linux/include/linux/dmaengine.h
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms of the GNU General Public License as published by the Free
   6 * Software Foundation; either version 2 of the License, or (at your option)
   7 * any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc., 59
  16 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  17 *
  18 * The full GNU General Public License is included in this distribution in the
  19 * file called COPYING.
  20 */
  21#ifndef LINUX_DMAENGINE_H
  22#define LINUX_DMAENGINE_H
  23
  24#include <linux/device.h>
  25#include <linux/uio.h>
  26#include <linux/bug.h>
  27#include <linux/scatterlist.h>
  28#include <linux/bitmap.h>
  29#include <linux/types.h>
  30#include <asm/page.h>
  31
  32/**
  33 * typedef dma_cookie_t - an opaque DMA cookie
  34 *
  35 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  36 */
  37typedef s32 dma_cookie_t;
  38#define DMA_MIN_COOKIE  1
  39#define DMA_MAX_COOKIE  INT_MAX
  40
  41#define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
  42
  43/**
  44 * enum dma_status - DMA transaction status
  45 * @DMA_COMPLETE: transaction completed
  46 * @DMA_IN_PROGRESS: transaction not yet processed
  47 * @DMA_PAUSED: transaction is paused
  48 * @DMA_ERROR: transaction failed
  49 */
  50enum dma_status {
  51        DMA_SUCCESS = 0, DMA_COMPLETE = 0,
  52        DMA_IN_PROGRESS,
  53        DMA_PAUSED,
  54        DMA_ERROR,
  55};
  56
  57/**
  58 * enum dma_transaction_type - DMA transaction types/indexes
  59 *
  60 * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
  61 * automatically set as dma devices are registered.
  62 */
  63enum dma_transaction_type {
  64        DMA_MEMCPY,
  65        DMA_XOR,
  66        DMA_PQ,
  67        DMA_XOR_VAL,
  68        DMA_PQ_VAL,
  69        DMA_MEMSET,
  70        DMA_INTERRUPT,
  71        DMA_SG,
  72        DMA_PRIVATE,
  73        DMA_ASYNC_TX,
  74        DMA_SLAVE,
  75        DMA_CYCLIC,
  76        DMA_INTERLEAVE,
  77/* last transaction type for creation of the capabilities mask */
  78        DMA_TX_TYPE_END,
  79};
  80
  81/**
  82 * enum dma_transfer_direction - dma transfer mode and direction indicator
  83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
  84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  87 */
  88enum dma_transfer_direction {
  89        DMA_MEM_TO_MEM,
  90        DMA_MEM_TO_DEV,
  91        DMA_DEV_TO_MEM,
  92        DMA_DEV_TO_DEV,
  93        DMA_TRANS_NONE,
  94};
  95
  96/**
  97 * Interleaved Transfer Request
  98 * ----------------------------
  99 * A chunk is collection of contiguous bytes to be transfered.
 100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
 101 * ICGs may or maynot change between chunks.
 102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
 103 *  that when repeated an integral number of times, specifies the transfer.
 104 * A transfer template is specification of a Frame, the number of times
 105 *  it is to be repeated and other per-transfer attributes.
 106 *
 107 * Practically, a client driver would have ready a template for each
 108 *  type of transfer it is going to need during its lifetime and
 109 *  set only 'src_start' and 'dst_start' before submitting the requests.
 110 *
 111 *
 112 *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
 113 *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
 114 *
 115 *    ==  Chunk size
 116 *    ... ICG
 117 */
 118
 119/**
 120 * struct data_chunk - Element of scatter-gather list that makes a frame.
 121 * @size: Number of bytes to read from source.
 122 *        size_dst := fn(op, size_src), so doesn't mean much for destination.
 123 * @icg: Number of bytes to jump after last src/dst address of this
 124 *       chunk and before first src/dst address for next chunk.
 125 *       Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
 126 *       Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
 127 */
 128struct data_chunk {
 129        size_t size;
 130        size_t icg;
 131};
 132
 133/**
 134 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
 135 *       and attributes.
 136 * @src_start: Bus address of source for the first chunk.
 137 * @dst_start: Bus address of destination for the first chunk.
 138 * @dir: Specifies the type of Source and Destination.
 139 * @src_inc: If the source address increments after reading from it.
 140 * @dst_inc: If the destination address increments after writing to it.
 141 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
 142 *              Otherwise, source is read contiguously (icg ignored).
 143 *              Ignored if src_inc is false.
 144 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
 145 *              Otherwise, destination is filled contiguously (icg ignored).
 146 *              Ignored if dst_inc is false.
 147 * @numf: Number of frames in this template.
 148 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
 149 * @sgl: Array of {chunk,icg} pairs that make up a frame.
