linux/include/linux/rculist.h
<<
>>
Prefs
   1#ifndef _LINUX_RCULIST_H
   2#define _LINUX_RCULIST_H
   3
   4#ifdef __KERNEL__
   5
   6/*
   7 * RCU-protected list version
   8 */
   9#include <linux/list.h>
  10#include <linux/rcupdate.h>
  11
  12/*
  13 * Why is there no list_empty_rcu()?  Because list_empty() serves this
  14 * purpose.  The list_empty() function fetches the RCU-protected pointer
  15 * and compares it to the address of the list head, but neither dereferences
  16 * this pointer itself nor provides this pointer to the caller.  Therefore,
  17 * it is not necessary to use rcu_dereference(), so that list_empty() can
  18 * be used anywhere you would want to use a list_empty_rcu().
  19 */
  20
  21/*
  22 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
  23 * @list: list to be initialized
  24 *
  25 * You should instead use INIT_LIST_HEAD() for normal initialization and
  26 * cleanup tasks, when readers have no access to the list being initialized.
  27 * However, if the list being initialized is visible to readers, you
  28 * need to keep the compiler from being too mischievous.
  29 */
  30static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
  31{
  32        ACCESS_ONCE(list->next) = list;
  33        ACCESS_ONCE(list->prev) = list;
  34}
  35
  36/*
  37 * return the ->next pointer of a list_head in an rcu safe
  38 * way, we must not access it directly
  39 */
  40#define list_next_rcu(list)     (*((struct list_head __rcu **)(&(list)->next)))
  41
  42/*
  43 * Insert a new entry between two known consecutive entries.
  44 *
  45 * This is only for internal list manipulation where we know
  46 * the prev/next entries already!
  47 */
  48#ifndef CONFIG_DEBUG_LIST
  49static inline void __list_add_rcu(struct list_head *new,
  50                struct list_head *prev, struct list_head *next)
  51{
  52        new->next = next;
  53        new->prev = prev;
  54        rcu_assign_pointer(list_next_rcu(prev), new);
  55        next->prev = new;
  56}
  57#else
  58extern void __list_add_rcu(struct list_head *new,
  59                struct list_head *prev, struct list_head *next);
  60#endif
  61
  62/**
  63 * list_add_rcu - add a new entry to rcu-protected list
  64 * @new: new entry to be added
  65 * @head: list head to add it after
  66 *
  67 * Insert a new entry after the specified head.
  68 * This is good for implementing stacks.
  69 *
  70 * The caller must take whatever precautions are necessary
  71 * (such as holding appropriate locks) to avoid racing
  72 * with another list-mutation primitive, such as list_add_rcu()
  73 * or list_del_rcu(), running on this same list.
  74 * However, it is perfectly legal to run concurrently with
  75 * the _rcu list-traversal primitives, such as
  76 * list_for_each_entry_rcu().
  77 */
  78static inline void list_add_rcu(struct list_head *new, struct list_head *head)
  79{
  80        __list_add_rcu(new, head, head->next);
  81}
  82
  83/**
  84 * list_add_tail_rcu - add a new entry to rcu-protected list
  85 * @new: new entry to be added
  86 * @head: list head to add it before
  87 *
  88 * Insert a new entry before the specified head.
  89 * This is useful for implementing queues.
  90 *
  91 * The caller must take whatever precautions are necessary
  92 * (such as holding appropriate locks) to avoid racing
  93 * with another list-mutation primitive, such as list_add_tail_rcu()
  94 * or list_del_rcu(), running on this same list.
  95 * However, it is perfectly legal to run concurrently with
  96 * the _rcu list-traversal primitives, such as
  97 * list_for_each_entry_rcu().
  98 */
  99static inline void list_add_tail_rcu(struct list_head *new,
 100                                        struct list_head *head)
 101{
 102        __list_add_rcu(new, head->prev, head);
 103}
 104
 105/**
 106 * list_del_rcu - deletes entry from list without re-initialization
 107 * @entry: the element to delete from the list.
