linux/drivers/staging/wlan-ng/hfa384x_usb.c
<<
>>
Prefs
   1/* src/prism2/driver/hfa384x_usb.c
   2*
   3* Functions that talk to the USB variantof the Intersil hfa384x MAC
   4*
   5* Copyright (C) 1999 AbsoluteValue Systems, Inc.  All Rights Reserved.
   6* --------------------------------------------------------------------
   7*
   8* linux-wlan
   9*
  10*   The contents of this file are subject to the Mozilla Public
  11*   License Version 1.1 (the "License"); you may not use this file
  12*   except in compliance with the License. You may obtain a copy of
  13*   the License at http://www.mozilla.org/MPL/
  14*
  15*   Software distributed under the License is distributed on an "AS
  16*   IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
  17*   implied. See the License for the specific language governing
  18*   rights and limitations under the License.
  19*
  20*   Alternatively, the contents of this file may be used under the
  21*   terms of the GNU Public License version 2 (the "GPL"), in which
  22*   case the provisions of the GPL are applicable instead of the
  23*   above.  If you wish to allow the use of your version of this file
  24*   only under the terms of the GPL and not to allow others to use
  25*   your version of this file under the MPL, indicate your decision
  26*   by deleting the provisions above and replace them with the notice
  27*   and other provisions required by the GPL.  If you do not delete
  28*   the provisions above, a recipient may use your version of this
  29*   file under either the MPL or the GPL.
  30*
  31* --------------------------------------------------------------------
  32*
  33* Inquiries regarding the linux-wlan Open Source project can be
  34* made directly to:
  35*
  36* AbsoluteValue Systems Inc.
  37* info@linux-wlan.com
  38* http://www.linux-wlan.com
  39*
  40* --------------------------------------------------------------------
  41*
  42* Portions of the development of this software were funded by
  43* Intersil Corporation as part of PRISM(R) chipset product development.
  44*
  45* --------------------------------------------------------------------
  46*
  47* This file implements functions that correspond to the prism2/hfa384x
  48* 802.11 MAC hardware and firmware host interface.
  49*
  50* The functions can be considered to represent several levels of
  51* abstraction.  The lowest level functions are simply C-callable wrappers
  52* around the register accesses.  The next higher level represents C-callable
  53* prism2 API functions that match the Intersil documentation as closely
  54* as is reasonable.  The next higher layer implements common sequences
  55* of invocations of the API layer (e.g. write to bap, followed by cmd).
  56*
  57* Common sequences:
  58* hfa384x_drvr_xxx      Highest level abstractions provided by the
  59*                       hfa384x code.  They are driver defined wrappers
  60*                       for common sequences.  These functions generally
  61*                       use the services of the lower levels.
  62*
  63* hfa384x_drvr_xxxconfig  An example of the drvr level abstraction. These
  64*                       functions are wrappers for the RID get/set
  65*                       sequence. They call copy_[to|from]_bap() and
  66*                       cmd_access(). These functions operate on the
  67*                       RIDs and buffers without validation. The caller
  68*                       is responsible for that.
  69*
  70* API wrapper functions:
  71* hfa384x_cmd_xxx       functions that provide access to the f/w commands.
  72*                       The function arguments correspond to each command
  73*                       argument, even command arguments that get packed
  74*                       into single registers.  These functions _just_
  75*                       issue the command by setting the cmd/parm regs
  76*                       & reading the status/resp regs.  Additional
  77*                       activities required to fully use a command
  78*                       (read/write from/to bap, get/set int status etc.)
  79*                       are implemented separately.  Think of these as
  80*                       C-callable prism2 commands.
  81*
  82* Lowest Layer Functions:
  83* hfa384x_docmd_xxx     These functions implement the sequence required
  84*                       to issue any prism2 command.  Primarily used by the
  85*                       hfa384x_cmd_xxx functions.
  86*
  87* hfa384x_bap_xxx       BAP read/write access functions.
  88*                       Note: we usually use BAP0 for non-interrupt context
  89*                        and BAP1 for interrupt context.
  90*
  91* hfa384x_dl_xxx        download related functions.
  92*
  93* Driver State Issues:
  94* Note that there are two pairs of functions that manage the
  95* 'initialized' and 'running' states of the hw/MAC combo.  The four
  96* functions are create(), destroy(), start(), and stop().  create()
  97* sets up the data structures required to support the hfa384x_*
  98* functions and destroy() cleans them up.  The start() function gets
  99* the actual hardware running and enables the interrupts.  The stop()
 100* function shuts the hardware down.  The sequence should be:
 101* create()
 102* start()
 103*  .
 104*  .  Do interesting things w/ the hardware
 105*  .
 106* stop()
 107* destroy()
 108*
 109* Note that destroy() can be called without calling stop() first.
 110* --------------------------------------------------------------------
 111*/
 112
 113#include <linux/module.h>
 114#include <linux/kernel.h>
 115#include <linux/sched.h>
 116#include <linux/types.h>
 117#include <linux/slab.h>
 118#include <linux/wireless.h>
 119#include <linux/netdevice.h>
 120#include <linux/timer.h>
 121#include <linux/io.h>
 122#include <linux/delay.h>
 123#include <asm/byteorder.h>
 124#include <linux/bitops.h>
 125#include <linux/list.h>
 126#include <linux/usb.h>
 127#include <linux/byteorder/generic.h>
 128
 129#define SUBMIT_URB(u, f)  usb_submit_urb(u, f)
 130
 131#include "p80211types.h"
 132#include "p80211hdr.h"
 133#include "p80211mgmt.h"
 134#include "p80211conv.h"
 135#include "p80211msg.h"
 136#include "p80211netdev.h"
 137#include "p80211req.h"
 138#include "p80211metadef.h"
 139#include "p80211metastruct.h"
 140#include "hfa384x.h"
 141#include "prism2mgmt.h"
 142
 143enum cmd_mode {
 144        DOWAIT = 0,
 145        DOASYNC
 146};
 147
 148#define THROTTLE_JIFFIES        (HZ/8)
 149#define URB_ASYNC_UNLINK 0
 150#define USB_QUEUE_BULK 0
 151
 152#define ROUNDUP64(a) (((a)+63)&~63)
 153
 154#ifdef DEBUG_USB
 155static void dbprint_urb(struct urb *urb);
 156#endif
 157
 158static void
 159hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
 160
 161static void hfa384x_usb_defer(struct work_struct *data);
 162
 163static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
 164
 165static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
 166
 167/*---------------------------------------------------*/
 168/* Callbacks */
 169static void hfa384x_usbout_callback(struct urb *urb);
 170static void hfa384x_ctlxout_callback(struct urb *urb);
 171static void hfa384x_usbin_callback(struct urb *urb);
 172
 173static void
 174hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
 175
 176static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
 177
 178static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
 179
 180static void
 181hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout);
 182
 183static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
 184                               int urb_status);
 185
 186/*---------------------------------------------------*/
 187/* Functions to support the prism2 usb command queue */
 188
 189static void hfa384x_usbctlxq_run(hfa384x_t *hw);
 190
 191static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
 192
 193static void hfa384x_usbctlx_resptimerfn(unsigned long data);
 194
 195static void hfa384x_usb_throttlefn(unsigned long data);
 196
 197static void hfa384x_usbctlx_completion_task(unsigned long data);
 198
 199static void hfa384x_usbctlx_reaper_task(unsigned long data);
 200
 201static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
 202
 203static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
 204
 205struct usbctlx_completor {
 206        int (*complete) (struct usbctlx_completor *);
 207};
 208
 209static int
 210hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
 211                              hfa384x_usbctlx_t *ctlx,
 212                              struct usbctlx_completor *completor);
 213
 214static int
 215unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
 216
 217static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
 218
 219static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
 220
 221static int
 222usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
 223                   hfa384x_cmdresult_t *result);
 224
 225static void
 226usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
 227                       hfa384x_rridresult_t *result);
 228
 229/*---------------------------------------------------*/
 230/* Low level req/resp CTLX formatters and submitters */
 231static int
 232hfa384x_docmd(hfa384x_t *hw,
 233              enum cmd_mode mode,
 234              hfa384x_metacmd_t *cmd,
 235              ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
 236
 237static int
 238hfa384x_dorrid(hfa384x_t *hw,
 239               enum cmd_mode mode,
 240               u16 rid,
 241               void *riddata,
 242               unsigned int riddatalen,
 243               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
 244
 245static int
 246hfa384x_dowrid(hfa384x_t *hw,
 247               enum cmd_mode mode,
 248               u16 rid,
 249               void *riddata,
 250               unsigned int riddatalen,
 251               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
 252
 253static int
 254hfa384x_dormem(hfa384x_t *hw,
 255               enum cmd_mode mode,
 256               u16 page,
 257               u16 offset,
 258               void *data,
 259               unsigned int len,
 260               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
 261
 262static int
 263hfa384x_dowmem(hfa384x_t *hw,
 264               enum cmd_mode mode,
 265               u16 page,
 266               u16 offset,
 267               void *data,
 268               unsigned int len,
 269               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
 270
 271static int hfa384x_isgood_pdrcode(u16 pdrcode);
 272
 273static inline const char *ctlxstr(CTLX_STATE s)
 274{
 275        static const char *ctlx_str[] = {
 276                "Initial state",
 277                "Complete",
 278                "Request failed",
 279                "Request pending",
 280                "Request packet submitted",
 281                "Request packet completed",
 282                "Response packet completed"
 283        };
 284
 285        return ctlx_str[s];
 286};
 287
 288static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t *hw)
 289{
 290        return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
 291}
 292
 293#ifdef DEBUG_USB
 294void dbprint_urb(struct urb *urb)
 295{
 296        pr_debug("urb->pipe=0x%08x\n", urb->pipe);
 297        pr_debug("urb->status=0x%08x\n", urb->status);
 298        pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
 299        pr_debug("urb->transfer_buffer=0x%08x\n",
 300                 (unsigned int)urb->transfer_buffer);
 301        pr_debug("urb->transfer_buffer_length=0x%08x\n",
 302                 urb->transfer_buffer_length);
 303        pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
 304        pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
 305        pr_debug("urb->setup_packet(ctl)=0x%08x\n",
 306                 (unsigned int)urb->setup_packet);
 307        pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
 308        pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
 309        pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
 310        pr_debug("urb->timeout=0x%08x\n", urb->timeout);
 311        pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
 312        pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
 313}
 314#endif
 315
 316/*----------------------------------------------------------------
 317* submit_rx_urb
 318*
 319* Listen for input data on the BULK-IN pipe. If the pipe has
 320* stalled then schedule it to be reset.
 321*
 322* Arguments:
 323*       hw              device struct
 324*       memflags        memory allocation flags
 325*
 326* Returns:
 327*       error code from submission
 328*
 329* Call context:
 330*       Any
 331----------------------------------------------------------------*/
 332static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
 333{
 334        struct sk_buff *skb;
 335        int result;
 336
 337        skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
 338        if (skb == NULL) {
 339                result = -ENOMEM;
 340                goto done;
 341        }
 342
 343        /* Post the IN urb */
 344        usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
 345                          hw->endp_in,
 346                          skb->data, sizeof(hfa384x_usbin_t),
 347                          hfa384x_usbin_callback, hw->wlandev);
 348
 349        hw->rx_urb_skb = skb;
 350
 351        result = -ENOLINK;
 352        if (!hw->wlandev->hwremoved &&
 353                        !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
 354                result = SUBMIT_URB(&hw->rx_urb, memflags);
 355
 356                /* Check whether we need to reset the RX pipe */
 357                if (result == -EPIPE) {
 358                        printk(KERN_WARNING
 359                               "%s rx pipe stalled: requesting reset\n",
 360                               hw->wlandev->netdev->name);
 361                        if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
 362                                schedule_work(&hw->usb_work);
 363                }
 364        }
 365
 366        /* Don't leak memory if anything should go wrong */
 367        if (result != 0) {
 368                dev_kfree_skb(skb);
 369                hw->rx_urb_skb = NULL;
 370        }
 371
 372done:
 373        return result;
 374}
 375
 376/*----------------------------------------------------------------
 377* submit_tx_urb
 378*
 379* Prepares and submits the URB of transmitted data. If the
 380* submission fails then it will schedule the output pipe to
 381* be reset.
 382*
 383* Arguments:
 384*       hw              device struct
 385*       tx_urb          URB of data for tranmission
 386*       memflags        memory allocation flags
 387*
 388* Returns:
 389*       error code from submission
 390*
 391* Call context:
 392*       Any
 393----------------------------------------------------------------*/
 394static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
 395{
 396        struct net_device *netdev = hw->wlandev->netdev;
 397        int result;
 398
 399        result = -ENOLINK;
 400        if (netif_running(netdev)) {
 401
 402                if (!hw->wlandev->hwremoved
 403                    && !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
 404                        result = SUBMIT_URB(tx_urb, memflags);
 405
 406                        /* Test whether we need to reset the TX pipe */
 407                        if (result == -EPIPE) {
 408                                printk(KERN_WARNING
 409                                       "%s tx pipe stalled: requesting reset\n",
 410                                       netdev->name);
 411                                set_bit(WORK_TX_HALT, &hw->usb_flags);
 412                                schedule_work(&hw->usb_work);
 413                        } else if (result == 0) {
 414                                netif_stop_queue(netdev);
 415                        }
 416                }
 417        }
 418
 419        return result;
 420}
 421
 422/*----------------------------------------------------------------
 423* hfa394x_usb_defer
 424*
 425* There are some things that the USB stack cannot do while
 426* in interrupt context, so we arrange this function to run
 427* in process context.
 428*
 429* Arguments:
 430*       hw      device structure
 431*
 432* Returns:
 433*       nothing
 434*
 435* Call context:
 436*       process (by design)
 437----------------------------------------------------------------*/
 438static void hfa384x_usb_defer(struct work_struct *data)
 439{
 440        hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
 441        struct net_device *netdev = hw->wlandev->netdev;
 442
 443        /* Don't bother trying to reset anything if the plug
 444         * has been pulled ...
 445         */
 446        if (hw->wlandev->hwremoved)
 447                return;
 448
 449        /* Reception has stopped: try to reset the input pipe */
 450        if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
 451                int ret;
 452
 453                usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
 454
 455                ret = usb_clear_halt(hw->usb, hw->endp_in);
 456                if (ret != 0) {
 457                        printk(KERN_ERR
 458                               "Failed to clear rx pipe for %s: err=%d\n",
 459                               netdev->name, ret);
 460                } else {
 461                        printk(KERN_INFO "%s rx pipe reset complete.\n",
 462                               netdev->name);
 463                        clear_bit(WORK_RX_HALT, &hw->usb_flags);
 464                        set_bit(WORK_RX_RESUME, &hw->usb_flags);
 465                }
 466        }
 467
 468        /* Resume receiving data back from the device. */
 469        if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
 470                int ret;
 471
 472                ret = submit_rx_urb(hw, GFP_KERNEL);
 473                if (ret != 0) {
 474                        printk(KERN_ERR
 475                               "Failed to resume %s rx pipe.\n", netdev->name);
 476                } else {
 477                        clear_bit(WORK_RX_RESUME, &hw->usb_flags);
 478                }
 479        }
 480
 481        /* Transmission has stopped: try to reset the output pipe */
 482        if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
 483                int ret;
 484
 485                usb_kill_urb(&hw->tx_urb);
 486                ret = usb_clear_halt(hw->usb, hw->endp_out);
 487                if (ret != 0) {
 488                        printk(KERN_ERR
 489                               "Failed to clear tx pipe for %s: err=%d\n",
 490                               netdev->name, ret);
 491                } else {
 492                        printk(KERN_INFO "%s tx pipe reset complete.\n",
 493                               netdev->name);
 494                        clear_bit(WORK_TX_HALT, &hw->usb_flags);
 495                        set_bit(WORK_TX_RESUME, &hw->usb_flags);
 496
 497                        /* Stopping the BULK-OUT pipe also blocked
 498                         * us from sending any more CTLX URBs, so
 499                         * we need to re-run our queue ...
 500                         */
 501                        hfa384x_usbctlxq_run(hw);
 502                }
 503        }
 504
 505        /* Resume transmitting. */
 506        if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
 507                netif_wake_queue(hw->wlandev->netdev);
 508}
 509
 510/*----------------------------------------------------------------
 511* hfa384x_create
 512*
 513* Sets up the hfa384x_t data structure for use.  Note this
 514* does _not_ initialize the actual hardware, just the data structures
 515* we use to keep track of its state.
