linux/fs/efs/super.c
<<
>>
Prefs
   1/*
   2 * super.c
   3 *
   4 * Copyright (c) 1999 Al Smith
   5 *
   6 * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
   7 */
   8
   9#include <linux/init.h>
  10#include <linux/module.h>
  11#include <linux/exportfs.h>
  12#include <linux/slab.h>
  13#include <linux/buffer_head.h>
  14#include <linux/vfs.h>
  15
  16#include "efs.h"
  17#include <linux/efs_vh.h>
  18#include <linux/efs_fs_sb.h>
  19
  20static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
  21static int efs_fill_super(struct super_block *s, void *d, int silent);
  22
  23static struct dentry *efs_mount(struct file_system_type *fs_type,
  24        int flags, const char *dev_name, void *data)
  25{
  26        return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super);
  27}
  28
  29static struct file_system_type efs_fs_type = {
  30        .owner          = THIS_MODULE,
  31        .name           = "efs",
  32        .mount          = efs_mount,
  33        .kill_sb        = kill_block_super,
  34        .fs_flags       = FS_REQUIRES_DEV,
  35};
  36MODULE_ALIAS_FS("efs");
  37
  38static struct pt_types sgi_pt_types[] = {
  39        {0x00,          "SGI vh"},
  40        {0x01,          "SGI trkrepl"},
  41        {0x02,          "SGI secrepl"},
  42        {0x03,          "SGI raw"},
  43        {0x04,          "SGI bsd"},
  44        {SGI_SYSV,      "SGI sysv"},
  45        {0x06,          "SGI vol"},
  46        {SGI_EFS,       "SGI efs"},
  47        {0x08,          "SGI lv"},
  48        {0x09,          "SGI rlv"},
  49        {0x0A,          "SGI xfs"},
  50        {0x0B,          "SGI xfslog"},
  51        {0x0C,          "SGI xlv"},
  52        {0x82,          "Linux swap"},
  53        {0x83,          "Linux native"},
  54        {0,             NULL}
  55};
  56
  57
  58static struct kmem_cache * efs_inode_cachep;
  59
  60static struct inode *efs_alloc_inode(struct super_block *sb)
  61{
  62        struct efs_inode_info *ei;
  63        ei = (struct efs_inode_info *)kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
  64        if (!ei)
  65                return NULL;
  66        return &ei->vfs_inode;
  67}
  68
  69static void efs_i_callback(struct rcu_head *head)
  70{
  71        struct inode *inode = container_of(head, struct inode, i_rcu);
  72        kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
  73}
  74
  75static void efs_destroy_inode(struct inode *inode)
  76{
  77        call_rcu(&inode->i_rcu, efs_i_callback);
  78}
  79
  80static void init_once(void *foo)
  81{
  82        struct efs_inode_info *ei = (struct efs_inode_info *) foo;
  83
  84        inode_init_once(&ei->vfs_inode);
  85}
  86
  87static int init_inodecache(void)
  88{
  89        efs_inode_cachep = kmem_cache_create("efs_inode_cache",
  90                                sizeof(struct efs_inode_info),
  91                                0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
  92                                init_once);
  93        if (efs_inode_cachep == NULL)
  94                return -ENOMEM;
  95        return 0;
  96}
  97
  98static void destroy_inodecache(void)
  99{
 100        /*
 101         * Make sure all delayed rcu free inodes are flushed before we
 102         * destroy cache.