 150 */
 151struct dma_interleaved_template {
 152        dma_addr_t src_start;
 153        dma_addr_t dst_start;
 154        enum dma_transfer_direction dir;
 155        bool src_inc;
 156        bool dst_inc;
 157        bool src_sgl;
 158        bool dst_sgl;
 159        size_t numf;
 160        size_t frame_size;
 161        struct data_chunk sgl[0];
 162};
 163
 164/**
 165 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
 166 *  control completion, and communicate status.
 167 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
 168 *  this transaction
 169 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
 170 *  acknowledges receipt, i.e. has has a chance to establish any dependency
 171 *  chains
 172 * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
 173 * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
 174 * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
 175 *      (if not set, do the source dma-unmapping as page)
 176 * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
 177 *      (if not set, do the destination dma-unmapping as page)
 178 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
 179 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
 180 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
 181 *  sources that were the result of a previous operation, in the case of a PQ
 182 *  operation it continues the calculation with new sources
 183 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
 184 *  on the result of this operation
 185 */
 186enum dma_ctrl_flags {
 187        DMA_PREP_INTERRUPT = (1 << 0),
 188        DMA_CTRL_ACK = (1 << 1),
 189        DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
 190        DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
 191        DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
 192        DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
 193        DMA_PREP_PQ_DISABLE_P = (1 << 6),
 194        DMA_PREP_PQ_DISABLE_Q = (1 << 7),
 195        DMA_PREP_CONTINUE = (1 << 8),
 196        DMA_PREP_FENCE = (1 << 9),
 197};
 198
 199/**
 200 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
 201 * on a running channel.
 202 * @DMA_TERMINATE_ALL: terminate all ongoing transfers
 203 * @DMA_PAUSE: pause ongoing transfers
 204 * @DMA_RESUME: resume paused transfer
 205 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
 206 * that need to runtime reconfigure the slave channels (as opposed to passing
 207 * configuration data in statically from the platform). An additional
 208 * argument of struct dma_slave_config must be passed in with this
 209 * command.
 210 * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
 211 * into external start mode.
 212 */
 213enum dma_ctrl_cmd {
 214        DMA_TERMINATE_ALL,
 215        DMA_PAUSE,
 216        DMA_RESUME,
 217        DMA_SLAVE_CONFIG,
 218        FSLDMA_EXTERNAL_START,
 219};
 220
 221/**
 222 * enum sum_check_bits - bit position of pq_check_flags
 223 */
 224enum sum_check_bits {
 225        SUM_CHECK_P = 0,
 226        SUM_CHECK_Q = 1,
 227};
 228
 229/**
 230 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
 231 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
 232 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
 233 */
 234enum sum_check_flags {
 235        SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
 236        SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
 237};
 238
 239
 240/**
 241 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
 242 * See linux/cpumask.h
 243 */
 244typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
 245
 246/**
 247 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
 248 * @memcpy_count: transaction counter
 249 * @bytes_transferred: byte counter
 250 */
 251
 252struct dma_chan_percpu {
 253        /* stats */
 254        unsigned long memcpy_count;
 255        unsigned long bytes_transferred;
 256};
 257
 258/**
 259 * struct dma_chan - devices supply DMA channels, clients use them
 260 * @device: ptr to the dma device who supplies this channel, always !%NULL
 261 * @cookie: last cookie value returned to client
 262 * @completed_cookie: last completed cookie for this channel
 263 * @chan_id: channel ID for sysfs
 264 * @dev: class device for sysfs
 265 * @device_node: used to add this to the device chan list
 266 * @local: per-cpu pointer to a struct dma_chan_percpu
 267 * @client-count: how many clients are using this channel
 268 * @table_count: number of appearances in the mem-to-mem allocation table
 269 * @private: private data for certain client-channel associations
 270 */
 271struct dma_chan {
 272        struct dma_device *device;
 273        dma_cookie_t cookie;
 274        dma_cookie_t completed_cookie;
 275
 276        /* sysfs */
 277        int chan_id;
 278        struct dma_chan_dev *dev;
 279
 280        struct list_head device_node;
 281        struct dma_chan_percpu __percpu *local;
 282        int client_count;
 283        int table_count;
 284        void *private;
 285};
 286
 287/**
 288 * struct dma_chan_dev - relate sysfs device node to backing channel device
 289 * @chan - driver channel device
 290 * @device - sysfs device
 291 * @dev_id - parent dma_device dev_id
 292 * @idr_ref - reference count to gate release of dma_device dev_id
 293 */
 294struct dma_chan_dev {
 295        struct dma_chan *chan;
 296        struct device device;
 297        int dev_id;
 298        atomic_t *idr_ref;
 299};
 300
 301/**
 302 * enum dma_slave_buswidth - defines bus with of the DMA slave
 303 * device, source or target buses
 304 */
 305enum dma_slave_buswidth {
 306        DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
 307        DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
 308        DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
 309        DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
 310        DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
 311};
 312
 313/**
 314 * struct dma_slave_config - dma slave channel runtime config
 315 * @direction: whether the data shall go in or out on this slave
 316 * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
 317 * legal values, DMA_BIDIRECTIONAL is not acceptable since we
 318 * need to differentiate source and target addresses.
