linux/include/linux/slab.h
<<
>>
Prefs
   1/*
   2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
   3 *
   4 * (C) SGI 2006, Christoph Lameter
   5 *      Cleaned up and restructured to ease the addition of alternative
   6 *      implementations of SLAB allocators.
   7 */
   8
   9#ifndef _LINUX_SLAB_H
  10#define _LINUX_SLAB_H
  11
  12#include <linux/gfp.h>
  13#include <linux/overflow.h>
  14#include <linux/types.h>
  15#include <linux/workqueue.h>
  16
  17
  18/*
  19 * Flags to pass to kmem_cache_create().
  20 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
  21 */
  22#define SLAB_CONSISTENCY_CHECKS 0x00000100UL    /* DEBUG: Perform (expensive) checks on alloc/free */
  23#define SLAB_RED_ZONE           0x00000400UL    /* DEBUG: Red zone objs in a cache */
  24#define SLAB_POISON             0x00000800UL    /* DEBUG: Poison objects */
  25#define SLAB_HWCACHE_ALIGN      0x00002000UL    /* Align objs on cache lines */
  26#define SLAB_CACHE_DMA          0x00004000UL    /* Use GFP_DMA memory */
  27#define SLAB_STORE_USER         0x00010000UL    /* DEBUG: Store the last owner for bug hunting */
  28#define SLAB_PANIC              0x00040000UL    /* Panic if kmem_cache_create() fails */
  29/*
  30 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
  31 *
  32 * This delays freeing the SLAB page by a grace period, it does _NOT_
  33 * delay object freeing. This means that if you do kmem_cache_free()
  34 * that memory location is free to be reused at any time. Thus it may
  35 * be possible to see another object there in the same RCU grace period.
  36 *
  37 * This feature only ensures the memory location backing the object
  38 * stays valid, the trick to using this is relying on an independent
  39 * object validation pass. Something like:
  40 *
  41 *  rcu_read_lock()
  42 * again:
  43 *  obj = lockless_lookup(key);
  44 *  if (obj) {
  45 *    if (!try_get_ref(obj)) // might fail for free objects
  46 *      goto again;
  47 *
  48 *    if (obj->key != key) { // not the object we expected
  49 *      put_ref(obj);
  50 *      goto again;
  51 *    }
  52 *  }
  53 *  rcu_read_unlock();
  54 *
  55 * See also the comment on struct slab_rcu in mm/slab.c.
  56 */
  57#define SLAB_DESTROY_BY_RCU     0x00080000UL    /* Defer freeing slabs to RCU */
  58#define SLAB_MEM_SPREAD         0x00100000UL    /* Spread some memory over cpuset */
  59#define SLAB_TRACE              0x00200000UL    /* Trace allocations and frees */
  60
  61/* Flag to prevent checks on free */
  62#ifdef CONFIG_DEBUG_OBJECTS
  63# define SLAB_DEBUG_OBJECTS     0x00400000UL
  64#else
  65# define SLAB_DEBUG_OBJECTS     0x00000000UL
  66#endif
  67
  68#define SLAB_NOLEAKTRACE        0x00800000UL    /* Avoid kmemleak tracing */
  69
  70/* Don't track use of uninitialized memory */
  71#ifdef CONFIG_KMEMCHECK
  72# define SLAB_NOTRACK           0x01000000UL
  73#else
  74# define SLAB_NOTRACK           0x00000000UL
  75#endif
  76#ifdef CONFIG_FAILSLAB
  77# define SLAB_FAILSLAB          0x02000000UL    /* Fault injection mark */
  78#else
  79# define SLAB_FAILSLAB          0x00000000UL
  80#endif
  81
  82/* The following flags affect the page allocator grouping pages by mobility */
  83#define SLAB_RECLAIM_ACCOUNT    0x00020000UL            /* Objects are reclaimable */
  84#define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
  85/*
  86 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
  87 *
  88 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
  89 *
  90 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
  91 * Both make kfree a no-op.
