linux/mm/vmalloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/rbtree.h>
  25#include <linux/radix-tree.h>
  26#include <linux/rcupdate.h>
  27#include <linux/pfn.h>
  28#include <linux/kmemleak.h>
  29#include <linux/atomic.h>
  30#include <linux/llist.h>
  31#include <linux/bitops.h>
  32#include <asm/uaccess.h>
  33#include <asm/tlbflush.h>
  34#include <asm/shmparam.h>
  35
  36struct vfree_deferred {
  37        struct llist_head list;
  38        struct work_struct wq;
  39};
  40static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  41
  42static void __vunmap(const void *, int);
  43
  44static void free_work(struct work_struct *w)
  45{
  46        struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  47        struct llist_node *llnode = llist_del_all(&p->list);
  48        while (llnode) {
  49                void *p = llnode;
  50                llnode = llist_next(llnode);
  51                __vunmap(p, 1);
  52        }
  53}
  54
  55/*** Page table manipulation functions ***/
  56
  57static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  58{
  59        pte_t *pte;
  60
  61        pte = pte_offset_kernel(pmd, addr);
  62        do {
  63                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  64                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  65        } while (pte++, addr += PAGE_SIZE, addr != end);
  66}
  67
  68static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  69{
  70        pmd_t *pmd;
  71        unsigned long next;
  72
  73        pmd = pmd_offset(pud, addr);
  74        do {
  75                next = pmd_addr_end(addr, end);
  76                if (pmd_clear_huge(pmd))
  77                        continue;
  78                if (pmd_none_or_clear_bad(pmd))
  79                        continue;
  80                vunmap_pte_range(pmd, addr, next);
  81        } while (pmd++, addr = next, addr != end);
  82}
  83
  84static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  85{
  86        pud_t *pud;
  87        unsigned long next;
  88
  89        pud = pud_offset(pgd, addr);
  90        do {
  91                next = pud_addr_end(addr, end);
  92                if (pud_clear_huge(pud))
  93                        continue;
  94                if (pud_none_or_clear_bad(pud))
  95                        continue;
  96                vunmap_pmd_range(pud, addr, next);
  97        } while (pud++, addr = next, addr != end);
  98}
  99
 100static void vunmap_page_range(unsigned long addr, unsigned long end)
 101{
 102        pgd_t *pgd;
 103        unsigned long next;
 104
 105        BUG_ON(addr >= end);
 106        pgd = pgd_offset_k(addr);
 107        do {
 108                next = pgd_addr_end(addr, end);
 109                if (pgd_none_or_clear_bad(pgd))
 110                        continue;
 111                vunmap_pud_range(pgd, addr, next);
 112        } while (pgd++, addr = next, addr != end);
 113}
 114
 115static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 116                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 117{
 118        pte_t *pte;
 119
 120        /*
 121         * nr is a running index into the array which helps higher level
 122         * callers keep track of where we're up to.
 123         */
 124
 125        pte = pte_alloc_kernel(pmd, addr);
 126        if (!pte)
 127                return -ENOMEM;
 128        do {
 129                struct page *page = pages[*nr];
 130
 131                if (WARN_ON(!pte_none(*pte)))
 132                        return -EBUSY;
 133                if (WARN_ON(!page))
 134                        return -ENOMEM;
 135                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 136                (*nr)++;
 137        } while (pte++, addr += PAGE_SIZE, addr != end);
 138        return 0;
 139}
 140
 141static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 142                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 143{
 144        pmd_t *pmd;
 145        unsigned long next;
 146
 147        pmd = pmd_alloc(&init_mm, pud, addr);
 148        if (!pmd)
 149                return -ENOMEM;
 150        do {
 151                next = pmd_addr_end(addr, end);
 152                if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 153                        return -ENOMEM;
 154        } while (pmd++, addr = next, addr != end);
 155        return 0;
 156}
 157
 158static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
 159                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 160{
 161        pud_t *pud;
 162        unsigned long next;
 163
 164        pud = pud_alloc(&init_mm, pgd, addr);
 165        if (!pud)
 166                return -ENOMEM;
 167        do {
 168                next = pud_addr_end(addr, end);
 169                if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 170                        return -ENOMEM;
 171        } while (pud++, addr = next, addr != end);
 172        return 0;
 173}
 174
 175/*
 176 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 177 * will have pfns corresponding to the "pages" array.
 178 *
 179 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 180 */
 181static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 182                                   pgprot_t prot, struct page **pages)
 183{
 184        pgd_t *pgd;
 185        unsigned long next;
 186        unsigned long addr = start;
 187        int err = 0;
 188        int nr = 0;
 189
 190        BUG_ON(addr >= end);
 191        pgd = pgd_offset_k(addr);
 192        do {
 193                next = pgd_addr_end(addr, end);
 194                err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
 195                if (err)
 196                        return err;
 197        } while (pgd++, addr = next, addr != end);
 198
 199        return nr;
 200}
 201
 202static int vmap_page_range(unsigned long start, unsigned long end,
 203                           pgprot_t prot, struct page **pages)
 204{
 205        int ret;
 206
 207        ret = vmap_page_range_noflush(start, end, prot, pages);
 208        flush_cache_vmap(start, end);
 209        return ret;
 210}
 211
 212int is_vmalloc_or_module_addr(const void *x)
 213{
 214        /*
 215         * ARM, x86-64 and sparc64 put modules in a special place,
 216         * and fall back on vmalloc() if that fails. Others
 217         * just put it in the vmalloc space.