 516*
 517* Arguments:
 518*       hw              device structure
 519*       irq             device irq number
 520*       iobase          i/o base address for register access
 521*       membase         memory base address for register access
 522*
 523* Returns:
 524*       nothing
 525*
 526* Side effects:
 527*
 528* Call context:
 529*       process
 530----------------------------------------------------------------*/
 531void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
 532{
 533        memset(hw, 0, sizeof(hfa384x_t));
 534        hw->usb = usb;
 535
 536        /* set up the endpoints */
 537        hw->endp_in = usb_rcvbulkpipe(usb, 1);
 538        hw->endp_out = usb_sndbulkpipe(usb, 2);
 539
 540        /* Set up the waitq */
 541        init_waitqueue_head(&hw->cmdq);
 542
 543        /* Initialize the command queue */
 544        spin_lock_init(&hw->ctlxq.lock);
 545        INIT_LIST_HEAD(&hw->ctlxq.pending);
 546        INIT_LIST_HEAD(&hw->ctlxq.active);
 547        INIT_LIST_HEAD(&hw->ctlxq.completing);
 548        INIT_LIST_HEAD(&hw->ctlxq.reapable);
 549
 550        /* Initialize the authentication queue */
 551        skb_queue_head_init(&hw->authq);
 552
 553        tasklet_init(&hw->reaper_bh,
 554                     hfa384x_usbctlx_reaper_task, (unsigned long)hw);
 555        tasklet_init(&hw->completion_bh,
 556                     hfa384x_usbctlx_completion_task, (unsigned long)hw);
 557        INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
 558        INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
 559
 560        init_timer(&hw->throttle);
 561        hw->throttle.function = hfa384x_usb_throttlefn;
 562        hw->throttle.data = (unsigned long)hw;
 563
 564        init_timer(&hw->resptimer);
 565        hw->resptimer.function = hfa384x_usbctlx_resptimerfn;
 566        hw->resptimer.data = (unsigned long)hw;
 567
 568        init_timer(&hw->reqtimer);
 569        hw->reqtimer.function = hfa384x_usbctlx_reqtimerfn;
 570        hw->reqtimer.data = (unsigned long)hw;
 571
 572        usb_init_urb(&hw->rx_urb);
 573        usb_init_urb(&hw->tx_urb);
 574        usb_init_urb(&hw->ctlx_urb);
 575
 576        hw->link_status = HFA384x_LINK_NOTCONNECTED;
 577        hw->state = HFA384x_STATE_INIT;
 578
 579        INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
 580        init_timer(&hw->commsqual_timer);
 581        hw->commsqual_timer.data = (unsigned long)hw;
 582        hw->commsqual_timer.function = prism2sta_commsqual_timer;
 583}
 584
 585/*----------------------------------------------------------------
 586* hfa384x_destroy
 587*
 588* Partner to hfa384x_create().  This function cleans up the hw
 589* structure so that it can be freed by the caller using a simple
 590* kfree.  Currently, this function is just a placeholder.  If, at some
 591* point in the future, an hw in the 'shutdown' state requires a 'deep'
 592* kfree, this is where it should be done.  Note that if this function
 593* is called on a _running_ hw structure, the drvr_stop() function is
 594* called.
 595*
 596* Arguments:
 597*       hw              device structure
 598*
 599* Returns:
 600*       nothing, this function is not allowed to fail.
 601*
 602* Side effects:
 603*
 604* Call context:
 605*       process
 606----------------------------------------------------------------*/
 607void hfa384x_destroy(hfa384x_t *hw)
 608{
 609        struct sk_buff *skb;
 610
 611        if (hw->state == HFA384x_STATE_RUNNING)
 612                hfa384x_drvr_stop(hw);
 613        hw->state = HFA384x_STATE_PREINIT;
 614
 615        kfree(hw->scanresults);
 616        hw->scanresults = NULL;
 617
 618        /* Now to clean out the auth queue */
 619        while ((skb = skb_dequeue(&hw->authq)))
 620                dev_kfree_skb(skb);
 621}
 622
 623static hfa384x_usbctlx_t *usbctlx_alloc(void)
 624{
 625        hfa384x_usbctlx_t *ctlx;
 626
 627        ctlx = kmalloc(sizeof(*ctlx), in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
 628        if (ctlx != NULL) {
 629                memset(ctlx, 0, sizeof(*ctlx));
 630                init_completion(&ctlx->done);
 631        }
 632
 633        return ctlx;
 634}
 635
 636static int
 637usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
 638                   hfa384x_cmdresult_t *result)
 639{
 640        result->status = le16_to_cpu(cmdresp->status);
 641        result->resp0 = le16_to_cpu(cmdresp->resp0);
 642        result->resp1 = le16_to_cpu(cmdresp->resp1);
 643        result->resp2 = le16_to_cpu(cmdresp->resp2);
 644
 645        pr_debug("cmdresult:status=0x%04x "
 646                 "resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
 647                 result->status, result->resp0, result->resp1, result->resp2);
 648
 649        return result->status & HFA384x_STATUS_RESULT;
 650}
 651
 652static void
 653usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
 654                       hfa384x_rridresult_t *result)
 655{
 656        result->rid = le16_to_cpu(rridresp->rid);
 657        result->riddata = rridresp->data;
 658        result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
 659
 660}
 661
 662/*----------------------------------------------------------------
 663* Completor object:
 664* This completor must be passed to hfa384x_usbctlx_complete_sync()
 665* when processing a CTLX that returns a hfa384x_cmdresult_t structure.
 666----------------------------------------------------------------*/
 667struct usbctlx_cmd_completor {
 668        struct usbctlx_completor head;
 669
 670        const hfa384x_usb_cmdresp_t *cmdresp;
 671        hfa384x_cmdresult_t *result;
 672};
 673
 674static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
 675{
 676        struct usbctlx_cmd_completor *complete;
 677
 678        complete = (struct usbctlx_cmd_completor *) head;
 679        return usbctlx_get_status(complete->cmdresp, complete->result);
 680}
 681
 682static inline struct usbctlx_completor *init_cmd_completor(
 683                                                struct usbctlx_cmd_completor
 684                                                        *completor,
 685                                                const hfa384x_usb_cmdresp_t
 686                                                        *cmdresp,
 687                                                hfa384x_cmdresult_t *result)
 688{
 689        completor->head.complete = usbctlx_cmd_completor_fn;
 690        completor->cmdresp = cmdresp;
 691        completor->result = result;
 692        return &(completor->head);
 693}
 694
 695/*----------------------------------------------------------------
 696* Completor object:
 697* This completor must be passed to hfa384x_usbctlx_complete_sync()
 698* when processing a CTLX that reads a RID.
 699----------------------------------------------------------------*/
 700struct usbctlx_rrid_completor {
 701        struct usbctlx_completor head;
 702
 703        const hfa384x_usb_rridresp_t *rridresp;
 704        void *riddata;
 705        unsigned int riddatalen;
 706};
 707
 708static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
 709{
 710        struct usbctlx_rrid_completor *complete;
 711        hfa384x_rridresult_t rridresult;
 712
 713        complete = (struct usbctlx_rrid_completor *) head;
 714        usbctlx_get_rridresult(complete->rridresp, &rridresult);
 715
 716        /* Validate the length, note body len calculation in bytes */
 717        if (rridresult.riddata_len != complete->riddatalen) {
 718                printk(KERN_WARNING
 719                       "RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
 720                       rridresult.rid,
 721                       complete->riddatalen, rridresult.riddata_len);
 722                return -ENODATA;
 723        }
 724
 725        memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
 726        return 0;
 727}
 728
 729static inline struct usbctlx_completor *init_rrid_completor(
 730                                                struct usbctlx_rrid_completor
 731                                                        *completor,
 732                                                const hfa384x_usb_rridresp_t
 733                                                        *rridresp,
 734                                                void *riddata,
 735                                                unsigned int riddatalen)
 736{
 737        completor->head.complete = usbctlx_rrid_completor_fn;
 738        completor->rridresp = rridresp;
 739        completor->riddata = riddata;
 740        completor->riddatalen = riddatalen;
 741        return &(completor->head);
 742}
 743
 744/*----------------------------------------------------------------
 745* Completor object:
 746* Interprets the results of a synchronous RID-write
 747----------------------------------------------------------------*/
 748typedef struct usbctlx_cmd_completor usbctlx_wrid_completor_t;
 749#define init_wrid_completor  init_cmd_completor
 750
 751/*----------------------------------------------------------------
 752* Completor object:
 753* Interprets the results of a synchronous memory-write
 754----------------------------------------------------------------*/
 755typedef struct usbctlx_cmd_completor usbctlx_wmem_completor_t;
 756#define init_wmem_completor  init_cmd_completor
 757
 758/*----------------------------------------------------------------
 759* Completor object:
 760* Interprets the results of a synchronous memory-read
 761----------------------------------------------------------------*/
 762struct usbctlx_rmem_completor {
 763        struct usbctlx_completor head;
 764
 765        const hfa384x_usb_rmemresp_t *rmemresp;
 766        void *data;
 767        unsigned int len;
 768};
 769typedef struct usbctlx_rmem_completor usbctlx_rmem_completor_t;
 770
 771static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
 772{
 773        usbctlx_rmem_completor_t *complete = (usbctlx_rmem_completor_t *) head;
 774
 775        pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
 776        memcpy(complete->data, complete->rmemresp->data, complete->len);
 777        return 0;
 778}
 779
 780static inline struct usbctlx_completor *init_rmem_completor(
 781                                                usbctlx_rmem_completor_t
 782                                                        *completor,
 783                                                hfa384x_usb_rmemresp_t
 784                                                        *rmemresp,
 785                                                void *data,
 786                                                unsigned int len)
 787{
 788        completor->head.complete = usbctlx_rmem_completor_fn;
 789        completor->rmemresp = rmemresp;
 790        completor->data = data;
 791        completor->len = len;
 792        return &(completor->head);
 793}
 794
 795/*----------------------------------------------------------------
 796* hfa384x_cb_status
 797*
 798* Ctlx_complete handler for async CMD type control exchanges.
 799* mark the hw struct as such.
 800*
 801* Note: If the handling is changed here, it should probably be
 802*       changed in docmd as well.
 803*
 804* Arguments:
 805*       hw              hw struct
 806*       ctlx            completed CTLX
 807*
 808* Returns:
 809*       nothing
 810*
 811* Side effects:
 812*
 813* Call context:
 814*       interrupt
 815----------------------------------------------------------------*/
 816static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
 817{
 818        if (ctlx->usercb != NULL) {
 819                hfa384x_cmdresult_t cmdresult;
 820
 821                if (ctlx->state != CTLX_COMPLETE) {
 822                        memset(&cmdresult, 0, sizeof(cmdresult));
 823                        cmdresult.status =
 824                            HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
 825                } else {
 826                        usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
 827                }
 828
 829                ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
 830        }
 831}
 832
 833/*----------------------------------------------------------------
 834* hfa384x_cb_rrid
 835*
 836* CTLX completion handler for async RRID type control exchanges.
 837*
 838* Note: If the handling is changed here, it should probably be
 839*       changed in dorrid as well.
 840*
 841* Arguments:
 842*       hw              hw struct
 843*       ctlx            completed CTLX
 844*
 845* Returns:
 846*       nothing
 847*
 848* Side effects:
 849*
 850* Call context:
 851*       interrupt
 852----------------------------------------------------------------*/
 853static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
 854{
 855        if (ctlx->usercb != NULL) {
 856                hfa384x_rridresult_t rridresult;
 857
 858                if (ctlx->state != CTLX_COMPLETE) {
 859                        memset(&rridresult, 0, sizeof(rridresult));
 860                        rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
 861                } else {
 862                        usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
 863                                               &rridresult);
 864                }
 865
 866                ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
 867        }
 868}
 869
 870static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
 871{
 872        return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
 873}
 874
 875static inline int
 876hfa384x_docmd_async(hfa384x_t *hw,
 877                    hfa384x_metacmd_t *cmd,
 878                    ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
 879{
 880        return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
 881}
 882
 883static inline int
 884hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
 885                    unsigned int riddatalen)
 886{
 887        return hfa384x_dorrid(hw, DOWAIT,
 888                              rid, riddata, riddatalen, NULL, NULL, NULL);
 889}
 890
 891static inline int
 892hfa384x_dorrid_async(hfa384x_t *hw,
 893                     u16 rid, void *riddata, unsigned int riddatalen,
 894                     ctlx_cmdcb_t cmdcb,
 895                     ctlx_usercb_t usercb, void *usercb_data)
 896{
 897        return hfa384x_dorrid(hw, DOASYNC,
 898                              rid, riddata, riddatalen,
 899                              cmdcb, usercb, usercb_data);
 900}
 901
 902static inline int
 903hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
 904                    unsigned int riddatalen)
 905{
 906        return hfa384x_dowrid(hw, DOWAIT,
 907                              rid, riddata, riddatalen, NULL, NULL, NULL);
 908}
 909
 910static inline int
 911hfa384x_dowrid_async(hfa384x_t *hw,
 912                     u16 rid, void *riddata, unsigned int riddatalen,
 913                     ctlx_cmdcb_t cmdcb,
 914                     ctlx_usercb_t usercb, void *usercb_data)
 915{
 916        return hfa384x_dowrid(hw, DOASYNC,
 917                              rid, riddata, riddatalen,
 918                              cmdcb, usercb, usercb_data);
 919}
 920
 921static inline int
 922hfa384x_dormem_wait(hfa384x_t *hw,
 923                    u16 page, u16 offset, void *data, unsigned int len)
 924{
 925        return hfa384x_dormem(hw, DOWAIT,
 926                              page, offset, data, len, NULL, NULL, NULL);
 927}
 928
 929static inline int
 930hfa384x_dormem_async(hfa384x_t *hw,
 931                     u16 page, u16 offset, void *data, unsigned int len,
 932                     ctlx_cmdcb_t cmdcb,
 933                     ctlx_usercb_t usercb, void *usercb_data)
 934{
 935        return hfa384x_dormem(hw, DOASYNC,
 936                              page, offset, data, len,
 937                              cmdcb, usercb, usercb_data);
 938}
 939
 940static inline int
 941hfa384x_dowmem_wait(hfa384x_t *hw,
 942                    u16 page, u16 offset, void *data, unsigned int len)
 943{
 944        return hfa384x_dowmem(hw, DOWAIT,
 945                              page, offset, data, len, NULL, NULL, NULL);
 946}
 947
 948static inline int
 949hfa384x_dowmem_async(hfa384x_t *hw,
 950                     u16 page,
 951                     u16 offset,
 952                     void *data,
 953                     unsigned int len,
 954                     ctlx_cmdcb_t cmdcb,
 955                     ctlx_usercb_t usercb, void *usercb_data)
 956{
 957        return hfa384x_dowmem(hw, DOASYNC,
 958                              page, offset, data, len,
 959                              cmdcb, usercb, usercb_data);
 960}
 961
 962/*----------------------------------------------------------------
 963* hfa384x_cmd_initialize
 964*
 965* Issues the initialize command and sets the hw->state based
 966* on the result.
 967*
 968* Arguments:
 969*       hw              device structure
 970*
 971* Returns:
 972*       0               success
 973*       >0              f/w reported error - f/w status code
 974*       <0              driver reported error
 975*
 976* Side effects:
 977*
 978* Call context:
 979*       process
 980----------------------------------------------------------------*/
 981int hfa384x_cmd_initialize(hfa384x_t *hw)
 982{
 983        int result = 0;
 984        int i;
 985        hfa384x_metacmd_t cmd;
 986
 987        cmd.cmd = HFA384x_CMDCODE_INIT;
 988        cmd.parm0 = 0;
 989        cmd.parm1 = 0;
 990        cmd.parm2 = 0;
 991
 992        result = hfa384x_docmd_wait(hw, &cmd);
 993
 994        pr_debug("cmdresp.init: "
 995                 "status=0x%04x, resp0=0x%04x, "
 996                 "resp1=0x%04x, resp2=0x%04x\n",
 997                 cmd.result.status,
 998                 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
 999        if (result == 0) {
1000                for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
1001                        hw->port_enabled[i] = 0;
1002        }
1003
1004        hw->link_status = HFA384x_LINK_NOTCONNECTED;
1005
1006        return result;
1007}
1008
1009/*----------------------------------------------------------------
1010* hfa384x_cmd_disable
1011*
1012* Issues the disable command to stop communications on one of
1013* the MACs 'ports'.