 319 * @src_addr: this is the physical address where DMA slave data
 320 * should be read (RX), if the source is memory this argument is
 321 * ignored.
 322 * @dst_addr: this is the physical address where DMA slave data
 323 * should be written (TX), if the source is memory this argument
 324 * is ignored.
 325 * @src_addr_width: this is the width in bytes of the source (RX)
 326 * register where DMA data shall be read. If the source
 327 * is memory this may be ignored depending on architecture.
 328 * Legal values: 1, 2, 4, 8.
 329 * @dst_addr_width: same as src_addr_width but for destination
 330 * target (TX) mutatis mutandis.
 331 * @src_maxburst: the maximum number of words (note: words, as in
 332 * units of the src_addr_width member, not bytes) that can be sent
 333 * in one burst to the device. Typically something like half the
 334 * FIFO depth on I/O peripherals so you don't overflow it. This
 335 * may or may not be applicable on memory sources.
 336 * @dst_maxburst: same as src_maxburst but for destination target
 337 * mutatis mutandis.
 338 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
 339 * with 'true' if peripheral should be flow controller. Direction will be
 340 * selected at Runtime.
 341 * @slave_id: Slave requester id. Only valid for slave channels. The dma
 342 * slave peripheral will have unique id as dma requester which need to be
 343 * pass as slave config.
 344 *
 345 * This struct is passed in as configuration data to a DMA engine
 346 * in order to set up a certain channel for DMA transport at runtime.
 347 * The DMA device/engine has to provide support for an additional
 348 * command in the channel config interface, DMA_SLAVE_CONFIG
 349 * and this struct will then be passed in as an argument to the
 350 * DMA engine device_control() function.
 351 *
 352 * The rationale for adding configuration information to this struct
 353 * is as follows: if it is likely that most DMA slave controllers in
 354 * the world will support the configuration option, then make it
 355 * generic. If not: if it is fixed so that it be sent in static from
 356 * the platform data, then prefer to do that. Else, if it is neither
 357 * fixed at runtime, nor generic enough (such as bus mastership on
 358 * some CPU family and whatnot) then create a custom slave config
 359 * struct and pass that, then make this config a member of that
 360 * struct, if applicable.
 361 */
 362struct dma_slave_config {
 363        enum dma_transfer_direction direction;
 364        dma_addr_t src_addr;
 365        dma_addr_t dst_addr;
 366        enum dma_slave_buswidth src_addr_width;
 367        enum dma_slave_buswidth dst_addr_width;
 368        u32 src_maxburst;
 369        u32 dst_maxburst;
 370        bool device_fc;
 371        unsigned int slave_id;
 372};
 373
 374/**
 375 * enum dma_residue_granularity - Granularity of the reported transfer residue
 376 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
 377 *  DMA channel is only able to tell whether a descriptor has been completed or
 378 *  not, which means residue reporting is not supported by this channel. The
 379 *  residue field of the dma_tx_state field will always be 0.
 380 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
 381 *  completed segment of the transfer (For cyclic transfers this is after each
 382 *  period). This is typically implemented by having the hardware generate an
 383 *  interrupt after each transferred segment and then the drivers updates the
 384 *  outstanding residue by the size of the segment. Another possibility is if
 385 *  the hardware supports scatter-gather and the segment descriptor has a field
 386 *  which gets set after the segment has been completed. The driver then counts
 387 *  the number of segments without the flag set to compute the residue.
 388 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
 389 *  burst. This is typically only supported if the hardware has a progress
 390 *  register of some sort (E.g. a register with the current read/write address
 391 *  or a register with the amount of bursts/beats/bytes that have been
 392 *  transferred or still need to be transferred).
