linux/drivers/usb/gadget/s3c-hsotg.c
<<
>>
Prefs
   1/**
   2 * linux/drivers/usb/gadget/s3c-hsotg.c
   3 *
   4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   5 *              http://www.samsung.com
   6 *
   7 * Copyright 2008 Openmoko, Inc.
   8 * Copyright 2008 Simtec Electronics
   9 *      Ben Dooks <ben@simtec.co.uk>
  10 *      http://armlinux.simtec.co.uk/
  11 *
  12 * S3C USB2.0 High-speed / OtG driver
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License version 2 as
  16 * published by the Free Software Foundation.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/spinlock.h>
  22#include <linux/interrupt.h>
  23#include <linux/platform_device.h>
  24#include <linux/dma-mapping.h>
  25#include <linux/debugfs.h>
  26#include <linux/seq_file.h>
  27#include <linux/delay.h>
  28#include <linux/io.h>
  29#include <linux/slab.h>
  30#include <linux/clk.h>
  31#include <linux/regulator/consumer.h>
  32
  33#include <linux/usb/ch9.h>
  34#include <linux/usb/gadget.h>
  35#include <linux/usb/phy.h>
  36#include <linux/platform_data/s3c-hsotg.h>
  37
  38#include <mach/map.h>
  39
  40#include "s3c-hsotg.h"
  41
  42static const char * const s3c_hsotg_supply_names[] = {
  43        "vusb_d",               /* digital USB supply, 1.2V */
  44        "vusb_a",               /* analog USB supply, 1.1V */
  45};
  46
  47/*
  48 * EP0_MPS_LIMIT
  49 *
  50 * Unfortunately there seems to be a limit of the amount of data that can
  51 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
  52 * packets (which practically means 1 packet and 63 bytes of data) when the
  53 * MPS is set to 64.
  54 *
  55 * This means if we are wanting to move >127 bytes of data, we need to
  56 * split the transactions up, but just doing one packet at a time does
  57 * not work (this may be an implicit DATA0 PID on first packet of the
  58 * transaction) and doing 2 packets is outside the controller's limits.
  59 *
  60 * If we try to lower the MPS size for EP0, then no transfers work properly
  61 * for EP0, and the system will fail basic enumeration. As no cause for this
  62 * has currently been found, we cannot support any large IN transfers for
  63 * EP0.
  64 */
  65#define EP0_MPS_LIMIT   64
  66
  67struct s3c_hsotg;
  68struct s3c_hsotg_req;
  69
  70/**
  71 * struct s3c_hsotg_ep - driver endpoint definition.
  72 * @ep: The gadget layer representation of the endpoint.
  73 * @name: The driver generated name for the endpoint.
  74 * @queue: Queue of requests for this endpoint.
  75 * @parent: Reference back to the parent device structure.
  76 * @req: The current request that the endpoint is processing. This is
  77 *       used to indicate an request has been loaded onto the endpoint
  78 *       and has yet to be completed (maybe due to data move, or simply
  79 *       awaiting an ack from the core all the data has been completed).
  80 * @debugfs: File entry for debugfs file for this endpoint.
  81 * @lock: State lock to protect contents of endpoint.
  82 * @dir_in: Set to true if this endpoint is of the IN direction, which
  83 *          means that it is sending data to the Host.
  84 * @index: The index for the endpoint registers.
  85 * @name: The name array passed to the USB core.
  86 * @halted: Set if the endpoint has been halted.
  87 * @periodic: Set if this is a periodic ep, such as Interrupt
  88 * @sent_zlp: Set if we've sent a zero-length packet.
  89 * @total_data: The total number of data bytes done.
  90 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
  91 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
  92 * @last_load: The offset of data for the last start of request.
  93 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
  94 *
  95 * This is the driver's state for each registered enpoint, allowing it
  96 * to keep track of transactions that need doing. Each endpoint has a
  97 * lock to protect the state, to try and avoid using an overall lock
  98 * for the host controller as much as possible.
  99 *
 100 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 101 * and keep track of the amount of data in the periodic FIFO for each
 102 * of these as we don't have a status register that tells us how much
 103 * is in each of them. (note, this may actually be useless information
 104 * as in shared-fifo mode periodic in acts like a single-frame packet
 105 * buffer than a fifo)
 106 */
 107struct s3c_hsotg_ep {
 108        struct usb_ep           ep;
 109        struct list_head        queue;
 110        struct s3c_hsotg        *parent;
 111        struct s3c_hsotg_req    *req;
 112        struct dentry           *debugfs;
 113
 114
 115        unsigned long           total_data;
 116        unsigned int            size_loaded;
 117        unsigned int            last_load;
 118        unsigned int            fifo_load;
 119        unsigned short          fifo_size;
 120
 121        unsigned char           dir_in;
 122        unsigned char           index;
 123
 124        unsigned int            halted:1;
 125        unsigned int            periodic:1;
 126        unsigned int            sent_zlp:1;
 127
 128        char                    name[10];
 129};
 130
 131/**
 132 * struct s3c_hsotg - driver state.
 133 * @dev: The parent device supplied to the probe function
 134 * @driver: USB gadget driver
 135 * @phy: The otg phy transceiver structure for phy control.
 136 * @plat: The platform specific configuration data. This can be removed once
 137 * all SoCs support usb transceiver.
 138 * @regs: The memory area mapped for accessing registers.
 139 * @irq: The IRQ number we are using
 140 * @supplies: Definition of USB power supplies
 141 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
 142 * @num_of_eps: Number of available EPs (excluding EP0)
 143 * @debug_root: root directrory for debugfs.
 144 * @debug_file: main status file for debugfs.
 145 * @debug_fifo: FIFO status file for debugfs.
 146 * @ep0_reply: Request used for ep0 reply.
 147 * @ep0_buff: Buffer for EP0 reply data, if needed.
 148 * @ctrl_buff: Buffer for EP0 control requests.
 149 * @ctrl_req: Request for EP0 control packets.
 150 * @setup: NAK management for EP0 SETUP
 151 * @last_rst: Time of last reset
 152 * @eps: The endpoints being supplied to the gadget framework
 153 */
 154struct s3c_hsotg {
 155        struct device            *dev;
 156        struct usb_gadget_driver *driver;
 157        struct usb_phy          *phy;
 158        struct s3c_hsotg_plat    *plat;
 159
 160        spinlock_t              lock;
 161
 162        void __iomem            *regs;
 163        int                     irq;
 164        struct clk              *clk;
 165
 166        struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];
 167
 168        unsigned int            dedicated_fifos:1;
 169        unsigned char           num_of_eps;
 170
 171        struct dentry           *debug_root;
 172        struct dentry           *debug_file;
 173        struct dentry           *debug_fifo;
 174
 175        struct usb_request      *ep0_reply;
 176        struct usb_request      *ctrl_req;
 177        u8                      ep0_buff[8];
 178        u8                      ctrl_buff[8];
 179
 180        struct usb_gadget       gadget;
 181        unsigned int            setup;
 182        unsigned long           last_rst;
 183        struct s3c_hsotg_ep     *eps;
 184};
 185
 186/**
 187 * struct s3c_hsotg_req - data transfer request
 188 * @req: The USB gadget request
 189 * @queue: The list of requests for the endpoint this is queued for.
 190 * @in_progress: Has already had size/packets written to core
 191 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
 192 */
 193struct s3c_hsotg_req {
 194        struct usb_request      req;
 195        struct list_head        queue;
 196        unsigned char           in_progress;
 197        unsigned char           mapped;
 198};
 199
 200/* conversion functions */
 201static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
 202{
 203        return container_of(req, struct s3c_hsotg_req, req);
 204}
 205
 206static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
 207{
 208        return container_of(ep, struct s3c_hsotg_ep, ep);
 209}
 210
 211static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
 212{
 213        return container_of(gadget, struct s3c_hsotg, gadget);
 214}
 215
 216static inline void __orr32(void __iomem *ptr, u32 val)
 217{
 218        writel(readl(ptr) | val, ptr);
 219}
 220
 221static inline void __bic32(void __iomem *ptr, u32 val)
 222{
 223        writel(readl(ptr) & ~val, ptr);
 224}
 225
 226/* forward decleration of functions */
 227static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
 228
 229/**
 230 * using_dma - return the DMA status of the driver.
 231 * @hsotg: The driver state.
 232 *
 233 * Return true if we're using DMA.
 234 *
 235 * Currently, we have the DMA support code worked into everywhere
 236 * that needs it, but the AMBA DMA implementation in the hardware can
 237 * only DMA from 32bit aligned addresses. This means that gadgets such
 238 * as the CDC Ethernet cannot work as they often pass packets which are
 239 * not 32bit aligned.
 240 *
 241 * Unfortunately the choice to use DMA or not is global to the controller
 242 * and seems to be only settable when the controller is being put through
 243 * a core reset. This means we either need to fix the gadgets to take
 244 * account of DMA alignment, or add bounce buffers (yuerk).
 245 *
 246 * Until this issue is sorted out, we always return 'false'.
 247 */
 248static inline bool using_dma(struct s3c_hsotg *hsotg)
 249{
 250        return false;   /* support is not complete */
 251}
 252
 253/**
 254 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 255 * @hsotg: The device state
 256 * @ints: A bitmask of the interrupts to enable
 257 */
 258static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
 259{
 260        u32 gsintmsk = readl(hsotg->regs + GINTMSK);
 261        u32 new_gsintmsk;
 262
 263        new_gsintmsk = gsintmsk | ints;
 264
 265        if (new_gsintmsk != gsintmsk) {
 266                dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 267                writel(new_gsintmsk, hsotg->regs + GINTMSK);
 268        }
 269}
 270
 271/**
 272 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 273 * @hsotg: The device state
 274 * @ints: A bitmask of the interrupts to enable
 275 */
 276static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
 277{
 278        u32 gsintmsk = readl(hsotg->regs + GINTMSK);
 279        u32 new_gsintmsk;
 280
 281        new_gsintmsk = gsintmsk & ~ints;
 282
 283        if (new_gsintmsk != gsintmsk)
 284                writel(new_gsintmsk, hsotg->regs + GINTMSK);
 285}
 286
 287/**
 288 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 289 * @hsotg: The device state
 290 * @ep: The endpoint index
 291 * @dir_in: True if direction is in.
 292 * @en: The enable value, true to enable
 293 *
 294 * Set or clear the mask for an individual endpoint's interrupt
 295 * request.
 296 */
 297static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
 298                                 unsigned int ep, unsigned int dir_in,
 299                                 unsigned int en)
 300{
 301        unsigned long flags;
 302        u32 bit = 1 << ep;
 303        u32 daint;
 304
 305        if (!dir_in)
 306                bit <<= 16;
 307
 308        local_irq_save(flags);
 309        daint = readl(hsotg->regs + DAINTMSK);
 310        if (en)
 311                daint |= bit;
 312        else
 313                daint &= ~bit;
 314        writel(daint, hsotg->regs + DAINTMSK);
 315        local_irq_restore(flags);
 316}
 317
 318/**
 319 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 320 * @hsotg: The device instance.
 321 */
 322static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
 323{
 324        unsigned int ep;
 325        unsigned int addr;
 326        unsigned int size;
 327        int timeout;
 328        u32 val;
 329
 330        /* set FIFO sizes to 2048/1024 */
 331
 332        writel(2048, hsotg->regs + GRXFSIZ);
 333        writel(GNPTXFSIZ_NPTxFStAddr(2048) |
 334               GNPTXFSIZ_NPTxFDep(1024),
 335               hsotg->regs + GNPTXFSIZ);
 336
 337        /*
 338         * arange all the rest of the TX FIFOs, as some versions of this
 339         * block have overlapping default addresses. This also ensures
 340         * that if the settings have been changed, then they are set to
 341         * known values.
 342         */
 343
 344        /* start at the end of the GNPTXFSIZ, rounded up */
 345        addr = 2048 + 1024;
 346        size = 768;
 347
 348        /*
 349         * currently we allocate TX FIFOs for all possible endpoints,
 350         * and assume that they are all the same size.
 351         */
 352
 353        for (ep = 1; ep <= 15; ep++) {
 354                val = addr;
 355                val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
 356                addr += size;
 357
 358                writel(val, hsotg->regs + DPTXFSIZn(ep));
 359        }
 360
 361        /*
 362         * according to p428 of the design guide, we need to ensure that
 363         * all fifos are flushed before continuing
 364         */
 365
 366        writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
 367               GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
 368
 369        /* wait until the fifos are both flushed */
 370        timeout = 100;
 371        while (1) {
 372                val = readl(hsotg->regs + GRSTCTL);
 373
 374                if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
 375                        break;
 376
 377                if (--timeout == 0) {
 378                        dev_err(hsotg->dev,
 379                                "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 380                                __func__, val);
 381                }
 382
 383                udelay(1);
 384        }
 385
 386        dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 387}
 388
 389/**
 390 * @ep: USB endpoint to allocate request for.
 391 * @flags: Allocation flags
 392 *
 393 * Allocate a new USB request structure appropriate for the specified endpoint
 394 */
 395static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
 396                                                      gfp_t flags)
 397{
 398        struct s3c_hsotg_req *req;
 399
 400        req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
 401        if (!req)
 402                return NULL;
 403
 404        INIT_LIST_HEAD(&req->queue);
 405
 406        return &req->req;
 407}
 408
 409/**
 410 * is_ep_periodic - return true if the endpoint is in periodic mode.
 411 * @hs_ep: The endpoint to query.
 412 *
 413 * Returns true if the endpoint is in periodic mode, meaning it is being
 414 * used for an Interrupt or ISO transfer.