1014*
1015* Arguments:
1016*       hw              device structure
1017*       macport         MAC port number (host order)
1018*
1019* Returns:
1020*       0               success
1021*       >0              f/w reported failure - f/w status code
1022*       <0              driver reported error (timeout|bad arg)
1023*
1024* Side effects:
1025*
1026* Call context:
1027*       process
1028----------------------------------------------------------------*/
1029int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
1030{
1031        int result = 0;
1032        hfa384x_metacmd_t cmd;
1033
1034        cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
1035            HFA384x_CMD_MACPORT_SET(macport);
1036        cmd.parm0 = 0;
1037        cmd.parm1 = 0;
1038        cmd.parm2 = 0;
1039
1040        result = hfa384x_docmd_wait(hw, &cmd);
1041
1042        return result;
1043}
1044
1045/*----------------------------------------------------------------
1046* hfa384x_cmd_enable
1047*
1048* Issues the enable command to enable communications on one of
1049* the MACs 'ports'.
1050*
1051* Arguments:
1052*       hw              device structure
1053*       macport         MAC port number
1054*
1055* Returns:
1056*       0               success
1057*       >0              f/w reported failure - f/w status code
1058*       <0              driver reported error (timeout|bad arg)
1059*
1060* Side effects:
1061*
1062* Call context:
1063*       process
1064----------------------------------------------------------------*/
1065int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1066{
1067        int result = 0;
1068        hfa384x_metacmd_t cmd;
1069
1070        cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1071            HFA384x_CMD_MACPORT_SET(macport);
1072        cmd.parm0 = 0;
1073        cmd.parm1 = 0;
1074        cmd.parm2 = 0;
1075
1076        result = hfa384x_docmd_wait(hw, &cmd);
1077
1078        return result;
1079}
1080
1081/*----------------------------------------------------------------
1082* hfa384x_cmd_monitor
1083*
1084* Enables the 'monitor mode' of the MAC.  Here's the description of
1085* monitor mode that I've received thus far:
1086*
1087*  "The "monitor mode" of operation is that the MAC passes all
1088*  frames for which the PLCP checks are correct. All received
1089*  MPDUs are passed to the host with MAC Port = 7, with a
1090*  receive status of good, FCS error, or undecryptable. Passing
1091*  certain MPDUs is a violation of the 802.11 standard, but useful
1092*  for a debugging tool."  Normal communication is not possible
1093*  while monitor mode is enabled.
1094*
1095* Arguments:
1096*       hw              device structure
1097*       enable          a code (0x0b|0x0f) that enables/disables
1098*                       monitor mode. (host order)
1099*
1100* Returns:
1101*       0               success
1102*       >0              f/w reported failure - f/w status code
1103*       <0              driver reported error (timeout|bad arg)
1104*
1105* Side effects:
1106*
1107* Call context:
1108*       process
1109----------------------------------------------------------------*/
1110int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1111{
1112        int result = 0;
1113        hfa384x_metacmd_t cmd;
1114
1115        cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1116            HFA384x_CMD_AINFO_SET(enable);
1117        cmd.parm0 = 0;
1118        cmd.parm1 = 0;
1119        cmd.parm2 = 0;
1120
1121        result = hfa384x_docmd_wait(hw, &cmd);
1122
1123        return result;
1124}
1125
1126/*----------------------------------------------------------------
1127* hfa384x_cmd_download
1128*
1129* Sets the controls for the MAC controller code/data download
1130* process.  The arguments set the mode and address associated
1131* with a download.  Note that the aux registers should be enabled
1132* prior to setting one of the download enable modes.
1133*
1134* Arguments:
1135*       hw              device structure
1136*       mode            0 - Disable programming and begin code exec
1137*                       1 - Enable volatile mem programming
1138*                       2 - Enable non-volatile mem programming
1139*                       3 - Program non-volatile section from NV download
1140*                           buffer.
1141*                       (host order)
1142*       lowaddr
1143*       highaddr        For mode 1, sets the high & low order bits of
1144*                       the "destination address".  This address will be
1145*                       the execution start address when download is
1146*                       subsequently disabled.
1147*                       For mode 2, sets the high & low order bits of
1148*                       the destination in NV ram.
1149*                       For modes 0 & 3, should be zero. (host order)
1150*                       NOTE: these are CMD format.
1151*       codelen         Length of the data to write in mode 2,
1152*                       zero otherwise. (host order)
1153*
1154* Returns:
1155*       0               success
1156*       >0              f/w reported failure - f/w status code
1157*       <0              driver reported error (timeout|bad arg)
1158*
1159* Side effects:
1160*
1161* Call context:
1162*       process
1163----------------------------------------------------------------*/
1164int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1165                         u16 highaddr, u16 codelen)
1166{
1167        int result = 0;
1168        hfa384x_metacmd_t cmd;
1169
1170        pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1171                 mode, lowaddr, highaddr, codelen);
1172
1173        cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1174                   HFA384x_CMD_PROGMODE_SET(mode));
1175
1176        cmd.parm0 = lowaddr;
1177        cmd.parm1 = highaddr;
1178        cmd.parm2 = codelen;
1179
1180        result = hfa384x_docmd_wait(hw, &cmd);
1181
1182        return result;
1183}
1184
1185/*----------------------------------------------------------------
1186* hfa384x_corereset
1187*
1188* Perform a reset of the hfa38xx MAC core.  We assume that the hw
1189* structure is in its "created" state.  That is, it is initialized
1190* with proper values.  Note that if a reset is done after the
1191* device has been active for awhile, the caller might have to clean
1192* up some leftover cruft in the hw structure.
1193*
1194* Arguments:
1195*       hw              device structure
1196*       holdtime        how long (in ms) to hold the reset
1197*       settletime      how long (in ms) to wait after releasing
1198*                       the reset
1199*
1200* Returns:
1201*       nothing
1202*
1203* Side effects:
1204*
1205* Call context:
1206*       process
1207----------------------------------------------------------------*/
1208int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1209{
1210        int result = 0;
1211
1212        result = usb_reset_device(hw->usb);
1213        if (result < 0) {
1214                printk(KERN_ERR "usb_reset_device() failed, result=%d.\n",
1215                       result);
1216        }
1217
1218        return result;
1219}
1220
1221/*----------------------------------------------------------------
1222* hfa384x_usbctlx_complete_sync
1223*
1224* Waits for a synchronous CTLX object to complete,
1225* and then handles the response.
1226*
1227* Arguments:
1228*       hw              device structure
1229*       ctlx            CTLX ptr
1230*       completor       functor object to decide what to
1231*                       do with the CTLX's result.
1232*
1233* Returns:
1234*       0               Success
1235*       -ERESTARTSYS    Interrupted by a signal
1236*       -EIO            CTLX failed
1237*       -ENODEV         Adapter was unplugged
1238*       ???             Result from completor
1239*
1240* Side effects:
1241*
1242* Call context:
1243*       process
1244----------------------------------------------------------------*/
1245static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1246                                         hfa384x_usbctlx_t *ctlx,
1247                                         struct usbctlx_completor *completor)
1248{
1249        unsigned long flags;
1250        int result;
1251
1252        result = wait_for_completion_interruptible(&ctlx->done);
1253
1254        spin_lock_irqsave(&hw->ctlxq.lock, flags);
1255
1256        /*
1257         * We can only handle the CTLX if the USB disconnect
1258         * function has not run yet ...
1259         */
1260cleanup:
1261        if (hw->wlandev->hwremoved) {
1262                spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1263                result = -ENODEV;
1264        } else if (result != 0) {
1265                int runqueue = 0;
1266
1267                /*
1268                 * We were probably interrupted, so delete
1269                 * this CTLX asynchronously, kill the timers
1270                 * and the URB, and then start the next
1271                 * pending CTLX.
1272                 *
1273                 * NOTE: We can only delete the timers and
1274                 *       the URB if this CTLX is active.
1275                 */
1276                if (ctlx == get_active_ctlx(hw)) {
1277                        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1278
1279                        del_singleshot_timer_sync(&hw->reqtimer);
1280                        del_singleshot_timer_sync(&hw->resptimer);
1281                        hw->req_timer_done = 1;
1282                        hw->resp_timer_done = 1;
1283                        usb_kill_urb(&hw->ctlx_urb);
1284
1285                        spin_lock_irqsave(&hw->ctlxq.lock, flags);
1286
1287                        runqueue = 1;
1288
1289                        /*
1290                         * This scenario is so unlikely that I'm
1291                         * happy with a grubby "goto" solution ...
1292                         */
1293                        if (hw->wlandev->hwremoved)
1294                                goto cleanup;
1295                }
1296
1297                /*
1298                 * The completion task will send this CTLX
1299                 * to the reaper the next time it runs. We
1300                 * are no longer in a hurry.
1301                 */
1302                ctlx->reapable = 1;
1303                ctlx->state = CTLX_REQ_FAILED;
1304                list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1305
1306                spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1307
1308                if (runqueue)
1309                        hfa384x_usbctlxq_run(hw);
1310        } else {
1311                if (ctlx->state == CTLX_COMPLETE) {
1312                        result = completor->complete(completor);
1313                } else {
1314                        printk(KERN_WARNING "CTLX[%d] error: state(%s)\n",
1315                               le16_to_cpu(ctlx->outbuf.type),
1316                               ctlxstr(ctlx->state));
1317                        result = -EIO;
1318                }
1319
1320                list_del(&ctlx->list);
1321                spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1322                kfree(ctlx);
1323        }
1324
1325        return result;
1326}
1327
1328/*----------------------------------------------------------------
1329* hfa384x_docmd
1330*
1331* Constructs a command CTLX and submits it.
1332*
1333* NOTE: Any changes to the 'post-submit' code in this function
1334*       need to be carried over to hfa384x_cbcmd() since the handling
1335*       is virtually identical.
1336*
1337* Arguments:
1338*       hw              device structure
1339*       mode            DOWAIT or DOASYNC
1340*       cmd             cmd structure.  Includes all arguments and result
1341*                       data points.  All in host order. in host order
1342*       cmdcb           command-specific callback
1343*       usercb          user callback for async calls, NULL for DOWAIT calls
1344*       usercb_data     user supplied data pointer for async calls, NULL
1345*                       for DOASYNC calls
1346*
1347* Returns:
1348*       0               success
1349*       -EIO            CTLX failure
1350*       -ERESTARTSYS    Awakened on signal
1351*       >0              command indicated error, Status and Resp0-2 are
1352*                       in hw structure.
1353*
1354* Side effects:
1355*
1356*
1357* Call context:
1358*       process
1359----------------------------------------------------------------*/
1360static int
1361hfa384x_docmd(hfa384x_t *hw,
1362              enum cmd_mode mode,
1363              hfa384x_metacmd_t *cmd,
1364              ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1365{
1366        int result;
1367        hfa384x_usbctlx_t *ctlx;
1368
1369        ctlx = usbctlx_alloc();
1370        if (ctlx == NULL) {
1371                result = -ENOMEM;
1372                goto done;
1373        }
1374
1375        /* Initialize the command */
1376        ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1377        ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1378        ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1379        ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1380        ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1381
1382        ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1383
1384        pr_debug("cmdreq: cmd=0x%04x "
1385                 "parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1386                 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1387
1388        ctlx->reapable = mode;
1389        ctlx->cmdcb = cmdcb;
1390        ctlx->usercb = usercb;
1391        ctlx->usercb_data = usercb_data;
1392
1393        result = hfa384x_usbctlx_submit(hw, ctlx);
1394        if (result != 0) {
1395                kfree(ctlx);
1396        } else if (mode == DOWAIT) {
1397                struct usbctlx_cmd_completor completor;
1398
1399                result =
1400                    hfa384x_usbctlx_complete_sync(hw, ctlx,
1401                                                  init_cmd_completor(&completor,
1402                                                                     &ctlx->
1403                                                                     inbuf.
1404                                                                     cmdresp,
1405                                                                     &cmd->
1406                                                                     result));
1407        }
1408
1409done:
1410        return result;
1411}
1412
1413/*----------------------------------------------------------------
1414* hfa384x_dorrid
1415*
1416* Constructs a read rid CTLX and issues it.
1417*
1418* NOTE: Any changes to the 'post-submit' code in this function
1419*       need to be carried over to hfa384x_cbrrid() since the handling
1420*       is virtually identical.
1421*
1422* Arguments:
1423*       hw              device structure
1424*       mode            DOWAIT or DOASYNC
1425*       rid             Read RID number (host order)
1426*       riddata         Caller supplied buffer that MAC formatted RID.data
1427*                       record will be written to for DOWAIT calls. Should
1428*                       be NULL for DOASYNC calls.
1429*       riddatalen      Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1430*       cmdcb           command callback for async calls, NULL for DOWAIT calls
1431*       usercb          user callback for async calls, NULL for DOWAIT calls
1432*       usercb_data     user supplied data pointer for async calls, NULL
1433*                       for DOWAIT calls
1434*
1435* Returns:
1436*       0               success
1437*       -EIO            CTLX failure
1438*       -ERESTARTSYS    Awakened on signal
1439*       -ENODATA        riddatalen != macdatalen
1440*       >0              command indicated error, Status and Resp0-2 are
1441*                       in hw structure.
1442*
1443* Side effects:
1444*
1445* Call context:
1446*       interrupt (DOASYNC)
1447*       process (DOWAIT or DOASYNC)
1448----------------------------------------------------------------*/
1449static int
1450hfa384x_dorrid(hfa384x_t *hw,
1451               enum cmd_mode mode,
1452               u16 rid,
1453               void *riddata,
1454               unsigned int riddatalen,
1455               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1456{
1457        int result;
1458        hfa384x_usbctlx_t *ctlx;
1459
1460        ctlx = usbctlx_alloc();
1461        if (ctlx == NULL) {
1462                result = -ENOMEM;
1463                goto done;
1464        }
1465
1466        /* Initialize the command */
1467        ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1468        ctlx->outbuf.rridreq.frmlen =
1469            cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1470        ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1471
1472        ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1473
1474        ctlx->reapable = mode;
1475        ctlx->cmdcb = cmdcb;
1476        ctlx->usercb = usercb;
1477        ctlx->usercb_data = usercb_data;
1478
1479        /* Submit the CTLX */
1480        result = hfa384x_usbctlx_submit(hw, ctlx);
1481        if (result != 0) {
1482                kfree(ctlx);
1483        } else if (mode == DOWAIT) {
1484                struct usbctlx_rrid_completor completor;
1485
1486                result =
1487                    hfa384x_usbctlx_complete_sync(hw, ctlx,
1488                                                  init_rrid_completor
1489                                                  (&completor,
1490                                                   &ctlx->inbuf.rridresp,
1491                                                   riddata, riddatalen));
1492        }
1493
1494done:
1495        return result;
1496}
1497
1498/*----------------------------------------------------------------
1499* hfa384x_dowrid
1500*
1501* Constructs a write rid CTLX and issues it.
1502*
1503* NOTE: Any changes to the 'post-submit' code in this function
1504*       need to be carried over to hfa384x_cbwrid() since the handling
1505*       is virtually identical.
1506*
1507* Arguments:
1508*       hw              device structure
1509*       enum cmd_mode   DOWAIT or DOASYNC
1510*       rid             RID code
1511*       riddata         Data portion of RID formatted for MAC
1512*       riddatalen      Length of the data portion in bytes
1513*       cmdcb           command callback for async calls, NULL for DOWAIT calls
1514*       usercb          user callback for async calls, NULL for DOWAIT calls
1515*       usercb_data     user supplied data pointer for async calls
1516*
1517* Returns:
1518*       0               success
1519*       -ETIMEDOUT      timed out waiting for register ready or
1520*                       command completion
1521*       >0              command indicated error, Status and Resp0-2 are
1522*                       in hw structure.