  92 */
  93#define ZERO_SIZE_PTR ((void *)16)
  94
  95#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
  96                                (unsigned long)ZERO_SIZE_PTR)
  97
  98
  99struct mem_cgroup;
 100/*
 101 * struct kmem_cache related prototypes
 102 */
 103void __init kmem_cache_init(void);
 104int slab_is_available(void);
 105
 106struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
 107                        unsigned long,
 108                        void (*)(void *));
 109#ifdef CONFIG_MEMCG_KMEM
 110struct kmem_cache *kmem_cache_create_memcg(struct mem_cgroup *,
 111                                           struct kmem_cache *);
 112#endif
 113void kmem_cache_destroy(struct kmem_cache *);
 114int kmem_cache_shrink(struct kmem_cache *);
 115void kmem_cache_free(struct kmem_cache *, void *);
 116
 117/*
 118 * Please use this macro to create slab caches. Simply specify the
 119 * name of the structure and maybe some flags that are listed above.
 120 *
 121 * The alignment of the struct determines object alignment. If you
 122 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 123 * then the objects will be properly aligned in SMP configurations.
 124 */
 125#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
 126                sizeof(struct __struct), __alignof__(struct __struct),\
 127                (__flags), NULL)
 128
 129/*
 130 * Common kmalloc functions provided by all allocators
 131 */
 132void * __must_check __krealloc(const void *, size_t, gfp_t);
 133void * __must_check krealloc(const void *, size_t, gfp_t);
 134void kfree(const void *);
 135void kzfree(const void *);
 136size_t ksize(const void *);
 137
 138#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
 139const char *__check_heap_object(const void *ptr, unsigned long n,
 140                                struct page *page);
 141#else
 142static inline const char *__check_heap_object(const void *ptr,
 143                                              unsigned long n,
 144                                              struct page *page)
 145{
 146        return NULL;
 147}
 148#endif
 149
 150/*
 151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 152 * alignment larger than the alignment of a 64-bit integer.
 153 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
 154 */
 155#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
 156#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
 157#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
 158#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
 159#else
 160#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
 161#endif
 162
 163#ifdef CONFIG_SLOB
 164/*
 165 * Common fields provided in kmem_cache by all slab allocators
 166 * This struct is either used directly by the allocator (SLOB)
 167 * or the allocator must include definitions for all fields
 168 * provided in kmem_cache_common in their definition of kmem_cache.
 169 *
 170 * Once we can do anonymous structs (C11 standard) we could put a
 171 * anonymous struct definition in these allocators so that the
 172 * separate allocations in the kmem_cache structure of SLAB and
 173 * SLUB is no longer needed.
 174 */
 175struct kmem_cache {
 176        unsigned int object_size;/* The original size of the object */
 177        unsigned int size;      /* The aligned/padded/added on size  */
 178        unsigned int align;     /* Alignment as calculated */
 179        unsigned long flags;    /* Active flags on the slab */
 180        const char *name;       /* Slab name for sysfs */
 181        int refcount;           /* Use counter */
 182        void (*ctor)(void *);   /* Called on object slot creation */
 183        struct list_head list;  /* List of all slab caches on the system */
 184};
 185
 186#define KMALLOC_MAX_SIZE (1UL << 30)
 187
 188#include <linux/slob_def.h>
 189
 190#else /* CONFIG_SLOB */
 191
 192/*
 193 * Kmalloc array related definitions
 194 */
 195
 196#ifdef CONFIG_SLAB
 197/*
 198 * The largest kmalloc size supported by the SLAB allocators is
 199 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 200 * less than 32 MB.
 201 *
 202 * WARNING: Its not easy to increase this value since the allocators have
 203 * to do various tricks to work around compiler limitations in order to
 204 * ensure proper constant folding.
 205 */
 206#define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
 207                                (MAX_ORDER + PAGE_SHIFT - 1) : 25)
 208#define KMALLOC_SHIFT_MAX       KMALLOC_SHIFT_HIGH
 209#ifndef KMALLOC_SHIFT_LOW
 210#define KMALLOC_SHIFT_LOW       5
 211#endif
 212#else
 213/*
 214 * SLUB allocates up to order 2 pages directly and otherwise
 215 * passes the request to the page allocator.