 218         */
 219#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 220        unsigned long addr = (unsigned long)x;
 221        if (addr >= MODULES_VADDR && addr < MODULES_END)
 222                return 1;
 223#endif
 224        return is_vmalloc_addr(x);
 225}
 226
 227/*
 228 * Walk a vmap address to the struct page it maps.
 229 */
 230struct page *vmalloc_to_page(const void *vmalloc_addr)
 231{
 232        unsigned long addr = (unsigned long) vmalloc_addr;
 233        struct page *page = NULL;
 234        pgd_t *pgd = pgd_offset_k(addr);
 235
 236        /*
 237         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 238         * architectures that do not vmalloc module space
 239         */
 240        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 241
 242        if (!pgd_none(*pgd)) {
 243                pud_t *pud = pud_offset(pgd, addr);
 244                if (!pud_none(*pud)) {
 245                        pmd_t *pmd = pmd_offset(pud, addr);
 246                        if (!pmd_none(*pmd)) {
 247                                pte_t *ptep, pte;
 248
 249                                ptep = pte_offset_map(pmd, addr);
 250                                pte = *ptep;
 251                                if (pte_present(pte))
 252                                        page = pte_page(pte);
 253                                pte_unmap(ptep);
 254                        }
 255                }
 256        }
 257        return page;
 258}
 259EXPORT_SYMBOL(vmalloc_to_page);
 260
 261/*
 262 * Map a vmalloc()-space virtual address to the physical page frame number.
 263 */
 264unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 265{
 266        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 267}
 268EXPORT_SYMBOL(vmalloc_to_pfn);
 269
 270
 271/*** Global kva allocator ***/
 272
 273#define VM_LAZY_FREE    0x01
 274#define VM_LAZY_FREEING 0x02
 275#define VM_VM_AREA      0x04
 276
 277static DEFINE_SPINLOCK(vmap_area_lock);
 278/* Export for kexec only */
 279LIST_HEAD(vmap_area_list);
 280static struct rb_root vmap_area_root = RB_ROOT;
 281
 282/* The vmap cache globals are protected by vmap_area_lock */
 283static struct rb_node *free_vmap_cache;
 284static unsigned long cached_hole_size;
 285static unsigned long cached_vstart;
 286static unsigned long cached_align;
 287
 288static unsigned long vmap_area_pcpu_hole;
 289
 290static struct vmap_area *__find_vmap_area(unsigned long addr)
 291{
 292        struct rb_node *n = vmap_area_root.rb_node;
 293
 294        while (n) {
 295                struct vmap_area *va;
 296
 297                va = rb_entry(n, struct vmap_area, rb_node);
 298                if (addr < va->va_start)
 299                        n = n->rb_left;
 300                else if (addr >= va->va_end)
 301                        n = n->rb_right;
 302                else
 303                        return va;
 304        }
 305
 306        return NULL;
 307}
 308
 309static void __insert_vmap_area(struct vmap_area *va)
 310{
 311        struct rb_node **p = &vmap_area_root.rb_node;
 312        struct rb_node *parent = NULL;
 313        struct rb_node *tmp;
 314
 315        while (*p) {
 316                struct vmap_area *tmp_va;
 317
 318                parent = *p;
 319                tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 320                if (va->va_start < tmp_va->va_end)
 321                        p = &(*p)->rb_left;
 322                else if (va->va_end > tmp_va->va_start)
 323                        p = &(*p)->rb_right;
 324                else
 325                        BUG();
 326        }
 327
 328        rb_link_node(&va->rb_node, parent, p);
 329        rb_insert_color(&va->rb_node, &vmap_area_root);
 330
 331        /* address-sort this list */
 332        tmp = rb_prev(&va->rb_node);
 333        if (tmp) {
 334                struct vmap_area *prev;
 335                prev = rb_entry(tmp, struct vmap_area, rb_node);
 336                list_add_rcu(&va->list, &prev->list);
 337        } else
 338                list_add_rcu(&va->list, &vmap_area_list);
 339}
 340
 341static void purge_vmap_area_lazy(void);
 342
 343/*
 344 * Allocate a region of KVA of the specified size and alignment, within the
 345 * vstart and vend.
 346 */
 347static struct vmap_area *alloc_vmap_area(unsigned long size,
 348                                unsigned long align,
 349                                unsigned long vstart, unsigned long vend,
 350                                int node, gfp_t gfp_mask)
 351{
 352        struct vmap_area *va;
 353        struct rb_node *n;
 354        unsigned long addr;
 355        int purged = 0;
 356        struct vmap_area *first;
 357
 358        BUG_ON(!size);
 359        BUG_ON(size & ~PAGE_MASK);
 360        BUG_ON(!is_power_of_2(align));
 361
 362        va = kmalloc_node(sizeof(struct vmap_area),
 363                        gfp_mask & GFP_RECLAIM_MASK, node);
 364        if (unlikely(!va))
 365                return ERR_PTR(-ENOMEM);
 366
 367retry:
 368        spin_lock(&vmap_area_lock);
 369        /*
 370         * Invalidate cache if we have more permissive parameters.