 415 */
 416static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
 417{
 418        return hs_ep->periodic;
 419}
 420
 421/**
 422 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 423 * @hsotg: The device state.
 424 * @hs_ep: The endpoint for the request
 425 * @hs_req: The request being processed.
 426 *
 427 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 428 * of a request to ensure the buffer is ready for access by the caller.
 429 */
 430static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
 431                                struct s3c_hsotg_ep *hs_ep,
 432                                struct s3c_hsotg_req *hs_req)
 433{
 434        struct usb_request *req = &hs_req->req;
 435
 436        /* ignore this if we're not moving any data */
 437        if (hs_req->req.length == 0)
 438                return;
 439
 440        usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
 441}
 442
 443/**
 444 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 445 * @hsotg: The controller state.
 446 * @hs_ep: The endpoint we're going to write for.
 447 * @hs_req: The request to write data for.
 448 *
 449 * This is called when the TxFIFO has some space in it to hold a new
 450 * transmission and we have something to give it. The actual setup of
 451 * the data size is done elsewhere, so all we have to do is to actually
 452 * write the data.
 453 *
 454 * The return value is zero if there is more space (or nothing was done)
 455 * otherwise -ENOSPC is returned if the FIFO space was used up.
 456 *
 457 * This routine is only needed for PIO
 458 */
 459static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
 460                                struct s3c_hsotg_ep *hs_ep,
 461                                struct s3c_hsotg_req *hs_req)
 462{
 463        bool periodic = is_ep_periodic(hs_ep);
 464        u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
 465        int buf_pos = hs_req->req.actual;
 466        int to_write = hs_ep->size_loaded;
 467        void *data;
 468        int can_write;
 469        int pkt_round;
 470
 471        to_write -= (buf_pos - hs_ep->last_load);
 472
 473        /* if there's nothing to write, get out early */
 474        if (to_write == 0)
 475                return 0;
 476
 477        if (periodic && !hsotg->dedicated_fifos) {
 478                u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
 479                int size_left;
 480                int size_done;
 481
 482                /*
 483                 * work out how much data was loaded so we can calculate
 484                 * how much data is left in the fifo.
 485                 */
 486
 487                size_left = DxEPTSIZ_XferSize_GET(epsize);
 488
 489                /*
 490                 * if shared fifo, we cannot write anything until the
 491                 * previous data has been completely sent.
 492                 */
 493                if (hs_ep->fifo_load != 0) {
 494                        s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
 495                        return -ENOSPC;
 496                }
 497
 498                dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 499                        __func__, size_left,
 500                        hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 501
 502                /* how much of the data has moved */
 503                size_done = hs_ep->size_loaded - size_left;
 504
 505                /* how much data is left in the fifo */
 506                can_write = hs_ep->fifo_load - size_done;
 507                dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 508                        __func__, can_write);
 509
 510                can_write = hs_ep->fifo_size - can_write;
 511                dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 512                        __func__, can_write);
 513
 514                if (can_write <= 0) {
 515                        s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
 516                        return -ENOSPC;
 517                }
 518        } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 519                can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
 520
 521                can_write &= 0xffff;
 522                can_write *= 4;
 523        } else {
 524                if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
 525                        dev_dbg(hsotg->dev,
 526                                "%s: no queue slots available (0x%08x)\n",
 527                                __func__, gnptxsts);
 528
 529                        s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
 530                        return -ENOSPC;
 531                }
 532
 533                can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
 534                can_write *= 4; /* fifo size is in 32bit quantities. */
 535        }
 536
 537        dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
 538                 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
 539
 540        /*
 541         * limit to 512 bytes of data, it seems at least on the non-periodic
 542         * FIFO, requests of >512 cause the endpoint to get stuck with a
 543         * fragment of the end of the transfer in it.
 544         */
 545        if (can_write > 512)
 546                can_write = 512;
 547
 548        /*
 549         * limit the write to one max-packet size worth of data, but allow
 550         * the transfer to return that it did not run out of fifo space
 551         * doing it.
 552         */
 553        if (to_write > hs_ep->ep.maxpacket) {
 554                to_write = hs_ep->ep.maxpacket;
 555
 556                s3c_hsotg_en_gsint(hsotg,
 557                                   periodic ? GINTSTS_PTxFEmp :
 558                                   GINTSTS_NPTxFEmp);
 559        }
 560
 561        /* see if we can write data */
 562
 563        if (to_write > can_write) {
 564                to_write = can_write;
 565                pkt_round = to_write % hs_ep->ep.maxpacket;
 566
 567                /*
 568                 * Round the write down to an
 569                 * exact number of packets.
 570                 *
 571                 * Note, we do not currently check to see if we can ever
 572                 * write a full packet or not to the FIFO.
 573                 */
 574
 575                if (pkt_round)
 576                        to_write -= pkt_round;
 577
 578                /*
 579                 * enable correct FIFO interrupt to alert us when there
 580                 * is more room left.
 581                 */
 582
 583                s3c_hsotg_en_gsint(hsotg,
 584                                   periodic ? GINTSTS_PTxFEmp :
 585                                   GINTSTS_NPTxFEmp);
 586        }
 587
 588        dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 589                 to_write, hs_req->req.length, can_write, buf_pos);
 590
 591        if (to_write <= 0)
 592                return -ENOSPC;
 593
 594        hs_req->req.actual = buf_pos + to_write;
 595        hs_ep->total_data += to_write;
 596
 597        if (periodic)
 598                hs_ep->fifo_load += to_write;
 599
 600        to_write = DIV_ROUND_UP(to_write, 4);
 601        data = hs_req->req.buf + buf_pos;
 602
 603        writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
 604
 605        return (to_write >= can_write) ? -ENOSPC : 0;
 606}
 607
 608/**
 609 * get_ep_limit - get the maximum data legnth for this endpoint
 610 * @hs_ep: The endpoint
 611 *
 612 * Return the maximum data that can be queued in one go on a given endpoint
 613 * so that transfers that are too long can be split.
 614 */
 615static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
 616{
 617        int index = hs_ep->index;
 618        unsigned maxsize;
 619        unsigned maxpkt;
 620
 621        if (index != 0) {
 622                maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
 623                maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
 624        } else {
 625                maxsize = 64+64;
 626                if (hs_ep->dir_in)
 627                        maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
 628                else
 629                        maxpkt = 2;
 630        }
 631
 632        /* we made the constant loading easier above by using +1 */
 633        maxpkt--;
 634        maxsize--;
 635
 636        /*
 637         * constrain by packet count if maxpkts*pktsize is greater
 638         * than the length register size.
 639         */
 640
 641        if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 642                maxsize = maxpkt * hs_ep->ep.maxpacket;
 643
 644        return maxsize;
 645}
 646
 647/**
 648 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 649 * @hsotg: The controller state.
 650 * @hs_ep: The endpoint to process a request for
 651 * @hs_req: The request to start.
 652 * @continuing: True if we are doing more for the current request.
 653 *
 654 * Start the given request running by setting the endpoint registers
 655 * appropriately, and writing any data to the FIFOs.
 656 */
 657static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
 658                                struct s3c_hsotg_ep *hs_ep,
 659                                struct s3c_hsotg_req *hs_req,
 660                                bool continuing)
 661{
 662        struct usb_request *ureq = &hs_req->req;
 663        int index = hs_ep->index;
 664        int dir_in = hs_ep->dir_in;
 665        u32 epctrl_reg;
 666        u32 epsize_reg;
 667        u32 epsize;
 668        u32 ctrl;
 669        unsigned length;
 670        unsigned packets;
 671        unsigned maxreq;
 672
 673        if (index != 0) {
 674                if (hs_ep->req && !continuing) {
 675                        dev_err(hsotg->dev, "%s: active request\n", __func__);
 676                        WARN_ON(1);
 677                        return;
 678                } else if (hs_ep->req != hs_req && continuing) {
 679                        dev_err(hsotg->dev,
 680                                "%s: continue different req\n", __func__);
 681                        WARN_ON(1);
 682                        return;
 683                }
 684        }
 685
 686        epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
 687        epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
 688
 689        dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
 690                __func__, readl(hsotg->regs + epctrl_reg), index,
 691                hs_ep->dir_in ? "in" : "out");
 692
 693        /* If endpoint is stalled, we will restart request later */
 694        ctrl = readl(hsotg->regs + epctrl_reg);
 695
 696        if (ctrl & DxEPCTL_Stall) {
 697                dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
 698                return;
 699        }
 700
 701        length = ureq->length - ureq->actual;
 702        dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
 703                ureq->length, ureq->actual);
 704        if (0)
 705                dev_dbg(hsotg->dev,
 706                        "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
 707                        ureq->buf, length, ureq->dma,
 708                        ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
 709
 710        maxreq = get_ep_limit(hs_ep);
 711        if (length > maxreq) {
 712                int round = maxreq % hs_ep->ep.maxpacket;
 713
 714                dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
 715                        __func__, length, maxreq, round);
 716
 717                /* round down to multiple of packets */
 718                if (round)
 719                        maxreq -= round;
 720
 721                length = maxreq;
 722        }
 723
 724        if (length)
 725                packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
 726        else
 727                packets = 1;    /* send one packet if length is zero. */
 728
 729        if (dir_in && index != 0)
 730                epsize = DxEPTSIZ_MC(1);
 731        else
 732                epsize = 0;
 733
 734        if (index != 0 && ureq->zero) {
 735                /*
 736                 * test for the packets being exactly right for the
 737                 * transfer
 738                 */
 739
 740                if (length == (packets * hs_ep->ep.maxpacket))
 741                        packets++;
 742        }
 743
 744        epsize |= DxEPTSIZ_PktCnt(packets);
 745        epsize |= DxEPTSIZ_XferSize(length);
 746
 747        dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
 748                __func__, packets, length, ureq->length, epsize, epsize_reg);
 749
 750        /* store the request as the current one we're doing */
 751        hs_ep->req = hs_req;
 752
 753        /* write size / packets */
 754        writel(epsize, hsotg->regs + epsize_reg);
 755
 756        if (using_dma(hsotg) && !continuing) {
 757                unsigned int dma_reg;
 758
 759                /*
 760                 * write DMA address to control register, buffer already
 761                 * synced by s3c_hsotg_ep_queue().
 762                 */
 763
 764                dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
 765                writel(ureq->dma, hsotg->regs + dma_reg);
 766
 767                dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
 768                        __func__, ureq->dma, dma_reg);
 769        }
 770
 771        ctrl |= DxEPCTL_EPEna;  /* ensure ep enabled */
 772        ctrl |= DxEPCTL_USBActEp;
 773
 774        dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
 775
 776        /* For Setup request do not clear NAK */
 777        if (hsotg->setup && index == 0)
 778                hsotg->setup = 0;
 779        else
 780                ctrl |= DxEPCTL_CNAK;   /* clear NAK set by core */
 781
 782
 783        dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
 784        writel(ctrl, hsotg->regs + epctrl_reg);
 785
 786        /*
 787         * set these, it seems that DMA support increments past the end
 788         * of the packet buffer so we need to calculate the length from
 789         * this information.
 790         */
 791        hs_ep->size_loaded = length;
 792        hs_ep->last_load = ureq->actual;
 793
 794        if (dir_in && !using_dma(hsotg)) {
 795                /* set these anyway, we may need them for non-periodic in */
 796                hs_ep->fifo_load = 0;
 797
 798                s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
 799        }
 800
 801        /*
 802         * clear the INTknTXFEmpMsk when we start request, more as a aide
 803         * to debugging to see what is going on.
 804         */
 805        if (dir_in)
 806                writel(DIEPMSK_INTknTXFEmpMsk,
 807                       hsotg->regs + DIEPINT(index));
 808
 809        /*
 810         * Note, trying to clear the NAK here causes problems with transmit
 811         * on the S3C6400 ending up with the TXFIFO becoming full.
 812         */
 813
 814        /* check ep is enabled */
 815        if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
 816                dev_warn(hsotg->dev,
 817                         "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
 818                         index, readl(hsotg->regs + epctrl_reg));
 819
 820        dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
 821                __func__, readl(hsotg->regs + epctrl_reg));
 822}
 823
 824/**
 825 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 826 * @hsotg: The device state.
 827 * @hs_ep: The endpoint the request is on.
 828 * @req: The request being processed.
 829 *
 830 * We've been asked to queue a request, so ensure that the memory buffer
 831 * is correctly setup for DMA. If we've been passed an extant DMA address
 832 * then ensure the buffer has been synced to memory. If our buffer has no
 833 * DMA memory, then we map the memory and mark our request to allow us to
 834 * cleanup on completion.