 108 *
 109 * Note: list_empty() on entry does not return true after this,
 110 * the entry is in an undefined state. It is useful for RCU based
 111 * lockfree traversal.
 112 *
 113 * In particular, it means that we can not poison the forward
 114 * pointers that may still be used for walking the list.
 115 *
 116 * The caller must take whatever precautions are necessary
 117 * (such as holding appropriate locks) to avoid racing
 118 * with another list-mutation primitive, such as list_del_rcu()
 119 * or list_add_rcu(), running on this same list.
 120 * However, it is perfectly legal to run concurrently with
 121 * the _rcu list-traversal primitives, such as
 122 * list_for_each_entry_rcu().
 123 *
 124 * Note that the caller is not permitted to immediately free
 125 * the newly deleted entry.  Instead, either synchronize_rcu()
 126 * or call_rcu() must be used to defer freeing until an RCU
 127 * grace period has elapsed.
 128 */
 129static inline void list_del_rcu(struct list_head *entry)
 130{
 131        __list_del_entry(entry);
 132        entry->prev = LIST_POISON2;
 133}
 134
 135/**
 136 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
 137 * @n: the element to delete from the hash list.
 138 *
 139 * Note: list_unhashed() on the node return true after this. It is
 140 * useful for RCU based read lockfree traversal if the writer side
 141 * must know if the list entry is still hashed or already unhashed.
 142 *
 143 * In particular, it means that we can not poison the forward pointers
 144 * that may still be used for walking the hash list and we can only
 145 * zero the pprev pointer so list_unhashed() will return true after
 146 * this.
 147 *
 148 * The caller must take whatever precautions are necessary (such as
 149 * holding appropriate locks) to avoid racing with another
 150 * list-mutation primitive, such as hlist_add_head_rcu() or
 151 * hlist_del_rcu(), running on this same list.  However, it is
 152 * perfectly legal to run concurrently with the _rcu list-traversal
 153 * primitives, such as hlist_for_each_entry_rcu().
 154 */
 155static inline void hlist_del_init_rcu(struct hlist_node *n)
 156{
 157        if (!hlist_unhashed(n)) {
 158                __hlist_del(n);
 159                n->pprev = NULL;
 160        }
 161}
 162
 163/**
 164 * list_replace_rcu - replace old entry by new one
 165 * @old : the element to be replaced
 166 * @new : the new element to insert
 167 *
 168 * The @old entry will be replaced with the @new entry atomically.
 169 * Note: @old should not be empty.
 170 */
 171static inline void list_replace_rcu(struct list_head *old,
 172                                struct list_head *new)
 173{
 174        new->next = old->next;
 175        new->prev = old->prev;
 176        rcu_assign_pointer(list_next_rcu(new->prev), new);
 177        new->next->prev = new;
 178        old->prev = LIST_POISON2;
 179}
 180
 181/**
 182 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
 183 * @list:       the RCU-protected list to splice
 184 * @head:       the place in the list to splice the first list into
 185 * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
 186 *
 187 * @head can be RCU-read traversed concurrently with this function.
 188 *
 189 * Note that this function blocks.
 190 *
 191 * Important note: the caller must take whatever action is necessary to
 192 *      prevent any other updates to @head.  In principle, it is possible
 193 *      to modify the list as soon as sync() begins execution.
 194 *      If this sort of thing becomes necessary, an alternative version
 195 *      based on call_rcu() could be created.  But only if -really-
 196 *      needed -- there is no shortage of RCU API members.
 197 */
 198static inline void list_splice_init_rcu(struct list_head *list,
 199                                        struct list_head *head,
 200                                        void (*sync)(void))
 201{
 202        struct list_head *first = list->next;
 203        struct list_head *last = list->prev;
 204        struct list_head *at = head->next;
 205
 206        if (list_empty(list))
 207                return;
 208
 209        /*
 210         * "first" and "last" tracking list, so initialize it.  RCU readers
 211         * have access to this list, so we must use INIT_LIST_HEAD_RCU()
 212         * instead of INIT_LIST_HEAD().