1523*
1524* Side effects:
1525*
1526* Call context:
1527*       interrupt (DOASYNC)
1528*       process (DOWAIT or DOASYNC)
1529----------------------------------------------------------------*/
1530static int
1531hfa384x_dowrid(hfa384x_t *hw,
1532               enum cmd_mode mode,
1533               u16 rid,
1534               void *riddata,
1535               unsigned int riddatalen,
1536               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1537{
1538        int result;
1539        hfa384x_usbctlx_t *ctlx;
1540
1541        ctlx = usbctlx_alloc();
1542        if (ctlx == NULL) {
1543                result = -ENOMEM;
1544                goto done;
1545        }
1546
1547        /* Initialize the command */
1548        ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1549        ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1550                                                   (ctlx->outbuf.wridreq.rid) +
1551                                                   riddatalen + 1) / 2);
1552        ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1553        memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1554
1555        ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1556            sizeof(ctlx->outbuf.wridreq.frmlen) +
1557            sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1558
1559        ctlx->reapable = mode;
1560        ctlx->cmdcb = cmdcb;
1561        ctlx->usercb = usercb;
1562        ctlx->usercb_data = usercb_data;
1563
1564        /* Submit the CTLX */
1565        result = hfa384x_usbctlx_submit(hw, ctlx);
1566        if (result != 0) {
1567                kfree(ctlx);
1568        } else if (mode == DOWAIT) {
1569                usbctlx_wrid_completor_t completor;
1570                hfa384x_cmdresult_t wridresult;
1571
1572                result = hfa384x_usbctlx_complete_sync(hw,
1573                                                       ctlx,
1574                                                       init_wrid_completor
1575                                                       (&completor,
1576                                                        &ctlx->inbuf.wridresp,
1577                                                        &wridresult));
1578        }
1579
1580done:
1581        return result;
1582}
1583
1584/*----------------------------------------------------------------
1585* hfa384x_dormem
1586*
1587* Constructs a readmem CTLX and issues it.
1588*
1589* NOTE: Any changes to the 'post-submit' code in this function
1590*       need to be carried over to hfa384x_cbrmem() since the handling
1591*       is virtually identical.
1592*
1593* Arguments:
1594*       hw              device structure
1595*       mode            DOWAIT or DOASYNC
1596*       page            MAC address space page (CMD format)
1597*       offset          MAC address space offset
1598*       data            Ptr to data buffer to receive read
1599*       len             Length of the data to read (max == 2048)
1600*       cmdcb           command callback for async calls, NULL for DOWAIT calls
1601*       usercb          user callback for async calls, NULL for DOWAIT calls
1602*       usercb_data     user supplied data pointer for async calls
1603*
1604* Returns:
1605*       0               success
1606*       -ETIMEDOUT      timed out waiting for register ready or
1607*                       command completion
1608*       >0              command indicated error, Status and Resp0-2 are
1609*                       in hw structure.
1610*
1611* Side effects:
1612*
1613* Call context:
1614*       interrupt (DOASYNC)
1615*       process (DOWAIT or DOASYNC)
1616----------------------------------------------------------------*/
1617static int
1618hfa384x_dormem(hfa384x_t *hw,
1619               enum cmd_mode mode,
1620               u16 page,
1621               u16 offset,
1622               void *data,
1623               unsigned int len,
1624               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1625{
1626        int result;
1627        hfa384x_usbctlx_t *ctlx;
1628
1629        ctlx = usbctlx_alloc();
1630        if (ctlx == NULL) {
1631                result = -ENOMEM;
1632                goto done;
1633        }
1634
1635        /* Initialize the command */
1636        ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1637        ctlx->outbuf.rmemreq.frmlen =
1638            cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1639                        sizeof(ctlx->outbuf.rmemreq.page) + len);
1640        ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1641        ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1642
1643        ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1644
1645        pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1646                 ctlx->outbuf.rmemreq.type,
1647                 ctlx->outbuf.rmemreq.frmlen,
1648                 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1649
1650        pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1651
1652        ctlx->reapable = mode;
1653        ctlx->cmdcb = cmdcb;
1654        ctlx->usercb = usercb;
1655        ctlx->usercb_data = usercb_data;
1656
1657        result = hfa384x_usbctlx_submit(hw, ctlx);
1658        if (result != 0) {
1659                kfree(ctlx);
1660        } else if (mode == DOWAIT) {
1661                usbctlx_rmem_completor_t completor;
1662
1663                result =
1664                    hfa384x_usbctlx_complete_sync(hw, ctlx,
1665                                                  init_rmem_completor
1666                                                  (&completor,
1667                                                   &ctlx->inbuf.rmemresp, data,
1668                                                   len));
1669        }
1670
1671done:
1672        return result;
1673}
1674
1675/*----------------------------------------------------------------
1676* hfa384x_dowmem
1677*
1678* Constructs a writemem CTLX and issues it.
1679*
1680* NOTE: Any changes to the 'post-submit' code in this function
1681*       need to be carried over to hfa384x_cbwmem() since the handling
1682*       is virtually identical.
1683*
1684* Arguments:
1685*       hw              device structure
1686*       mode            DOWAIT or DOASYNC
1687*       page            MAC address space page (CMD format)
1688*       offset          MAC address space offset
1689*       data            Ptr to data buffer containing write data
1690*       len             Length of the data to read (max == 2048)
1691*       cmdcb           command callback for async calls, NULL for DOWAIT calls
1692*       usercb          user callback for async calls, NULL for DOWAIT calls
1693*       usercb_data     user supplied data pointer for async calls.
1694*
1695* Returns:
1696*       0               success
1697*       -ETIMEDOUT      timed out waiting for register ready or
1698*                       command completion
1699*       >0              command indicated error, Status and Resp0-2 are
1700*                       in hw structure.
1701*
1702* Side effects:
1703*
1704* Call context:
1705*       interrupt (DOWAIT)
1706*       process (DOWAIT or DOASYNC)
1707----------------------------------------------------------------*/
1708static int
1709hfa384x_dowmem(hfa384x_t *hw,
1710               enum cmd_mode mode,
1711               u16 page,
1712               u16 offset,
1713               void *data,
1714               unsigned int len,
1715               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1716{
1717        int result;
1718        hfa384x_usbctlx_t *ctlx;
1719
1720        pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1721
1722        ctlx = usbctlx_alloc();
1723        if (ctlx == NULL) {
1724                result = -ENOMEM;
1725                goto done;
1726        }
1727
1728        /* Initialize the command */
1729        ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1730        ctlx->outbuf.wmemreq.frmlen =
1731            cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1732                        sizeof(ctlx->outbuf.wmemreq.page) + len);
1733        ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1734        ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1735        memcpy(ctlx->outbuf.wmemreq.data, data, len);
1736
1737        ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1738            sizeof(ctlx->outbuf.wmemreq.frmlen) +
1739            sizeof(ctlx->outbuf.wmemreq.offset) +
1740            sizeof(ctlx->outbuf.wmemreq.page) + len;
1741
1742        ctlx->reapable = mode;
1743        ctlx->cmdcb = cmdcb;
1744        ctlx->usercb = usercb;
1745        ctlx->usercb_data = usercb_data;
1746
1747        result = hfa384x_usbctlx_submit(hw, ctlx);
1748        if (result != 0) {
1749                kfree(ctlx);
1750        } else if (mode == DOWAIT) {
1751                usbctlx_wmem_completor_t completor;
1752                hfa384x_cmdresult_t wmemresult;
1753
1754                result = hfa384x_usbctlx_complete_sync(hw,
1755                                                       ctlx,
1756                                                       init_wmem_completor
1757                                                       (&completor,
1758                                                        &ctlx->inbuf.wmemresp,
1759                                                        &wmemresult));
1760        }
1761
1762done:
1763        return result;
1764}
1765
1766/*----------------------------------------------------------------
1767* hfa384x_drvr_commtallies
1768*
1769* Send a commtallies inquiry to the MAC.  Note that this is an async
1770* call that will result in an info frame arriving sometime later.
1771*
1772* Arguments:
1773*       hw              device structure
1774*
1775* Returns:
1776*       zero            success.
1777*
1778* Side effects:
1779*
1780* Call context:
1781*       process
1782----------------------------------------------------------------*/
1783int hfa384x_drvr_commtallies(hfa384x_t *hw)
1784{
1785        hfa384x_metacmd_t cmd;
1786
1787        cmd.cmd = HFA384x_CMDCODE_INQ;
1788        cmd.parm0 = HFA384x_IT_COMMTALLIES;
1789        cmd.parm1 = 0;
1790        cmd.parm2 = 0;
1791
1792        hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
1793
1794        return 0;
1795}
1796
1797/*----------------------------------------------------------------
1798* hfa384x_drvr_disable
1799*
1800* Issues the disable command to stop communications on one of
1801* the MACs 'ports'.  Only macport 0 is valid  for stations.
1802* APs may also disable macports 1-6.  Only ports that have been
1803* previously enabled may be disabled.
1804*
1805* Arguments:
1806*       hw              device structure
1807*       macport         MAC port number (host order)
1808*
1809* Returns:
1810*       0               success
1811*       >0              f/w reported failure - f/w status code
1812*       <0              driver reported error (timeout|bad arg)
1813*
1814* Side effects:
1815*
1816* Call context:
1817*       process
1818----------------------------------------------------------------*/
1819int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1820{
1821        int result = 0;
1822
1823        if ((!hw->isap && macport != 0) ||
1824            (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1825            !(hw->port_enabled[macport])) {
1826                result = -EINVAL;
1827        } else {
1828                result = hfa384x_cmd_disable(hw, macport);
1829                if (result == 0)
1830                        hw->port_enabled[macport] = 0;
1831        }
1832        return result;
1833}
1834
1835/*----------------------------------------------------------------
1836* hfa384x_drvr_enable
1837*
1838* Issues the enable command to enable communications on one of
1839* the MACs 'ports'.  Only macport 0 is valid  for stations.
1840* APs may also enable macports 1-6.  Only ports that are currently
1841* disabled may be enabled.
1842*
1843* Arguments:
1844*       hw              device structure
1845*       macport         MAC port number
1846*
1847* Returns:
1848*       0               success
1849*       >0              f/w reported failure - f/w status code
1850*       <0              driver reported error (timeout|bad arg)
1851*
1852* Side effects:
1853*
1854* Call context:
1855*       process
1856----------------------------------------------------------------*/
1857int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1858{
1859        int result = 0;
1860
1861        if ((!hw->isap && macport != 0) ||
1862            (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1863            (hw->port_enabled[macport])) {
1864                result = -EINVAL;
1865        } else {
1866                result = hfa384x_cmd_enable(hw, macport);
1867                if (result == 0)
1868                        hw->port_enabled[macport] = 1;
1869        }
1870        return result;
1871}
1872
1873/*----------------------------------------------------------------
1874* hfa384x_drvr_flashdl_enable
1875*
1876* Begins the flash download state.  Checks to see that we're not
1877* already in a download state and that a port isn't enabled.
1878* Sets the download state and retrieves the flash download
1879* buffer location, buffer size, and timeout length.
1880*
1881* Arguments:
1882*       hw              device structure
1883*
1884* Returns:
1885*       0               success
1886*       >0              f/w reported error - f/w status code
1887*       <0              driver reported error
1888*
1889* Side effects:
1890*
1891* Call context:
1892*       process
1893----------------------------------------------------------------*/
1894int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
1895{
1896        int result = 0;
1897        int i;
1898
1899        /* Check that a port isn't active */
1900        for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1901                if (hw->port_enabled[i]) {
1902                        pr_debug("called when port enabled.\n");
1903                        return -EINVAL;
1904                }
1905        }
1906
1907        /* Check that we're not already in a download state */
1908        if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1909                return -EINVAL;
1910
1911        /* Retrieve the buffer loc&size and timeout */
1912        result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1913                                        &(hw->bufinfo), sizeof(hw->bufinfo));
1914        if (result)
1915                return result;
1916
1917        hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1918        hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1919        hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1920        result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1921                                          &(hw->dltimeout));
1922        if (result)
1923                return result;
1924
1925        hw->dltimeout = le16_to_cpu(hw->dltimeout);
1926
1927        pr_debug("flashdl_enable\n");
1928
1929        hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1930
1931        return result;
1932}
1933
1934/*----------------------------------------------------------------
1935* hfa384x_drvr_flashdl_disable
1936*
1937* Ends the flash download state.  Note that this will cause the MAC
1938* firmware to restart.
1939*
1940* Arguments:
1941*       hw              device structure
1942*
1943* Returns:
1944*       0               success
1945*       >0              f/w reported error - f/w status code
1946*       <0              driver reported error
1947*
1948* Side effects:
1949*
1950* Call context:
1951*       process
1952----------------------------------------------------------------*/
1953int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
1954{
1955        /* Check that we're already in the download state */
1956        if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1957                return -EINVAL;
1958
1959        pr_debug("flashdl_enable\n");
1960
1961        /* There isn't much we can do at this point, so I don't */
1962        /*  bother  w/ the return value */
1963        hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1964        hw->dlstate = HFA384x_DLSTATE_DISABLED;
1965
1966        return 0;
1967}
1968
1969/*----------------------------------------------------------------
1970* hfa384x_drvr_flashdl_write
1971*
1972* Performs a FLASH download of a chunk of data. First checks to see
1973* that we're in the FLASH download state, then sets the download
1974* mode, uses the aux functions to 1) copy the data to the flash
1975* buffer, 2) sets the download 'write flash' mode, 3) readback and
1976* compare.  Lather rinse, repeat as many times an necessary to get
1977* all the given data into flash.
1978* When all data has been written using this function (possibly
1979* repeatedly), call drvr_flashdl_disable() to end the download state
1980* and restart the MAC.
1981*
1982* Arguments:
1983*       hw              device structure
1984*       daddr           Card address to write to. (host order)
1985*       buf             Ptr to data to write.
1986*       len             Length of data (host order).
1987*
1988* Returns:
1989*       0               success
1990*       >0              f/w reported error - f/w status code
1991*       <0              driver reported error
1992*
1993* Side effects:
1994*
1995* Call context:
1996*       process
1997----------------------------------------------------------------*/
1998int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
1999{
2000        int result = 0;
2001        u32 dlbufaddr;
2002        int nburns;
2003        u32 burnlen;
2004        u32 burndaddr;
2005        u16 burnlo;
2006        u16 burnhi;
2007        int nwrites;
2008        u8 *writebuf;
2009        u16 writepage;
2010        u16 writeoffset;
2011        u32 writelen;
2012        int i;
2013        int j;
2014
2015        pr_debug("daddr=0x%08x len=%d\n", daddr, len);
2016
2017        /* Check that we're in the flash download state */
2018        if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
2019                return -EINVAL;
2020
2021        printk(KERN_INFO "Download %d bytes to flash @0x%06x\n", len, daddr);
2022
2023        /* Convert to flat address for arithmetic */
2024        /* NOTE: dlbuffer RID stores the address in AUX format */
2025        dlbufaddr =
2026            HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
2027        pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
2028                 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
2029
2030#if 0
2031        printk(KERN_WARNING "dlbuf@0x%06lx len=%d to=%d\n", dlbufaddr,
2032               hw->bufinfo.len, hw->dltimeout);
2033#endif
2034        /* Calculations to determine how many fills of the dlbuffer to do
2035         * and how many USB wmemreq's to do for each fill.  At this point
2036         * in time, the dlbuffer size and the wmemreq size are the same.
2037         * Therefore, nwrites should always be 1.  The extra complexity
2038         * here is a hedge against future changes.