 835 */
 836static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
 837                             struct s3c_hsotg_ep *hs_ep,
 838                             struct usb_request *req)
 839{
 840        struct s3c_hsotg_req *hs_req = our_req(req);
 841        int ret;
 842
 843        /* if the length is zero, ignore the DMA data */
 844        if (hs_req->req.length == 0)
 845                return 0;
 846
 847        ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
 848        if (ret)
 849                goto dma_error;
 850
 851        return 0;
 852
 853dma_error:
 854        dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
 855                __func__, req->buf, req->length);
 856
 857        return -EIO;
 858}
 859
 860static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
 861                              gfp_t gfp_flags)
 862{
 863        struct s3c_hsotg_req *hs_req = our_req(req);
 864        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
 865        struct s3c_hsotg *hs = hs_ep->parent;
 866        bool first;
 867
 868        dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
 869                ep->name, req, req->length, req->buf, req->no_interrupt,
 870                req->zero, req->short_not_ok);
 871
 872        /* initialise status of the request */
 873        INIT_LIST_HEAD(&hs_req->queue);
 874        req->actual = 0;
 875        req->status = -EINPROGRESS;
 876
 877        /* if we're using DMA, sync the buffers as necessary */
 878        if (using_dma(hs)) {
 879                int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
 880                if (ret)
 881                        return ret;
 882        }
 883
 884        first = list_empty(&hs_ep->queue);
 885        list_add_tail(&hs_req->queue, &hs_ep->queue);
 886
 887        if (first)
 888                s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
 889
 890        return 0;
 891}
 892
 893static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
 894                              gfp_t gfp_flags)
 895{
 896        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
 897        struct s3c_hsotg *hs = hs_ep->parent;
 898        unsigned long flags = 0;
 899        int ret = 0;
 900
 901        spin_lock_irqsave(&hs->lock, flags);
 902        ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
 903        spin_unlock_irqrestore(&hs->lock, flags);
 904
 905        return ret;
 906}
 907
 908static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
 909                                      struct usb_request *req)
 910{
 911        struct s3c_hsotg_req *hs_req = our_req(req);
 912
 913        kfree(hs_req);
 914}
 915
 916/**
 917 * s3c_hsotg_complete_oursetup - setup completion callback
 918 * @ep: The endpoint the request was on.
 919 * @req: The request completed.
 920 *
 921 * Called on completion of any requests the driver itself
 922 * submitted that need cleaning up.
 923 */
 924static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
 925                                        struct usb_request *req)
 926{
 927        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
 928        struct s3c_hsotg *hsotg = hs_ep->parent;
 929
 930        dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
 931
 932        s3c_hsotg_ep_free_request(ep, req);
 933}
 934
 935/**
 936 * ep_from_windex - convert control wIndex value to endpoint
 937 * @hsotg: The driver state.
 938 * @windex: The control request wIndex field (in host order).
 939 *
 940 * Convert the given wIndex into a pointer to an driver endpoint
 941 * structure, or return NULL if it is not a valid endpoint.
 942 */
 943static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
 944                                           u32 windex)
 945{
 946        struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
 947        int dir = (windex & USB_DIR_IN) ? 1 : 0;
 948        int idx = windex & 0x7F;
 949
 950        if (windex >= 0x100)
 951                return NULL;
 952
 953        if (idx > hsotg->num_of_eps)
 954                return NULL;
 955
 956        if (idx && ep->dir_in != dir)
 957                return NULL;
 958
 959        return ep;
 960}
 961
 962/**
 963 * s3c_hsotg_send_reply - send reply to control request
 964 * @hsotg: The device state
 965 * @ep: Endpoint 0
 966 * @buff: Buffer for request
 967 * @length: Length of reply.
 968 *
 969 * Create a request and queue it on the given endpoint. This is useful as
 970 * an internal method of sending replies to certain control requests, etc.
 971 */
 972static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
 973                                struct s3c_hsotg_ep *ep,
 974                                void *buff,
 975                                int length)
 976{
 977        struct usb_request *req;
 978        int ret;
 979
 980        dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
 981
 982        req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
 983        hsotg->ep0_reply = req;
 984        if (!req) {
 985                dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
 986                return -ENOMEM;
 987        }
 988
 989        req->buf = hsotg->ep0_buff;
 990        req->length = length;
 991        req->zero = 1; /* always do zero-length final transfer */
 992        req->complete = s3c_hsotg_complete_oursetup;
 993
 994        if (length)
 995                memcpy(req->buf, buff, length);
 996        else
 997                ep->sent_zlp = 1;
 998
 999        ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1000        if (ret) {
1001                dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1002                return ret;
1003        }
1004
1005        return 0;
1006}
1007
1008/**
1009 * s3c_hsotg_process_req_status - process request GET_STATUS
1010 * @hsotg: The device state
1011 * @ctrl: USB control request
1012 */
1013static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
1014                                        struct usb_ctrlrequest *ctrl)
1015{
1016        struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1017        struct s3c_hsotg_ep *ep;
1018        __le16 reply;
1019        int ret;
1020
1021        dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1022
1023        if (!ep0->dir_in) {
1024                dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1025                return -EINVAL;
1026        }
1027
1028        switch (ctrl->bRequestType & USB_RECIP_MASK) {
1029        case USB_RECIP_DEVICE:
1030                reply = cpu_to_le16(0); /* bit 0 => self powered,
1031                                         * bit 1 => remote wakeup */
1032                break;
1033
1034        case USB_RECIP_INTERFACE:
1035                /* currently, the data result should be zero */
1036                reply = cpu_to_le16(0);
1037                break;
1038
1039        case USB_RECIP_ENDPOINT:
1040                ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1041                if (!ep)
1042                        return -ENOENT;
1043
1044                reply = cpu_to_le16(ep->halted ? 1 : 0);
1045                break;
1046
1047        default:
1048                return 0;
1049        }
1050
1051        if (le16_to_cpu(ctrl->wLength) != 2)
1052                return -EINVAL;
1053
1054        ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1055        if (ret) {
1056                dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1057                return ret;
1058        }
1059
1060        return 1;
1061}
1062
1063static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1064
1065/**
1066 * get_ep_head - return the first request on the endpoint
1067 * @hs_ep: The controller endpoint to get
1068 *
1069 * Get the first request on the endpoint.
1070 */
1071static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1072{
1073        if (list_empty(&hs_ep->queue))
1074                return NULL;
1075
1076        return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1077}
1078
1079/**
1080 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1081 * @hsotg: The device state
1082 * @ctrl: USB control request
1083 */
1084static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1085                                         struct usb_ctrlrequest *ctrl)
1086{
1087        struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1088        struct s3c_hsotg_req *hs_req;
1089        bool restart;
1090        bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1091        struct s3c_hsotg_ep *ep;
1092        int ret;
1093
1094        dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1095                __func__, set ? "SET" : "CLEAR");
1096
1097        if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1098                ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1099                if (!ep) {
1100                        dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1101                                __func__, le16_to_cpu(ctrl->wIndex));
1102                        return -ENOENT;
1103                }
1104
1105                switch (le16_to_cpu(ctrl->wValue)) {
1106                case USB_ENDPOINT_HALT:
1107                        s3c_hsotg_ep_sethalt(&ep->ep, set);
1108
1109                        ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1110                        if (ret) {
1111                                dev_err(hsotg->dev,
1112                                        "%s: failed to send reply\n", __func__);
1113                                return ret;
1114                        }
1115
1116                        if (!set) {
1117                                /*
1118                                 * If we have request in progress,
1119                                 * then complete it
1120                                 */
1121                                if (ep->req) {
1122                                        hs_req = ep->req;
1123                                        ep->req = NULL;
1124                                        list_del_init(&hs_req->queue);
1125                                        hs_req->req.complete(&ep->ep,
1126                                                             &hs_req->req);
1127                                }
1128
1129                                /* If we have pending request, then start it */
1130                                restart = !list_empty(&ep->queue);
1131                                if (restart) {
1132                                        hs_req = get_ep_head(ep);
1133                                        s3c_hsotg_start_req(hsotg, ep,
1134                                                            hs_req, false);
1135                                }
1136                        }
1137
1138                        break;
1139
1140                default:
1141                        return -ENOENT;
1142                }
1143        } else
1144                return -ENOENT;  /* currently only deal with endpoint */
1145
1146        return 1;
1147}
1148
1149/**
1150 * s3c_hsotg_process_control - process a control request
1151 * @hsotg: The device state
1152 * @ctrl: The control request received
1153 *
1154 * The controller has received the SETUP phase of a control request, and
1155 * needs to work out what to do next (and whether to pass it on to the
1156 * gadget driver).
1157 */
1158static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1159                                      struct usb_ctrlrequest *ctrl)
1160{
1161        struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1162        int ret = 0;
1163        u32 dcfg;
1164
1165        ep0->sent_zlp = 0;
1166
1167        dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1168                 ctrl->bRequest, ctrl->bRequestType,
1169                 ctrl->wValue, ctrl->wLength);
1170
1171        /*
1172         * record the direction of the request, for later use when enquing
1173         * packets onto EP0.
1174         */
1175
1176        ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1177        dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1178
1179        /*
1180         * if we've no data with this request, then the last part of the
1181         * transaction is going to implicitly be IN.
1182         */
1183        if (ctrl->wLength == 0)
1184                ep0->dir_in = 1;
1185
1186        if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1187                switch (ctrl->bRequest) {
1188                case USB_REQ_SET_ADDRESS:
1189                        dcfg = readl(hsotg->regs + DCFG);
1190                        dcfg &= ~DCFG_DevAddr_MASK;
1191                        dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
1192                        writel(dcfg, hsotg->regs + DCFG);
1193
1194                        dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1195
1196                        ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1197                        return;
1198
1199                case USB_REQ_GET_STATUS:
1200                        ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1201                        break;
1202
1203                case USB_REQ_CLEAR_FEATURE:
1204                case USB_REQ_SET_FEATURE:
1205                        ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1206                        break;
1207                }
1208        }
1209
1210        /* as a fallback, try delivering it to the driver to deal with */
1211
1212        if (ret == 0 && hsotg->driver) {
1213                ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1214                if (ret < 0)
1215                        dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1216        }
1217
1218        /*
1219         * the request is either unhandlable, or is not formatted correctly
1220         * so respond with a STALL for the status stage to indicate failure.
1221         */
1222
1223        if (ret < 0) {
1224                u32 reg;
1225                u32 ctrl;
1226
1227                dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1228                reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1229
1230                /*
1231                 * DxEPCTL_Stall will be cleared by EP once it has
1232                 * taken effect, so no need to clear later.
1233                 */
1234
1235                ctrl = readl(hsotg->regs + reg);
1236                ctrl |= DxEPCTL_Stall;
1237                ctrl |= DxEPCTL_CNAK;
1238                writel(ctrl, hsotg->regs + reg);
1239
1240                dev_dbg(hsotg->dev,
1241                        "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1242                        ctrl, reg, readl(hsotg->regs + reg));
1243
1244                /*
1245                 * don't believe we need to anything more to get the EP
1246                 * to reply with a STALL packet
1247                 */
1248        }
1249}
1250
1251static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1252
1253/**
1254 * s3c_hsotg_complete_setup - completion of a setup transfer
1255 * @ep: The endpoint the request was on.
1256 * @req: The request completed.
1257 *
1258 * Called on completion of any requests the driver itself submitted for
1259 * EP0 setup packets
1260 */
1261static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1262                                     struct usb_request *req)
1263{
1264        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1265        struct s3c_hsotg *hsotg = hs_ep->parent;
1266
1267        if (req->status < 0) {
1268                dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1269                return;
1270        }
1271
1272        if (req->actual == 0)
1273                s3c_hsotg_enqueue_setup(hsotg);
1274        else
1275                s3c_hsotg_process_control(hsotg, req->buf);
1276}
1277
1278/**
1279 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1280 * @hsotg: The device state.
1281 *
1282 * Enqueue a request on EP0 if necessary to received any SETUP packets
1283 * received from the host.
1284 */
1285static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1286{
1287        struct usb_request *req = hsotg->ctrl_req;
1288        struct s3c_hsotg_req *hs_req = our_req(req);
1289        int ret;
1290
1291        dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1292
1293        req->zero = 0;
1294        req->length = 8;
1295        req->buf = hsotg->ctrl_buff;
1296        req->complete = s3c_hsotg_complete_setup;
1297
1298        if (!list_empty(&hs_req->queue)) {
1299                dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1300                return;
1301        }
1302
1303        hsotg->eps[0].dir_in = 0;
1304
1305        ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1306        if (ret < 0) {
1307                dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1308                /*
1309                 * Don't think there's much we can do other than watch the
1310                 * driver fail.
1311                 */
1312        }
1313}
1314
1315/**
1316 * s3c_hsotg_complete_request - complete a request given to us
1317 * @hsotg: The device state.
1318 * @hs_ep: The endpoint the request was on.
1319 * @hs_req: The request to complete.
1320 * @result: The result code (0 => Ok, otherwise errno)
1321 *
1322 * The given request has finished, so call the necessary completion
1323 * if it has one and then look to see if we can start a new request
1324 * on the endpoint.
1325 *
1326 * Note, expects the ep to already be locked as appropriate.
1327 */
1328static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1329                                       struct s3c_hsotg_ep *hs_ep,
1330                                       struct s3c_hsotg_req *hs_req,
1331                                       int result)
1332{
1333        bool restart;
1334
1335        if (!hs_req) {
1336                dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1337                return;
1338        }
1339
1340        dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1341                hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1342
1343        /*
1344         * only replace the status if we've not already set an error
1345         * from a previous transaction
1346         */
1347
1348        if (hs_req->req.status == -EINPROGRESS)
1349                hs_req->req.status = result;
1350
1351        hs_ep->req = NULL;
1352        list_del_init(&hs_req->queue);
1353
1354        if (using_dma(hsotg))
1355                s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1356
1357        /*
1358         * call the complete request with the locks off, just in case the
1359         * request tries to queue more work for this endpoint.
1360         */
1361
1362        if (hs_req->req.complete) {
1363                spin_unlock(&hsotg->lock);
1364                hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1365                spin_lock(&hsotg->lock);
1366        }
1367
1368        /*
1369         * Look to see if there is anything else to do. Note, the completion
1370         * of the previous request may have caused a new request to be started
1371         * so be careful when doing this.