 213         */
 214
 215        INIT_LIST_HEAD_RCU(list);
 216
 217        /*
 218         * At this point, the list body still points to the source list.
 219         * Wait for any readers to finish using the list before splicing
 220         * the list body into the new list.  Any new readers will see
 221         * an empty list.
 222         */
 223
 224        sync();
 225
 226        /*
 227         * Readers are finished with the source list, so perform splice.
 228         * The order is important if the new list is global and accessible
 229         * to concurrent RCU readers.  Note that RCU readers are not
 230         * permitted to traverse the prev pointers without excluding
 231         * this function.
 232         */
 233
 234        last->next = at;
 235        rcu_assign_pointer(list_next_rcu(head), first);
 236        first->prev = head;
 237        at->prev = last;
 238}
 239
 240/**
 241 * list_entry_rcu - get the struct for this entry
 242 * @ptr:        the &struct list_head pointer.
 243 * @type:       the type of the struct this is embedded in.
 244 * @member:     the name of the list_struct within the struct.
 245 *
 246 * This primitive may safely run concurrently with the _rcu list-mutation
 247 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 248 */
 249#define list_entry_rcu(ptr, type, member) \
 250        ({typeof (*ptr) __rcu *__ptr = (typeof (*ptr) __rcu __force *)ptr; \
 251         container_of((typeof(ptr))rcu_dereference_raw(__ptr), type, member); \
 252        })
 253
 254/**
 255 * Where are list_empty_rcu() and list_first_entry_rcu()?
 256 *
 257 * Implementing those functions following their counterparts list_empty() and
 258 * list_first_entry() is not advisable because they lead to subtle race
 259 * conditions as the following snippet shows:
 260 *
 261 * if (!list_empty_rcu(mylist)) {
 262 *      struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
 263 *      do_something(bar);
 264 * }
 265 *
 266 * The list may not be empty when list_empty_rcu checks it, but it may be when
 267 * list_first_entry_rcu rereads the ->next pointer.
 268 *
 269 * Rereading the ->next pointer is not a problem for list_empty() and
 270 * list_first_entry() because they would be protected by a lock that blocks
 271 * writers.
 272 *
 273 * See list_first_or_null_rcu for an alternative.
 274 */
 275
 276/**
 277 * list_first_or_null_rcu - get the first element from a list
 278 * @ptr:        the list head to take the element from.
 279 * @type:       the type of the struct this is embedded in.
 280 * @member:     the name of the list_struct within the struct.
 281 *
 282 * Note that if the list is empty, it returns NULL.
 283 *
 284 * This primitive may safely run concurrently with the _rcu list-mutation
 285 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 286 */
 287#define list_first_or_null_rcu(ptr, type, member) \
 288        ({struct list_head *__ptr = (ptr); \
 289          struct list_head *__next = ACCESS_ONCE(__ptr->next); \
 290          likely(__ptr != __next) ? \
 291                list_entry_rcu(__next, type, member) : NULL; \
 292        })
 293
 294/**
 295 * list_for_each_entry_rcu      -       iterate over rcu list of given type
 296 * @pos:        the type * to use as a loop cursor.
 297 * @head:       the head for your list.
 298 * @member:     the name of the list_struct within the struct.
 299 *
 300 * This list-traversal primitive may safely run concurrently with
 301 * the _rcu list-mutation primitives such as list_add_rcu()
 302 * as long as the traversal is guarded by rcu_read_lock().
 303 */
 304#define list_for_each_entry_rcu(pos, head, member) \
 305        for (pos = list_entry_rcu((head)->next, typeof(*pos), member); \
 306                &pos->member != (head); \
 307                pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 308
 309/**
 310 * list_entry_lockless - get the struct for this entry
 311 * @ptr:        the &struct list_head pointer.
 312 * @type:       the type of the struct this is embedded in.
 313 * @member:     the name of the list_head within the struct.