 393 */
 394enum dma_residue_granularity {
 395        DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
 396        DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
 397        DMA_RESIDUE_GRANULARITY_BURST = 2,
 398};
 399
 400/* struct dma_slave_caps - expose capabilities of a slave channel only
 401 *
 402 * @src_addr_widths: bit mask of src addr widths the channel supports
 403 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
 404 * @directions: bit mask of slave direction the channel supported
 405 *      since the enum dma_transfer_direction is not defined as bits for each
 406 *      type of direction, the dma controller should fill (1 << <TYPE>) and same
 407 *      should be checked by controller as well
 408 * @cmd_pause: true, if pause and thereby resume is supported
 409 * @cmd_terminate: true, if terminate cmd is supported
 410 * @residue_granularity: granularity of the reported transfer residue
 411 */
 412struct dma_slave_caps {
 413        u32 src_addr_widths;
 414        u32 dst_addr_widths;
 415        u32 directions;
 416        bool cmd_pause;
 417        bool cmd_terminate;
 418        enum dma_residue_granularity residue_granularity;
 419};
 420
 421static inline const char *dma_chan_name(struct dma_chan *chan)
 422{
 423        return dev_name(&chan->dev->device);
 424}
 425
 426void dma_chan_cleanup(struct kref *kref);
 427
 428/**
 429 * typedef dma_filter_fn - callback filter for dma_request_channel
 430 * @chan: channel to be reviewed
 431 * @filter_param: opaque parameter passed through dma_request_channel
 432 *
 433 * When this optional parameter is specified in a call to dma_request_channel a
 434 * suitable channel is passed to this routine for further dispositioning before
 435 * being returned.  Where 'suitable' indicates a non-busy channel that
 436 * satisfies the given capability mask.  It returns 'true' to indicate that the
 437 * channel is suitable.
 438 */
 439typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
 440
 441typedef void (*dma_async_tx_callback)(void *dma_async_param);
 442
 443enum dmaengine_tx_result {
 444        DMA_TRANS_NOERROR = 0,          /* SUCCESS */
 445        DMA_TRANS_READ_FAILED,          /* Source DMA read failed */
 446        DMA_TRANS_WRITE_FAILED,         /* Destination DMA write failed */
 447        DMA_TRANS_ABORTED,              /* Op never submitted / aborted */
 448};
 449
 450struct dmaengine_result {
 451        enum dmaengine_tx_result result;
 452        u32 residue;
 453};
 454
 455typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
 456                                const struct dmaengine_result *result);
 457
 458struct dmaengine_unmap_data {
 459        u8 to_cnt;
 460        u8 from_cnt;
 461        u8 bidi_cnt;
 462        struct device *dev;
 463        struct kref kref;
 464        size_t len;
 465        dma_addr_t addr[0];
 466};
 467
 468/**
 469 * struct dma_async_tx_descriptor - async transaction descriptor
 470 * ---dma generic offload fields---
 471 * @cookie: tracking cookie for this transaction, set to -EBUSY if
 472 *      this tx is sitting on a dependency list
 473 * @flags: flags to augment operation preparation, control completion, and
 474 *      communicate status
 475 * @phys: physical address of the descriptor
 476 * @chan: target channel for this operation
 477 * @tx_submit: set the prepared descriptor(s) to be executed by the engine
 478 * @callback: routine to call after this operation is complete
 479 * @callback_param: general parameter to pass to the callback routine
 480 * ---async_tx api specific fields---
 481 * @next: at completion submit this descriptor
 482 * @parent: pointer to the next level up in the dependency chain
 483 * @lock: protect the parent and next pointers
 484 */
 485struct dma_async_tx_descriptor {
 486        dma_cookie_t cookie;
 487        enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
 488        dma_addr_t phys;
 489        struct dma_chan *chan;
 490        dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
 491        dma_async_tx_callback callback;
 492        dma_async_tx_callback_result callback_result;
 493        void *callback_param;
 494        struct dmaengine_unmap_data *unmap;
 495#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 496        struct dma_async_tx_descriptor *next;
 497        struct dma_async_tx_descriptor *parent;
 498        spinlock_t lock;
 499#endif
 500};
 501
 502#ifdef CONFIG_DMA_ENGINE
 503static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 504                                 struct dmaengine_unmap_data *unmap)
 505{
 506        kref_get(&unmap->kref);
 507        tx->unmap = unmap;
 508}
 509
 510struct dmaengine_unmap_data *
 511dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
 512void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
 513#else
 514static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 515                                 struct dmaengine_unmap_data *unmap)
 516{
 517}
 518static inline struct dmaengine_unmap_data *
 519dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
 520{
 521        return NULL;
 522}
 523static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
 524{
 525}
 526#endif
 527
 528static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
 529{
 530        if (tx->unmap) {
 531                dmaengine_unmap_put(tx->unmap);
 532                tx->unmap = NULL;
 533        }
 534}
 535
 536#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 537static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 538{
 539}
 540static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 541{
 542}
 543static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 544{
 545        BUG();
 546}
 547static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 548{
 549}
 550static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 551{
 552}
 553static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 554{
 555        return NULL;
 556}
 557static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 558{
 559        return NULL;
 560}
 561
 562#else
 563static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 564{
 565        spin_lock_bh(&txd->lock);
 566}
 567static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 568{
 569        spin_unlock_bh(&txd->lock);
 570}
 571static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 572{
 573        txd->next = next;
 574        next->parent = txd;
 575}
 576static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 577{
 578        txd->parent = NULL;
 579}
 580static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 581{
 582        txd->next = NULL;
 583}
 584static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 585{
 586        return txd->parent;
 587}
 588static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 589{
 590        return txd->next;
 591}
 592#endif
 593
 594/**
 595 * struct dma_tx_state - filled in to report the status of
 596 * a transfer.