1372         */
1373
1374        if (!hs_ep->req && result >= 0) {
1375                restart = !list_empty(&hs_ep->queue);
1376                if (restart) {
1377                        hs_req = get_ep_head(hs_ep);
1378                        s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1379                }
1380        }
1381}
1382
1383/**
1384 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1385 * @hsotg: The device state.
1386 * @ep_idx: The endpoint index for the data
1387 * @size: The size of data in the fifo, in bytes
1388 *
1389 * The FIFO status shows there is data to read from the FIFO for a given
1390 * endpoint, so sort out whether we need to read the data into a request
1391 * that has been made for that endpoint.
1392 */
1393static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1394{
1395        struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1396        struct s3c_hsotg_req *hs_req = hs_ep->req;
1397        void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1398        int to_read;
1399        int max_req;
1400        int read_ptr;
1401
1402
1403        if (!hs_req) {
1404                u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1405                int ptr;
1406
1407                dev_warn(hsotg->dev,
1408                         "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1409                         __func__, size, ep_idx, epctl);
1410
1411                /* dump the data from the FIFO, we've nothing we can do */
1412                for (ptr = 0; ptr < size; ptr += 4)
1413                        (void)readl(fifo);
1414
1415                return;
1416        }
1417
1418        to_read = size;
1419        read_ptr = hs_req->req.actual;
1420        max_req = hs_req->req.length - read_ptr;
1421
1422        dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1423                __func__, to_read, max_req, read_ptr, hs_req->req.length);
1424
1425        if (to_read > max_req) {
1426                /*
1427                 * more data appeared than we where willing
1428                 * to deal with in this request.
1429                 */
1430
1431                /* currently we don't deal this */
1432                WARN_ON_ONCE(1);
1433        }
1434
1435        hs_ep->total_data += to_read;
1436        hs_req->req.actual += to_read;
1437        to_read = DIV_ROUND_UP(to_read, 4);
1438
1439        /*
1440         * note, we might over-write the buffer end by 3 bytes depending on
1441         * alignment of the data.
1442         */
1443        readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1444}
1445
1446/**
1447 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1448 * @hsotg: The device instance
1449 * @req: The request currently on this endpoint
1450 *
1451 * Generate a zero-length IN packet request for terminating a SETUP
1452 * transaction.
1453 *
1454 * Note, since we don't write any data to the TxFIFO, then it is
1455 * currently believed that we do not need to wait for any space in
1456 * the TxFIFO.
1457 */
1458static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1459                               struct s3c_hsotg_req *req)
1460{
1461        u32 ctrl;
1462
1463        if (!req) {
1464                dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1465                return;
1466        }
1467
1468        if (req->req.length == 0) {
1469                hsotg->eps[0].sent_zlp = 1;
1470                s3c_hsotg_enqueue_setup(hsotg);
1471                return;
1472        }
1473
1474        hsotg->eps[0].dir_in = 1;
1475        hsotg->eps[0].sent_zlp = 1;
1476
1477        dev_dbg(hsotg->dev, "sending zero-length packet\n");
1478
1479        /* issue a zero-sized packet to terminate this */
1480        writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
1481               DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
1482
1483        ctrl = readl(hsotg->regs + DIEPCTL0);
1484        ctrl |= DxEPCTL_CNAK;  /* clear NAK set by core */
1485        ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
1486        ctrl |= DxEPCTL_USBActEp;
1487        writel(ctrl, hsotg->regs + DIEPCTL0);
1488}
1489
1490/**
1491 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1492 * @hsotg: The device instance
1493 * @epnum: The endpoint received from
1494 * @was_setup: Set if processing a SetupDone event.
1495 *
1496 * The RXFIFO has delivered an OutDone event, which means that the data
1497 * transfer for an OUT endpoint has been completed, either by a short
1498 * packet or by the finish of a transfer.
1499 */
1500static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1501                                     int epnum, bool was_setup)
1502{
1503        u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1504        struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1505        struct s3c_hsotg_req *hs_req = hs_ep->req;
1506        struct usb_request *req = &hs_req->req;
1507        unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
1508        int result = 0;
1509
1510        if (!hs_req) {
1511                dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1512                return;
1513        }
1514
1515        if (using_dma(hsotg)) {
1516                unsigned size_done;
1517
1518                /*
1519                 * Calculate the size of the transfer by checking how much
1520                 * is left in the endpoint size register and then working it
1521                 * out from the amount we loaded for the transfer.
1522                 *
1523                 * We need to do this as DMA pointers are always 32bit aligned
1524                 * so may overshoot/undershoot the transfer.
1525                 */
1526
1527                size_done = hs_ep->size_loaded - size_left;
1528                size_done += hs_ep->last_load;
1529
1530                req->actual = size_done;
1531        }
1532
1533        /* if there is more request to do, schedule new transfer */
1534        if (req->actual < req->length && size_left == 0) {
1535                s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1536                return;
1537        } else if (epnum == 0) {
1538                /*
1539                 * After was_setup = 1 =>
1540                 * set CNAK for non Setup requests
1541                 */
1542                hsotg->setup = was_setup ? 0 : 1;
1543        }
1544
1545        if (req->actual < req->length && req->short_not_ok) {
1546                dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1547                        __func__, req->actual, req->length);
1548
1549                /*
1550                 * todo - what should we return here? there's no one else
1551                 * even bothering to check the status.
1552                 */
1553        }
1554
1555        if (epnum == 0) {
1556                /*
1557                 * Condition req->complete != s3c_hsotg_complete_setup says:
1558                 * send ZLP when we have an asynchronous request from gadget
1559                 */
1560                if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1561                        s3c_hsotg_send_zlp(hsotg, hs_req);
1562        }
1563
1564        s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1565}
1566
1567/**
1568 * s3c_hsotg_read_frameno - read current frame number
1569 * @hsotg: The device instance
1570 *
1571 * Return the current frame number
1572 */
1573static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1574{
1575        u32 dsts;
1576
1577        dsts = readl(hsotg->regs + DSTS);
1578        dsts &= DSTS_SOFFN_MASK;
1579        dsts >>= DSTS_SOFFN_SHIFT;
1580
1581        return dsts;
1582}
1583
1584/**
1585 * s3c_hsotg_handle_rx - RX FIFO has data
1586 * @hsotg: The device instance
1587 *
1588 * The IRQ handler has detected that the RX FIFO has some data in it
1589 * that requires processing, so find out what is in there and do the
1590 * appropriate read.
1591 *
1592 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1593 * chunks, so if you have x packets received on an endpoint you'll get x
1594 * FIFO events delivered, each with a packet's worth of data in it.
1595 *
1596 * When using DMA, we should not be processing events from the RXFIFO
1597 * as the actual data should be sent to the memory directly and we turn
1598 * on the completion interrupts to get notifications of transfer completion.
1599 */
1600static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1601{
1602        u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1603        u32 epnum, status, size;
1604
1605        WARN_ON(using_dma(hsotg));
1606
1607        epnum = grxstsr & GRXSTS_EPNum_MASK;
1608        status = grxstsr & GRXSTS_PktSts_MASK;
1609
1610        size = grxstsr & GRXSTS_ByteCnt_MASK;
1611        size >>= GRXSTS_ByteCnt_SHIFT;
1612
1613        if (1)
1614                dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1615                        __func__, grxstsr, size, epnum);
1616
1617#define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
1618
1619        switch (status >> GRXSTS_PktSts_SHIFT) {
1620        case __status(GRXSTS_PktSts_GlobalOutNAK):
1621                dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1622                break;
1623
1624        case __status(GRXSTS_PktSts_OutDone):
1625                dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1626                        s3c_hsotg_read_frameno(hsotg));
1627
1628                if (!using_dma(hsotg))
1629                        s3c_hsotg_handle_outdone(hsotg, epnum, false);
1630                break;
1631
1632        case __status(GRXSTS_PktSts_SetupDone):
1633                dev_dbg(hsotg->dev,
1634                        "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1635                        s3c_hsotg_read_frameno(hsotg),
1636                        readl(hsotg->regs + DOEPCTL(0)));
1637
1638                s3c_hsotg_handle_outdone(hsotg, epnum, true);
1639                break;
1640
1641        case __status(GRXSTS_PktSts_OutRX):
1642                s3c_hsotg_rx_data(hsotg, epnum, size);
1643                break;
1644
1645        case __status(GRXSTS_PktSts_SetupRX):
1646                dev_dbg(hsotg->dev,
1647                        "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1648                        s3c_hsotg_read_frameno(hsotg),
1649                        readl(hsotg->regs + DOEPCTL(0)));
1650
1651                s3c_hsotg_rx_data(hsotg, epnum, size);
1652                break;
1653
1654        default:
1655                dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1656                         __func__, grxstsr);
1657
1658                s3c_hsotg_dump(hsotg);
1659                break;
1660        }
1661}
1662
1663/**
1664 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1665 * @mps: The maximum packet size in bytes.
1666 */
1667static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1668{
1669        switch (mps) {
1670        case 64:
1671                return D0EPCTL_MPS_64;
1672        case 32:
1673                return D0EPCTL_MPS_32;
1674        case 16:
1675                return D0EPCTL_MPS_16;
1676        case 8:
1677                return D0EPCTL_MPS_8;
1678        }
1679
1680        /* bad max packet size, warn and return invalid result */
1681        WARN_ON(1);
1682        return (u32)-1;
1683}
1684
1685/**
1686 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1687 * @hsotg: The driver state.
1688 * @ep: The index number of the endpoint
1689 * @mps: The maximum packet size in bytes
1690 *
1691 * Configure the maximum packet size for the given endpoint, updating
1692 * the hardware control registers to reflect this.
1693 */
1694static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1695                                       unsigned int ep, unsigned int mps)
1696{
1697        struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1698        void __iomem *regs = hsotg->regs;
1699        u32 mpsval;
1700        u32 reg;
1701
1702        if (ep == 0) {
1703                /* EP0 is a special case */
1704                mpsval = s3c_hsotg_ep0_mps(mps);
1705                if (mpsval > 3)
1706                        goto bad_mps;
1707        } else {
1708                if (mps >= DxEPCTL_MPS_LIMIT+1)
1709                        goto bad_mps;
1710
1711                mpsval = mps;
1712        }
1713
1714        hs_ep->ep.maxpacket = mps;
1715
1716        /*
1717         * update both the in and out endpoint controldir_ registers, even
1718         * if one of the directions may not be in use.
1719         */
1720
1721        reg = readl(regs + DIEPCTL(ep));
1722        reg &= ~DxEPCTL_MPS_MASK;
1723        reg |= mpsval;
1724        writel(reg, regs + DIEPCTL(ep));
1725
1726        if (ep) {
1727                reg = readl(regs + DOEPCTL(ep));
1728                reg &= ~DxEPCTL_MPS_MASK;
1729                reg |= mpsval;
1730                writel(reg, regs + DOEPCTL(ep));
1731        }
1732
1733        return;
1734
1735bad_mps:
1736        dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1737}
1738
1739/**
1740 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1741 * @hsotg: The driver state
1742 * @idx: The index for the endpoint (0..15)
1743 */
1744static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1745{
1746        int timeout;
1747        int val;
1748
1749        writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
1750                hsotg->regs + GRSTCTL);
1751
1752        /* wait until the fifo is flushed */
1753        timeout = 100;
1754
1755        while (1) {
1756                val = readl(hsotg->regs + GRSTCTL);
1757
1758                if ((val & (GRSTCTL_TxFFlsh)) == 0)
1759                        break;
1760
1761                if (--timeout == 0) {
1762                        dev_err(hsotg->dev,
1763                                "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1764                                __func__, val);
1765                }
1766
1767                udelay(1);
1768        }
1769}
1770
1771/**
1772 * s3c_hsotg_trytx - check to see if anything needs transmitting
1773 * @hsotg: The driver state
1774 * @hs_ep: The driver endpoint to check.
1775 *
1776 * Check to see if there is a request that has data to send, and if so
1777 * make an attempt to write data into the FIFO.
1778 */
1779static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1780                           struct s3c_hsotg_ep *hs_ep)
1781{
1782        struct s3c_hsotg_req *hs_req = hs_ep->req;
1783
1784        if (!hs_ep->dir_in || !hs_req)
1785                return 0;
1786
1787        if (hs_req->req.actual < hs_req->req.length) {
1788                dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1789                        hs_ep->index);
1790                return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1791        }
1792
1793        return 0;
1794}
1795
1796/**
1797 * s3c_hsotg_complete_in - complete IN transfer
1798 * @hsotg: The device state.
1799 * @hs_ep: The endpoint that has just completed.
1800 *
1801 * An IN transfer has been completed, update the transfer's state and then
1802 * call the relevant completion routines.
1803 */
1804static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1805                                  struct s3c_hsotg_ep *hs_ep)
1806{
1807        struct s3c_hsotg_req *hs_req = hs_ep->req;
1808        u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1809        int size_left, size_done;
1810
1811        if (!hs_req) {
1812                dev_dbg(hsotg->dev, "XferCompl but no req\n");
1813                return;
1814        }
1815
1816        /* Finish ZLP handling for IN EP0 transactions */
1817        if (hsotg->eps[0].sent_zlp) {
1818                dev_dbg(hsotg->dev, "zlp packet received\n");
1819                s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1820                return;
1821        }
1822
1823        /*
1824         * Calculate the size of the transfer by checking how much is left
1825         * in the endpoint size register and then working it out from
1826         * the amount we loaded for the transfer.
1827         *
1828         * We do this even for DMA, as the transfer may have incremented
1829         * past the end of the buffer (DMA transfers are always 32bit
1830         * aligned).