 371         * cached_hole_size notes the largest hole noticed _below_
 372         * the vmap_area cached in free_vmap_cache: if size fits
 373         * into that hole, we want to scan from vstart to reuse
 374         * the hole instead of allocating above free_vmap_cache.
 375         * Note that __free_vmap_area may update free_vmap_cache
 376         * without updating cached_hole_size or cached_align.
 377         */
 378        if (!free_vmap_cache ||
 379                        size < cached_hole_size ||
 380                        vstart < cached_vstart ||
 381                        align < cached_align) {
 382nocache:
 383                cached_hole_size = 0;
 384                free_vmap_cache = NULL;
 385        }
 386        /* record if we encounter less permissive parameters */
 387        cached_vstart = vstart;
 388        cached_align = align;
 389
 390        /* find starting point for our search */
 391        if (free_vmap_cache) {
 392                first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 393                addr = ALIGN(first->va_end, align);
 394                if (addr < vstart)
 395                        goto nocache;
 396                if (addr + size < addr)
 397                        goto overflow;
 398
 399        } else {
 400                addr = ALIGN(vstart, align);
 401                if (addr + size < addr)
 402                        goto overflow;
 403
 404                n = vmap_area_root.rb_node;
 405                first = NULL;
 406
 407                while (n) {
 408                        struct vmap_area *tmp;
 409                        tmp = rb_entry(n, struct vmap_area, rb_node);
 410                        if (tmp->va_end >= addr) {
 411                                first = tmp;
 412                                if (tmp->va_start <= addr)
 413                                        break;
 414                                n = n->rb_left;
 415                        } else
 416                                n = n->rb_right;
 417                }
 418
 419                if (!first)
 420                        goto found;
 421        }
 422
 423        /* from the starting point, walk areas until a suitable hole is found */
 424        while (addr + size > first->va_start && addr + size <= vend) {
 425                if (addr + cached_hole_size < first->va_start)
 426                        cached_hole_size = first->va_start - addr;
 427                addr = ALIGN(first->va_end, align);
 428                if (addr + size < addr)
 429                        goto overflow;
 430
 431                if (list_is_last(&first->list, &vmap_area_list))
 432                        goto found;
 433
 434                first = list_entry(first->list.next,
 435                                struct vmap_area, list);
 436        }
 437
 438found:
 439        if (addr + size > vend)
 440                goto overflow;
 441
 442        va->va_start = addr;
 443        va->va_end = addr + size;
 444        va->flags = 0;
 445        __insert_vmap_area(va);
 446        free_vmap_cache = &va->rb_node;
 447        spin_unlock(&vmap_area_lock);
 448
 449        BUG_ON(va->va_start & (align-1));
 450        BUG_ON(va->va_start < vstart);
 451        BUG_ON(va->va_end > vend);
 452
 453        return va;
 454
 455overflow:
 456        spin_unlock(&vmap_area_lock);
 457        if (!purged) {
 458                purge_vmap_area_lazy();
 459                purged = 1;
 460                goto retry;
 461        }
 462        if (printk_ratelimit())
 463                printk(KERN_WARNING
 464                        "vmap allocation for size %lu failed: "
 465                        "use vmalloc=<size> to increase size.\n", size);
 466        kfree(va);
 467        return ERR_PTR(-EBUSY);
 468}
 469
 470static void __free_vmap_area(struct vmap_area *va)
 471{
 472        BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 473
 474        if (free_vmap_cache) {
 475                if (va->va_end < cached_vstart) {
 476                        free_vmap_cache = NULL;
 477                } else {
 478                        struct vmap_area *cache;
 479                        cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 480                        if (va->va_start <= cache->va_start) {
 481                                free_vmap_cache = rb_prev(&va->rb_node);
 482                                /*
 483                                 * We don't try to update cached_hole_size or
 484                                 * cached_align, but it won't go very wrong.
 485                                 */
 486                        }
 487                }
 488        }
 489        rb_erase(&va->rb_node, &vmap_area_root);
 490        RB_CLEAR_NODE(&va->rb_node);
 491        list_del_rcu(&va->list);
 492
 493        /*
 494         * Track the highest possible candidate for pcpu area
 495         * allocation.  Areas outside of vmalloc area can be returned
 496         * here too, consider only end addresses which fall inside
 497         * vmalloc area proper.
 498         */
 499        if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 500                vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 501
 502        kfree_rcu(va, rcu_head);
 503}
 504
 505/*
 506 * Free a region of KVA allocated by alloc_vmap_area
 507 */
 508static void free_vmap_area(struct vmap_area *va)
 509{
 510        spin_lock(&vmap_area_lock);
 511        __free_vmap_area(va);
 512        spin_unlock(&vmap_area_lock);
 513}
 514
 515/*
 516 * Clear the pagetable entries of a given vmap_area
 517 */
 518static void unmap_vmap_area(struct vmap_area *va)
 519{
 520        vunmap_page_range(va->va_start, va->va_end);
 521}
 522
 523static void vmap_debug_free_range(unsigned long start, unsigned long end)
 524{
 525        /*
 526         * Unmap page tables and force a TLB flush immediately if pagealloc
 527         * debugging is enabled.  This catches use after free bugs similarly to
 528         * those in linear kernel virtual address space after a page has been
 529         * freed.
