = 1 - skb_shinfo(skb)->gso_size;
2178
2179        /* Add size of frags 0 through 4 to create our initial sum */
2180        sum += skb_frag_size(frag++);
2181        sum += skb_frag_size(frag++);
2182        sum += skb_frag_size(frag++);
2183        sum += skb_frag_size(frag++);
2184        sum += skb_frag_size(frag++);
2185
2186        /* Walk through fragments adding latest fragment, testing it, and
2187         * then removing stale fragments from the sum.
2188         */
2189        for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2190                int stale_size = skb_frag_size(stale);
2191
2192                sum += skb_frag_size(frag++);
2193
2194                /* The stale fragment may present us with a smaller
2195                 * descriptor than the actual fragment size. To account
2196                 * for that we need to remove all the data on the front and
2197                 * figure out what the remainder would be in the last
2198                 * descriptor associated with the fragment.
2199                 */
2200                if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2201                        int align_pad = -(stale->page_offset) &
2202                                        (IAVF_MAX_READ_REQ_SIZE - 1);
2203
2204                        sum -= align_pad;
2205                        stale_size -= align_pad;
2206
2207                        do {
2208                                sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2209                                stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2210                        } while (stale_size > IAVF_MAX_DATA_PER_TXD);
2211                }
2212
2213                /* if sum is negative we failed to make sufficient progress */
2214                if (sum < 0)
2215                        return true;
2216
2217                if (!nr_frags--)
2218                        break;
2219
2220                sum -= stale_size;
2221        }
2222
2223        return false;
2224}
2225
2226/**
2227 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2228 * @tx_ring: the ring to be checked
2229 * @size:    the size buffer we want to assure is available
2230 *
2231 * Returns -EBUSY if a stop is needed, else 0
2232 **/
2233int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2234{
2235        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2236        /* Memory barrier before checking head and tail */
2237        smp_mb();
2238
2239        /* Check again in a case another CPU has just made room available. */
2240        if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2241                return -EBUSY;
2242
2243        /* A reprieve! - use start_queue because it doesn't call schedule */
2244        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2245        ++tx_ring->tx_stats.restart_queue;
2246        return 0;
2247}
2248
2249/**
2250 * iavf_tx_map - Build the Tx descriptor
2251 * @tx_ring:  ring to send buffer on
2252 * @skb:      send buffer
2253 * @first:    first buffer info buffer to use
2254 * @tx_flags: collected send information
2255 * @hdr_len:  size of the packet header
2256 * @td_cmd:   the command field in the descriptor
2257 * @td_offset: offset for checksum or crc
2258 **/
2259static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2260                               struct iavf_tx_buffer *first, u32 tx_flags,
2261                               const u8 hdr_len, u32 td_cmd, u32 td_offset)
2262{
2263        unsigned int data_len = skb->data_len;
2264        unsigned int size = skb_headlen(skb);
2265        struct skb_frag_struct *frag;
2266        struct iavf_tx_buffer *tx_bi;
2267        struct iavf_tx_desc *tx_desc;
2268        u16 i = tx_ring->next_to_use;
2269        u32 td_tag = 0;
2270        dma_addr_t dma;
2271
2272        if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2273                td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2274                td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2275                         IAVF_TX_FLAGS_VLAN_SHIFT;
2276        }
2277
2278        first->tx_flags = tx_flags;
2279
2280        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2281
2282        tx_desc = IAVF_TX_DESC(tx_ring, i);
2283        tx_bi = first;
2284
2285        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2286                unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2287
2288                if (dma_mapping_error(tx_ring->dev, dma))
2289                        goto dma_error;
2290
2291                /* record length, and DMA address */
2292                dma_unmap_len_set(tx_bi, len, size);
2293                dma_unmap_addr_set(tx_bi, dma, dma);
2294
2295                /* align size to end of page */
2296                max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2297                tx_desc->buffer_addr = cpu_to_le64(dma);
2298
2299                while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2300                        tx_desc->cmd_type_offset_bsz =
2301                                build_ctob(td_cmd, td_offset,
2302                                           max_data, td_tag);
2303
2304                        tx_desc++;
2305                        i++;
2306
2307                        if (i == tx_ring->count) {
2308                                tx_desc = IAVF_TX_DESC(tx_ring, 0);
2309                                i = 0;
2310                        }
2311
2312                        dma += max_data;
2313                        size -= max_data;
2314
2315                        max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2316                        tx_desc->buffer_addr = cpu_to_le64(dma);
2317                }
2318
2319                if (likely(!data_len))
2320                        break;
2321
2322                tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2323                                                          size, td_tag);
2324
2325                tx_desc++;
2326                i++;
2327
2328                if (i == tx_ring->count) {
2329                        tx_desc = IAVF_TX_DESC(tx_ring, 0);
2330                        i = 0;
2331                }
2332
2333                size = skb_frag_size(frag);
2334                data_len -= size;
2335
2336                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2337                                       DMA_TO_DEVICE);
2338
2339                tx_bi = &tx_ring->tx_bi[i];
2340        }
2341
2342        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2343
2344        i++;
2345        if (i == tx_ring->count)
2346                i = 0;
2347
2348        tx_ring->next_to_use = i;
2349
2350        iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2351
2352        /* write last descriptor with RS and EOP bits */
2353        td_cmd |= IAVF_TXD_CMD;
2354        tx_desc->cmd_type_offset_bsz =
2355                        build_ctob(td_cmd, td_offset, size, td_tag);
2356
2357        skb_tx_timestamp(skb);
2358
2359        /* Force memory writes to complete before letting h/w know there
2360         * are new descriptors to fetch.