1831         */
1832
1833        size_left = DxEPTSIZ_XferSize_GET(epsize);
1834
1835        size_done = hs_ep->size_loaded - size_left;
1836        size_done += hs_ep->last_load;
1837
1838        if (hs_req->req.actual != size_done)
1839                dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1840                        __func__, hs_req->req.actual, size_done);
1841
1842        hs_req->req.actual = size_done;
1843        dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1844                hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1845
1846        /*
1847         * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1848         * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1849         * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1850         * inform the host that no more data is available.
1851         * The state of req.zero member is checked to be sure that the value to
1852         * send is smaller than wValue expected from host.
1853         * Check req.length to NOT send another ZLP when the current one is
1854         * under completion (the one for which this completion has been called).
1855         */
1856        if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1857            hs_req->req.length == hs_req->req.actual &&
1858            !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1859
1860                dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1861                s3c_hsotg_send_zlp(hsotg, hs_req);
1862
1863                return;
1864        }
1865
1866        if (!size_left && hs_req->req.actual < hs_req->req.length) {
1867                dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1868                s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1869        } else
1870                s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1871}
1872
1873/**
1874 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1875 * @hsotg: The driver state
1876 * @idx: The index for the endpoint (0..15)
1877 * @dir_in: Set if this is an IN endpoint
1878 *
1879 * Process and clear any interrupt pending for an individual endpoint
1880 */
1881static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1882                            int dir_in)
1883{
1884        struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1885        u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1886        u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1887        u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1888        u32 ints;
1889
1890        ints = readl(hsotg->regs + epint_reg);
1891
1892        /* Clear endpoint interrupts */
1893        writel(ints, hsotg->regs + epint_reg);
1894
1895        dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1896                __func__, idx, dir_in ? "in" : "out", ints);
1897
1898        if (ints & DxEPINT_XferCompl) {
1899                dev_dbg(hsotg->dev,
1900                        "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1901                        __func__, readl(hsotg->regs + epctl_reg),
1902                        readl(hsotg->regs + epsiz_reg));
1903
1904                /*
1905                 * we get OutDone from the FIFO, so we only need to look
1906                 * at completing IN requests here
1907                 */
1908                if (dir_in) {
1909                        s3c_hsotg_complete_in(hsotg, hs_ep);
1910
1911                        if (idx == 0 && !hs_ep->req)
1912                                s3c_hsotg_enqueue_setup(hsotg);
1913                } else if (using_dma(hsotg)) {
1914                        /*
1915                         * We're using DMA, we need to fire an OutDone here
1916                         * as we ignore the RXFIFO.
1917                         */
1918
1919                        s3c_hsotg_handle_outdone(hsotg, idx, false);
1920                }
1921        }
1922
1923        if (ints & DxEPINT_EPDisbld) {
1924                dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1925
1926                if (dir_in) {
1927                        int epctl = readl(hsotg->regs + epctl_reg);
1928
1929                        s3c_hsotg_txfifo_flush(hsotg, idx);
1930
1931                        if ((epctl & DxEPCTL_Stall) &&
1932                                (epctl & DxEPCTL_EPType_Bulk)) {
1933                                int dctl = readl(hsotg->regs + DCTL);
1934
1935                                dctl |= DCTL_CGNPInNAK;
1936                                writel(dctl, hsotg->regs + DCTL);
1937                        }
1938                }
1939        }
1940
1941        if (ints & DxEPINT_AHBErr)
1942                dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1943
1944        if (ints & DxEPINT_Setup) {  /* Setup or Timeout */
1945                dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
1946
1947                if (using_dma(hsotg) && idx == 0) {
1948                        /*
1949                         * this is the notification we've received a
1950                         * setup packet. In non-DMA mode we'd get this
1951                         * from the RXFIFO, instead we need to process
1952                         * the setup here.
1953                         */
1954
1955                        if (dir_in)
1956                                WARN_ON_ONCE(1);
1957                        else
1958                                s3c_hsotg_handle_outdone(hsotg, 0, true);
1959                }
1960        }
1961
1962        if (ints & DxEPINT_Back2BackSetup)
1963                dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1964
1965        if (dir_in) {
1966                /* not sure if this is important, but we'll clear it anyway */
1967                if (ints & DIEPMSK_INTknTXFEmpMsk) {
1968                        dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1969                                __func__, idx);
1970                }
1971
1972                /* this probably means something bad is happening */
1973                if (ints & DIEPMSK_INTknEPMisMsk) {
1974                        dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1975                                 __func__, idx);
1976                }
1977
1978                /* FIFO has space or is empty (see GAHBCFG) */
1979                if (hsotg->dedicated_fifos &&
1980                    ints & DIEPMSK_TxFIFOEmpty) {
1981                        dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
1982                                __func__, idx);
1983                        if (!using_dma(hsotg))
1984                                s3c_hsotg_trytx(hsotg, hs_ep);
1985                }
1986        }
1987}
1988
1989/**
1990 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1991 * @hsotg: The device state.
1992 *
1993 * Handle updating the device settings after the enumeration phase has
1994 * been completed.
1995 */
1996static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1997{
1998        u32 dsts = readl(hsotg->regs + DSTS);
1999        int ep0_mps = 0, ep_mps;
2000
2001        /*
2002         * This should signal the finish of the enumeration phase
2003         * of the USB handshaking, so we should now know what rate
2004         * we connected at.
2005         */
2006
2007        dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2008
2009        /*
2010         * note, since we're limited by the size of transfer on EP0, and
2011         * it seems IN transfers must be a even number of packets we do
2012         * not advertise a 64byte MPS on EP0.
2013         */
2014
2015        /* catch both EnumSpd_FS and EnumSpd_FS48 */
2016        switch (dsts & DSTS_EnumSpd_MASK) {
2017        case DSTS_EnumSpd_FS:
2018        case DSTS_EnumSpd_FS48:
2019                hsotg->gadget.speed = USB_SPEED_FULL;
2020                ep0_mps = EP0_MPS_LIMIT;
2021                ep_mps = 64;
2022                break;
2023
2024        case DSTS_EnumSpd_HS:
2025                hsotg->gadget.speed = USB_SPEED_HIGH;
2026                ep0_mps = EP0_MPS_LIMIT;
2027                ep_mps = 512;
2028                break;
2029
2030        case DSTS_EnumSpd_LS:
2031                hsotg->gadget.speed = USB_SPEED_LOW;
2032                /*
2033                 * note, we don't actually support LS in this driver at the
2034                 * moment, and the documentation seems to imply that it isn't
2035                 * supported by the PHYs on some of the devices.
2036                 */
2037                break;
2038        }
2039        dev_info(hsotg->dev, "new device is %s\n",
2040                 usb_speed_string(hsotg->gadget.speed));
2041
2042        /*
2043         * we should now know the maximum packet size for an
2044         * endpoint, so set the endpoints to a default value.
2045         */
2046
2047        if (ep0_mps) {
2048                int i;
2049                s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2050                for (i = 1; i < hsotg->num_of_eps; i++)
2051                        s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
2052        }
2053
2054        /* ensure after enumeration our EP0 is active */
2055
2056        s3c_hsotg_enqueue_setup(hsotg);
2057
2058        dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2059                readl(hsotg->regs + DIEPCTL0),
2060                readl(hsotg->regs + DOEPCTL0));
2061}
2062
2063/**
2064 * kill_all_requests - remove all requests from the endpoint's queue
2065 * @hsotg: The device state.
2066 * @ep: The endpoint the requests may be on.
2067 * @result: The result code to use.
2068 * @force: Force removal of any current requests
2069 *
2070 * Go through the requests on the given endpoint and mark them
2071 * completed with the given result code.
2072 */
2073static void kill_all_requests(struct s3c_hsotg *hsotg,
2074                              struct s3c_hsotg_ep *ep,
2075                              int result, bool force)
2076{
2077        struct s3c_hsotg_req *req, *treq;
2078
2079        list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2080                /*
2081                 * currently, we can't do much about an already
2082                 * running request on an in endpoint
2083                 */
2084
2085                if (ep->req == req && ep->dir_in && !force)
2086                        continue;
2087
2088                s3c_hsotg_complete_request(hsotg, ep, req,
2089                                           result);
2090        }
2091}
2092
2093#define call_gadget(_hs, _entry) \
2094        if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
2095            (_hs)->driver && (_hs)->driver->_entry) { \
2096                spin_unlock(&_hs->lock); \
2097                (_hs)->driver->_entry(&(_hs)->gadget); \
2098                spin_lock(&_hs->lock); \
2099                }
2100
2101/**
2102 * s3c_hsotg_disconnect - disconnect service
2103 * @hsotg: The device state.
2104 *
2105 * The device has been disconnected. Remove all current
2106 * transactions and signal the gadget driver that this
2107 * has happened.
2108 */
2109static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2110{
2111        unsigned ep;
2112
2113        for (ep = 0; ep < hsotg->num_of_eps; ep++)
2114                kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2115
2116        call_gadget(hsotg, disconnect);
2117}
2118
2119/**
2120 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2121 * @hsotg: The device state:
2122 * @periodic: True if this is a periodic FIFO interrupt
2123 */
2124static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2125{
2126        struct s3c_hsotg_ep *ep;
2127        int epno, ret;
2128
2129        /* look through for any more data to transmit */
2130
2131        for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2132                ep = &hsotg->eps[epno];
2133
2134                if (!ep->dir_in)
2135                        continue;
2136
2137                if ((periodic && !ep->periodic) ||
2138                    (!periodic && ep->periodic))
2139                        continue;
2140
2141                ret = s3c_hsotg_trytx(hsotg, ep);
2142                if (ret < 0)
2143                        break;
2144        }
2145}
2146
2147/* IRQ flags which will trigger a retry around the IRQ loop */
2148#define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
2149                        GINTSTS_PTxFEmp |  \
2150                        GINTSTS_RxFLvl)
2151
2152/**
2153 * s3c_hsotg_corereset - issue softreset to the core
2154 * @hsotg: The device state
2155 *
2156 * Issue a soft reset to the core, and await the core finishing it.
2157 */
2158static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2159{
2160        int timeout;
2161        u32 grstctl;
2162
2163        dev_dbg(hsotg->dev, "resetting core\n");
2164
2165        /* issue soft reset */
2166        writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
2167
2168        timeout = 10000;
2169        do {
2170                grstctl = readl(hsotg->regs + GRSTCTL);
2171        } while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
2172
2173        if (grstctl & GRSTCTL_CSftRst) {
2174                dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2175                return -EINVAL;
2176        }
2177
2178        timeout = 10000;
2179
2180        while (1) {
2181                u32 grstctl = readl(hsotg->regs + GRSTCTL);
2182
2183                if (timeout-- < 0) {
2184                        dev_info(hsotg->dev,
2185                                 "%s: reset failed, GRSTCTL=%08x\n",
2186                                 __func__, grstctl);
2187                        return -ETIMEDOUT;
2188                }
2189
2190                if (!(grstctl & GRSTCTL_AHBIdle))
2191                        continue;
2192
2193                break;          /* reset done */
2194        }
2195
2196        dev_dbg(hsotg->dev, "reset successful\n");
2197        return 0;
2198}
2199
2200/**
2201 * s3c_hsotg_core_init - issue softreset to the core
2202 * @hsotg: The device state
2203 *
2204 * Issue a soft reset to the core, and await the core finishing it.
2205 */
2206static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2207{
2208        s3c_hsotg_corereset(hsotg);
2209
2210        /*
2211         * we must now enable ep0 ready for host detection and then
2212         * set configuration.
2213         */
2214
2215        /* set the PLL on, remove the HNP/SRP and set the PHY */
2216        writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) |
2217               (0x5 << 10), hsotg->regs + GUSBCFG);
2218
2219        s3c_hsotg_init_fifo(hsotg);
2220
2221        __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2222
2223        writel(1 << 18 | DCFG_DevSpd_HS,  hsotg->regs + DCFG);
2224
2225        /* Clear any pending OTG interrupts */
2226        writel(0xffffffff, hsotg->regs + GOTGINT);
2227
2228        /* Clear any pending interrupts */
2229        writel(0xffffffff, hsotg->regs + GINTSTS);
2230
2231        writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
2232               GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
2233               GINTSTS_ConIDStsChng | GINTSTS_USBRst |
2234               GINTSTS_EnumDone | GINTSTS_OTGInt |
2235               GINTSTS_USBSusp | GINTSTS_WkUpInt,
2236               hsotg->regs + GINTMSK);
2237
2238        if (using_dma(hsotg))
2239                writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
2240                       GAHBCFG_HBstLen_Incr4,
2241                       hsotg->regs + GAHBCFG);
2242        else
2243                writel(GAHBCFG_GlblIntrEn, hsotg->regs + GAHBCFG);
2244
2245        /*
2246         * Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2247         * up being flooded with interrupts if the host is polling the
2248         * endpoint to try and read data.
2249         */
2250
2251        writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty : 0) |
2252               DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
2253               DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2254               DIEPMSK_INTknEPMisMsk,
2255               hsotg->regs + DIEPMSK);
2256
2257        /*
2258         * don't need XferCompl, we get that from RXFIFO in slave mode. In
2259         * DMA mode we may need this.
2260         */
2261        writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
2262                                    DIEPMSK_TimeOUTMsk) : 0) |
2263               DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
2264               DOEPMSK_SetupMsk,
2265               hsotg->regs + DOEPMSK);
2266
2267        writel(0, hsotg->regs + DAINTMSK);
2268
2269        dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2270                readl(hsotg->regs + DIEPCTL0),
2271                readl(hsotg->regs + DOEPCTL0));
2272
2273        /* enable in and out endpoint interrupts */
2274        s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
2275
2276        /*
2277         * Enable the RXFIFO when in slave mode, as this is how we collect
2278         * the data. In DMA mode, we get events from the FIFO but also
2279         * things we cannot process, so do not use it.