2039         */
2040
2041        /* Figure out how many times to do the flash programming */
2042        nburns = len / hw->bufinfo.len;
2043        nburns += (len % hw->bufinfo.len) ? 1 : 0;
2044
2045        /* For each flash program cycle, how many USB wmemreq's are needed? */
2046        nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
2047        nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
2048
2049        /* For each burn */
2050        for (i = 0; i < nburns; i++) {
2051                /* Get the dest address and len */
2052                burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
2053                    hw->bufinfo.len : (len - (hw->bufinfo.len * i));
2054                burndaddr = daddr + (hw->bufinfo.len * i);
2055                burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
2056                burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
2057
2058                printk(KERN_INFO "Writing %d bytes to flash @0x%06x\n",
2059                       burnlen, burndaddr);
2060
2061                /* Set the download mode */
2062                result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
2063                                              burnlo, burnhi, burnlen);
2064                if (result) {
2065                        printk(KERN_ERR "download(NV,lo=%x,hi=%x,len=%x) "
2066                               "cmd failed, result=%d. Aborting d/l\n",
2067                               burnlo, burnhi, burnlen, result);
2068                        goto exit_proc;
2069                }
2070
2071                /* copy the data to the flash download buffer */
2072                for (j = 0; j < nwrites; j++) {
2073                        writebuf = buf +
2074                            (i * hw->bufinfo.len) +
2075                            (j * HFA384x_USB_RWMEM_MAXLEN);
2076
2077                        writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
2078                                                (j * HFA384x_USB_RWMEM_MAXLEN));
2079                        writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2080                                                (j * HFA384x_USB_RWMEM_MAXLEN));
2081
2082                        writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2083                        writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2084                            HFA384x_USB_RWMEM_MAXLEN : writelen;
2085
2086                        result = hfa384x_dowmem_wait(hw,
2087                                                     writepage,
2088                                                     writeoffset,
2089                                                     writebuf, writelen);
2090                }
2091
2092                /* set the download 'write flash' mode */
2093                result = hfa384x_cmd_download(hw,
2094                                              HFA384x_PROGMODE_NVWRITE,
2095                                              0, 0, 0);
2096                if (result) {
2097                        printk(KERN_ERR
2098                               "download(NVWRITE,lo=%x,hi=%x,len=%x) "
2099                               "cmd failed, result=%d. Aborting d/l\n",
2100                               burnlo, burnhi, burnlen, result);
2101                        goto exit_proc;
2102                }
2103
2104                /* TODO: We really should do a readback and compare. */
2105        }
2106
2107exit_proc:
2108
2109        /* Leave the firmware in the 'post-prog' mode.  flashdl_disable will */
2110        /*  actually disable programming mode.  Remember, that will cause the */
2111        /*  the firmware to effectively reset itself. */
2112
2113        return result;
2114}
2115
2116/*----------------------------------------------------------------
2117* hfa384x_drvr_getconfig
2118*
2119* Performs the sequence necessary to read a config/info item.
2120*
2121* Arguments:
2122*       hw              device structure
2123*       rid             config/info record id (host order)
2124*       buf             host side record buffer.  Upon return it will
2125*                       contain the body portion of the record (minus the
2126*                       RID and len).
2127*       len             buffer length (in bytes, should match record length)
2128*
2129* Returns:
2130*       0               success
2131*       >0              f/w reported error - f/w status code
2132*       <0              driver reported error
2133*       -ENODATA        length mismatch between argument and retrieved
2134*                       record.
2135*
2136* Side effects:
2137*
2138* Call context:
2139*       process
2140----------------------------------------------------------------*/
2141int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2142{
2143        return hfa384x_dorrid_wait(hw, rid, buf, len);
2144}
2145
2146/*----------------------------------------------------------------
2147 * hfa384x_drvr_getconfig_async
2148 *
2149 * Performs the sequence necessary to perform an async read of
2150 * of a config/info item.
2151 *
2152 * Arguments:
2153 *       hw              device structure
2154 *       rid             config/info record id (host order)
2155 *       buf             host side record buffer.  Upon return it will
2156 *                       contain the body portion of the record (minus the
2157 *                       RID and len).
2158 *       len             buffer length (in bytes, should match record length)
2159 *       cbfn            caller supplied callback, called when the command
2160 *                       is done (successful or not).
2161 *       cbfndata        pointer to some caller supplied data that will be
2162 *                       passed in as an argument to the cbfn.
2163 *
2164 * Returns:
2165 *       nothing         the cbfn gets a status argument identifying if
2166 *                       any errors occur.
2167 * Side effects:
2168 *       Queues an hfa384x_usbcmd_t for subsequent execution.
2169 *
2170 * Call context:
2171 *       Any
2172 ----------------------------------------------------------------*/
2173int
2174hfa384x_drvr_getconfig_async(hfa384x_t *hw,
2175                             u16 rid, ctlx_usercb_t usercb, void *usercb_data)
2176{
2177        return hfa384x_dorrid_async(hw, rid, NULL, 0,
2178                                    hfa384x_cb_rrid, usercb, usercb_data);
2179}
2180
2181/*----------------------------------------------------------------
2182 * hfa384x_drvr_setconfig_async
2183 *
2184 * Performs the sequence necessary to write a config/info item.
2185 *
2186 * Arguments:
2187 *       hw              device structure
2188 *       rid             config/info record id (in host order)
2189 *       buf             host side record buffer
2190 *       len             buffer length (in bytes)
2191 *       usercb          completion callback
2192 *       usercb_data     completion callback argument
2193 *
2194 * Returns:
2195 *       0               success
2196 *       >0              f/w reported error - f/w status code
2197 *       <0              driver reported error
2198 *
2199 * Side effects:
2200 *
2201 * Call context:
2202 *       process
2203 ----------------------------------------------------------------*/
2204int
2205hfa384x_drvr_setconfig_async(hfa384x_t *hw,
2206                             u16 rid,
2207                             void *buf,
2208                             u16 len, ctlx_usercb_t usercb, void *usercb_data)
2209{
2210        return hfa384x_dowrid_async(hw, rid, buf, len,
2211                                    hfa384x_cb_status, usercb, usercb_data);
2212}
2213
2214/*----------------------------------------------------------------
2215* hfa384x_drvr_ramdl_disable
2216*
2217* Ends the ram download state.
2218*
2219* Arguments:
2220*       hw              device structure
2221*
2222* Returns:
2223*       0               success
2224*       >0              f/w reported error - f/w status code
2225*       <0              driver reported error
2226*
2227* Side effects:
2228*
2229* Call context:
2230*       process
2231----------------------------------------------------------------*/
2232int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2233{
2234        /* Check that we're already in the download state */
2235        if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2236                return -EINVAL;
2237
2238        pr_debug("ramdl_disable()\n");
2239
2240        /* There isn't much we can do at this point, so I don't */
2241        /*  bother  w/ the return value */
2242        hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2243        hw->dlstate = HFA384x_DLSTATE_DISABLED;
2244
2245        return 0;
2246}
2247
2248/*----------------------------------------------------------------
2249* hfa384x_drvr_ramdl_enable
2250*
2251* Begins the ram download state.  Checks to see that we're not
2252* already in a download state and that a port isn't enabled.
2253* Sets the download state and calls cmd_download with the
2254* ENABLE_VOLATILE subcommand and the exeaddr argument.
2255*
2256* Arguments:
2257*       hw              device structure
2258*       exeaddr         the card execution address that will be
2259*                       jumped to when ramdl_disable() is called
2260*                       (host order).
2261*
2262* Returns:
2263*       0               success
2264*       >0              f/w reported error - f/w status code
2265*       <0              driver reported error
2266*
2267* Side effects:
2268*
2269* Call context:
2270*       process
2271----------------------------------------------------------------*/
2272int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2273{
2274        int result = 0;
2275        u16 lowaddr;
2276        u16 hiaddr;
2277        int i;
2278
2279        /* Check that a port isn't active */
2280        for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2281                if (hw->port_enabled[i]) {
2282                        printk(KERN_ERR
2283                               "Can't download with a macport enabled.\n");
2284                        return -EINVAL;
2285                }
2286        }
2287
2288        /* Check that we're not already in a download state */
2289        if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2290                printk(KERN_ERR "Download state not disabled.\n");
2291                return -EINVAL;
2292        }
2293
2294        pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2295
2296        /* Call the download(1,addr) function */
2297        lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2298        hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2299
2300        result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2301                                      lowaddr, hiaddr, 0);
2302
2303        if (result == 0) {
2304                /* Set the download state */
2305                hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2306        } else {
2307                pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2308                         lowaddr, hiaddr, result);
2309        }
2310
2311        return result;
2312}
2313
2314/*----------------------------------------------------------------
2315* hfa384x_drvr_ramdl_write
2316*
2317* Performs a RAM download of a chunk of data. First checks to see
2318* that we're in the RAM download state, then uses the [read|write]mem USB
2319* commands to 1) copy the data, 2) readback and compare.  The download
2320* state is unaffected.  When all data has been written using
2321* this function, call drvr_ramdl_disable() to end the download state
2322* and restart the MAC.
2323*
2324* Arguments:
2325*       hw              device structure
2326*       daddr           Card address to write to. (host order)
2327*       buf             Ptr to data to write.
2328*       len             Length of data (host order).
2329*
2330* Returns:
2331*       0               success
2332*       >0              f/w reported error - f/w status code
2333*       <0              driver reported error
2334*
2335* Side effects:
2336*
2337* Call context:
2338*       process
2339----------------------------------------------------------------*/
2340int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2341{
2342        int result = 0;
2343        int nwrites;
2344        u8 *data = buf;
2345        int i;
2346        u32 curraddr;
2347        u16 currpage;
2348        u16 curroffset;
2349        u16 currlen;
2350
2351        /* Check that we're in the ram download state */
2352        if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2353                return -EINVAL;
2354
2355        printk(KERN_INFO "Writing %d bytes to ram @0x%06x\n", len, daddr);
2356
2357        /* How many dowmem calls?  */
2358        nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2359        nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2360
2361        /* Do blocking wmem's */
2362        for (i = 0; i < nwrites; i++) {
2363                /* make address args */
2364                curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2365                currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2366                curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2367                currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2368                if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2369                        currlen = HFA384x_USB_RWMEM_MAXLEN;
2370
2371                /* Do blocking ctlx */
2372                result = hfa384x_dowmem_wait(hw,
2373                                             currpage,
2374                                             curroffset,
2375                                             data +
2376                                             (i * HFA384x_USB_RWMEM_MAXLEN),
2377                                             currlen);
2378
2379                if (result)
2380                        break;
2381
2382                /* TODO: We really should have a readback. */
2383        }
2384
2385        return result;
2386}
2387
2388/*----------------------------------------------------------------
2389* hfa384x_drvr_readpda
2390*
2391* Performs the sequence to read the PDA space.  Note there is no
2392* drvr_writepda() function.  Writing a PDA is
2393* generally implemented by a calling component via calls to
2394* cmd_download and writing to the flash download buffer via the
2395* aux regs.
2396*
2397* Arguments:
2398*       hw              device structure
2399*       buf             buffer to store PDA in
2400*       len             buffer length
2401*
2402* Returns:
2403*       0               success
2404*       >0              f/w reported error - f/w status code
2405*       <0              driver reported error
2406*       -ETIMEDOUT      timout waiting for the cmd regs to become
2407*                       available, or waiting for the control reg
2408*                       to indicate the Aux port is enabled.
2409*       -ENODATA        the buffer does NOT contain a valid PDA.
2410*                       Either the card PDA is bad, or the auxdata
2411*                       reads are giving us garbage.
2412
2413*
2414* Side effects:
2415*
2416* Call context:
2417*       process or non-card interrupt.
2418----------------------------------------------------------------*/
2419int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2420{
2421        int result = 0;
2422        u16 *pda = buf;
2423        int pdaok = 0;
2424        int morepdrs = 1;
2425        int currpdr = 0;        /* word offset of the current pdr */
2426        size_t i;
2427        u16 pdrlen;             /* pdr length in bytes, host order */
2428        u16 pdrcode;            /* pdr code, host order */
2429        u16 currpage;
2430        u16 curroffset;
2431        struct pdaloc {
2432                u32 cardaddr;
2433                u16 auxctl;
2434        } pdaloc[] = {
2435                {
2436                HFA3842_PDA_BASE, 0}, {
2437                HFA3841_PDA_BASE, 0}, {
2438                HFA3841_PDA_BOGUS_BASE, 0}
2439        };
2440
2441        /* Read the pda from each known address.  */
2442        for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2443                /* Make address */
2444                currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2445                curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2446
2447                /* units of bytes */
2448                result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
2449                                                len);
2450
2451                if (result) {
2452                        printk(KERN_WARNING
2453                               "Read from index %zd failed, continuing\n", i);
2454                        continue;
2455                }
2456
2457                /* Test for garbage */
2458                pdaok = 1;      /* initially assume good */
2459                morepdrs = 1;
2460                while (pdaok && morepdrs) {
2461                        pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2462                        pdrcode = le16_to_cpu(pda[currpdr + 1]);
2463                        /* Test the record length */
2464                        if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2465                                printk(KERN_ERR "pdrlen invalid=%d\n", pdrlen);
2466                                pdaok = 0;
2467                                break;
2468                        }
2469                        /* Test the code */
2470                        if (!hfa384x_isgood_pdrcode(pdrcode)) {
2471                                printk(KERN_ERR "pdrcode invalid=%d\n",
2472                                       pdrcode);
2473                                pdaok = 0;
2474                                break;
2475                        }
2476                        /* Test for completion */
2477                        if (pdrcode == HFA384x_PDR_END_OF_PDA)
2478                                morepdrs = 0;
2479
2480                        /* Move to the next pdr (if necessary) */
2481                        if (morepdrs) {
2482                                /* note the access to pda[], need words here */
2483                                currpdr += le16_to_cpu(pda[currpdr]) + 1;
2484                        }
2485                }
2486                if (pdaok) {
2487                        printk(KERN_INFO
2488                               "PDA Read from 0x%08x in %s space.\n",
2489                               pdaloc[i].cardaddr,
2490                               pdaloc[i].auxctl == 0 ? "EXTDS" :
2491                               pdaloc[i].auxctl == 1 ? "NV" :
2492                               pdaloc[i].auxctl == 2 ? "PHY" :
2493                               pdaloc[i].auxctl == 3 ? "ICSRAM" :
2494                               "<bogus auxctl>");
2495                        break;
2496                }
2497        }
2498        result = pdaok ? 0 : -ENODATA;
2499
2500        if (result)
2501                pr_debug("Failure: pda is not okay\n");
2502
2503        return result;
2504}
2505
2506/*----------------------------------------------------------------
2507* hfa384x_drvr_setconfig
2508*
2509* Performs the sequence necessary to write a config/info item.
2510*
2511* Arguments:
2512*       hw              device structure
2513*       rid             config/info record id (in host order)
2514*       buf             host side record buffer
2515*       len             buffer length (in bytes)
2516*
2517* Returns:
2518*       0               success
2519*       >0              f/w reported error - f/w status code
2520*       <0              driver reported error
2521*
2522* Side effects:
2523*
2524* Call context:
2525*       process
2526----------------------------------------------------------------*/
2527int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2528{
2529        return hfa384x_dowrid_wait(hw, rid, buf, len);
2530}
2531
2532/*----------------------------------------------------------------
2533* hfa384x_drvr_start
2534*
2535* Issues the MAC initialize command, sets up some data structures,
2536* and enables the interrupts.  After this function completes, the
2537* low-level stuff should be ready for any/all commands.
2538*
2539* Arguments:
2540*       hw              device structure
2541* Returns:
2542*       0               success
2543*       >0              f/w reported error - f/w status code
2544*       <0              driver reported error
2545*
2546* Side effects:
2547*
2548* Call context:
2549*       process
2550----------------------------------------------------------------*/
2551
2552int hfa384x_drvr_start(hfa384x_t *hw)
2553{
2554        int result, result1, result2;
2555        u16 status;
2556
2557        might_sleep();
2558
2559        /* Clear endpoint stalls - but only do this if the endpoint
2560         * is showing a stall status. Some prism2 cards seem to behave
2561         * badly if a clear_halt is called when the endpoint is already
2562         * ok
2563         */
2564        result =
2565            usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2566        if (result < 0) {
2567                printk(KERN_ERR "Cannot get bulk in endpoint status.\n");
2568                goto done;
2569        }
2570        if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2571                printk(KERN_ERR "Failed to reset bulk in endpoint.\n");
2572
2573        result =
2574            usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2575        if (result < 0) {
2576                printk(KERN_ERR "Cannot get bulk out endpoint status.\n");
2577                goto done;
2578        }
2579        if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2580                printk(KERN_ERR "Failed to reset bulk out endpoint.\n");
2581
2582        /* Synchronous unlink, in case we're trying to restart the driver */
2583        usb_kill_urb(&hw->rx_urb);
2584
2585        /* Post the IN urb */
2586        result = submit_rx_urb(hw, GFP_KERNEL);
2587        if (result != 0) {
2588                printk(KERN_ERR
2589                       "Fatal, failed to submit RX URB, result=%d\n", result);
2590                goto done;
2591        }
2592
2593        /* Call initialize twice, with a 1 second sleep in between.