 597 * @last: last completed DMA cookie
 598 * @used: last issued DMA cookie (i.e. the one in progress)
 599 * @residue: the remaining number of bytes left to transmit
 600 *      on the selected transfer for states DMA_IN_PROGRESS and
 601 *      DMA_PAUSED if this is implemented in the driver, else 0
 602 */
 603struct dma_tx_state {
 604        dma_cookie_t last;
 605        dma_cookie_t used;
 606        u32 residue;
 607};
 608
 609/**
 610 * struct dma_device - info on the entity supplying DMA services
 611 * @chancnt: how many DMA channels are supported
 612 * @privatecnt: how many DMA channels are requested by dma_request_channel
 613 * @channels: the list of struct dma_chan
 614 * @global_node: list_head for global dma_device_list
 615 * @cap_mask: one or more dma_capability flags
 616 * @max_xor: maximum number of xor sources, 0 if no capability
 617 * @max_pq: maximum number of PQ sources and PQ-continue capability
 618 * @copy_align: alignment shift for memcpy operations
 619 * @xor_align: alignment shift for xor operations
 620 * @pq_align: alignment shift for pq operations
 621 * @fill_align: alignment shift for memset operations
 622 * @dev_id: unique device ID
 623 * @dev: struct device reference for dma mapping api
 624 * @src_addr_widths: bit mask of src addr widths the device supports
 625 * @dst_addr_widths: bit mask of dst addr widths the device supports
 626 * @directions: bit mask of slave direction the device supports since
 627 *      the enum dma_transfer_direction is not defined as bits for
 628 *      each type of direction, the dma controller should fill (1 <<
 629 *      <TYPE>) and same should be checked by controller as well
 630 * @residue_granularity: granularity of the transfer residue reported
 631 *      by tx_status
 632 * @device_alloc_chan_resources: allocate resources and return the
 633 *      number of allocated descriptors
 634 * @device_free_chan_resources: release DMA channel's resources
 635 * @device_prep_dma_memcpy: prepares a memcpy operation
 636 * @device_prep_dma_xor: prepares a xor operation
 637 * @device_prep_dma_xor_val: prepares a xor validation operation
 638 * @device_prep_dma_pq: prepares a pq operation
 639 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
 640 * @device_prep_dma_memset: prepares a memset operation
 641 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
 642 * @device_prep_slave_sg: prepares a slave dma operation
 643 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
 644 *      The function takes a buffer of size buf_len. The callback function will
 645 *      be called after period_len bytes have been transferred.
 646 * @device_prep_interleaved_dma: Transfer expression in a generic way.
 647 * @device_config: Pushes a new configuration to a channel, return 0 or an error
 648 *      code
 649 * @device_control: manipulate all pending operations on a channel, returns
 650 *      zero or error code
 651 * @device_pause: Pauses any transfer happening on a channel. Returns
 652 *      0 or an error code
 653 * @device_resume: Resumes any transfer on a channel previously
 654 *      paused. Returns 0 or an error code
 655 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
 656 *      or an error code
 657 * @device_tx_status: poll for transaction completion, the optional
 658 *      txstate parameter can be supplied with a pointer to get a
 659 *      struct with auxiliary transfer status information, otherwise the call
 660 *      will just return a simple status code
 661 * @device_issue_pending: push pending transactions to hardware
 662 * @device_slave_caps: return the slave channel capabilities
 663 */
 664struct dma_device {
 665
 666        unsigned int chancnt;
 667        unsigned int privatecnt;
 668        struct list_head channels;
 669        struct list_head global_node;
 670        dma_cap_mask_t  cap_mask;
 671        unsigned short max_xor;
 672        unsigned short max_pq;
 673        u8 copy_align;
 674        u8 xor_align;
 675        u8 pq_align;
 676        u8 fill_align;
 677        #define DMA_HAS_PQ_CONTINUE (1 << 15)
 678
 679        int dev_id;
 680        struct device *dev;
 681
 682        u32 src_addr_widths;
 683        u32 dst_addr_widths;
 684        u32 directions;
 685        enum dma_residue_granularity residue_granularity;
 686
 687        int (*device_alloc_chan_resources)(struct dma_chan *chan);
 688        void (*device_free_chan_resources)(struct dma_chan *chan);
 689
 690        struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
 691                struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
 692                size_t len, unsigned long flags);
 693        struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
 694                struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
 695                unsigned int src_cnt, size_t len, unsigned long flags);
 696        struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
 697                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
 698                size_t len, enum sum_check_flags *result, unsigned long flags);
 699        struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
 700                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
 701                unsigned int src_cnt, const unsigned char *scf,
 702                size_t len, unsigned long flags);
 703        struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
 704                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
 705                unsigned int src_cnt, const unsigned char *scf, size_t len,
 706                enum sum_check_flags *pqres, unsigned long flags);
 707        struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