2280         */
2281        if (!using_dma(hsotg))
2282                s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
2283
2284        /* Enable interrupts for EP0 in and out */
2285        s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2286        s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2287
2288        __orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2289        udelay(10);  /* see openiboot */
2290        __bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2291
2292        dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2293
2294        /*
2295         * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2296         * writing to the EPCTL register..
2297         */
2298
2299        /* set to read 1 8byte packet */
2300        writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
2301               DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2302
2303        writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2304               DxEPCTL_CNAK | DxEPCTL_EPEna |
2305               DxEPCTL_USBActEp,
2306               hsotg->regs + DOEPCTL0);
2307
2308        /* enable, but don't activate EP0in */
2309        writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2310               DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
2311
2312        s3c_hsotg_enqueue_setup(hsotg);
2313
2314        dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2315                readl(hsotg->regs + DIEPCTL0),
2316                readl(hsotg->regs + DOEPCTL0));
2317
2318        /* clear global NAKs */
2319        writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
2320               hsotg->regs + DCTL);
2321
2322        /* must be at-least 3ms to allow bus to see disconnect */
2323        mdelay(3);
2324
2325        /* remove the soft-disconnect and let's go */
2326        __bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
2327}
2328
2329/**
2330 * s3c_hsotg_irq - handle device interrupt
2331 * @irq: The IRQ number triggered
2332 * @pw: The pw value when registered the handler.
2333 */
2334static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2335{
2336        struct s3c_hsotg *hsotg = pw;
2337        int retry_count = 8;
2338        u32 gintsts;
2339        u32 gintmsk;
2340
2341        spin_lock(&hsotg->lock);
2342irq_retry:
2343        gintsts = readl(hsotg->regs + GINTSTS);
2344        gintmsk = readl(hsotg->regs + GINTMSK);
2345
2346        dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2347                __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2348
2349        gintsts &= gintmsk;
2350
2351        if (gintsts & GINTSTS_OTGInt) {
2352                u32 otgint = readl(hsotg->regs + GOTGINT);
2353
2354                dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2355
2356                writel(otgint, hsotg->regs + GOTGINT);
2357        }
2358
2359        if (gintsts & GINTSTS_SessReqInt) {
2360                dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2361                writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
2362        }
2363
2364        if (gintsts & GINTSTS_EnumDone) {
2365                writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
2366
2367                s3c_hsotg_irq_enumdone(hsotg);
2368        }
2369
2370        if (gintsts & GINTSTS_ConIDStsChng) {
2371                dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2372                        readl(hsotg->regs + DSTS),
2373                        readl(hsotg->regs + GOTGCTL));
2374
2375                writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
2376        }
2377
2378        if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
2379                u32 daint = readl(hsotg->regs + DAINT);
2380                u32 daint_out = daint >> DAINT_OutEP_SHIFT;
2381                u32 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
2382                int ep;
2383
2384                dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2385
2386                for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2387                        if (daint_out & 1)
2388                                s3c_hsotg_epint(hsotg, ep, 0);
2389                }
2390
2391                for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2392                        if (daint_in & 1)
2393                                s3c_hsotg_epint(hsotg, ep, 1);
2394                }
2395        }
2396
2397        if (gintsts & GINTSTS_USBRst) {
2398
2399                u32 usb_status = readl(hsotg->regs + GOTGCTL);
2400
2401                dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2402                dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2403                        readl(hsotg->regs + GNPTXSTS));
2404
2405                writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
2406
2407                if (usb_status & GOTGCTL_BSESVLD) {
2408                        if (time_after(jiffies, hsotg->last_rst +
2409                                       msecs_to_jiffies(200))) {
2410
2411                                kill_all_requests(hsotg, &hsotg->eps[0],
2412                                                          -ECONNRESET, true);
2413
2414                                s3c_hsotg_core_init(hsotg);
2415                                hsotg->last_rst = jiffies;
2416                        }
2417                }
2418        }
2419
2420        /* check both FIFOs */
2421
2422        if (gintsts & GINTSTS_NPTxFEmp) {
2423                dev_dbg(hsotg->dev, "NPTxFEmp\n");
2424
2425                /*
2426                 * Disable the interrupt to stop it happening again
2427                 * unless one of these endpoint routines decides that
2428                 * it needs re-enabling
2429                 */
2430
2431                s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
2432                s3c_hsotg_irq_fifoempty(hsotg, false);
2433        }
2434
2435        if (gintsts & GINTSTS_PTxFEmp) {
2436                dev_dbg(hsotg->dev, "PTxFEmp\n");
2437
2438                /* See note in GINTSTS_NPTxFEmp */
2439
2440                s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
2441                s3c_hsotg_irq_fifoempty(hsotg, true);
2442        }
2443
2444        if (gintsts & GINTSTS_RxFLvl) {
2445                /*
2446                 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2447                 * we need to retry s3c_hsotg_handle_rx if this is still
2448                 * set.
2449                 */
2450
2451                s3c_hsotg_handle_rx(hsotg);
2452        }
2453
2454        if (gintsts & GINTSTS_ModeMis) {
2455                dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2456                writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
2457        }
2458
2459        if (gintsts & GINTSTS_USBSusp) {
2460                dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2461                writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
2462
2463                call_gadget(hsotg, suspend);
2464                s3c_hsotg_disconnect(hsotg);
2465        }
2466
2467        if (gintsts & GINTSTS_WkUpInt) {
2468                dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2469                writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
2470
2471                call_gadget(hsotg, resume);
2472        }
2473
2474        if (gintsts & GINTSTS_ErlySusp) {
2475                dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2476                writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
2477
2478                s3c_hsotg_disconnect(hsotg);
2479        }
2480
2481        /*
2482         * these next two seem to crop-up occasionally causing the core
2483         * to shutdown the USB transfer, so try clearing them and logging
2484         * the occurrence.
2485         */
2486
2487        if (gintsts & GINTSTS_GOUTNakEff) {
2488                dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2489
2490                writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
2491
2492                s3c_hsotg_dump(hsotg);
2493        }
2494
2495        if (gintsts & GINTSTS_GINNakEff) {
2496                dev_info(hsotg->dev, "GINNakEff triggered\n");
2497
2498                writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
2499
2500                s3c_hsotg_dump(hsotg);
2501        }
2502
2503        /*
2504         * if we've had fifo events, we should try and go around the
2505         * loop again to see if there's any point in returning yet.
2506         */
2507
2508        if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2509                        goto irq_retry;
2510
2511        spin_unlock(&hsotg->lock);
2512
2513        return IRQ_HANDLED;
2514}
2515
2516/**
2517 * s3c_hsotg_ep_enable - enable the given endpoint
2518 * @ep: The USB endpint to configure
2519 * @desc: The USB endpoint descriptor to configure with.
2520 *
2521 * This is called from the USB gadget code's usb_ep_enable().
2522 */
2523static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2524                               const struct usb_endpoint_descriptor *desc)
2525{
2526        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2527        struct s3c_hsotg *hsotg = hs_ep->parent;
2528        unsigned long flags;
2529        int index = hs_ep->index;
2530        u32 epctrl_reg;
2531        u32 epctrl;
2532        u32 mps;
2533        int dir_in;
2534        int ret = 0;
2535
2536        dev_dbg(hsotg->dev,
2537                "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2538                __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2539                desc->wMaxPacketSize, desc->bInterval);
2540
2541        /* not to be called for EP0 */
2542        WARN_ON(index == 0);
2543
2544        dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2545        if (dir_in != hs_ep->dir_in) {
2546                dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2547                return -EINVAL;
2548        }
2549
2550        mps = usb_endpoint_maxp(desc);
2551
2552        /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2553
2554        epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2555        epctrl = readl(hsotg->regs + epctrl_reg);
2556
2557        dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2558                __func__, epctrl, epctrl_reg);
2559
2560        spin_lock_irqsave(&hsotg->lock, flags);
2561
2562        epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
2563        epctrl |= DxEPCTL_MPS(mps);
2564
2565        /*
2566         * mark the endpoint as active, otherwise the core may ignore
2567         * transactions entirely for this endpoint
2568         */
2569        epctrl |= DxEPCTL_USBActEp;
2570
2571        /*
2572         * set the NAK status on the endpoint, otherwise we might try and
2573         * do something with data that we've yet got a request to process
2574         * since the RXFIFO will take data for an endpoint even if the
2575         * size register hasn't been set.
2576         */
2577
2578        epctrl |= DxEPCTL_SNAK;
2579
2580        /* update the endpoint state */
2581        hs_ep->ep.maxpacket = mps;
2582
2583        /* default, set to non-periodic */
2584        hs_ep->periodic = 0;
2585
2586        switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2587        case USB_ENDPOINT_XFER_ISOC:
2588                dev_err(hsotg->dev, "no current ISOC support\n");
2589                ret = -EINVAL;
2590                goto out;
2591
2592        case USB_ENDPOINT_XFER_BULK:
2593                epctrl |= DxEPCTL_EPType_Bulk;
2594                break;
2595
2596        case USB_ENDPOINT_XFER_INT:
2597                if (dir_in) {
2598                        /*
2599                         * Allocate our TxFNum by simply using the index
2600                         * of the endpoint for the moment. We could do
2601                         * something better if the host indicates how
2602                         * many FIFOs we are expecting to use.
2603                         */
2604
2605                        hs_ep->periodic = 1;
2606                        epctrl |= DxEPCTL_TxFNum(index);
2607                }
2608
2609                epctrl |= DxEPCTL_EPType_Intterupt;
2610                break;
2611
2612        case USB_ENDPOINT_XFER_CONTROL:
2613                epctrl |= DxEPCTL_EPType_Control;
2614                break;
2615        }
2616
2617        /*
2618         * if the hardware has dedicated fifos, we must give each IN EP
2619         * a unique tx-fifo even if it is non-periodic.
2620         */
2621        if (dir_in && hsotg->dedicated_fifos)
2622                epctrl |= DxEPCTL_TxFNum(index);
2623
2624        /* for non control endpoints, set PID to D0 */
2625        if (index)
2626                epctrl |= DxEPCTL_SetD0PID;
2627
2628        dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2629                __func__, epctrl);
2630
2631        writel(epctrl, hsotg->regs + epctrl_reg);
2632        dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2633                __func__, readl(hsotg->regs + epctrl_reg));
2634
2635        /* enable the endpoint interrupt */
2636        s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2637
2638out:
2639        spin_unlock_irqrestore(&hsotg->lock, flags);
2640        return ret;
2641}
2642
2643/**
2644 * s3c_hsotg_ep_disable - disable given endpoint
2645 * @ep: The endpoint to disable.
2646 */
2647static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2648{
2649        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2650        struct s3c_hsotg *hsotg = hs_ep->parent;
2651        int dir_in = hs_ep->dir_in;
2652        int index = hs_ep->index;
2653        unsigned long flags;
2654        u32 epctrl_reg;
2655        u32 ctrl;
2656
2657        dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2658
2659        if (ep == &hsotg->eps[0].ep) {
2660                dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2661                return -EINVAL;
2662        }
2663
2664        epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2665
2666        spin_lock_irqsave(&hsotg->lock, flags);
2667        /* terminate all requests with shutdown */
2668        kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2669
2670
2671        ctrl = readl(hsotg->regs + epctrl_reg);
2672        ctrl &= ~DxEPCTL_EPEna;
2673        ctrl &= ~DxEPCTL_USBActEp;
2674        ctrl |= DxEPCTL_SNAK;
2675
2676        dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2677        writel(ctrl, hsotg->regs + epctrl_reg);
2678
2679        /* disable endpoint interrupts */
2680        s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2681
2682        spin_unlock_irqrestore(&hsotg->lock, flags);
2683        return 0;
2684}
2685
2686/**
2687 * on_list - check request is on the given endpoint
2688 * @ep: The endpoint to check.
2689 * @test: The request to test if it is on the endpoint.
2690 */
2691static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2692{
2693        struct s3c_hsotg_req *req, *treq;
2694
2695        list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2696                if (req == test)
2697                        return true;
2698        }
2699
2700        return false;
2701}
2702
2703/**
2704 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2705 * @ep: The endpoint to dequeue.
2706 * @req: The request to be removed from a queue.
2707 */
2708static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2709{
2710        struct s3c_hsotg_req *hs_req = our_req(req);
2711        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2712        struct s3c_hsotg *hs = hs_ep->parent;
2713        unsigned long flags;
2714
2715        dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2716
2717        spin_lock_irqsave(&hs->lock, flags);
2718
2719        if (!on_list(hs_ep, hs_req)) {
2720                spin_unlock_irqrestore(&hs->lock, flags);
2721                return -EINVAL;
2722        }
2723
2724        s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2725        spin_unlock_irqrestore(&hs->lock, flags);
2726
2727        return 0;
2728}
2729
2730/**
2731 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2732 * @ep: The endpoint to set halt.
2733 * @value: Set or unset the halt.