 216 */
 217#define KMALLOC_SHIFT_HIGH      (PAGE_SHIFT + 1)
 218#define KMALLOC_SHIFT_MAX       (MAX_ORDER + PAGE_SHIFT)
 219#ifndef KMALLOC_SHIFT_LOW
 220#define KMALLOC_SHIFT_LOW       3
 221#endif
 222#endif
 223
 224/* Maximum allocatable size */
 225#define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_MAX)
 226/* Maximum size for which we actually use a slab cache */
 227#define KMALLOC_MAX_CACHE_SIZE  (1UL << KMALLOC_SHIFT_HIGH)
 228/* Maximum order allocatable via the slab allocagtor */
 229#define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
 230
 231/*
 232 * Kmalloc subsystem.
 233 */
 234#ifndef KMALLOC_MIN_SIZE
 235#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
 236#endif
 237
 238extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
 239#ifdef CONFIG_ZONE_DMA
 240extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
 241#endif
 242
 243/*
 244 * Figure out which kmalloc slab an allocation of a certain size
 245 * belongs to.
 246 * 0 = zero alloc
 247 * 1 =  65 .. 96 bytes
 248 * 2 = 120 .. 192 bytes
 249 * n = 2^(n-1) .. 2^n -1
 250 */
 251static __always_inline int kmalloc_index(size_t size)
 252{
 253        if (!size)
 254                return 0;
 255
 256        if (size <= KMALLOC_MIN_SIZE)
 257                return KMALLOC_SHIFT_LOW;
 258
 259        if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
 260                return 1;
 261        if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
 262                return 2;
 263        if (size <=          8) return 3;
 264        if (size <=         16) return 4;
 265        if (size <=         32) return 5;
 266        if (size <=         64) return 6;
 267        if (size <=        128) return 7;
 268        if (size <=        256) return 8;
 269        if (size <=        512) return 9;
 270        if (size <=       1024) return 10;
 271        if (size <=   2 * 1024) return 11;
 272        if (size <=   4 * 1024) return 12;
 273        if (size <=   8 * 1024) return 13;
 274        if (size <=  16 * 1024) return 14;
 275        if (size <=  32 * 1024) return 15;
 276        if (size <=  64 * 1024) return 16;
 277        if (size <= 128 * 1024) return 17;
 278        if (size <= 256 * 1024) return 18;
 279        if (size <= 512 * 1024) return 19;
 280        if (size <= 1024 * 1024) return 20;
 281        if (size <=  2 * 1024 * 1024) return 21;
 282        if (size <=  4 * 1024 * 1024) return 22;
 283        if (size <=  8 * 1024 * 1024) return 23;
 284        if (size <=  16 * 1024 * 1024) return 24;
 285        if (size <=  32 * 1024 * 1024) return 25;
 286        if (size <=  64 * 1024 * 1024) return 26;
 287        BUG();
 288
 289        /* Will never be reached. Needed because the compiler may complain */
 290        return -1;
 291}
 292
 293#ifdef CONFIG_SLAB
 294#include <linux/slab_def.h>
 295#elif defined(CONFIG_SLUB)
 296#include <linux/slub_def.h>
 297#else
 298#error "Unknown slab allocator"
 299#endif
 300
 301/*
 302 * Determine size used for the nth kmalloc cache.
 303 * return size or 0 if a kmalloc cache for that
 304 * size does not exist
 305 */
 306static __always_inline int kmalloc_size(int n)
 307{
 308        if (n > 2)
 309                return 1 << n;
 310
 311        if (n == 1 && KMALLOC_MIN_SIZE <= 32)
 312                return 96;
 313
 314        if (n == 2 && KMALLOC_MIN_SIZE <= 64)
 315                return 192;
 316
 317        return 0;
 318}
 319#endif /* !CONFIG_SLOB */
 320
 321/*
 322 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 323 * Intended for arches that get misalignment faults even for 64 bit integer
 324 * aligned buffers.
 325 */
 326#ifndef ARCH_SLAB_MINALIGN
 327#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
 328#endif
 329/*
 330 * This is the main placeholder for memcg-related information in kmem caches.
 331 * struct kmem_cache will hold a pointer to it, so the memory cost while
 332 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
 333 * would otherwise be if that would be bundled in kmem_cache: we'll need an
 334 * extra pointer chase. But the trade off clearly lays in favor of not
 335 * penalizing non-users.