2361         *
2362         * We also use this memory barrier to make certain all of the
2363         * status bits have been updated before next_to_watch is written.
2364         */
2365        wmb();
2366
2367        /* set next_to_watch value indicating a packet is present */
2368        first->next_to_watch = tx_desc;
2369
2370        /* notify HW of packet */
2371        if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
2372                writel(i, tx_ring->tail);
2373
2374                /* we need this if more than one processor can write to our tail
2375                 * at a time, it synchronizes IO on IA64/Altix systems
2376                 */
2377                mmiowb();
2378        }
2379
2380        return;
2381
2382dma_error:
2383        dev_info(tx_ring->dev, "TX DMA map failed\n");
2384
2385        /* clear dma mappings for failed tx_bi map */
2386        for (;;) {
2387                tx_bi = &tx_ring->tx_bi[i];
2388                iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2389                if (tx_bi == first)
2390                        break;
2391                if (i == 0)
2392                        i = tx_ring->count;
2393                i--;
2394        }
2395
2396        tx_ring->next_to_use = i;
2397}
2398
2399/**
2400 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2401 * @skb:     send buffer
2402 * @tx_ring: ring to send buffer on
2403 *
2404 * Returns NETDEV_TX_OK if sent, else an error code
2405 **/
2406static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2407                                        struct iavf_ring *tx_ring)
2408{
2409        u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2410        u32 cd_tunneling = 0, cd_l2tag2 = 0;
2411        struct iavf_tx_buffer *first;
2412        u32 td_offset = 0;
2413        u32 tx_flags = 0;
2414        __be16 protocol;
2415        u32 td_cmd = 0;
2416        u8 hdr_len = 0;
2417        int tso, count;
2418
2419        /* prefetch the data, we'll need it later */
2420        prefetch(skb->data);
2421
2422        iavf_trace(xmit_frame_ring, skb, tx_ring);
2423
2424        count = iavf_xmit_descriptor_count(skb);
2425        if (iavf_chk_linearize(skb, count)) {
2426                if (__skb_linearize(skb)) {
2427                        dev_kfree_skb_any(skb);
2428                        return NETDEV_TX_OK;
2429                }
2430                count = iavf_txd_use_count(skb->len);
2431                tx_ring->tx_stats.tx_linearize++;
2432        }
2433
2434        /* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2435         *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2436         *       + 4 desc gap to avoid the cache line where head is,
2437         *       + 1 desc for context descriptor,
2438         * otherwise try next time
2439         */
2440        if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2441                tx_ring->tx_stats.tx_busy++;
2442                return NETDEV_TX_BUSY;
2443        }
2444
2445        /* record the location of the first descriptor for this packet */
2446        first = &tx_ring->tx_bi[tx_ring->next_to_use];
2447        first->skb = skb;
2448        first->bytecount = skb->len;
2449        first->gso_segs = 1;
2450
2451        /* prepare the xmit flags */
2452        if (iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2453                goto out_drop;
2454
2455        /* obtain protocol of skb */
2456        protocol = vlan_get_protocol(skb);
2457
2458        /* setup IPv4/IPv6 offloads */
2459        if (protocol == htons(ETH_P_IP))
2460                tx_flags |= IAVF_TX_FLAGS_IPV4;
2461        else if (protocol == htons(ETH_P_IPV6))
2462                tx_flags |= IAVF_TX_FLAGS_IPV6;
2463
2464        tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2465
2466        if (tso < 0)
2467                goto out_drop;
2468        else if (tso)
2469                tx_flags |= IAVF_TX_FLAGS_TSO;
2470
2471        /* Always offload the checksum, since it's in the data descriptor */
2472        tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2473                                  tx_ring, &cd_tunneling);
2474        if (tso < 0)
2475                goto out_drop;
2476
2477        /* always enable CRC insertion offload */
2478        td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2479
2480        iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2481                           cd_tunneling, cd_l2tag2);
2482
2483        iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2484                    td_cmd, td_offset);
2485
2486        return NETDEV_TX_OK;
2487
2488out_drop:
2489        iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2490        dev_kfree_skb_any(first->skb);
2491        first->skb = NULL;
2492        return NETDEV_TX_OK;
2493}
2494
2495/**
2496 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2497 * @skb:    send buffer
2498 * @netdev: network interface device structure
2499 *
2500 * Returns NETDEV_TX_OK if sent, else an error code
2501 **/
2502netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2503{
2504        struct iavf_adapter *adapter = netdev_priv(netdev);
2505        struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2506
2507        /* hardware can't handle really short frames, hardware padding works
2508         * beyond this point
2509         */
2510        if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2511                if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2512                        return NETDEV_TX_OK;
2513                skb->len = IAVF_MIN_TX_LEN;
2514                skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2515        }
2516
2517        return iavf_xmit_frame_ring(skb, tx_ring);
2518}
2519