2594         * This is a nasty work-around since many prism2 cards seem to
2595         * need time to settle after an init from cold. The second
2596         * call to initialize in theory is not necessary - but we call
2597         * it anyway as a double insurance policy:
2598         * 1) If the first init should fail, the second may well succeed
2599         *    and the card can still be used
2600         * 2) It helps ensures all is well with the card after the first
2601         *    init and settle time.
2602         */
2603        result1 = hfa384x_cmd_initialize(hw);
2604        msleep(1000);
2605        result = result2 = hfa384x_cmd_initialize(hw);
2606        if (result1 != 0) {
2607                if (result2 != 0) {
2608                        printk(KERN_ERR
2609                                "cmd_initialize() failed on two attempts, results %d and %d\n",
2610                                result1, result2);
2611                        usb_kill_urb(&hw->rx_urb);
2612                        goto done;
2613                } else {
2614                        pr_debug("First cmd_initialize() failed (result %d),\n",
2615                                 result1);
2616                        pr_debug("but second attempt succeeded. All should be ok\n");
2617                }
2618        } else if (result2 != 0) {
2619                printk(KERN_WARNING "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2620                        result2);
2621                printk(KERN_WARNING
2622                       "Most likely the card will be functional\n");
2623                goto done;
2624        }
2625
2626        hw->state = HFA384x_STATE_RUNNING;
2627
2628done:
2629        return result;
2630}
2631
2632/*----------------------------------------------------------------
2633* hfa384x_drvr_stop
2634*
2635* Shuts down the MAC to the point where it is safe to unload the
2636* driver.  Any subsystem that may be holding a data or function
2637* ptr into the driver must be cleared/deinitialized.
2638*
2639* Arguments:
2640*       hw              device structure
2641* Returns:
2642*       0               success
2643*       >0              f/w reported error - f/w status code
2644*       <0              driver reported error
2645*
2646* Side effects:
2647*
2648* Call context:
2649*       process
2650----------------------------------------------------------------*/
2651int hfa384x_drvr_stop(hfa384x_t *hw)
2652{
2653        int result = 0;
2654        int i;
2655
2656        might_sleep();
2657
2658        /* There's no need for spinlocks here. The USB "disconnect"
2659         * function sets this "removed" flag and then calls us.
2660         */
2661        if (!hw->wlandev->hwremoved) {
2662                /* Call initialize to leave the MAC in its 'reset' state */
2663                hfa384x_cmd_initialize(hw);
2664
2665                /* Cancel the rxurb */
2666                usb_kill_urb(&hw->rx_urb);
2667        }
2668
2669        hw->link_status = HFA384x_LINK_NOTCONNECTED;
2670        hw->state = HFA384x_STATE_INIT;
2671
2672        del_timer_sync(&hw->commsqual_timer);
2673
2674        /* Clear all the port status */
2675        for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2676                hw->port_enabled[i] = 0;
2677
2678        return result;
2679}
2680
2681/*----------------------------------------------------------------
2682* hfa384x_drvr_txframe
2683*
2684* Takes a frame from prism2sta and queues it for transmission.
2685*
2686* Arguments:
2687*       hw              device structure
2688*       skb             packet buffer struct.  Contains an 802.11
2689*                       data frame.
2690*       p80211_hdr      points to the 802.11 header for the packet.
2691* Returns:
2692*       0               Success and more buffs available
2693*       1               Success but no more buffs
2694*       2               Allocation failure
2695*       4               Buffer full or queue busy
2696*
2697* Side effects:
2698*
2699* Call context:
2700*       interrupt
2701----------------------------------------------------------------*/
2702int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2703                         union p80211_hdr *p80211_hdr,
2704                         struct p80211_metawep *p80211_wep)
2705{
2706        int usbpktlen = sizeof(hfa384x_tx_frame_t);
2707        int result;
2708        int ret;
2709        char *ptr;
2710
2711        if (hw->tx_urb.status == -EINPROGRESS) {
2712                printk(KERN_WARNING "TX URB already in use\n");
2713                result = 3;
2714                goto exit;
2715        }
2716
2717        /* Build Tx frame structure */
2718        /* Set up the control field */
2719        memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2720
2721        /* Setup the usb type field */
2722        hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2723
2724        /* Set up the sw_support field to identify this frame */
2725        hw->txbuff.txfrm.desc.sw_support = 0x0123;
2726
2727/* Tx complete and Tx exception disable per dleach.  Might be causing
2728 * buf depletion
2729 */
2730/* #define DOEXC  SLP -- doboth breaks horribly under load, doexc less so. */
2731#if defined(DOBOTH)
2732        hw->txbuff.txfrm.desc.tx_control =
2733            HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2734            HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2735#elif defined(DOEXC)
2736        hw->txbuff.txfrm.desc.tx_control =
2737            HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2738            HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2739#else
2740        hw->txbuff.txfrm.desc.tx_control =
2741            HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2742            HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2743#endif
2744        hw->txbuff.txfrm.desc.tx_control =
2745            cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2746
2747        /* copy the header over to the txdesc */
2748        memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2749               sizeof(union p80211_hdr));
2750
2751        /* if we're using host WEP, increase size by IV+ICV */
2752        if (p80211_wep->data) {
2753                hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2754                usbpktlen += 8;
2755        } else {
2756                hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2757        }
2758
2759        usbpktlen += skb->len;
2760
2761        /* copy over the WEP IV if we are using host WEP */
2762        ptr = hw->txbuff.txfrm.data;
2763        if (p80211_wep->data) {
2764                memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2765                ptr += sizeof(p80211_wep->iv);
2766                memcpy(ptr, p80211_wep->data, skb->len);
2767        } else {
2768                memcpy(ptr, skb->data, skb->len);
2769        }
2770        /* copy over the packet data */
2771        ptr += skb->len;
2772
2773        /* copy over the WEP ICV if we are using host WEP */
2774        if (p80211_wep->data)
2775                memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2776
2777        /* Send the USB packet */
2778        usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2779                          hw->endp_out,
2780                          &(hw->txbuff), ROUNDUP64(usbpktlen),
2781                          hfa384x_usbout_callback, hw->wlandev);
2782        hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2783
2784        result = 1;
2785        ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2786        if (ret != 0) {
2787                printk(KERN_ERR "submit_tx_urb() failed, error=%d\n", ret);
2788                result = 3;
2789        }
2790
2791exit:
2792        return result;
2793}
2794
2795void hfa384x_tx_timeout(wlandevice_t *wlandev)
2796{
2797        hfa384x_t *hw = wlandev->priv;
2798        unsigned long flags;
2799
2800        spin_lock_irqsave(&hw->ctlxq.lock, flags);
2801
2802        if (!hw->wlandev->hwremoved) {
2803                int sched;
2804
2805                sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2806                sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2807                if (sched)
2808                        schedule_work(&hw->usb_work);
2809        }
2810
2811        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2812}
2813
2814/*----------------------------------------------------------------
2815* hfa384x_usbctlx_reaper_task
2816*
2817* Tasklet to delete dead CTLX objects
2818*
2819* Arguments:
2820*       data    ptr to a hfa384x_t
2821*
2822* Returns:
2823*
2824* Call context:
2825*       Interrupt
2826----------------------------------------------------------------*/
2827static void hfa384x_usbctlx_reaper_task(unsigned long data)
2828{
2829        hfa384x_t *hw = (hfa384x_t *) data;
2830        struct list_head *entry;
2831        struct list_head *temp;
2832        unsigned long flags;
2833
2834        spin_lock_irqsave(&hw->ctlxq.lock, flags);
2835
2836        /* This list is guaranteed to be empty if someone
2837         * has unplugged the adapter.
2838         */
2839        list_for_each_safe(entry, temp, &hw->ctlxq.reapable) {
2840                hfa384x_usbctlx_t *ctlx;
2841
2842                ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2843                list_del(&ctlx->list);
2844                kfree(ctlx);
2845        }
2846
2847        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2848
2849}
2850
2851/*----------------------------------------------------------------
2852* hfa384x_usbctlx_completion_task
2853*
2854* Tasklet to call completion handlers for returned CTLXs
2855*
2856* Arguments:
2857*       data    ptr to hfa384x_t
2858*
2859* Returns:
2860*       Nothing
2861*
2862* Call context:
2863*       Interrupt
2864----------------------------------------------------------------*/
2865static void hfa384x_usbctlx_completion_task(unsigned long data)
2866{
2867        hfa384x_t *hw = (hfa384x_t *) data;
2868        struct list_head *entry;
2869        struct list_head *temp;
2870        unsigned long flags;
2871
2872        int reap = 0;
2873
2874        spin_lock_irqsave(&hw->ctlxq.lock, flags);
2875
2876        /* This list is guaranteed to be empty if someone
2877         * has unplugged the adapter ...
2878         */
2879        list_for_each_safe(entry, temp, &hw->ctlxq.completing) {
2880                hfa384x_usbctlx_t *ctlx;
2881
2882                ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2883
2884                /* Call the completion function that this
2885                 * command was assigned, assuming it has one.
2886                 */
2887                if (ctlx->cmdcb != NULL) {
2888                        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2889                        ctlx->cmdcb(hw, ctlx);
2890                        spin_lock_irqsave(&hw->ctlxq.lock, flags);
2891
2892                        /* Make sure we don't try and complete
2893                         * this CTLX more than once!
2894                         */
2895                        ctlx->cmdcb = NULL;
2896
2897                        /* Did someone yank the adapter out
2898                         * while our list was (briefly) unlocked?
2899                         */
2900                        if (hw->wlandev->hwremoved) {
2901                                reap = 0;
2902                                break;
2903                        }
2904                }
2905
2906                /*
2907                 * "Reapable" CTLXs are ones which don't have any
2908                 * threads waiting for them to die. Hence they must
2909                 * be delivered to The Reaper!
2910                 */
2911                if (ctlx->reapable) {
2912                        /* Move the CTLX off the "completing" list (hopefully)
2913                         * on to the "reapable" list where the reaper task
2914                         * can find it. And "reapable" means that this CTLX
2915                         * isn't sitting on a wait-queue somewhere.
2916                         */
2917                        list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2918                        reap = 1;
2919                }
2920
2921                complete(&ctlx->done);
2922        }
2923        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2924
2925        if (reap)
2926                tasklet_schedule(&hw->reaper_bh);
2927}
2928
2929/*----------------------------------------------------------------
2930* unlocked_usbctlx_cancel_async
2931*
2932* Mark the CTLX dead asynchronously, and ensure that the
2933* next command on the queue is run afterwards.
2934*
2935* Arguments:
2936*       hw      ptr to the hfa384x_t structure
2937*       ctlx    ptr to a CTLX structure
2938*
2939* Returns:
2940*       0       the CTLX's URB is inactive
2941* -EINPROGRESS  the URB is currently being unlinked
2942*
2943* Call context:
2944*       Either process or interrupt, but presumably interrupt
2945----------------------------------------------------------------*/
2946static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2947                                         hfa384x_usbctlx_t *ctlx)
2948{
2949        int ret;
2950
2951        /*
2952         * Try to delete the URB containing our request packet.
2953         * If we succeed, then its completion handler will be
2954         * called with a status of -ECONNRESET.
2955         */
2956        hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2957        ret = usb_unlink_urb(&hw->ctlx_urb);
2958
2959        if (ret != -EINPROGRESS) {
2960                /*
2961                 * The OUT URB had either already completed
2962                 * or was still in the pending queue, so the
2963                 * URB's completion function will not be called.
2964                 * We will have to complete the CTLX ourselves.
2965                 */
2966                ctlx->state = CTLX_REQ_FAILED;
2967                unlocked_usbctlx_complete(hw, ctlx);
2968                ret = 0;
2969        }
2970
2971        return ret;
2972}
2973
2974/*----------------------------------------------------------------
2975* unlocked_usbctlx_complete
2976*
2977* A CTLX has completed.  It may have been successful, it may not
2978* have been. At this point, the CTLX should be quiescent.  The URBs
2979* aren't active and the timers should have been stopped.
2980*
2981* The CTLX is migrated to the "completing" queue, and the completing
2982* tasklet is scheduled.
2983*
2984* Arguments:
2985*       hw              ptr to a hfa384x_t structure
2986*       ctlx            ptr to a ctlx structure
2987*
2988* Returns:
2989*       nothing
2990*
2991* Side effects:
2992*
2993* Call context:
2994*       Either, assume interrupt
2995----------------------------------------------------------------*/
2996static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
2997{
2998        /* Timers have been stopped, and ctlx should be in
2999         * a terminal state. Retire it from the "active"
3000         * queue.
3001         */
3002        list_move_tail(&ctlx->list, &hw->ctlxq.completing);
3003        tasklet_schedule(&hw->completion_bh);
3004
3005        switch (ctlx->state) {
3006        case CTLX_COMPLETE:
3007        case CTLX_REQ_FAILED:
3008                /* This are the correct terminating states. */
3009                break;
3010
3011        default:
3012                printk(KERN_ERR "CTLX[%d] not in a terminating state(%s)\n",
3013                       le16_to_cpu(ctlx->outbuf.type), ctlxstr(ctlx->state));
3014                break;
3015        }                       /* switch */
3016}
3017
3018/*----------------------------------------------------------------
3019* hfa384x_usbctlxq_run
3020*
3021* Checks to see if the head item is running.  If not, starts it.
3022*
3023* Arguments:
3024*       hw      ptr to hfa384x_t
3025*
3026* Returns:
3027*       nothing
3028*
3029* Side effects:
3030*
3031* Call context:
3032*       any
3033----------------------------------------------------------------*/
3034static void hfa384x_usbctlxq_run(hfa384x_t *hw)
3035{
3036        unsigned long flags;
3037
3038        /* acquire lock */
3039        spin_lock_irqsave(&hw->ctlxq.lock, flags);
3040
3041        /* Only one active CTLX at any one time, because there's no
3042         * other (reliable) way to match the response URB to the
3043         * correct CTLX.
3044         *
3045         * Don't touch any of these CTLXs if the hardware
3046         * has been removed or the USB subsystem is stalled.
3047         */
3048        if (!list_empty(&hw->ctlxq.active) ||
3049            test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
3050                goto unlock;
3051
3052        while (!list_empty(&hw->ctlxq.pending)) {
3053                hfa384x_usbctlx_t *head;
3054                int result;
3055
3056                /* This is the first pending command */
3057                head = list_entry(hw->ctlxq.pending.next,
3058                                  hfa384x_usbctlx_t, list);
3059
3060                /* We need to split this off to avoid a race condition */
3061                list_move_tail(&head->list, &hw->ctlxq.active);
3062
3063                /* Fill the out packet */
3064                usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
3065                                  hw->endp_out,
3066                                  &(head->outbuf), ROUNDUP64(head->outbufsize),
3067                                  hfa384x_ctlxout_callback, hw);
3068                hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
3069
3070                /* Now submit the URB and update the CTLX's state */
3071                result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC);
3072                if (result == 0) {
3073                        /* This CTLX is now running on the active queue */
3074                        head->state = CTLX_REQ_SUBMITTED;
3075
3076                        /* Start the OUT wait timer */
3077                        hw->req_timer_done = 0;
3078                        hw->reqtimer.expires = jiffies + HZ;
3079                        add_timer(&hw->reqtimer);
3080
3081                        /* Start the IN wait timer */
3082                        hw->resp_timer_done = 0;
3083                        hw->resptimer.expires = jiffies + 2 * HZ;
3084                        add_timer(&hw->resptimer);
3085
3086                        break;
3087                }
3088
3089                if (result == -EPIPE) {
3090                        /* The OUT pipe needs resetting, so put
3091                         * this CTLX back in the "pending" queue
3092                         * and schedule a reset ...
3093                         */
3094                        printk(KERN_WARNING
3095                               "%s tx pipe stalled: requesting reset\n",
3096                               hw->wlandev->netdev->name);
3097                        list_move(&head->list, &hw->ctlxq.pending);
3098                        set_bit(WORK_TX_HALT, &hw->usb_flags);
3099                        schedule_work(&hw->usb_work);
3100                        break;
3101                }
3102
3103                if (result == -ESHUTDOWN) {
3104                        printk(KERN_WARNING "%s urb shutdown!\n",
3105                               hw->wlandev->netdev->name);
3106                        break;
3107                }
3108
3109                printk(KERN_ERR "Failed to submit CTLX[%d]: error=%d\n",
3110                       le16_to_cpu(head->outbuf.type), result);
3111                unlocked_usbctlx_complete(hw, head);
3112        }                       /* while */
3113
3114unlock:
3115        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3116}
3117
3118/*----------------------------------------------------------------
3119* hfa384x_usbin_callback
3120*
3121* Callback for URBs on the BULKIN endpoint.