 103         */
 104        rcu_barrier();
 105        kmem_cache_destroy(efs_inode_cachep);
 106}
 107
 108static void efs_put_super(struct super_block *s)
 109{
 110        kfree(s->s_fs_info);
 111        s->s_fs_info = NULL;
 112}
 113
 114static int efs_remount(struct super_block *sb, int *flags, char *data)
 115{
 116        *flags |= MS_RDONLY;
 117        return 0;
 118}
 119
 120static const struct super_operations efs_superblock_operations = {
 121        .alloc_inode    = efs_alloc_inode,
 122        .destroy_inode  = efs_destroy_inode,
 123        .put_super      = efs_put_super,
 124        .statfs         = efs_statfs,
 125        .remount_fs     = efs_remount,
 126};
 127
 128static const struct export_operations efs_export_ops = {
 129        .fh_to_dentry   = efs_fh_to_dentry,
 130        .fh_to_parent   = efs_fh_to_parent,
 131        .get_parent     = efs_get_parent,
 132};
 133
 134static int __init init_efs_fs(void) {
 135        int err;
 136        printk("EFS: "EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
 137        err = init_inodecache();
 138        if (err)
 139                goto out1;
 140        err = register_filesystem(&efs_fs_type);
 141        if (err)
 142                goto out;
 143        return 0;
 144out:
 145        destroy_inodecache();
 146out1:
 147        return err;
 148}
 149
 150static void __exit exit_efs_fs(void) {
 151        unregister_filesystem(&efs_fs_type);
 152        destroy_inodecache();
 153}
 154
 155module_init(init_efs_fs)
 156module_exit(exit_efs_fs)
 157
 158static efs_block_t efs_validate_vh(struct volume_header *vh) {
 159        int             i;
 160        __be32          cs, *ui;
 161        int             csum;
 162        efs_block_t     sblock = 0; /* shuts up gcc */
 163        struct pt_types *pt_entry;
 164        int             pt_type, slice = -1;
 165
 166        if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
 167                /*
 168                 * assume that we're dealing with a partition and allow
 169                 * read_super() to try and detect a valid superblock
 170                 * on the next block.
 171                 */
 172                return 0;
 173        }
 174
 175        ui = ((__be32 *) (vh + 1)) - 1;
 176        for(csum = 0; ui >= ((__be32 *) vh);) {
 177                cs = *ui--;
 178                csum += be32_to_cpu(cs);
 179        }
 180        if (csum) {
 181                printk(KERN_INFO "EFS: SGI disklabel: checksum bad, label corrupted\n");
 182                return 0;
 183        }
 184
 185#ifdef DEBUG
 186        printk(KERN_DEBUG "EFS: bf: \"%16s\"\n", vh->vh_bootfile);
 187
 188        for(i = 0; i < NVDIR; i++) {
 189                int     j;
 190                char    name[VDNAMESIZE+1];
 191
 192                for(j = 0; j < VDNAMESIZE; j++) {
 193                        name[j] = vh->vh_vd[i].vd_name[j];
 194                }
 195                name[j] = (char) 0;
 196
 197                if (name[0]) {
 198                        printk(KERN_DEBUG "EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
 199                                name,
 200                                (int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
 201                                (int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
 202                }
 203        }
 204#endif
 205
 206        for(i = 0; i < NPARTAB; i++) {
 207                pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
 208                for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
 209                        if (pt_type == pt_entry->pt_type) break;
 210                }
 211#ifdef DEBUG
 212                if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
 213                        printk(KERN_DEBUG "EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
 214                                i,
 215                                (int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
 216                                (int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
 217                                pt_type,
 218                                (pt_entry->pt_name) ? pt_entry->pt_name : "unknown");
 219                }
 220#endif
 221                if (IS_EFS(pt_type)) {
 222                        sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
 223                        slice = i;
 224                }
 225        }
 226
 227        if (slice == -1) {
 228                printk(KERN_NOTICE "EFS: partition table contained no EFS partitions\n");
 229#ifdef DEBUG
 230        } else {
 231                printk(KERN_INFO "EFS: using slice %d (type %s, offset 0x%x)\n",
 232                        slice,
 233                        (pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
 234                        sblock);
 235#endif
 236        }
 237        return sblock;
 238}
 239
 240static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
 241
 242        if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
 243                return -1;
 244
 245        sb->fs_magic     = be32_to_cpu(super->fs_magic);
 246        sb->total_blocks = be32_to_cpu(super->fs_size);
 247        sb->first_block  = be32_to_cpu(super->fs_firstcg);
 248        sb->group_size   = be32_to_cpu(super->fs_cgfsize);
 249        sb->data_free    = be32_to_cpu(super->fs_tfree);
 250        sb->inode_free   = be32_to_cpu(super->fs_tinode);
 251        sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
 252        sb->total_groups = be16_to_cpu(super->fs_ncg);
 253    
 254        return 0;    
 255}
 256
 257static int efs_fill_super(struct super_block *s, void *d, int silent)
 258{
 259        struct efs_sb_info *sb;
 260        struct buffer_head *bh;
 261        struct inode *root;
 262        int ret = -EINVAL;
 263
 264        sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
 265        if (!sb)
 266                return -ENOMEM;
 267        s->s_fs_info = sb;
 268 
 269        s->s_magic              = EFS_SUPER_MAGIC;
 270        if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
 271                printk(KERN_ERR "EFS: device does not support %d byte blocks\n",
 272                        EFS_BLOCKSIZE);
 273                goto out_no_fs_ul;
 274        }
 275  
 276        /* read the vh (volume header) block */
 277        bh = sb_bread(s, 0);
 278
 279        if (!bh) {
 280                printk(KERN_ERR "EFS: cannot read volume header\n");
 281                goto out_no_fs_ul;
 282        }
 283
 284        /*
 285         * if this returns zero then we didn't find any partition table.