 314 *
 315 * This primitive may safely run concurrently with the _rcu list-mutation
 316 * primitives such as list_add_rcu(), but requires some implicit RCU
 317 * read-side guarding.  One example is running within a special
 318 * exception-time environment where preemption is disabled and where
 319 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
 320 * as in synchronize_sched(), call_rcu_sched(), and friends).  Another
 321 * example is when items are added to the list, but never deleted.
 322 */
 323#define list_entry_lockless(ptr, type, member) \
 324        container_of((typeof(ptr))lockless_dereference(ptr), type, member)
 325
 326/**
 327 * list_for_each_entry_lockless - iterate over rcu list of given type
 328 * @pos:        the type * to use as a loop cursor.
 329 * @head:       the head for your list.
 330 * @member:     the name of the list_struct within the struct.
 331 *
 332 * This primitive may safely run concurrently with the _rcu list-mutation
 333 * primitives such as list_add_rcu(), but requires some implicit RCU
 334 * read-side guarding.  One example is running within a special
 335 * exception-time environment where preemption is disabled and where
 336 * lockdep cannot be invoked (in which case updaters must use RCU-sched,
 337 * as in synchronize_sched(), call_rcu_sched(), and friends).  Another
 338 * example is when items are added to the list, but never deleted.
 339 */
 340#define list_for_each_entry_lockless(pos, head, member) \
 341        for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
 342             &pos->member != (head); \
 343             pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
 344
 345/**
 346 * list_for_each_entry_continue_rcu - continue iteration over list of given type
 347 * @pos:        the type * to use as a loop cursor.
 348 * @head:       the head for your list.
 349 * @member:     the name of the list_struct within the struct.
 350 *
 351 * Continue to iterate over list of given type, continuing after
 352 * the current position.
 353 */
 354#define list_for_each_entry_continue_rcu(pos, head, member)             \
 355        for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
 356             &pos->member != (head);    \
 357             pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 358
 359/**
 360 * hlist_del_rcu - deletes entry from hash list without re-initialization
 361 * @n: the element to delete from the hash list.
 362 *
 363 * Note: list_unhashed() on entry does not return true after this,
 364 * the entry is in an undefined state. It is useful for RCU based
 365 * lockfree traversal.
 366 *
 367 * In particular, it means that we can not poison the forward
 368 * pointers that may still be used for walking the hash list.
 369 *
 370 * The caller must take whatever precautions are necessary
 371 * (such as holding appropriate locks) to avoid racing
 372 * with another list-mutation primitive, such as hlist_add_head_rcu()
 373 * or hlist_del_rcu(), running on this same list.
 374 * However, it is perfectly legal to run concurrently with
 375 * the _rcu list-traversal primitives, such as
 376 * hlist_for_each_entry().
 377 */
 378static inline void hlist_del_rcu(struct hlist_node *n)
 379{
 380        __hlist_del(n);
 381        n->pprev = LIST_POISON2;
 382}
 383
 384/**
 385 * hlist_replace_rcu - replace old entry by new one
 386 * @old : the element to be replaced
 387 * @new : the new element to insert
 388 *
 389 * The @old entry will be replaced with the @new entry atomically.
 390 */
 391static inline void hlist_replace_rcu(struct hlist_node *old,
 392                                        struct hlist_node *new)
 393{
 394        struct hlist_node *next = old->next;
 395
 396        new->next = next;
 397        new->pprev = old->pprev;
 398        rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
 399        if (next)
 400                new->next->pprev = &new->next;
 401        old->pprev = LIST_POISON2;
 402}
 403
 404/*
 405 * return the first or the next element in an RCU protected hlist
 406 */
 407#define hlist_first_rcu(head)   (*((struct hlist_node __rcu **)(&(head)->first)))
 408#define hlist_next_rcu(node)    (*((struct hlist_node __rcu **)(&(node)->next)))
 409#define hlist_pprev_rcu(node)   (*((struct hlist_node __rcu **)((node)->pprev)))
 410
 411/**
 412 * hlist_add_head_rcu
 413 * @n: the element to add to the hash list.
 414 * @h: the list to add to.