 530         *
 531         * All the lazy freeing logic is still retained, in order to minimise
 532         * intrusiveness of this debugging feature.
 533         *
 534         * This is going to be *slow* (linear kernel virtual address debugging
 535         * doesn't do a broadcast TLB flush so it is a lot faster).
 536         */
 537        if (debug_pagealloc_enabled()) {
 538                vunmap_page_range(start, end);
 539                flush_tlb_kernel_range(start, end);
 540        }
 541}
 542
 543/*
 544 * lazy_max_pages is the maximum amount of virtual address space we gather up
 545 * before attempting to purge with a TLB flush.
 546 *
 547 * There is a tradeoff here: a larger number will cover more kernel page tables
 548 * and take slightly longer to purge, but it will linearly reduce the number of
 549 * global TLB flushes that must be performed. It would seem natural to scale
 550 * this number up linearly with the number of CPUs (because vmapping activity
 551 * could also scale linearly with the number of CPUs), however it is likely
 552 * that in practice, workloads might be constrained in other ways that mean
 553 * vmap activity will not scale linearly with CPUs. Also, I want to be
 554 * conservative and not introduce a big latency on huge systems, so go with
 555 * a less aggressive log scale. It will still be an improvement over the old
 556 * code, and it will be simple to change the scale factor if we find that it
 557 * becomes a problem on bigger systems.
 558 */
 559static unsigned long lazy_max_pages(void)
 560{
 561        unsigned int log;
 562
 563        log = fls(num_online_cpus());
 564
 565        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 566}
 567
 568static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 569
 570/* for per-CPU blocks */
 571static void purge_fragmented_blocks_allcpus(void);
 572
 573/*
 574 * called before a call to iounmap() if the caller wants vm_area_struct's
 575 * immediately freed.
 576 */
 577void set_iounmap_nonlazy(void)
 578{
 579        atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 580}
 581
 582/*
 583 * Purges all lazily-freed vmap areas.
 584 *
 585 * If sync is 0 then don't purge if there is already a purge in progress.
 586 * If force_flush is 1, then flush kernel TLBs between *start and *end even
 587 * if we found no lazy vmap areas to unmap (callers can use this to optimise
 588 * their own TLB flushing).
 589 * Returns with *start = min(*start, lowest purged address)
 590 *              *end = max(*end, highest purged address)
 591 */
 592static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
 593                                        int sync, int force_flush)
 594{
 595        static DEFINE_SPINLOCK(purge_lock);
 596        LIST_HEAD(valist);
 597        struct vmap_area *va;
 598        struct vmap_area *n_va;
 599        int nr = 0;
 600
 601        /*
 602         * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
 603         * should not expect such behaviour. This just simplifies locking for
 604         * the case that isn't actually used at the moment anyway.
 605         */
 606        if (!sync && !force_flush) {
 607                if (!spin_trylock(&purge_lock))
 608                        return;
 609        } else
 610                spin_lock(&purge_lock);
 611
 612        if (sync)
 613                purge_fragmented_blocks_allcpus();
 614
 615        rcu_read_lock();
 616        list_for_each_entry_rcu(va, &vmap_area_list, list) {
 617                if (va->flags & VM_LAZY_FREE) {
 618                        if (va->va_start < *start)
 619                                *start = va->va_start;
 620                        if (va->va_end > *end)
 621                                *end = va->va_end;
 622                        nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
 623                        list_add_tail(&va->purge_list, &valist);
 624                        va->flags |= VM_LAZY_FREEING;
 625                        va->flags &= ~VM_LAZY_FREE;
 626                }
 627        }
 628        rcu_read_unlock();
 629
 630        if (nr)
 631                atomic_sub(nr, &vmap_lazy_nr);
 632
 633        if (nr || force_flush)
 634                flush_tlb_kernel_range(*start, *end);
 635
 636        if (nr) {
 637                spin_lock(&vmap_area_lock);
 638                list_for_each_entry_safe(va, n_va, &valist, purge_list)
 639                        __free_vmap_area(va);
 640                spin_unlock(&vmap_area_lock);
 641        }
 642        spin_unlock(&purge_lock);
 643}
 644
 645/*
 646 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 647 * is already purging.
 648 */
 649static void try_purge_vmap_area_lazy(void)
 650{
 651        unsigned long start = ULONG_MAX, end = 0;
 652
 653        __purge_vmap_area_lazy(&start, &end, 0, 0);
 654}
 655
 656/*
 657 * Kick off a purge of the outstanding lazy areas.
 658 */
 659static void purge_vmap_area_lazy(void)
 660{
 661        unsigned long start = ULONG_MAX, end = 0;
 662
 663        __purge_vmap_area_lazy(&start, &end, 1, 0);
 664}
 665
 666/*
 667 * Free a vmap area, caller ensuring that the area has been unmapped
 668 * and flush_cache_vunmap had been called for the correct range
 669 * previously.