 708                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 709                unsigned long flags);
 710        struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
 711                struct dma_chan *chan, unsigned long flags);
 712        struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
 713                struct dma_chan *chan,
 714                struct scatterlist *dst_sg, unsigned int dst_nents,
 715                struct scatterlist *src_sg, unsigned int src_nents,
 716                unsigned long flags);
 717
 718        struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
 719                struct dma_chan *chan, struct scatterlist *sgl,
 720                unsigned int sg_len, enum dma_transfer_direction direction,
 721                unsigned long flags, void *context);
 722        struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
 723                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 724                size_t period_len, enum dma_transfer_direction direction,
 725                unsigned long flags, void *context);
 726        struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
 727                struct dma_chan *chan, struct dma_interleaved_template *xt,
 728                unsigned long flags);
 729
 730        int (*device_config)(struct dma_chan *chan,
 731                             struct dma_slave_config *config);
 732        int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
 733                unsigned long arg);
 734        int (*device_pause)(struct dma_chan *chan);
 735        int (*device_resume)(struct dma_chan *chan);
 736        int (*device_terminate_all)(struct dma_chan *chan);
 737
 738        enum dma_status (*device_tx_status)(struct dma_chan *chan,
 739                                            dma_cookie_t cookie,
 740                                            struct dma_tx_state *txstate);
 741        void (*device_issue_pending)(struct dma_chan *chan);
 742        int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
 743};
 744
 745static inline int dmaengine_device_control(struct dma_chan *chan,
 746                                           enum dma_ctrl_cmd cmd,
 747                                           unsigned long arg)
 748{
 749        if (chan->device->device_control)
 750                return chan->device->device_control(chan, cmd, arg);
 751
 752        return -ENOSYS;
 753}
 754
 755static inline int dmaengine_slave_config(struct dma_chan *chan,
 756                                          struct dma_slave_config *config)
 757{
 758        if (chan->device->device_config)
 759                return chan->device->device_config(chan, config);
 760
 761        return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
 762                        (unsigned long)config);
 763}
 764
 765static inline bool is_slave_direction(enum dma_transfer_direction direction)
 766{
 767        return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
 768}
 769
 770static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
 771        struct dma_chan *chan, dma_addr_t buf, size_t len,
 772        enum dma_transfer_direction dir, unsigned long flags)
 773{
 774        struct scatterlist sg;
 775        sg_init_table(&sg, 1);
 776        sg_dma_address(&sg) = buf;
 777        sg_dma_len(&sg) = len;
 778
 779        return chan->device->device_prep_slave_sg(chan, &sg, 1,
 780                                                  dir, flags, NULL);
 781}
 782
 783static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
 784        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 785        enum dma_transfer_direction dir, unsigned long flags)
 786{
 787        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 788                                                  dir, flags, NULL);
 789}
 790
 791#ifdef CONFIG_RAPIDIO_DMA_ENGINE
 792struct rio_dma_ext;
 793static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
 794        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 795        enum dma_transfer_direction dir, unsigned long flags,
 796        struct rio_dma_ext *rio_ext)
 797{
 798        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 799                                                  dir, flags, rio_ext);
 800}
 801#endif
 802
 803static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
 804                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 805                size_t period_len, enum dma_transfer_direction dir,
 806                unsigned long flags)
 807{
 808        return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
 809                                                period_len, dir, flags, NULL);
 810}
 811
 812static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
 813                struct dma_chan *chan, struct dma_interleaved_template *xt,
 814                unsigned long flags)
 815{
 816        return chan->device->device_prep_interleaved_dma(chan, xt, flags);
 817}
 818
 819static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
 820{
 821        struct dma_device *device;
 822
 823        if (!chan || !caps)
 824                return -EINVAL;
 825
 826        device = chan->device;
 827
 828        /* check if the channel supports slave transactions */
 829        if (!test_bit(DMA_SLAVE, device->cap_mask.bits))
 830                return -ENXIO;
 831
 832        if (device->device_slave_caps)
 833                return device->device_slave_caps(chan, caps);
 834
 835        /*
 836         * Check whether it reports it uses the generic slave
 837         * capabilities, if not, that means it doesn't support any
 838         * kind of slave capabilities reporting.