 415 *
 416 * Description:
 417 * Adds the specified element to the specified hlist,
 418 * while permitting racing traversals.
 419 *
 420 * The caller must take whatever precautions are necessary
 421 * (such as holding appropriate locks) to avoid racing
 422 * with another list-mutation primitive, such as hlist_add_head_rcu()
 423 * or hlist_del_rcu(), running on this same list.
 424 * However, it is perfectly legal to run concurrently with
 425 * the _rcu list-traversal primitives, such as
 426 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 427 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 428 * list-traversal primitive must be guarded by rcu_read_lock().
 429 */
 430static inline void hlist_add_head_rcu(struct hlist_node *n,
 431                                        struct hlist_head *h)
 432{
 433        struct hlist_node *first = h->first;
 434
 435        n->next = first;
 436        n->pprev = &h->first;
 437        rcu_assign_pointer(hlist_first_rcu(h), n);
 438        if (first)
 439                first->pprev = &n->next;
 440}
 441
 442/**
 443 * hlist_add_tail_rcu
 444 * @n: the element to add to the hash list.
 445 * @h: the list to add to.
 446 *
 447 * Description:
 448 * Adds the specified element to the specified hlist,
 449 * while permitting racing traversals.
 450 *
 451 * The caller must take whatever precautions are necessary
 452 * (such as holding appropriate locks) to avoid racing
 453 * with another list-mutation primitive, such as hlist_add_head_rcu()
 454 * or hlist_del_rcu(), running on this same list.
 455 * However, it is perfectly legal to run concurrently with
 456 * the _rcu list-traversal primitives, such as
 457 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 458 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 459 * list-traversal primitive must be guarded by rcu_read_lock().
 460 */
 461static inline void hlist_add_tail_rcu(struct hlist_node *n,
 462                                    struct hlist_head *h)
 463{
 464      struct hlist_node *i, *last = NULL;
 465
 466      for (i = hlist_first_rcu(h); i; i = hlist_next_rcu(i))
 467              last = i;
 468
 469      if (last) {
 470              n->next = last->next;
 471              n->pprev = &last->next;
 472              rcu_assign_pointer(hlist_next_rcu(last), n);
 473      } else {
 474              hlist_add_head_rcu(n, h);
 475      }
 476}
 477
 478/**
 479 * hlist_add_before_rcu
 480 * @n: the new element to add to the hash list.
 481 * @next: the existing element to add the new element before.
 482 *
 483 * Description:
 484 * Adds the specified element to the specified hlist
 485 * before the specified node while permitting racing traversals.
 486 *
 487 * The caller must take whatever precautions are necessary
 488 * (such as holding appropriate locks) to avoid racing
 489 * with another list-mutation primitive, such as hlist_add_head_rcu()
 490 * or hlist_del_rcu(), running on this same list.
 491 * However, it is perfectly legal to run concurrently with
 492 * the _rcu list-traversal primitives, such as
 493 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 494 * problems on Alpha CPUs.
 495 */
 496static inline void hlist_add_before_rcu(struct hlist_node *n,
 497                                        struct hlist_node *next)
 498{
 499        n->pprev = next->pprev;
 500        n->next = next;
 501        rcu_assign_pointer(hlist_pprev_rcu(n), n);
 502        next->pprev = &n->next;
 503}
 504
 505/**
 506 * hlist_add_behind_rcu
 507 * @n: the new element to add to the hash list.
 508 * @prev: the existing element to add the new element after.
 509 *
 510 * Description:
 511 * Adds the specified element to the specified hlist
 512 * after the specified node while permitting racing traversals.
 513 *
 514 * The caller must take whatever precautions are necessary
 515 * (such as holding appropriate locks) to avoid racing
 516 * with another list-mutation primitive, such as hlist_add_head_rcu()
 517 * or hlist_del_rcu(), running on this same list.
 518 * However, it is perfectly legal to run concurrently with
 519 * the _rcu list-traversal primitives, such as
 520 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 521 * problems on Alpha CPUs.