 670 */
 671static void free_vmap_area_noflush(struct vmap_area *va)
 672{
 673        va->flags |= VM_LAZY_FREE;
 674        atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
 675        if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
 676                try_purge_vmap_area_lazy();
 677}
 678
 679/*
 680 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
 681 * called for the correct range previously.
 682 */
 683static void free_unmap_vmap_area_noflush(struct vmap_area *va)
 684{
 685        unmap_vmap_area(va);
 686        free_vmap_area_noflush(va);
 687}
 688
 689/*
 690 * Free and unmap a vmap area
 691 */
 692static void free_unmap_vmap_area(struct vmap_area *va)
 693{
 694        flush_cache_vunmap(va->va_start, va->va_end);
 695        free_unmap_vmap_area_noflush(va);
 696}
 697
 698static struct vmap_area *find_vmap_area(unsigned long addr)
 699{
 700        struct vmap_area *va;
 701
 702        spin_lock(&vmap_area_lock);
 703        va = __find_vmap_area(addr);
 704        spin_unlock(&vmap_area_lock);
 705
 706        return va;
 707}
 708
 709static void free_unmap_vmap_area_addr(unsigned long addr)
 710{
 711        struct vmap_area *va;
 712
 713        va = find_vmap_area(addr);
 714        BUG_ON(!va);
 715        free_unmap_vmap_area(va);
 716}
 717
 718
 719/*** Per cpu kva allocator ***/
 720
 721/*
 722 * vmap space is limited especially on 32 bit architectures. Ensure there is
 723 * room for at least 16 percpu vmap blocks per CPU.
 724 */
 725/*
 726 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 727 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
 728 * instead (we just need a rough idea)
 729 */
 730#if BITS_PER_LONG == 32
 731#define VMALLOC_SPACE           (128UL*1024*1024)
 732#else
 733#define VMALLOC_SPACE           (128UL*1024*1024*1024)
 734#endif
 735
 736#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
 737#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
 738#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
 739#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
 740#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
 741#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
 742#define VMAP_BBMAP_BITS         \
 743                VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
 744                VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
 745                        VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 746
 747#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
 748
 749static bool vmap_initialized __read_mostly = false;
 750
 751struct vmap_block_queue {
 752        spinlock_t lock;
 753        struct list_head free;
 754};
 755
 756struct vmap_block {
 757        spinlock_t lock;
 758        struct vmap_area *va;
 759        struct vmap_block_queue *vbq;
 760        unsigned long free, dirty;
 761        DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
 762        DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
 763        struct list_head free_list;
 764        struct rcu_head rcu_head;
 765        struct list_head purge;
 766};
 767
 768/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 769static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 770
 771/*
 772 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 773 * in the free path. Could get rid of this if we change the API to return a
 774 * "cookie" from alloc, to be passed to free. But no big deal yet.
 775 */
 776static DEFINE_SPINLOCK(vmap_block_tree_lock);
 777static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 778
 779/*
 780 * We should probably have a fallback mechanism to allocate virtual memory
 781 * out of partially filled vmap blocks. However vmap block sizing should be
 782 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 783 * big problem.
 784 */
 785
 786static unsigned long addr_to_vb_idx(unsigned long addr)
 787{
 788        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 789        addr /= VMAP_BLOCK_SIZE;
 790        return addr;
 791}
 792
 793static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
 794{
 795        struct vmap_block_queue *vbq;
 796        struct vmap_block *vb;
 797        struct vmap_area *va;
 798        unsigned long vb_idx;
 799        int node, err;
 800
 801        node = numa_node_id();
 802
 803        vb = kmalloc_node(sizeof(struct vmap_block),
 804                        gfp_mask & GFP_RECLAIM_MASK, node);
 805        if (unlikely(!vb))
 806                return ERR_PTR(-ENOMEM);
 807
 808        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 809                                        VMALLOC_START, VMALLOC_END,
 810                                        node, gfp_mask);
 811        if (IS_ERR(va)) {
 812                kfree(vb);
 813                return ERR_CAST(va);
 814        }
 815
 816        err = radix_tree_preload(gfp_mask);
 817        if (unlikely(err)) {
 818                kfree(vb);
 819                free_vmap_area(va);
 820                return ERR_PTR(err);
 821        }
 822
 823        spin_lock_init(&vb->lock);
 824        vb->va = va;
 825        vb->free = VMAP_BBMAP_BITS;
 826        vb->dirty = 0;
 827        bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
 828        bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
 829        INIT_LIST_HEAD(&vb->free_list);
 830
 831        vb_idx = addr_to_vb_idx(va->va_start);
 832        spin_lock(&vmap_block_tree_lock);
 833        err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 834        spin_unlock(&vmap_block_tree_lock);
 835        BUG_ON(err);
 836        radix_tree_preload_end();
 837
 838        vbq = &get_cpu_var(vmap_block_queue);
 839        vb->vbq = vbq;
 840        spin_lock(&vbq->lock);
 841        list_add_rcu(&vb->free_list, &vbq->free);
 842        spin_unlock(&vbq->lock);
 843        put_cpu_var(vmap_block_queue);
 844
 845        return vb;
 846}
 847
 848static void free_vmap_block(struct vmap_block *vb)
 849{
 850        struct vmap_block *tmp;
 851        unsigned long vb_idx;
 852
 853        vb_idx = addr_to_vb_idx(vb->va->va_start);
 854        spin_lock(&vmap_block_tree_lock);