 839         */
 840        if (!device->directions)
 841                return -ENXIO;
 842
 843        caps->src_addr_widths = device->src_addr_widths;
 844        caps->dst_addr_widths = device->dst_addr_widths;
 845        caps->directions = device->directions;
 846        caps->residue_granularity = device->residue_granularity;
 847
 848        caps->cmd_pause = !!device->device_pause;
 849        caps->cmd_terminate = !!device->device_terminate_all;
 850
 851        return 0;
 852}
 853
 854static inline int dmaengine_terminate_all(struct dma_chan *chan)
 855{
 856        if (chan->device->device_terminate_all)
 857                return chan->device->device_terminate_all(chan);
 858
 859        return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
 860}
 861
 862static inline int dmaengine_pause(struct dma_chan *chan)
 863{
 864        if (chan->device->device_pause)
 865                return chan->device->device_pause(chan);
 866
 867        return dmaengine_device_control(chan, DMA_PAUSE, 0);
 868}
 869
 870static inline int dmaengine_resume(struct dma_chan *chan)
 871{
 872        if (chan->device->device_resume)
 873                return chan->device->device_resume(chan);
 874
 875        return dmaengine_device_control(chan, DMA_RESUME, 0);
 876}
 877
 878static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
 879        dma_cookie_t cookie, struct dma_tx_state *state)
 880{
 881        return chan->device->device_tx_status(chan, cookie, state);
 882}
 883
 884static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
 885{
 886        return desc->tx_submit(desc);
 887}
 888
 889static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
 890{
 891        size_t mask;
 892
 893        if (!align)
 894                return true;
 895        mask = (1 << align) - 1;
 896        if (mask & (off1 | off2 | len))
 897                return false;
 898        return true;
 899}
 900
 901static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
 902                                       size_t off2, size_t len)
 903{
 904        return dmaengine_check_align(dev->copy_align, off1, off2, len);
 905}
 906
 907static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
 908                                      size_t off2, size_t len)
 909{
 910        return dmaengine_check_align(dev->xor_align, off1, off2, len);
 911}
 912
 913static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
 914                                     size_t off2, size_t len)
 915{
 916        return dmaengine_check_align(dev->pq_align, off1, off2, len);
 917}
 918
 919static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
 920                                       size_t off2, size_t len)
 921{
 922        return dmaengine_check_align(dev->fill_align, off1, off2, len);
 923}
 924
 925static inline void
 926dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
 927{
 928        dma->max_pq = maxpq;
 929        if (has_pq_continue)
 930                dma->max_pq |= DMA_HAS_PQ_CONTINUE;
 931}
 932
 933static inline bool dmaf_continue(enum dma_ctrl_flags flags)
 934{
 935        return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
 936}
 937
 938static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
 939{
 940        enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
 941
 942        return (flags & mask) == mask;
 943}
 944
 945static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
 946{
 947        return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
 948}
 949
 950static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
 951{
 952        return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
 953}
 954
 955/* dma_maxpq - reduce maxpq in the face of continued operations
 956 * @dma - dma device with PQ capability
 957 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
 958 *
 959 * When an engine does not support native continuation we need 3 extra
 960 * source slots to reuse P and Q with the following coefficients:
 961 * 1/ {00} * P : remove P from Q', but use it as a source for P'
 962 * 2/ {01} * Q : use Q to continue Q' calculation
 963 * 3/ {00} * Q : subtract Q from P' to cancel (2)
 964 *
 965 * In the case where P is disabled we only need 1 extra source:
 966 * 1/ {01} * Q : use Q to continue Q' calculation
 967 */
 968static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
 969{
 970        if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
 971                return dma_dev_to_maxpq(dma);
 972        else if (dmaf_p_disabled_continue(flags))
 973                return dma_dev_to_maxpq(dma) - 1;
 974        else if (dmaf_continue(flags))
 975                return dma_dev_to_maxpq(dma) - 3;
 976        BUG();
 977}
 978
 979/* --- public DMA engine API --- */
 980
 981#ifdef CONFIG_DMA_ENGINE
 982void dmaengine_get(void);
 983void dmaengine_put(void);
 984#else
 985static inline void dmaengine_get(void)
 986{
 987}
 988static inline void dmaengine_put(void)
 989{
 990}
 991#endif
 992
 993#ifdef CONFIG_ASYNC_TX_DMA
 994#define async_dmaengine_get()   dmaengine_get()
 995#define async_dmaengine_put()   dmaengine_put()
 996#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 997#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
 998#else
 999#define async_dma_find_channel(type) dma_find_channel(type)
1000#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1001#else
1002static inline void async_dmaengine_get(void)
1003{
1004}
1005static inline void async_dmaengine_put(void)
1006{
1007}
1008static inline struct dma_chan *
1009async_dma_find_channel(enum dma_transaction_type type)
1010{
1011        return NULL;
1012}
1013#endif /* CONFIG_ASYNC_TX_DMA */
1014void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1015                                  struct dma_chan *chan);
1016
1017static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1018{
1019        tx->flags |= DMA_CTRL_ACK;
1020}
1021
1022static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1023{
1024        tx->flags &= ~DMA_CTRL_ACK;
1025}
1026
1027static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1028{
1029        return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1030}
1031
1032#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1033static inline void
1034__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1035{
1036        set_bit(tx_type, dstp->bits);
1037}
1038
1039#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1040static inline void
1041__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1042{
1043        clear_bit(tx_type, dstp->bits);
1044}
1045
1046#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1047static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1048{
1049        bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1050}
1051
1052#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1053static inline int
1054__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1055{
1056        return test_bit(tx_type, srcp->bits);
1057}
1058
1059#define for_each_dma_cap_mask(cap, mask) \
1060        for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1061
1062/**
1063 * dma_async_issue_pending - flush pending transactions to HW
1064 * @chan: target DMA channel
1065 *
1066 * This allows drivers to push copies to HW in batches,
1067 * reducing MMIO writes where possible.