 336 *
 337 * Both the root cache and the child caches will have it. For the root cache,
 338 * this will hold a dynamically allocated array large enough to hold
 339 * information about the currently limited memcgs in the system. To allow the
 340 * array to be accessed without taking any locks, on relocation we free the old
 341 * version only after a grace period.
 342 *
 343 * Child caches will hold extra metadata needed for its operation. Fields are:
 344 *
 345 * @memcg: pointer to the memcg this cache belongs to
 346 * @list: list_head for the list of all caches in this memcg
 347 * @root_cache: pointer to the global, root cache, this cache was derived from
 348 * @nr_pages: number of pages that belongs to this cache.
 349 */
 350struct memcg_cache_params {
 351        bool is_root_cache;
 352        union {
 353#ifdef __GENKSYMS__
 354                struct kmem_cache *memcg_caches[0];
 355#else
 356                struct {
 357                        struct kmem_cache *memcg_caches[0];
 358                        struct rcu_head rcu_head;
 359                };
 360#endif
 361                struct {
 362                        struct mem_cgroup *memcg;
 363                        struct list_head list;
 364                        struct kmem_cache *root_cache;
 365                        RH_KABI_DEPRECATE(bool, dead)
 366                        atomic_t nr_pages;
 367                        RH_KABI_DEPRECATE(struct work_struct, destroy)
 368                };
 369        };
 370};
 371
 372int memcg_update_all_caches(int num_memcgs);
 373
 374struct seq_file;
 375int cache_show(struct kmem_cache *s, struct seq_file *m);
 376void print_slabinfo_header(struct seq_file *m);
 377
 378/**
 379 * kmalloc_array - allocate memory for an array.
 380 * @n: number of elements.
 381 * @size: element size.
 382 * @flags: the type of memory to allocate.
 383 *
 384 * The @flags argument may be one of:
 385 *
 386 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 387 *
 388 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 389 *
 390 * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
 391 *   For example, use this inside interrupt handlers.
 392 *
 393 * %GFP_HIGHUSER - Allocate pages from high memory.
 394 *
 395 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
 396 *
 397 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
 398 *
 399 * %GFP_NOWAIT - Allocation will not sleep.
 400 *
 401 * %__GFP_THISNODE - Allocate node-local memory only.
 402 *
 403 * %GFP_DMA - Allocation suitable for DMA.
 404 *   Should only be used for kmalloc() caches. Otherwise, use a
 405 *   slab created with SLAB_DMA.
 406 *
 407 * Also it is possible to set different flags by OR'ing
 408 * in one or more of the following additional @flags:
 409 *
 410 * %__GFP_COLD - Request cache-cold pages instead of
 411 *   trying to return cache-warm pages.
 412 *
 413 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
 414 *
 415 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
 416 *   (think twice before using).
 417 *
 418 * %__GFP_NORETRY - If memory is not immediately available,
 419 *   then give up at once.
 420 *
 421 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
 422 *
 423 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
 424 *
 425 * There are other flags available as well, but these are not intended
 426 * for general use, and so are not documented here. For a full list of
 427 * potential flags, always refer to linux/gfp.h.
 428 */
 429static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
 430{
 431        size_t bytes;
 432
 433        if (unlikely(check_mul_overflow(n, size, &bytes)))
 434                return NULL;
 435        if (__builtin_constant_p(n) && __builtin_constant_p(size))
 436                return kmalloc(bytes, flags);
 437        return __kmalloc(bytes, flags);
 438}
 439
 440/**
 441 * kcalloc - allocate memory for an array. The memory is set to zero.
 442 * @n: number of elements.
 443 * @size: element size.
 444 * @flags: the type of memory to allocate (see kmalloc).
 445 */
 446static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
 447{
 448        return kmalloc_array(n, size, flags | __GFP_ZERO);
 449}
 450
 451/*
 452 * Bulk allocation and freeing operations. These are accellerated in an
 453 * allocator specific way to avoid taking locks repeatedly or building
 454 * metadata structures unnecessarily.
 455 *
 456 * Note that interrupts must be enabled when calling these functions.
 457 */
 458void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
 459int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
 460
 461#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
 462/**
 463 * kmalloc_node - allocate memory from a specific node
 464 * @size: how many bytes of memory are required.