 855        tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 856        spin_unlock(&vmap_block_tree_lock);
 857        BUG_ON(tmp != vb);
 858
 859        free_vmap_area_noflush(vb->va);
 860        kfree_rcu(vb, rcu_head);
 861}
 862
 863static void purge_fragmented_blocks(int cpu)
 864{
 865        LIST_HEAD(purge);
 866        struct vmap_block *vb;
 867        struct vmap_block *n_vb;
 868        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 869
 870        rcu_read_lock();
 871        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 872
 873                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 874                        continue;
 875
 876                spin_lock(&vb->lock);
 877                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 878                        vb->free = 0; /* prevent further allocs after releasing lock */
 879                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 880                        bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
 881                        bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
 882                        spin_lock(&vbq->lock);
 883                        list_del_rcu(&vb->free_list);
 884                        spin_unlock(&vbq->lock);
 885                        spin_unlock(&vb->lock);
 886                        list_add_tail(&vb->purge, &purge);
 887                } else
 888                        spin_unlock(&vb->lock);
 889        }
 890        rcu_read_unlock();
 891
 892        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 893                list_del(&vb->purge);
 894                free_vmap_block(vb);
 895        }
 896}
 897
 898static void purge_fragmented_blocks_thiscpu(void)
 899{
 900        purge_fragmented_blocks(smp_processor_id());
 901}
 902
 903static void purge_fragmented_blocks_allcpus(void)
 904{
 905        int cpu;
 906
 907        for_each_possible_cpu(cpu)
 908                purge_fragmented_blocks(cpu);
 909}
 910
 911static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 912{
 913        struct vmap_block_queue *vbq;
 914        struct vmap_block *vb;
 915        unsigned long addr = 0;
 916        unsigned int order;
 917        int purge = 0;
 918
 919        BUG_ON(size & ~PAGE_MASK);
 920        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 921        if (WARN_ON(size == 0)) {
 922                /*
 923                 * Allocating 0 bytes isn't what caller wants since
 924                 * get_order(0) returns funny result. Just warn and terminate
 925                 * early.
 926                 */
 927                return NULL;
 928        }
 929        order = get_order(size);
 930
 931again:
 932        rcu_read_lock();
 933        vbq = &get_cpu_var(vmap_block_queue);
 934        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 935                int i;
 936
 937                spin_lock(&vb->lock);
 938                if (vb->free < 1UL << order)
 939                        goto next;
 940
 941                i = bitmap_find_free_region(vb->alloc_map,
 942                                                VMAP_BBMAP_BITS, order);
 943
 944                if (i < 0) {
 945                        if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
 946                                /* fragmented and no outstanding allocations */
 947                                BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
 948                                purge = 1;
 949                        }
 950                        goto next;
 951                }
 952                addr = vb->va->va_start + (i << PAGE_SHIFT);
 953                BUG_ON(addr_to_vb_idx(addr) !=
 954                                addr_to_vb_idx(vb->va->va_start));
 955                vb->free -= 1UL << order;
 956                if (vb->free == 0) {
 957                        spin_lock(&vbq->lock);
 958                        list_del_rcu(&vb->free_list);
 959                        spin_unlock(&vbq->lock);
 960                }
 961                spin_unlock(&vb->lock);
 962                break;
 963next:
 964                spin_unlock(&vb->lock);
 965        }
 966
 967        if (purge)
 968                purge_fragmented_blocks_thiscpu();
 969
 970        put_cpu_var(vmap_block_queue);
 971        rcu_read_unlock();
 972
 973        if (!addr) {
 974                vb = new_vmap_block(gfp_mask);
 975                if (IS_ERR(vb))
 976                        return vb;
 977                goto again;
 978        }
 979
 980        return (void *)addr;
 981}
 982
 983static void vb_free(const void *addr, unsigned long size)
 984{
 985        unsigned long offset;
 986        unsigned long vb_idx;
 987        unsigned int order;
 988        struct vmap_block *vb;
 989
 990        BUG_ON(size & ~PAGE_MASK);
 991        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 992
 993        flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
 994
 995        order = get_order(size);
 996
 997        offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
 998
 999        vb_idx = addr_to_vb_idx((unsigned long)addr);
1000        rcu_read_lock();
1001        vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1002        rcu_read_unlock();
1003        BUG_ON(!vb);
1004
1005        vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1006
1007        spin_lock(&vb->lock);
1008        BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
1009
1010        vb->dirty += 1UL << order;
1011        if (vb->dirty == VMAP_BBMAP_BITS) {
1012                BUG_ON(vb->free);
1013                spin_unlock(&vb->lock);
1014                free_vmap_block(vb);
1015        } else
1016                spin_unlock(&vb->lock);
1017}
1018
1019/**
1020 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1021 *
1022 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1023 * to amortize TLB flushing overheads. What this means is that any page you
1024 * have now, may, in a former life, have been mapped into kernel virtual
1025 * address by the vmap layer and so there might be some CPUs with TLB entries
1026 * still referencing that page (additional to the regular 1:1 kernel mapping).