3122*
3123* Arguments:
3124*       urb             ptr to the completed urb
3125*
3126* Returns:
3127*       nothing
3128*
3129* Side effects:
3130*
3131* Call context:
3132*       interrupt
3133----------------------------------------------------------------*/
3134static void hfa384x_usbin_callback(struct urb *urb)
3135{
3136        wlandevice_t *wlandev = urb->context;
3137        hfa384x_t *hw;
3138        hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) urb->transfer_buffer;
3139        struct sk_buff *skb = NULL;
3140        int result;
3141        int urb_status;
3142        u16 type;
3143
3144        enum USBIN_ACTION {
3145                HANDLE,
3146                RESUBMIT,
3147                ABORT
3148        } action;
3149
3150        if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3151                goto exit;
3152
3153        hw = wlandev->priv;
3154        if (!hw)
3155                goto exit;
3156
3157        skb = hw->rx_urb_skb;
3158        BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3159
3160        hw->rx_urb_skb = NULL;
3161
3162        /* Check for error conditions within the URB */
3163        switch (urb->status) {
3164        case 0:
3165                action = HANDLE;
3166
3167                /* Check for short packet */
3168                if (urb->actual_length == 0) {
3169                        ++(wlandev->linux_stats.rx_errors);
3170                        ++(wlandev->linux_stats.rx_length_errors);
3171                        action = RESUBMIT;
3172                }
3173                break;
3174
3175        case -EPIPE:
3176                printk(KERN_WARNING "%s rx pipe stalled: requesting reset\n",
3177                       wlandev->netdev->name);
3178                if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3179                        schedule_work(&hw->usb_work);
3180                ++(wlandev->linux_stats.rx_errors);
3181                action = ABORT;
3182                break;
3183
3184        case -EILSEQ:
3185        case -ETIMEDOUT:
3186        case -EPROTO:
3187                if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3188                    !timer_pending(&hw->throttle)) {
3189                        mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3190                }
3191                ++(wlandev->linux_stats.rx_errors);
3192                action = ABORT;
3193                break;
3194
3195        case -EOVERFLOW:
3196                ++(wlandev->linux_stats.rx_over_errors);
3197                action = RESUBMIT;
3198                break;
3199
3200        case -ENODEV:
3201        case -ESHUTDOWN:
3202                pr_debug("status=%d, device removed.\n", urb->status);
3203                action = ABORT;
3204                break;
3205
3206        case -ENOENT:
3207        case -ECONNRESET:
3208                pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3209                action = ABORT;
3210                break;
3211
3212        default:
3213                pr_debug("urb status=%d, transfer flags=0x%x\n",
3214                         urb->status, urb->transfer_flags);
3215                ++(wlandev->linux_stats.rx_errors);
3216                action = RESUBMIT;
3217                break;
3218        }
3219
3220        urb_status = urb->status;
3221
3222        if (action != ABORT) {
3223                /* Repost the RX URB */
3224                result = submit_rx_urb(hw, GFP_ATOMIC);
3225
3226                if (result != 0) {
3227                        printk(KERN_ERR
3228                               "Fatal, failed to resubmit rx_urb. error=%d\n",
3229                               result);
3230                }
3231        }
3232
3233        /* Handle any USB-IN packet */
3234        /* Note: the check of the sw_support field, the type field doesn't
3235         *       have bit 12 set like the docs suggest.
3236         */
3237        type = le16_to_cpu(usbin->type);
3238        if (HFA384x_USB_ISRXFRM(type)) {
3239                if (action == HANDLE) {
3240                        if (usbin->txfrm.desc.sw_support == 0x0123) {
3241                                hfa384x_usbin_txcompl(wlandev, usbin);
3242                        } else {
3243                                skb_put(skb, sizeof(*usbin));
3244                                hfa384x_usbin_rx(wlandev, skb);
3245                                skb = NULL;
3246                        }
3247                }
3248                goto exit;
3249        }
3250        if (HFA384x_USB_ISTXFRM(type)) {
3251                if (action == HANDLE)
3252                        hfa384x_usbin_txcompl(wlandev, usbin);
3253                goto exit;
3254        }
3255        switch (type) {
3256        case HFA384x_USB_INFOFRM:
3257                if (action == ABORT)
3258                        goto exit;
3259                if (action == HANDLE)
3260                        hfa384x_usbin_info(wlandev, usbin);
3261                break;
3262
3263        case HFA384x_USB_CMDRESP:
3264        case HFA384x_USB_WRIDRESP:
3265        case HFA384x_USB_RRIDRESP:
3266        case HFA384x_USB_WMEMRESP:
3267        case HFA384x_USB_RMEMRESP:
3268                /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3269                hfa384x_usbin_ctlx(hw, usbin, urb_status);
3270                break;
3271
3272        case HFA384x_USB_BUFAVAIL:
3273                pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3274                         usbin->bufavail.frmlen);
3275                break;
3276
3277        case HFA384x_USB_ERROR:
3278                pr_debug("Received USB_ERROR packet, errortype=%d\n",
3279                         usbin->usberror.errortype);
3280                break;
3281
3282        default:
3283                pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3284                         usbin->type, urb_status);
3285                break;
3286        }                       /* switch */
3287
3288exit:
3289
3290        if (skb)
3291                dev_kfree_skb(skb);
3292}
3293
3294/*----------------------------------------------------------------
3295* hfa384x_usbin_ctlx
3296*
3297* We've received a URB containing a Prism2 "response" message.
3298* This message needs to be matched up with a CTLX on the active
3299* queue and our state updated accordingly.
3300*
3301* Arguments:
3302*       hw              ptr to hfa384x_t
3303*       usbin           ptr to USB IN packet
3304*       urb_status      status of this Bulk-In URB
3305*
3306* Returns:
3307*       nothing
3308*
3309* Side effects:
3310*
3311* Call context:
3312*       interrupt
3313----------------------------------------------------------------*/
3314static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3315                               int urb_status)
3316{
3317        hfa384x_usbctlx_t *ctlx;
3318        int run_queue = 0;
3319        unsigned long flags;
3320
3321retry:
3322        spin_lock_irqsave(&hw->ctlxq.lock, flags);
3323
3324        /* There can be only one CTLX on the active queue
3325         * at any one time, and this is the CTLX that the
3326         * timers are waiting for.
3327         */
3328        if (list_empty(&hw->ctlxq.active))
3329                goto unlock;
3330
3331        /* Remove the "response timeout". It's possible that
3332         * we are already too late, and that the timeout is
3333         * already running. And that's just too bad for us,
3334         * because we could lose our CTLX from the active
3335         * queue here ...
3336         */
3337        if (del_timer(&hw->resptimer) == 0) {
3338                if (hw->resp_timer_done == 0) {
3339                        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3340                        goto retry;
3341                }
3342        } else {
3343                hw->resp_timer_done = 1;
3344        }
3345
3346        ctlx = get_active_ctlx(hw);
3347
3348        if (urb_status != 0) {
3349                /*
3350                 * Bad CTLX, so get rid of it. But we only
3351                 * remove it from the active queue if we're no
3352                 * longer expecting the OUT URB to complete.
3353                 */
3354                if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3355                        run_queue = 1;
3356        } else {
3357                const u16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3358
3359                /*
3360                 * Check that our message is what we're expecting ...
3361                 */
3362                if (ctlx->outbuf.type != intype) {
3363                        printk(KERN_WARNING
3364                               "Expected IN[%d], received IN[%d] - ignored.\n",
3365                               le16_to_cpu(ctlx->outbuf.type),
3366                               le16_to_cpu(intype));
3367                        goto unlock;
3368                }
3369
3370                /* This URB has succeeded, so grab the data ... */
3371                memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3372
3373                switch (ctlx->state) {
3374                case CTLX_REQ_SUBMITTED:
3375                        /*
3376                         * We have received our response URB before
3377                         * our request has been acknowledged. Odd,
3378                         * but our OUT URB is still alive...
3379                         */
3380                        pr_debug("Causality violation: please reboot Universe\n");
3381                        ctlx->state = CTLX_RESP_COMPLETE;
3382                        break;
3383
3384                case CTLX_REQ_COMPLETE:
3385                        /*
3386                         * This is the usual path: our request
3387                         * has already been acknowledged, and
3388                         * now we have received the reply too.
3389                         */
3390                        ctlx->state = CTLX_COMPLETE;
3391                        unlocked_usbctlx_complete(hw, ctlx);
3392                        run_queue = 1;
3393                        break;
3394
3395                default:
3396                        /*
3397                         * Throw this CTLX away ...
3398                         */
3399                        printk(KERN_ERR
3400                               "Matched IN URB, CTLX[%d] in invalid state(%s)."
3401                               " Discarded.\n",
3402                               le16_to_cpu(ctlx->outbuf.type),
3403                               ctlxstr(ctlx->state));
3404                        if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3405                                run_queue = 1;
3406                        break;
3407                }               /* switch */
3408        }
3409
3410unlock:
3411        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3412
3413        if (run_queue)
3414                hfa384x_usbctlxq_run(hw);
3415}
3416
3417/*----------------------------------------------------------------
3418* hfa384x_usbin_txcompl
3419*
3420* At this point we have the results of a previous transmit.
3421*
3422* Arguments:
3423*       wlandev         wlan device
3424*       usbin           ptr to the usb transfer buffer
3425*
3426* Returns:
3427*       nothing
3428*
3429* Side effects:
3430*
3431* Call context:
3432*       interrupt
3433----------------------------------------------------------------*/
3434static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3435                                  hfa384x_usbin_t *usbin)
3436{
3437        u16 status;
3438
3439        status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3440
3441        /* Was there an error? */
3442        if (HFA384x_TXSTATUS_ISERROR(status))
3443                prism2sta_ev_txexc(wlandev, status);
3444        else
3445                prism2sta_ev_tx(wlandev, status);
3446}
3447
3448/*----------------------------------------------------------------
3449* hfa384x_usbin_rx
3450*
3451* At this point we have a successful received a rx frame packet.
3452*
3453* Arguments:
3454*       wlandev         wlan device
3455*       usbin           ptr to the usb transfer buffer
3456*
3457* Returns:
3458*       nothing
3459*
3460* Side effects:
3461*
3462* Call context:
3463*       interrupt
3464----------------------------------------------------------------*/
3465static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3466{
3467        hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) skb->data;
3468        hfa384x_t *hw = wlandev->priv;
3469        int hdrlen;
3470        struct p80211_rxmeta *rxmeta;
3471        u16 data_len;
3472        u16 fc;
3473
3474        /* Byte order convert once up front. */
3475        usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3476        usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3477
3478        /* Now handle frame based on port# */
3479        switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3480        case 0:
3481                fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3482
3483                /* If exclude and we receive an unencrypted, drop it */
3484                if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3485                    !WLAN_GET_FC_ISWEP(fc)) {
3486                        goto done;
3487                }
3488
3489                data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3490
3491                /* How much header data do we have? */
3492                hdrlen = p80211_headerlen(fc);
3493
3494                /* Pull off the descriptor */
3495                skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3496
3497                /* Now shunt the header block up against the data block
3498                 * with an "overlapping" copy
3499                 */
3500                memmove(skb_push(skb, hdrlen),
3501                        &usbin->rxfrm.desc.frame_control, hdrlen);
3502
3503                skb->dev = wlandev->netdev;
3504
3505                /* And set the frame length properly */
3506                skb_trim(skb, data_len + hdrlen);
3507
3508                /* The prism2 series does not return the CRC */
3509                memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3510
3511                skb_reset_mac_header(skb);
3512
3513                /* Attach the rxmeta, set some stuff */
3514                p80211skb_rxmeta_attach(wlandev, skb);
3515                rxmeta = P80211SKB_RXMETA(skb);
3516                rxmeta->mactime = usbin->rxfrm.desc.time;
3517                rxmeta->rxrate = usbin->rxfrm.desc.rate;
3518                rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3519                rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3520
3521                prism2sta_ev_rx(wlandev, skb);
3522
3523                break;
3524
3525        case 7:
3526                if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3527                        /* Copy to wlansnif skb */
3528                        hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3529                        dev_kfree_skb(skb);
3530                } else {
3531                        pr_debug("Received monitor frame: FCSerr set\n");
3532                }
3533                break;
3534
3535        default:
3536                printk(KERN_WARNING "Received frame on unsupported port=%d\n",
3537                       HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status));
3538                goto done;
3539                break;
3540        }
3541
3542done:
3543        return;
3544}
3545
3546/*----------------------------------------------------------------
3547* hfa384x_int_rxmonitor
3548*
3549* Helper function for int_rx.  Handles monitor frames.
3550* Note that this function allocates space for the FCS and sets it
3551* to 0xffffffff.  The hfa384x doesn't give us the FCS value but the
3552* higher layers expect it.  0xffffffff is used as a flag to indicate
3553* the FCS is bogus.
3554*
3555* Arguments:
3556*       wlandev         wlan device structure
3557*       rxfrm           rx descriptor read from card in int_rx
3558*
3559* Returns:
3560*       nothing
3561*
3562* Side effects:
3563*       Allocates an skb and passes it up via the PF_PACKET interface.
3564* Call context:
3565*       interrupt
3566----------------------------------------------------------------*/
3567static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3568                                  hfa384x_usb_rxfrm_t *rxfrm)
3569{
3570        hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3571        unsigned int hdrlen = 0;
3572        unsigned int datalen = 0;
3573        unsigned int skblen = 0;
3574        u8 *datap;
3575        u16 fc;
3576        struct sk_buff *skb;
3577        hfa384x_t *hw = wlandev->priv;
3578
3579        /* Remember the status, time, and data_len fields are in host order */
3580        /* Figure out how big the frame is */
3581        fc = le16_to_cpu(rxdesc->frame_control);
3582        hdrlen = p80211_headerlen(fc);
3583        datalen = le16_to_cpu(rxdesc->data_len);
3584
3585        /* Allocate an ind message+framesize skb */
3586        skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3587
3588        /* sanity check the length */
3589        if (skblen >
3590            (sizeof(struct p80211_caphdr) +
3591             WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3592                pr_debug("overlen frm: len=%zd\n",
3593                         skblen - sizeof(struct p80211_caphdr));
3594        }
3595
3596        skb = dev_alloc_skb(skblen);
3597        if (skb == NULL) {
3598                printk(KERN_ERR
3599                       "alloc_skb failed trying to allocate %d bytes\n",
3600                       skblen);
3601                return;
3602        }
3603
3604        /* only prepend the prism header if in the right mode */
3605        if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3606            (hw->sniffhdr != 0)) {
3607                struct p80211_caphdr *caphdr;
3608                /* The NEW header format! */
3609                datap = skb_put(skb, sizeof(struct p80211_caphdr));
3610                caphdr = (struct p80211_caphdr *) datap;
3611
3612                caphdr->version = htonl(P80211CAPTURE_VERSION);
3613                caphdr->length = htonl(sizeof(struct p80211_caphdr));
3614                caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3615                caphdr->hosttime = __cpu_to_be64(jiffies);
3616                caphdr->phytype = htonl(4);     /* dss_dot11_b */
3617                caphdr->channel = htonl(hw->sniff_channel);
3618                caphdr->datarate = htonl(rxdesc->rate);
3619                caphdr->antenna = htonl(0);     /* unknown */
3620                caphdr->priority = htonl(0);    /* unknown */
3621                caphdr->ssi_type = htonl(3);    /* rssi_raw */
3622                caphdr->ssi_signal = htonl(rxdesc->signal);
3623                caphdr->ssi_noise = htonl(rxdesc->silence);
3624                caphdr->preamble = htonl(0);    /* unknown */
3625                caphdr->encoding = htonl(1);    /* cck */
3626        }
3627
3628        /* Copy the 802.11 header to the skb
3629           (ctl frames may be less than a full header) */
3630        datap = skb_put(skb, hdrlen);
3631        memcpy(datap, &(rxdesc->frame_control), hdrlen);
3632
3633        /* If any, copy the data from the card to the skb */
3634        if (datalen > 0) {
3635                datap = skb_put(skb, datalen);
3636                memcpy(datap, rxfrm->data, datalen);
3637
3638                /* check for unencrypted stuff if WEP bit set. */
3639                if (*(datap - hdrlen + 1) & 0x40)       /* wep set */
3640                        if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3641                                /* clear wep; it's the 802.2 header! */
3642                                *(datap - hdrlen + 1) &= 0xbf;
3643        }
3644
3645        if (hw->sniff_fcs) {
3646                /* Set the FCS */
3647                datap = skb_put(skb, WLAN_CRC_LEN);
3648                memset(datap, 0xff, WLAN_CRC_LEN);
3649        }
3650
3651        /* pass it back up */
3652        prism2sta_ev_rx(wlandev, skb);
3653
3654        return;
3655}
3656
3657/*----------------------------------------------------------------
3658* hfa384x_usbin_info
3659*
3660* At this point we have a successful received a Prism2 info frame.