1068 */
1069static inline void dma_async_issue_pending(struct dma_chan *chan)
1070{
1071        chan->device->device_issue_pending(chan);
1072}
1073
1074/**
1075 * dma_async_is_tx_complete - poll for transaction completion
1076 * @chan: DMA channel
1077 * @cookie: transaction identifier to check status of
1078 * @last: returns last completed cookie, can be NULL
1079 * @used: returns last issued cookie, can be NULL
1080 *
1081 * If @last and @used are passed in, upon return they reflect the driver
1082 * internal state and can be used with dma_async_is_complete() to check
1083 * the status of multiple cookies without re-checking hardware state.
1084 */
1085static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1086        dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1087{
1088        struct dma_tx_state state;
1089        enum dma_status status;
1090
1091        status = chan->device->device_tx_status(chan, cookie, &state);
1092        if (last)
1093                *last = state.last;
1094        if (used)
1095                *used = state.used;
1096        return status;
1097}
1098
1099/**
1100 * dma_async_is_complete - test a cookie against chan state
1101 * @cookie: transaction identifier to test status of
1102 * @last_complete: last know completed transaction
1103 * @last_used: last cookie value handed out
1104 *
1105 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1106 * the test logic is separated for lightweight testing of multiple cookies
1107 */
1108static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1109                        dma_cookie_t last_complete, dma_cookie_t last_used)
1110{
1111        if (last_complete <= last_used) {
1112                if ((cookie <= last_complete) || (cookie > last_used))
1113                        return DMA_COMPLETE;
1114        } else {
1115                if ((cookie <= last_complete) && (cookie > last_used))
1116                        return DMA_COMPLETE;
1117        }
1118        return DMA_IN_PROGRESS;
1119}
1120
1121static inline void
1122dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1123{
1124        if (st) {
1125                st->last = last;
1126                st->used = used;
1127                st->residue = residue;
1128        }
1129}
1130
1131enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1132#ifdef CONFIG_DMA_ENGINE
1133enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1134void dma_issue_pending_all(void);
1135struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1136                                        dma_filter_fn fn, void *fn_param);
1137struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1138void dma_release_channel(struct dma_chan *chan);
1139#else
1140static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1141{
1142        return DMA_COMPLETE;
1143}
1144static inline void dma_issue_pending_all(void)
1145{
1146}
1147static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1148                                              dma_filter_fn fn, void *fn_param)
1149{
1150        return NULL;
1151}
1152static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1153                                                         const char *name)
1154{
1155        return NULL;
1156}
1157static inline void dma_release_channel(struct dma_chan *chan)
1158{
1159}
1160#endif
1161
1162/* --- DMA device --- */
1163
1164int dma_async_device_register(struct dma_device *device);
1165void dma_async_device_unregister(struct dma_device *device);
1166void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1167struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1168struct dma_chan *net_dma_find_channel(void);
1169#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1170#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1171        __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1172
1173static inline struct dma_chan
1174*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1175                                  dma_filter_fn fn, void *fn_param,
1176                                  struct device *dev, char *name)
1177{
1178        struct dma_chan *chan;
1179
1180        chan = dma_request_slave_channel(dev, name);
1181        if (chan)
1182                return chan;
1183
1184        return __dma_request_channel(mask, fn, fn_param);
1185}
1186
1187/* --- Helper iov-locking functions --- */
1188
1189struct dma_page_list {
1190        char __user *base_address;
1191        int nr_pages;
1192        struct page **pages;
1193};
1194
1195struct dma_pinned_list {
1196        int nr_iovecs;
1197        struct dma_page_list page_list[0];
1198};
1199
1200struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1201void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1202
1203dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1204        struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1205dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1206        struct dma_pinned_list *pinned_list, struct page *page,
1207        unsigned int offset, size_t len);
1208
1209#endif /* DMAENGINE_H */
1210