1027 *
1028 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1029 * be sure that none of the pages we have control over will have any aliases
1030 * from the vmap layer.
1031 */
1032void vm_unmap_aliases(void)
1033{
1034        unsigned long start = ULONG_MAX, end = 0;
1035        int cpu;
1036        int flush = 0;
1037
1038        if (unlikely(!vmap_initialized))
1039                return;
1040
1041        for_each_possible_cpu(cpu) {
1042                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1043                struct vmap_block *vb;
1044
1045                rcu_read_lock();
1046                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1047                        int i;
1048
1049                        spin_lock(&vb->lock);
1050                        i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1051                        while (i < VMAP_BBMAP_BITS) {
1052                                unsigned long s, e;
1053                                int j;
1054                                j = find_next_zero_bit(vb->dirty_map,
1055                                        VMAP_BBMAP_BITS, i);
1056
1057                                s = vb->va->va_start + (i << PAGE_SHIFT);
1058                                e = vb->va->va_start + (j << PAGE_SHIFT);
1059                                flush = 1;
1060
1061                                if (s < start)
1062                                        start = s;
1063                                if (e > end)
1064                                        end = e;
1065
1066                                i = j;
1067                                i = find_next_bit(vb->dirty_map,
1068                                                        VMAP_BBMAP_BITS, i);
1069                        }
1070                        spin_unlock(&vb->lock);
1071                }
1072                rcu_read_unlock();
1073        }
1074
1075        __purge_vmap_area_lazy(&start, &end, 1, flush);
1076}
1077EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1078
1079/**
1080 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1081 * @mem: the pointer returned by vm_map_ram
1082 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1083 */
1084void vm_unmap_ram(const void *mem, unsigned int count)
1085{
1086        unsigned long size = count << PAGE_SHIFT;
1087        unsigned long addr = (unsigned long)mem;
1088
1089        BUG_ON(!addr);
1090        BUG_ON(addr < VMALLOC_START);
1091        BUG_ON(addr > VMALLOC_END);
1092        BUG_ON(addr & (PAGE_SIZE-1));
1093
1094        debug_check_no_locks_freed(mem, size);
1095        vmap_debug_free_range(addr, addr+size);
1096
1097        if (likely(count <= VMAP_MAX_ALLOC))
1098                vb_free(mem, size);
1099        else
1100                free_unmap_vmap_area_addr(addr);
1101}
1102EXPORT_SYMBOL(vm_unmap_ram);
1103
1104/**
1105 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1106 * @pages: an array of pointers to the pages to be mapped
1107 * @count: number of pages
1108 * @node: prefer to allocate data structures on this node
1109 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1110 *
1111 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1112 */
1113void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1114{
1115        unsigned long size = count << PAGE_SHIFT;
1116        unsigned long addr;
1117        void *mem;
1118
1119        if (likely(count <= VMAP_MAX_ALLOC)) {
1120                mem = vb_alloc(size, GFP_KERNEL);
1121                if (IS_ERR(mem))
1122                        return NULL;
1123                addr = (unsigned long)mem;
1124        } else {
1125                struct vmap_area *va;
1126                va = alloc_vmap_area(size, PAGE_SIZE,
1127                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1128                if (IS_ERR(va))
1129                        return NULL;
1130
1131                addr = va->va_start;
1132                mem = (void *)addr;
1133        }
1134        if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1135                vm_unmap_ram(mem, count);
1136                return NULL;
1137        }
1138        return mem;
1139}
1140EXPORT_SYMBOL(vm_map_ram);
1141
1142static struct vm_struct *vmlist __initdata;
1143/**
1144 * vm_area_add_early - add vmap area early during boot
1145 * @vm: vm_struct to add
1146 *
1147 * This function is used to add fixed kernel vm area to vmlist before
1148 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1149 * should contain proper values and the other fields should be zero.
1150 *
1151 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1152 */
1153void __init vm_area_add_early(struct vm_struct *vm)
1154{
1155        struct vm_struct *tmp, **p;
1156
1157        BUG_ON(vmap_initialized);
1158        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1159                if (tmp->addr >= vm->addr) {
1160                        BUG_ON(tmp->addr < vm->addr + vm->size);
1161                        break;
1162                } else
1163                        BUG_ON(tmp->addr + tmp->size > vm->addr);
1164        }
1165        vm->next = *p;
1166        *p = vm;
1167}
1168
1169/**
1170 * vm_area_register_early - register vmap area early during boot
1171 * @vm: vm_struct to register
1172 * @align: requested alignment
1173 *
1174 * This function is used to register kernel vm area before
1175 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1176 * proper values on entry and other fields should be zero.  On return,
1177 * vm->addr contains the allocated address.