 522 */
 523static inline void hlist_add_behind_rcu(struct hlist_node *n,
 524                                        struct hlist_node *prev)
 525{
 526        n->next = prev->next;
 527        n->pprev = &prev->next;
 528        rcu_assign_pointer(hlist_next_rcu(prev), n);
 529        if (n->next)
 530                n->next->pprev = &n->next;
 531}
 532
 533#define __hlist_for_each_rcu(pos, head)                         \
 534        for (pos = rcu_dereference(hlist_first_rcu(head));      \
 535             pos;                                               \
 536             pos = rcu_dereference(hlist_next_rcu(pos)))
 537
 538/**
 539 * hlist_for_each_entry_rcu - iterate over rcu list of given type
 540 * @pos:        the type * to use as a loop cursor.
 541 * @head:       the head for your list.
 542 * @member:     the name of the hlist_node within the struct.
 543 *
 544 * This list-traversal primitive may safely run concurrently with
 545 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 546 * as long as the traversal is guarded by rcu_read_lock().
 547 */
 548#define hlist_for_each_entry_rcu(pos, head, member)                     \
 549        for (pos = hlist_entry_safe (rcu_dereference_raw(hlist_first_rcu(head)),\
 550                        typeof(*(pos)), member);                        \
 551                pos;                                                    \
 552                pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
 553                        &(pos)->member)), typeof(*(pos)), member))
 554
 555/**
 556 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
 557 * @pos:        the type * to use as a loop cursor.
 558 * @head:       the head for your list.
 559 * @member:     the name of the hlist_node within the struct.
 560 *
 561 * This list-traversal primitive may safely run concurrently with
 562 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 563 * as long as the traversal is guarded by rcu_read_lock().
 564 *
 565 * This is the same as hlist_for_each_entry_rcu() except that it does
 566 * not do any RCU debugging or tracing.
 567 */
 568#define hlist_for_each_entry_rcu_notrace(pos, head, member)                     \
 569        for (pos = hlist_entry_safe (rcu_dereference_raw_notrace(hlist_first_rcu(head)),\
 570                        typeof(*(pos)), member);                        \
 571                pos;                                                    \
 572                pos = hlist_entry_safe(rcu_dereference_raw_notrace(hlist_next_rcu(\
 573                        &(pos)->member)), typeof(*(pos)), member))
 574
 575/**
 576 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
 577 * @pos:        the type * to use as a loop cursor.
 578 * @head:       the head for your list.
 579 * @member:     the name of the hlist_node within the struct.
 580 *
 581 * This list-traversal primitive may safely run concurrently with
 582 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 583 * as long as the traversal is guarded by rcu_read_lock().
 584 */
 585#define hlist_for_each_entry_rcu_bh(pos, head, member)                  \
 586        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
 587                        typeof(*(pos)), member);                        \
 588                pos;                                                    \
 589                pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
 590                        &(pos)->member)), typeof(*(pos)), member))
 591
 592/**
 593 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
 594 * @pos:        the type * to use as a loop cursor.
 595 * @member:     the name of the hlist_node within the struct.
 596 */
 597#define hlist_for_each_entry_continue_rcu(pos, member)                  \
 598        for (pos = hlist_entry_safe(rcu_dereference((pos)->member.next),\
 599                        typeof(*(pos)), member);                        \
 600             pos;                                                       \
 601             pos = hlist_entry_safe(rcu_dereference((pos)->member.next),\
 602                        typeof(*(pos)), member))
 603
 604/**
 605 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
 606 * @pos:        the type * to use as a loop cursor.
 607 * @member:     the name of the hlist_node within the struct.
 608 */
 609#define hlist_for_each_entry_continue_rcu_bh(pos, member)               \
 610        for (pos = hlist_entry_safe(rcu_dereference_bh((pos)->member.next),\
 611                        typeof(*(pos)), member);                        \
 612             pos;                                                       \
 613             pos = hlist_entry_safe(rcu_dereference_bh((pos)->member.next),\
 614                        typeof(*(pos)), member))
 615
 616
 617#endif  /* __KERNEL__ */
 618#endif
 619