2734 */
2735static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2736{
2737        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2738        struct s3c_hsotg *hs = hs_ep->parent;
2739        int index = hs_ep->index;
2740        u32 epreg;
2741        u32 epctl;
2742        u32 xfertype;
2743
2744        dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2745
2746        /* write both IN and OUT control registers */
2747
2748        epreg = DIEPCTL(index);
2749        epctl = readl(hs->regs + epreg);
2750
2751        if (value) {
2752                epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
2753                if (epctl & DxEPCTL_EPEna)
2754                        epctl |= DxEPCTL_EPDis;
2755        } else {
2756                epctl &= ~DxEPCTL_Stall;
2757                xfertype = epctl & DxEPCTL_EPType_MASK;
2758                if (xfertype == DxEPCTL_EPType_Bulk ||
2759                        xfertype == DxEPCTL_EPType_Intterupt)
2760                                epctl |= DxEPCTL_SetD0PID;
2761        }
2762
2763        writel(epctl, hs->regs + epreg);
2764
2765        epreg = DOEPCTL(index);
2766        epctl = readl(hs->regs + epreg);
2767
2768        if (value)
2769                epctl |= DxEPCTL_Stall;
2770        else {
2771                epctl &= ~DxEPCTL_Stall;
2772                xfertype = epctl & DxEPCTL_EPType_MASK;
2773                if (xfertype == DxEPCTL_EPType_Bulk ||
2774                        xfertype == DxEPCTL_EPType_Intterupt)
2775                                epctl |= DxEPCTL_SetD0PID;
2776        }
2777
2778        writel(epctl, hs->regs + epreg);
2779
2780        return 0;
2781}
2782
2783/**
2784 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2785 * @ep: The endpoint to set halt.
2786 * @value: Set or unset the halt.
2787 */
2788static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2789{
2790        struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2791        struct s3c_hsotg *hs = hs_ep->parent;
2792        unsigned long flags = 0;
2793        int ret = 0;
2794
2795        spin_lock_irqsave(&hs->lock, flags);
2796        ret = s3c_hsotg_ep_sethalt(ep, value);
2797        spin_unlock_irqrestore(&hs->lock, flags);
2798
2799        return ret;
2800}
2801
2802static struct usb_ep_ops s3c_hsotg_ep_ops = {
2803        .enable         = s3c_hsotg_ep_enable,
2804        .disable        = s3c_hsotg_ep_disable,
2805        .alloc_request  = s3c_hsotg_ep_alloc_request,
2806        .free_request   = s3c_hsotg_ep_free_request,
2807        .queue          = s3c_hsotg_ep_queue_lock,
2808        .dequeue        = s3c_hsotg_ep_dequeue,
2809        .set_halt       = s3c_hsotg_ep_sethalt_lock,
2810        /* note, don't believe we have any call for the fifo routines */
2811};
2812
2813/**
2814 * s3c_hsotg_phy_enable - enable platform phy dev
2815 * @hsotg: The driver state
2816 *
2817 * A wrapper for platform code responsible for controlling
2818 * low-level USB code
2819 */
2820static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2821{
2822        struct platform_device *pdev = to_platform_device(hsotg->dev);
2823
2824        dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2825
2826        if (hsotg->phy)
2827                usb_phy_init(hsotg->phy);
2828        else if (hsotg->plat->phy_init)
2829                hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2830}
2831
2832/**
2833 * s3c_hsotg_phy_disable - disable platform phy dev
2834 * @hsotg: The driver state
2835 *
2836 * A wrapper for platform code responsible for controlling
2837 * low-level USB code
2838 */
2839static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2840{
2841        struct platform_device *pdev = to_platform_device(hsotg->dev);
2842
2843        if (hsotg->phy)
2844                usb_phy_shutdown(hsotg->phy);
2845        else if (hsotg->plat->phy_exit)
2846                hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2847}
2848
2849/**
2850 * s3c_hsotg_init - initalize the usb core
2851 * @hsotg: The driver state
2852 */
2853static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2854{
2855        /* unmask subset of endpoint interrupts */
2856
2857        writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2858               DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
2859               hsotg->regs + DIEPMSK);
2860
2861        writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
2862               DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
2863               hsotg->regs + DOEPMSK);
2864
2865        writel(0, hsotg->regs + DAINTMSK);
2866
2867        /* Be in disconnected state until gadget is registered */
2868        __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2869
2870        if (0) {
2871                /* post global nak until we're ready */
2872                writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
2873                       hsotg->regs + DCTL);
2874        }
2875
2876        /* setup fifos */
2877
2878        dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2879                readl(hsotg->regs + GRXFSIZ),
2880                readl(hsotg->regs + GNPTXFSIZ));
2881
2882        s3c_hsotg_init_fifo(hsotg);
2883
2884        /* set the PLL on, remove the HNP/SRP and set the PHY */
2885        writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
2886               hsotg->regs + GUSBCFG);
2887
2888        writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
2889               hsotg->regs + GAHBCFG);
2890}
2891
2892/**
2893 * s3c_hsotg_udc_start - prepare the udc for work
2894 * @gadget: The usb gadget state
2895 * @driver: The usb gadget driver
2896 *
2897 * Perform initialization to prepare udc device and driver
2898 * to work.
2899 */
2900static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2901                           struct usb_gadget_driver *driver)
2902{
2903        struct s3c_hsotg *hsotg = to_hsotg(gadget);
2904        int ret;
2905
2906        if (!hsotg) {
2907                printk(KERN_ERR "%s: called with no device\n", __func__);
2908                return -ENODEV;
2909        }
2910
2911        if (!driver) {
2912                dev_err(hsotg->dev, "%s: no driver\n", __func__);
2913                return -EINVAL;
2914        }
2915
2916        if (driver->max_speed < USB_SPEED_FULL)
2917                dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2918
2919        if (!driver->setup) {
2920                dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2921                return -EINVAL;
2922        }
2923
2924        WARN_ON(hsotg->driver);
2925
2926        driver->driver.bus = NULL;
2927        hsotg->driver = driver;
2928        hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2929        hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2930
2931        ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
2932                                    hsotg->supplies);
2933        if (ret) {
2934                dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2935                goto err;
2936        }
2937
2938        hsotg->last_rst = jiffies;
2939        dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2940        return 0;
2941
2942err:
2943        hsotg->driver = NULL;
2944        return ret;
2945}
2946
2947/**
2948 * s3c_hsotg_udc_stop - stop the udc
2949 * @gadget: The usb gadget state
2950 * @driver: The usb gadget driver
2951 *
2952 * Stop udc hw block and stay tunned for future transmissions
2953 */
2954static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
2955                          struct usb_gadget_driver *driver)
2956{
2957        struct s3c_hsotg *hsotg = to_hsotg(gadget);
2958        unsigned long flags = 0;
2959        int ep;
2960
2961        if (!hsotg)
2962                return -ENODEV;
2963
2964        if (!driver || driver != hsotg->driver || !driver->unbind)
2965                return -EINVAL;
2966
2967        /* all endpoints should be shutdown */
2968        for (ep = 0; ep < hsotg->num_of_eps; ep++)
2969                s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2970
2971        spin_lock_irqsave(&hsotg->lock, flags);
2972
2973        s3c_hsotg_phy_disable(hsotg);
2974        regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2975
2976        hsotg->driver = NULL;
2977        hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2978
2979        spin_unlock_irqrestore(&hsotg->lock, flags);
2980
2981        dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2982                 driver->driver.name);
2983
2984        return 0;
2985}
2986
2987/**
2988 * s3c_hsotg_gadget_getframe - read the frame number
2989 * @gadget: The usb gadget state
2990 *
2991 * Read the {micro} frame number
2992 */
2993static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2994{
2995        return s3c_hsotg_read_frameno(to_hsotg(gadget));
2996}
2997
2998/**
2999 * s3c_hsotg_pullup - connect/disconnect the USB PHY
3000 * @gadget: The usb gadget state
3001 * @is_on: Current state of the USB PHY
3002 *
3003 * Connect/Disconnect the USB PHY pullup
3004 */
3005static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3006{
3007        struct s3c_hsotg *hsotg = to_hsotg(gadget);
3008        unsigned long flags = 0;
3009
3010        dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);
3011
3012        spin_lock_irqsave(&hsotg->lock, flags);
3013        if (is_on) {
3014                s3c_hsotg_phy_enable(hsotg);
3015                s3c_hsotg_core_init(hsotg);
3016        } else {
3017                s3c_hsotg_disconnect(hsotg);
3018                s3c_hsotg_phy_disable(hsotg);
3019        }
3020
3021        hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3022        spin_unlock_irqrestore(&hsotg->lock, flags);
3023
3024        return 0;
3025}
3026
3027static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3028        .get_frame      = s3c_hsotg_gadget_getframe,
3029        .udc_start              = s3c_hsotg_udc_start,
3030        .udc_stop               = s3c_hsotg_udc_stop,
3031        .pullup                 = s3c_hsotg_pullup,
3032};
3033
3034/**
3035 * s3c_hsotg_initep - initialise a single endpoint
3036 * @hsotg: The device state.
3037 * @hs_ep: The endpoint to be initialised.
3038 * @epnum: The endpoint number
3039 *
3040 * Initialise the given endpoint (as part of the probe and device state
3041 * creation) to give to the gadget driver. Setup the endpoint name, any
3042 * direction information and other state that may be required.
3043 */
3044static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3045                                       struct s3c_hsotg_ep *hs_ep,
3046                                       int epnum)
3047{
3048        u32 ptxfifo;
3049        char *dir;
3050
3051        if (epnum == 0)
3052                dir = "";
3053        else if ((epnum % 2) == 0) {
3054                dir = "out";
3055        } else {
3056                dir = "in";
3057                hs_ep->dir_in = 1;
3058        }
3059
3060        hs_ep->index = epnum;
3061
3062        snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3063
3064        INIT_LIST_HEAD(&hs_ep->queue);
3065        INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3066
3067        /* add to the list of endpoints known by the gadget driver */
3068        if (epnum)
3069                list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3070
3071        hs_ep->parent = hsotg;
3072        hs_ep->ep.name = hs_ep->name;
3073        hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
3074        hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3075
3076        /*
3077         * Read the FIFO size for the Periodic TX FIFO, even if we're
3078         * an OUT endpoint, we may as well do this if in future the
3079         * code is changed to make each endpoint's direction changeable.
3080         */
3081
3082        ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
3083        hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
3084
3085        /*
3086         * if we're using dma, we need to set the next-endpoint pointer
3087         * to be something valid.
3088         */
3089
3090        if (using_dma(hsotg)) {
3091                u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
3092                writel(next, hsotg->regs + DIEPCTL(epnum));
3093                writel(next, hsotg->regs + DOEPCTL(epnum));
3094        }
3095}
3096
3097/**
3098 * s3c_hsotg_hw_cfg - read HW configuration registers
3099 * @param: The device state
3100 *
3101 * Read the USB core HW configuration registers
3102 */
3103static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3104{
3105        u32 cfg2, cfg4;
3106        /* check hardware configuration */
3107
3108        cfg2 = readl(hsotg->regs + 0x48);
3109        hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3110
3111        dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3112
3113        cfg4 = readl(hsotg->regs + 0x50);
3114        hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3115
3116        dev_info(hsotg->dev, "%s fifos\n",
3117                 hsotg->dedicated_fifos ? "dedicated" : "shared");
3118}
3119
3120/**
3121 * s3c_hsotg_dump - dump state of the udc
3122 * @param: The device state
3123 */
3124static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3125{
3126#ifdef DEBUG
3127        struct device *dev = hsotg->dev;
3128        void __iomem *regs = hsotg->regs;
3129        u32 val;
3130        int idx;
3131
3132        dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3133                 readl(regs + DCFG), readl(regs + DCTL),
3134                 readl(regs + DIEPMSK));
3135
3136        dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3137                 readl(regs + GAHBCFG), readl(regs + 0x44));
3138
3139        dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3140                 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3141
3142        /* show periodic fifo settings */
3143
3144        for (idx = 1; idx <= 15; idx++) {
3145                val = readl(regs + DPTXFSIZn(idx));
3146                dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3147                         val >> DPTXFSIZn_DPTxFSize_SHIFT,
3148                         val & DPTXFSIZn_DPTxFStAddr_MASK);
3149        }
3150
3151        for (idx = 0; idx < 15; idx++) {
3152                dev_info(dev,
3153                         "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3154                         readl(regs + DIEPCTL(idx)),
3155                         readl(regs + DIEPTSIZ(idx)),
3156                         readl(regs + DIEPDMA(idx)));
3157
3158                val = readl(regs + DOEPCTL(idx));
3159                dev_info(dev,
3160                         "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3161                         idx, readl(regs + DOEPCTL(idx)),
3162                         readl(regs + DOEPTSIZ(idx)),
3163                         readl(regs + DOEPDMA(idx)));
3164
3165        }
3166
3167        dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3168                 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3169#endif
3170}
3171
3172/**
3173 * state_show - debugfs: show overall driver and device state.
3174 * @seq: The seq file to write to.
3175 * @v: Unused parameter.
3176 *
3177 * This debugfs entry shows the overall state of the hardware and
3178 * some general information about each of the endpoints available
3179 * to the system.