 465 * @flags: the type of memory to allocate (see kcalloc).
 466 * @node: node to allocate from.
 467 *
 468 * kmalloc() for non-local nodes, used to allocate from a specific node
 469 * if available. Equivalent to kmalloc() in the non-NUMA single-node
 470 * case.
 471 */
 472static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
 473{
 474        return kmalloc(size, flags);
 475}
 476
 477static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
 478{
 479        return __kmalloc(size, flags);
 480}
 481
 482void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
 483
 484static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
 485                                        gfp_t flags, int node)
 486{
 487        return kmem_cache_alloc(cachep, flags);
 488}
 489#endif /* !CONFIG_NUMA && !CONFIG_SLOB */
 490
 491/*
 492 * kmalloc_track_caller is a special version of kmalloc that records the
 493 * calling function of the routine calling it for slab leak tracking instead
 494 * of just the calling function (confusing, eh?).
 495 * It's useful when the call to kmalloc comes from a widely-used standard
 496 * allocator where we care about the real place the memory allocation
 497 * request comes from.
 498 */
 499#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
 500        (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
 501        (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
 502extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
 503#define kmalloc_track_caller(size, flags) \
 504        __kmalloc_track_caller(size, flags, _RET_IP_)
 505#else
 506#define kmalloc_track_caller(size, flags) \
 507        __kmalloc(size, flags)
 508#endif /* DEBUG_SLAB */
 509
 510static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
 511                                       int node)
 512{
 513        size_t bytes;
 514
 515        if (unlikely(check_mul_overflow(n, size, &bytes)))
 516                return NULL;
 517        if (__builtin_constant_p(n) && __builtin_constant_p(size))
 518                return kmalloc_node(bytes, flags, node);
 519        return __kmalloc_node(bytes, flags, node);
 520}
 521
 522static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
 523{
 524        return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
 525}
 526
 527
 528#ifdef CONFIG_NUMA
 529/*
 530 * kmalloc_node_track_caller is a special version of kmalloc_node that
 531 * records the calling function of the routine calling it for slab leak
 532 * tracking instead of just the calling function (confusing, eh?).
 533 * It's useful when the call to kmalloc_node comes from a widely-used
 534 * standard allocator where we care about the real place the memory
 535 * allocation request comes from.
 536 */
 537#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
 538        (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
 539        (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
 540extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
 541#define kmalloc_node_track_caller(size, flags, node) \
 542        __kmalloc_node_track_caller(size, flags, node, \
 543                        _RET_IP_)
 544#else
 545#define kmalloc_node_track_caller(size, flags, node) \
 546        __kmalloc_node(size, flags, node)
 547#endif
 548
 549#else /* CONFIG_NUMA */
 550
 551#define kmalloc_node_track_caller(size, flags, node) \
 552        kmalloc_track_caller(size, flags)
 553
 554#endif /* CONFIG_NUMA */
 555
 556/*
 557 * Shortcuts
 558 */
 559static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
 560{
 561        return kmem_cache_alloc(k, flags | __GFP_ZERO);
 562}
 563
 564/**
 565 * kzalloc - allocate memory. The memory is set to zero.
 566 * @size: how many bytes of memory are required.
 567 * @flags: the type of memory to allocate (see kmalloc).
 568 */
 569static inline void *kzalloc(size_t size, gfp_t flags)
 570{
 571        return kmalloc(size, flags | __GFP_ZERO);
 572}
 573
 574/**
 575 * kzalloc_node - allocate zeroed memory from a particular memory node.
 576 * @size: how many bytes of memory are required.
 577 * @flags: the type of memory to allocate (see kmalloc).
 578 * @node: memory node from which to allocate
 579 */
 580static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
 581{
 582        return kmalloc_node(size, flags | __GFP_ZERO, node);
 583}
 584
 585/*
 586 * Determine the size of a slab object
 587 */
 588static inline unsigned int kmem_cache_size(struct kmem_cache *s)
 589{
 590        return s->object_size;
 591}
 592
 593void __init kmem_cache_init_late(void);
 594
 595#endif  /* _LINUX_SLAB_H */
 596