3661*
3662* Arguments:
3663*       wlandev         wlan device
3664*       usbin           ptr to the usb transfer buffer
3665*
3666* Returns:
3667*       nothing
3668*
3669* Side effects:
3670*
3671* Call context:
3672*       interrupt
3673----------------------------------------------------------------*/
3674static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3675{
3676        usbin->infofrm.info.framelen =
3677            le16_to_cpu(usbin->infofrm.info.framelen);
3678        prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3679}
3680
3681/*----------------------------------------------------------------
3682* hfa384x_usbout_callback
3683*
3684* Callback for URBs on the BULKOUT endpoint.
3685*
3686* Arguments:
3687*       urb             ptr to the completed urb
3688*
3689* Returns:
3690*       nothing
3691*
3692* Side effects:
3693*
3694* Call context:
3695*       interrupt
3696----------------------------------------------------------------*/
3697static void hfa384x_usbout_callback(struct urb *urb)
3698{
3699        wlandevice_t *wlandev = urb->context;
3700        hfa384x_usbout_t *usbout = urb->transfer_buffer;
3701
3702#ifdef DEBUG_USB
3703        dbprint_urb(urb);
3704#endif
3705
3706        if (wlandev && wlandev->netdev) {
3707
3708                switch (urb->status) {
3709                case 0:
3710                        hfa384x_usbout_tx(wlandev, usbout);
3711                        break;
3712
3713                case -EPIPE:
3714                        {
3715                                hfa384x_t *hw = wlandev->priv;
3716                                printk(KERN_WARNING
3717                                       "%s tx pipe stalled: requesting reset\n",
3718                                       wlandev->netdev->name);
3719                                if (!test_and_set_bit
3720                                    (WORK_TX_HALT, &hw->usb_flags))
3721                                        schedule_work(&hw->usb_work);
3722                                ++(wlandev->linux_stats.tx_errors);
3723                                break;
3724                        }
3725
3726                case -EPROTO:
3727                case -ETIMEDOUT:
3728                case -EILSEQ:
3729                        {
3730                                hfa384x_t *hw = wlandev->priv;
3731
3732                                if (!test_and_set_bit
3733                                    (THROTTLE_TX, &hw->usb_flags)
3734                                    && !timer_pending(&hw->throttle)) {
3735                                        mod_timer(&hw->throttle,
3736                                                  jiffies + THROTTLE_JIFFIES);
3737                                }
3738                                ++(wlandev->linux_stats.tx_errors);
3739                                netif_stop_queue(wlandev->netdev);
3740                                break;
3741                        }
3742
3743                case -ENOENT:
3744                case -ESHUTDOWN:
3745                        /* Ignorable errors */
3746                        break;
3747
3748                default:
3749                        printk(KERN_INFO "unknown urb->status=%d\n",
3750                               urb->status);
3751                        ++(wlandev->linux_stats.tx_errors);
3752                        break;
3753                }               /* switch */
3754        }
3755}
3756
3757/*----------------------------------------------------------------
3758* hfa384x_ctlxout_callback
3759*
3760* Callback for control data on the BULKOUT endpoint.
3761*
3762* Arguments:
3763*       urb             ptr to the completed urb
3764*
3765* Returns:
3766* nothing
3767*
3768* Side effects:
3769*
3770* Call context:
3771* interrupt
3772----------------------------------------------------------------*/
3773static void hfa384x_ctlxout_callback(struct urb *urb)
3774{
3775        hfa384x_t *hw = urb->context;
3776        int delete_resptimer = 0;
3777        int timer_ok = 1;
3778        int run_queue = 0;
3779        hfa384x_usbctlx_t *ctlx;
3780        unsigned long flags;
3781
3782        pr_debug("urb->status=%d\n", urb->status);
3783#ifdef DEBUG_USB
3784        dbprint_urb(urb);
3785#endif
3786        if ((urb->status == -ESHUTDOWN) ||
3787            (urb->status == -ENODEV) || (hw == NULL))
3788                return;
3789
3790retry:
3791        spin_lock_irqsave(&hw->ctlxq.lock, flags);
3792
3793        /*
3794         * Only one CTLX at a time on the "active" list, and
3795         * none at all if we are unplugged. However, we can
3796         * rely on the disconnect function to clean everything
3797         * up if someone unplugged the adapter.
3798         */
3799        if (list_empty(&hw->ctlxq.active)) {
3800                spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3801                return;
3802        }
3803
3804        /*
3805         * Having something on the "active" queue means
3806         * that we have timers to worry about ...
3807         */
3808        if (del_timer(&hw->reqtimer) == 0) {
3809                if (hw->req_timer_done == 0) {
3810                        /*
3811                         * This timer was actually running while we
3812                         * were trying to delete it. Let it terminate
3813                         * gracefully instead.
3814                         */
3815                        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3816                        goto retry;
3817                }
3818        } else {
3819                hw->req_timer_done = 1;
3820        }
3821
3822        ctlx = get_active_ctlx(hw);
3823
3824        if (urb->status == 0) {
3825                /* Request portion of a CTLX is successful */
3826                switch (ctlx->state) {
3827                case CTLX_REQ_SUBMITTED:
3828                        /* This OUT-ACK received before IN */
3829                        ctlx->state = CTLX_REQ_COMPLETE;
3830                        break;
3831
3832                case CTLX_RESP_COMPLETE:
3833                        /* IN already received before this OUT-ACK,
3834                         * so this command must now be complete.
3835                         */
3836                        ctlx->state = CTLX_COMPLETE;
3837                        unlocked_usbctlx_complete(hw, ctlx);
3838                        run_queue = 1;
3839                        break;
3840
3841                default:
3842                        /* This is NOT a valid CTLX "success" state! */
3843                        printk(KERN_ERR
3844                                "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3845                                le16_to_cpu(ctlx->outbuf.type),
3846                                ctlxstr(ctlx->state), urb->status);
3847                        break;
3848                }               /* switch */
3849        } else {
3850                /* If the pipe has stalled then we need to reset it */
3851                if ((urb->status == -EPIPE) &&
3852                    !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3853                        printk(KERN_WARNING
3854                               "%s tx pipe stalled: requesting reset\n",
3855                               hw->wlandev->netdev->name);
3856                        schedule_work(&hw->usb_work);
3857                }
3858
3859                /* If someone cancels the OUT URB then its status
3860                 * should be either -ECONNRESET or -ENOENT.
3861                 */
3862                ctlx->state = CTLX_REQ_FAILED;
3863                unlocked_usbctlx_complete(hw, ctlx);
3864                delete_resptimer = 1;
3865                run_queue = 1;
3866        }
3867
3868delresp:
3869        if (delete_resptimer) {
3870                timer_ok = del_timer(&hw->resptimer);
3871                if (timer_ok != 0)
3872                        hw->resp_timer_done = 1;
3873        }
3874
3875        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3876
3877        if (!timer_ok && (hw->resp_timer_done == 0)) {
3878                spin_lock_irqsave(&hw->ctlxq.lock, flags);
3879                goto delresp;
3880        }
3881
3882        if (run_queue)
3883                hfa384x_usbctlxq_run(hw);
3884}
3885
3886/*----------------------------------------------------------------
3887* hfa384x_usbctlx_reqtimerfn
3888*
3889* Timer response function for CTLX request timeouts.  If this
3890* function is called, it means that the callback for the OUT
3891* URB containing a Prism2.x XXX_Request was never called.
3892*
3893* Arguments:
3894*       data            a ptr to the hfa384x_t
3895*
3896* Returns:
3897*       nothing
3898*
3899* Side effects:
3900*
3901* Call context:
3902*       interrupt
3903----------------------------------------------------------------*/
3904static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3905{
3906        hfa384x_t *hw = (hfa384x_t *) data;
3907        unsigned long flags;
3908
3909        spin_lock_irqsave(&hw->ctlxq.lock, flags);
3910
3911        hw->req_timer_done = 1;
3912
3913        /* Removing the hardware automatically empties
3914         * the active list ...
3915         */
3916        if (!list_empty(&hw->ctlxq.active)) {
3917                /*
3918                 * We must ensure that our URB is removed from
3919                 * the system, if it hasn't already expired.
3920                 */
3921                hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3922                if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3923                        hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3924
3925                        ctlx->state = CTLX_REQ_FAILED;
3926
3927                        /* This URB was active, but has now been
3928                         * cancelled. It will now have a status of
3929                         * -ECONNRESET in the callback function.
3930                         *
3931                         * We are cancelling this CTLX, so we're
3932                         * not going to need to wait for a response.
3933                         * The URB's callback function will check
3934                         * that this timer is truly dead.
3935                         */
3936                        if (del_timer(&hw->resptimer) != 0)
3937                                hw->resp_timer_done = 1;
3938                }
3939        }
3940
3941        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3942}
3943
3944/*----------------------------------------------------------------
3945* hfa384x_usbctlx_resptimerfn
3946*
3947* Timer response function for CTLX response timeouts.  If this
3948* function is called, it means that the callback for the IN
3949* URB containing a Prism2.x XXX_Response was never called.
3950*
3951* Arguments:
3952*       data            a ptr to the hfa384x_t
3953*
3954* Returns:
3955*       nothing
3956*
3957* Side effects:
3958*
3959* Call context:
3960*       interrupt
3961----------------------------------------------------------------*/
3962static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3963{
3964        hfa384x_t *hw = (hfa384x_t *) data;
3965        unsigned long flags;
3966
3967        spin_lock_irqsave(&hw->ctlxq.lock, flags);
3968
3969        hw->resp_timer_done = 1;
3970
3971        /* The active list will be empty if the
3972         * adapter has been unplugged ...
3973         */
3974        if (!list_empty(&hw->ctlxq.active)) {
3975                hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3976
3977                if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3978                        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3979                        hfa384x_usbctlxq_run(hw);
3980                        return;
3981                }
3982        }
3983        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3984}
3985
3986/*----------------------------------------------------------------
3987* hfa384x_usb_throttlefn
3988*
3989*
3990* Arguments:
3991*       data    ptr to hw
3992*
3993* Returns:
3994*       Nothing
3995*
3996* Side effects:
3997*
3998* Call context:
3999*       Interrupt
4000----------------------------------------------------------------*/
4001static void hfa384x_usb_throttlefn(unsigned long data)
4002{
4003        hfa384x_t *hw = (hfa384x_t *) data;
4004        unsigned long flags;
4005
4006        spin_lock_irqsave(&hw->ctlxq.lock, flags);
4007
4008        /*
4009         * We need to check BOTH the RX and the TX throttle controls,
4010         * so we use the bitwise OR instead of the logical OR.
4011         */
4012        pr_debug("flags=0x%lx\n", hw->usb_flags);
4013        if (!hw->wlandev->hwremoved &&
4014            ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
4015              !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags))
4016             |
4017             (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
4018              !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
4019            )) {
4020                schedule_work(&hw->usb_work);
4021        }
4022
4023        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4024}
4025
4026/*----------------------------------------------------------------
4027* hfa384x_usbctlx_submit
4028*
4029* Called from the doxxx functions to submit a CTLX to the queue
4030*
4031* Arguments:
4032*       hw              ptr to the hw struct
4033*       ctlx            ctlx structure to enqueue
4034*
4035* Returns:
4036*       -ENODEV if the adapter is unplugged
4037*       0
4038*
4039* Side effects:
4040*
4041* Call context:
4042*       process or interrupt
4043----------------------------------------------------------------*/
4044static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
4045{
4046        unsigned long flags;
4047
4048        spin_lock_irqsave(&hw->ctlxq.lock, flags);
4049
4050        if (hw->wlandev->hwremoved) {
4051                spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4052                return -ENODEV;
4053        }
4054
4055        ctlx->state = CTLX_PENDING;
4056        list_add_tail(&ctlx->list, &hw->ctlxq.pending);
4057        spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4058        hfa384x_usbctlxq_run(hw);
4059
4060        return 0;
4061}
4062
4063/*----------------------------------------------------------------
4064* hfa384x_usbout_tx
4065*
4066* At this point we have finished a send of a frame.  Mark the URB
4067* as available and call ev_alloc to notify higher layers we're
4068* ready for more.
4069*
4070* Arguments:
4071*       wlandev         wlan device
4072*       usbout          ptr to the usb transfer buffer
4073*
4074* Returns:
4075*       nothing
4076*
4077* Side effects:
4078*
4079* Call context:
4080*       interrupt
4081----------------------------------------------------------------*/
4082static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout)
4083{
4084        prism2sta_ev_alloc(wlandev);
4085}
4086
4087/*----------------------------------------------------------------
4088* hfa384x_isgood_pdrcore
4089*
4090* Quick check of PDR codes.
4091*
4092* Arguments:
4093*       pdrcode         PDR code number (host order)
4094*
4095* Returns:
4096*       zero            not good.
4097*       one             is good.
4098*
4099* Side effects:
4100*
4101* Call context:
4102----------------------------------------------------------------*/
4103static int hfa384x_isgood_pdrcode(u16 pdrcode)
4104{
4105        switch (pdrcode) {
4106        case HFA384x_PDR_END_OF_PDA:
4107        case HFA384x_PDR_PCB_PARTNUM:
4108        case HFA384x_PDR_PDAVER:
4109        case HFA384x_PDR_NIC_SERIAL:
4110        case HFA384x_PDR_MKK_MEASUREMENTS:
4111        case HFA384x_PDR_NIC_RAMSIZE:
4112        case HFA384x_PDR_MFISUPRANGE:
4113        case HFA384x_PDR_CFISUPRANGE:
4114        case HFA384x_PDR_NICID:
4115        case HFA384x_PDR_MAC_ADDRESS:
4116        case HFA384x_PDR_REGDOMAIN:
4117        case HFA384x_PDR_ALLOWED_CHANNEL:
4118        case HFA384x_PDR_DEFAULT_CHANNEL:
4119        case HFA384x_PDR_TEMPTYPE:
4120        case HFA384x_PDR_IFR_SETTING:
4121        case HFA384x_PDR_RFR_SETTING:
4122        case HFA384x_PDR_HFA3861_BASELINE:
4123        case HFA384x_PDR_HFA3861_SHADOW:
4124        case HFA384x_PDR_HFA3861_IFRF:
4125        case HFA384x_PDR_HFA3861_CHCALSP:
4126        case HFA384x_PDR_HFA3861_CHCALI:
4127        case HFA384x_PDR_3842_NIC_CONFIG:
4128        case HFA384x_PDR_USB_ID:
4129        case HFA384x_PDR_PCI_ID:
4130        case HFA384x_PDR_PCI_IFCONF:
4131        case HFA384x_PDR_PCI_PMCONF:
4132        case HFA384x_PDR_RFENRGY:
4133        case HFA384x_PDR_HFA3861_MANF_TESTSP:
4134        case HFA384x_PDR_HFA3861_MANF_TESTI:
4135                /* code is OK */
4136                return 1;
4137                break;
4138        default:
4139                if (pdrcode < 0x1000) {
4140                        /* code is OK, but we don't know exactly what it is */
4141                        pr_debug("Encountered unknown PDR#=0x%04x, "
4142                                 "assuming it's ok.\n", pdrcode);
4143                        return 1;
4144                } else {
4145                        /* bad code */
4146                        pr_debug("Encountered unknown PDR#=0x%04x, "
4147                                 "(>=0x1000), assuming it's bad.\n", pdrcode);
4148                        return 0;
4149                }
4150                break;
4151        }
4152        return 0;               /* avoid compiler warnings */
4153}
4154