3180 */
3181static int state_show(struct seq_file *seq, void *v)
3182{
3183        struct s3c_hsotg *hsotg = seq->private;
3184        void __iomem *regs = hsotg->regs;
3185        int idx;
3186
3187        seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3188                 readl(regs + DCFG),
3189                 readl(regs + DCTL),
3190                 readl(regs + DSTS));
3191
3192        seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3193                   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3194
3195        seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3196                   readl(regs + GINTMSK),
3197                   readl(regs + GINTSTS));
3198
3199        seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3200                   readl(regs + DAINTMSK),
3201                   readl(regs + DAINT));
3202
3203        seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3204                   readl(regs + GNPTXSTS),
3205                   readl(regs + GRXSTSR));
3206
3207        seq_printf(seq, "\nEndpoint status:\n");
3208
3209        for (idx = 0; idx < 15; idx++) {
3210                u32 in, out;
3211
3212                in = readl(regs + DIEPCTL(idx));
3213                out = readl(regs + DOEPCTL(idx));
3214
3215                seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3216                           idx, in, out);
3217
3218                in = readl(regs + DIEPTSIZ(idx));
3219                out = readl(regs + DOEPTSIZ(idx));
3220
3221                seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3222                           in, out);
3223
3224                seq_printf(seq, "\n");
3225        }
3226
3227        return 0;
3228}
3229
3230static int state_open(struct inode *inode, struct file *file)
3231{
3232        return single_open(file, state_show, inode->i_private);
3233}
3234
3235static const struct file_operations state_fops = {
3236        .owner          = THIS_MODULE,
3237        .open           = state_open,
3238        .read           = seq_read,
3239        .llseek         = seq_lseek,
3240        .release        = single_release,
3241};
3242
3243/**
3244 * fifo_show - debugfs: show the fifo information
3245 * @seq: The seq_file to write data to.
3246 * @v: Unused parameter.
3247 *
3248 * Show the FIFO information for the overall fifo and all the
3249 * periodic transmission FIFOs.
3250 */
3251static int fifo_show(struct seq_file *seq, void *v)
3252{
3253        struct s3c_hsotg *hsotg = seq->private;
3254        void __iomem *regs = hsotg->regs;
3255        u32 val;
3256        int idx;
3257
3258        seq_printf(seq, "Non-periodic FIFOs:\n");
3259        seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3260
3261        val = readl(regs + GNPTXFSIZ);
3262        seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3263                   val >> GNPTXFSIZ_NPTxFDep_SHIFT,
3264                   val & GNPTXFSIZ_NPTxFStAddr_MASK);
3265
3266        seq_printf(seq, "\nPeriodic TXFIFOs:\n");
3267
3268        for (idx = 1; idx <= 15; idx++) {
3269                val = readl(regs + DPTXFSIZn(idx));
3270
3271                seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3272                           val >> DPTXFSIZn_DPTxFSize_SHIFT,
3273                           val & DPTXFSIZn_DPTxFStAddr_MASK);
3274        }
3275
3276        return 0;
3277}
3278
3279static int fifo_open(struct inode *inode, struct file *file)
3280{
3281        return single_open(file, fifo_show, inode->i_private);
3282}
3283
3284static const struct file_operations fifo_fops = {
3285        .owner          = THIS_MODULE,
3286        .open           = fifo_open,
3287        .read           = seq_read,
3288        .llseek         = seq_lseek,
3289        .release        = single_release,
3290};
3291
3292
3293static const char *decode_direction(int is_in)
3294{
3295        return is_in ? "in" : "out";
3296}
3297
3298/**
3299 * ep_show - debugfs: show the state of an endpoint.
3300 * @seq: The seq_file to write data to.
3301 * @v: Unused parameter.
3302 *
3303 * This debugfs entry shows the state of the given endpoint (one is
3304 * registered for each available).
3305 */
3306static int ep_show(struct seq_file *seq, void *v)
3307{
3308        struct s3c_hsotg_ep *ep = seq->private;
3309        struct s3c_hsotg *hsotg = ep->parent;
3310        struct s3c_hsotg_req *req;
3311        void __iomem *regs = hsotg->regs;
3312        int index = ep->index;
3313        int show_limit = 15;
3314        unsigned long flags;
3315
3316        seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
3317                   ep->index, ep->ep.name, decode_direction(ep->dir_in));
3318
3319        /* first show the register state */
3320
3321        seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3322                   readl(regs + DIEPCTL(index)),
3323                   readl(regs + DOEPCTL(index)));
3324
3325        seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3326                   readl(regs + DIEPDMA(index)),
3327                   readl(regs + DOEPDMA(index)));
3328
3329        seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3330                   readl(regs + DIEPINT(index)),
3331                   readl(regs + DOEPINT(index)));
3332
3333        seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3334                   readl(regs + DIEPTSIZ(index)),
3335                   readl(regs + DOEPTSIZ(index)));
3336
3337        seq_printf(seq, "\n");
3338        seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3339        seq_printf(seq, "total_data=%ld\n", ep->total_data);
3340
3341        seq_printf(seq, "request list (%p,%p):\n",
3342                   ep->queue.next, ep->queue.prev);
3343
3344        spin_lock_irqsave(&hsotg->lock, flags);
3345
3346        list_for_each_entry(req, &ep->queue, queue) {
3347                if (--show_limit < 0) {
3348                        seq_printf(seq, "not showing more requests...\n");
3349                        break;
3350                }
3351
3352                seq_printf(seq, "%c req %p: %d bytes @%p, ",
3353                           req == ep->req ? '*' : ' ',
3354                           req, req->req.length, req->req.buf);
3355                seq_printf(seq, "%d done, res %d\n",
3356                           req->req.actual, req->req.status);
3357        }
3358
3359        spin_unlock_irqrestore(&hsotg->lock, flags);
3360
3361        return 0;
3362}
3363
3364static int ep_open(struct inode *inode, struct file *file)
3365{
3366        return single_open(file, ep_show, inode->i_private);
3367}
3368
3369static const struct file_operations ep_fops = {
3370        .owner          = THIS_MODULE,
3371        .open           = ep_open,
3372        .read           = seq_read,
3373        .llseek         = seq_lseek,
3374        .release        = single_release,
3375};
3376
3377/**
3378 * s3c_hsotg_create_debug - create debugfs directory and files
3379 * @hsotg: The driver state
3380 *
3381 * Create the debugfs files to allow the user to get information
3382 * about the state of the system. The directory name is created
3383 * with the same name as the device itself, in case we end up
3384 * with multiple blocks in future systems.
3385 */
3386static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3387{
3388        struct dentry *root;
3389        unsigned epidx;
3390
3391        root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3392        hsotg->debug_root = root;
3393        if (IS_ERR(root)) {
3394                dev_err(hsotg->dev, "cannot create debug root\n");
3395                return;
3396        }
3397
3398        /* create general state file */
3399
3400        hsotg->debug_file = debugfs_create_file("state", 0444, root,
3401                                                hsotg, &state_fops);
3402
3403        if (IS_ERR(hsotg->debug_file))
3404                dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3405
3406        hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3407                                                hsotg, &fifo_fops);
3408
3409        if (IS_ERR(hsotg->debug_fifo))
3410                dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3411
3412        /* create one file for each endpoint */
3413
3414        for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3415                struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3416
3417                ep->debugfs = debugfs_create_file(ep->name, 0444,
3418                                                  root, ep, &ep_fops);
3419
3420                if (IS_ERR(ep->debugfs))
3421                        dev_err(hsotg->dev, "failed to create %s debug file\n",
3422                                ep->name);
3423        }
3424}
3425
3426/**
3427 * s3c_hsotg_delete_debug - cleanup debugfs entries
3428 * @hsotg: The driver state
3429 *
3430 * Cleanup (remove) the debugfs files for use on module exit.
3431 */
3432static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3433{
3434        unsigned epidx;
3435
3436        for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3437                struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3438                debugfs_remove(ep->debugfs);
3439        }
3440
3441        debugfs_remove(hsotg->debug_file);
3442        debugfs_remove(hsotg->debug_fifo);
3443        debugfs_remove(hsotg->debug_root);
3444}
3445
3446/**
3447 * s3c_hsotg_probe - probe function for hsotg driver
3448 * @pdev: The platform information for the driver
3449 */
3450
3451static int s3c_hsotg_probe(struct platform_device *pdev)
3452{
3453        struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3454        struct usb_phy *phy;
3455        struct device *dev = &pdev->dev;
3456        struct s3c_hsotg_ep *eps;
3457        struct s3c_hsotg *hsotg;
3458        struct resource *res;
3459        int epnum;
3460        int ret;
3461        int i;
3462
3463        hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3464        if (!hsotg) {
3465                dev_err(dev, "cannot get memory\n");
3466                return -ENOMEM;
3467        }
3468
3469        phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3470        if (IS_ERR(phy)) {
3471                /* Fallback for pdata */
3472                plat = pdev->dev.platform_data;
3473                if (!plat) {
3474                        dev_err(&pdev->dev, "no platform data or transceiver defined\n");
3475                        return -EPROBE_DEFER;
3476                } else {
3477                        hsotg->plat = plat;
3478                }
3479        } else {
3480                hsotg->phy = phy;
3481        }
3482
3483        hsotg->dev = dev;
3484
3485        hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3486        if (IS_ERR(hsotg->clk)) {
3487                dev_err(dev, "cannot get otg clock\n");
3488                return PTR_ERR(hsotg->clk);
3489        }
3490
3491        platform_set_drvdata(pdev, hsotg);
3492
3493        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3494
3495        hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3496        if (IS_ERR(hsotg->regs)) {
3497                ret = PTR_ERR(hsotg->regs);
3498                goto err_clk;
3499        }
3500
3501        ret = platform_get_irq(pdev, 0);
3502        if (ret < 0) {
3503                dev_err(dev, "cannot find IRQ\n");
3504                goto err_clk;
3505        }
3506
3507        spin_lock_init(&hsotg->lock);
3508
3509        hsotg->irq = ret;
3510
3511        ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3512                                dev_name(dev), hsotg);
3513        if (ret < 0) {
3514                dev_err(dev, "cannot claim IRQ\n");
3515                goto err_clk;
3516        }
3517
3518        dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3519
3520        hsotg->gadget.max_speed = USB_SPEED_HIGH;
3521        hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3522        hsotg->gadget.name = dev_name(dev);
3523
3524        /* reset the system */
3525
3526        clk_prepare_enable(hsotg->clk);
3527
3528        /* regulators */
3529
3530        for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3531                hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3532
3533        ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3534                                 hsotg->supplies);
3535        if (ret) {
3536                dev_err(dev, "failed to request supplies: %d\n", ret);
3537                goto err_clk;
3538        }
3539
3540        ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3541                                    hsotg->supplies);
3542
3543        if (ret) {
3544                dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3545                goto err_supplies;
3546        }
3547
3548        /* usb phy enable */
3549        s3c_hsotg_phy_enable(hsotg);
3550
3551        s3c_hsotg_corereset(hsotg);
3552        s3c_hsotg_init(hsotg);
3553        s3c_hsotg_hw_cfg(hsotg);
3554
3555        /* hsotg->num_of_eps holds number of EPs other than ep0 */
3556
3557        if (hsotg->num_of_eps == 0) {
3558                dev_err(dev, "wrong number of EPs (zero)\n");
3559                ret = -EINVAL;
3560                goto err_supplies;
3561        }
3562
3563        eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3564                      GFP_KERNEL);
3565        if (!eps) {
3566                dev_err(dev, "cannot get memory\n");
3567                ret = -ENOMEM;
3568                goto err_supplies;
3569        }
3570
3571        hsotg->eps = eps;
3572
3573        /* setup endpoint information */
3574
3575        INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3576        hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3577
3578        /* allocate EP0 request */
3579
3580        hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3581                                                     GFP_KERNEL);
3582        if (!hsotg->ctrl_req) {
3583                dev_err(dev, "failed to allocate ctrl req\n");
3584                ret = -ENOMEM;
3585                goto err_ep_mem;
3586        }
3587
3588        /* initialise the endpoints now the core has been initialised */
3589        for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3590                s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3591
3592        /* disable power and clock */
3593
3594        ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3595                                    hsotg->supplies);
3596        if (ret) {
3597                dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3598                goto err_ep_mem;
3599        }
3600
3601        s3c_hsotg_phy_disable(hsotg);
3602
3603        ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3604        if (ret)
3605                goto err_ep_mem;
3606
3607        s3c_hsotg_create_debug(hsotg);
3608
3609        s3c_hsotg_dump(hsotg);
3610
3611        return 0;
3612
3613err_ep_mem:
3614        kfree(eps);
3615err_supplies:
3616        s3c_hsotg_phy_disable(hsotg);
3617err_clk:
3618        clk_disable_unprepare(hsotg->clk);
3619
3620        return ret;
3621}
3622
3623/**
3624 * s3c_hsotg_remove - remove function for hsotg driver
3625 * @pdev: The platform information for the driver
3626 */
3627static int s3c_hsotg_remove(struct platform_device *pdev)
3628{
3629        struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3630
3631        usb_del_gadget_udc(&hsotg->gadget);
3632
3633        s3c_hsotg_delete_debug(hsotg);
3634
3635        if (hsotg->driver) {
3636                /* should have been done already by driver model core */
3637                usb_gadget_unregister_driver(hsotg->driver);
3638        }
3639
3640        s3c_hsotg_phy_disable(hsotg);
3641        clk_disable_unprepare(hsotg->clk);
3642
3643        return 0;
3644}
3645
3646#if 1
3647#define s3c_hsotg_suspend NULL
3648#define s3c_hsotg_resume NULL
3649#endif
3650
3651static struct platform_driver s3c_hsotg_driver = {
3652        .driver         = {
3653                .name   = "s3c-hsotg",
3654                .owner  = THIS_MODULE,
3655        },
3656        .probe          = s3c_hsotg_probe,
3657        .remove         = s3c_hsotg_remove,
3658        .suspend        = s3c_hsotg_suspend,
3659        .resume         = s3c_hsotg_resume,
3660};
3661
3662module_platform_driver(s3c_hsotg_driver);
3663
3664MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3665MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3666MODULE_LICENSE("GPL");
3667MODULE_ALIAS("platform:s3c-hsotg");
3668