 286         * this isn't (yet) an error - just assume for the moment that
 287         * the device is valid and go on to search for a superblock.
 288         */
 289        sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
 290        brelse(bh);
 291
 292        if (sb->fs_start == -1) {
 293                goto out_no_fs_ul;
 294        }
 295
 296        bh = sb_bread(s, sb->fs_start + EFS_SUPER);
 297        if (!bh) {
 298                printk(KERN_ERR "EFS: cannot read superblock\n");
 299                goto out_no_fs_ul;
 300        }
 301                
 302        if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
 303#ifdef DEBUG
 304                printk(KERN_WARNING "EFS: invalid superblock at block %u\n", sb->fs_start + EFS_SUPER);
 305#endif
 306                brelse(bh);
 307                goto out_no_fs_ul;
 308        }
 309        brelse(bh);
 310
 311        if (!(s->s_flags & MS_RDONLY)) {
 312#ifdef DEBUG
 313                printk(KERN_INFO "EFS: forcing read-only mode\n");
 314#endif
 315                s->s_flags |= MS_RDONLY;
 316        }
 317        s->s_op   = &efs_superblock_operations;
 318        s->s_export_op = &efs_export_ops;
 319        root = efs_iget(s, EFS_ROOTINODE);
 320        if (IS_ERR(root)) {
 321                printk(KERN_ERR "EFS: get root inode failed\n");
 322                ret = PTR_ERR(root);
 323                goto out_no_fs;
 324        }
 325
 326        s->s_root = d_make_root(root);
 327        if (!(s->s_root)) {
 328                printk(KERN_ERR "EFS: get root dentry failed\n");
 329                ret = -ENOMEM;
 330                goto out_no_fs;
 331        }
 332
 333        return 0;
 334
 335out_no_fs_ul:
 336out_no_fs:
 337        s->s_fs_info = NULL;
 338        kfree(sb);
 339        return ret;
 340}
 341
 342static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
 343        struct super_block *sb = dentry->d_sb;
 344        struct efs_sb_info *sbi = SUPER_INFO(sb);
 345        u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 346
 347        buf->f_type    = EFS_SUPER_MAGIC;       /* efs magic number */
 348        buf->f_bsize   = EFS_BLOCKSIZE;         /* blocksize */
 349        buf->f_blocks  = sbi->total_groups *    /* total data blocks */
 350                        (sbi->group_size - sbi->inode_blocks);
 351        buf->f_bfree   = sbi->data_free;        /* free data blocks */
 352        buf->f_bavail  = sbi->data_free;        /* free blocks for non-root */
 353        buf->f_files   = sbi->total_groups *    /* total inodes */
 354                        sbi->inode_blocks *
 355                        (EFS_BLOCKSIZE / sizeof(struct efs_dinode));
 356        buf->f_ffree   = sbi->inode_free;       /* free inodes */
 357        buf->f_fsid.val[0] = (u32)id;
 358        buf->f_fsid.val[1] = (u32)(id >> 32);
 359        buf->f_namelen = EFS_MAXNAMELEN;        /* max filename length */
 360
 361        return 0;
 362}
 363
 364