1178 *
1179 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1180 */
1181void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1182{
1183        static size_t vm_init_off __initdata;
1184        unsigned long addr;
1185
1186        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1187        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1188
1189        vm->addr = (void *)addr;
1190
1191        vm_area_add_early(vm);
1192}
1193
1194void __init vmalloc_init(void)
1195{
1196        struct vmap_area *va;
1197        struct vm_struct *tmp;
1198        int i;
1199
1200        for_each_possible_cpu(i) {
1201                struct vmap_block_queue *vbq;
1202                struct vfree_deferred *p;
1203
1204                vbq = &per_cpu(vmap_block_queue, i);
1205                spin_lock_init(&vbq->lock);
1206                INIT_LIST_HEAD(&vbq->free);
1207                p = &per_cpu(vfree_deferred, i);
1208                init_llist_head(&p->list);
1209                INIT_WORK(&p->wq, free_work);
1210        }
1211
1212        /* Import existing vmlist entries. */
1213        for (tmp = vmlist; tmp; tmp = tmp->next) {
1214                va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1215                va->flags = VM_VM_AREA;
1216                va->va_start = (unsigned long)tmp->addr;
1217                va->va_end = va->va_start + tmp->size;
1218                va->vm = tmp;
1219                __insert_vmap_area(va);
1220        }
1221
1222        vmap_area_pcpu_hole = VMALLOC_END;
1223
1224        vmap_initialized = true;
1225}
1226
1227/**
1228 * map_kernel_range_noflush - map kernel VM area with the specified pages
1229 * @addr: start of the VM area to map
1230 * @size: size of the VM area to map
1231 * @prot: page protection flags to use
1232 * @pages: pages to map
1233 *
1234 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1235 * specify should have been allocated using get_vm_area() and its
1236 * friends.
1237 *
1238 * NOTE:
1239 * This function does NOT do any cache flushing.  The caller is
1240 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1241 * before calling this function.
1242 *
1243 * RETURNS:
1244 * The number of pages mapped on success, -errno on failure.
1245 */
1246int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1247                             pgprot_t prot, struct page **pages)
1248{
1249        return vmap_page_range_noflush(addr, addr + size, prot, pages);
1250}
1251
1252/**
1253 * unmap_kernel_range_noflush - unmap kernel VM area
1254 * @addr: start of the VM area to unmap
1255 * @size: size of the VM area to unmap
1256 *
1257 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1258 * specify should have been allocated using get_vm_area() and its
1259 * friends.
1260 *
1261 * NOTE:
1262 * This function does NOT do any cache flushing.  The caller is
1263 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1264 * before calling this function and flush_tlb_kernel_range() after.
1265 */
1266void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1267{
1268        vunmap_page_range(addr, addr + size);
1269}
1270EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1271
1272/**
1273 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1274 * @addr: start of the VM area to unmap
1275 * @size: size of the VM area to unmap
1276 *
1277 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1278 * the unmapping and tlb after.
1279 */
1280void unmap_kernel_range(unsigned long addr, unsigned long size)
1281{
1282        unsigned long end = addr + size;
1283
1284        flush_cache_vunmap(addr, end);
1285        vunmap_page_range(addr, end);
1286        flush_tlb_kernel_range(addr, end);
1287}
1288
1289int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1290{
1291        unsigned long addr = (unsigned long)area->addr;
1292        unsigned long end = addr + area->size - PAGE_SIZE;
1293        int err;
1294
1295        err = vmap_page_range(addr, end, prot, *pages);
1296        if (err > 0) {
1297                *pages += err;
1298                err = 0;
1299        }
1300
1301        return err;
1302}
1303EXPORT_SYMBOL_GPL(map_vm_area);
1304
1305static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1306                              unsigned long flags, const void *caller)
1307{
1308        spin_lock(&vmap_area_lock);
1309        vm->flags = flags;
1310        vm->addr = (void *)va->va_start;
1311        vm->size = va->va_end - va->va_start;
1312        vm->caller = caller;
1313        va->vm = vm;
1314        va->flags |= VM_VM_AREA;
1315        spin_unlock(&vmap_area_lock);
1316}
1317
1318static void clear_vm_unlist(struct vm_struct *vm)
1319{
1320        /*
1321         * Before removing VM_UNLIST,
1322         * we should make sure that vm has proper values.
1323         * Pair with smp_rmb() in show_numa_info().
1324         */
1325        smp_wmb();
1326        vm->flags &= ~VM_UNLIST;
1327}
1328
1329static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1330                              unsigned long flags, const void *caller)
1331{
1332        setup_vmalloc_vm(vm, va, flags, caller);
1333        clear_vm_unlist(vm);
1334}
1335
1336static struct vm_struct *__get_vm_area_node(unsigned long size,
1337                unsigned long align, unsigned long flags, unsigned long start,
1338                unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1339{
1340        struct vmap_area *va;
1341        struct vm_struct *area;
1342
1343        BUG_ON(in_interrupt());
1344        if (flags & VM_IOREMAP) {
1345                unsigned int bit = fls_long(size);
1346
1347                if (bit > IOREMAP_MAX_ORDER)
1348                        bit = IOREMAP_MAX_ORDER;
1349                else if (bit < PAGE_SHIFT)
1350                        bit = PAGE_SHIFT;
1351
1352                align = 1ul << bit;
1353        }
1354
1355        size = PAGE_ALIGN(size);
1356        if (unlikely(!size))
1357                return NULL;
1358
1359        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1360        if (unlikely(!area))
1361                return NULL;
1362
1363        /*
1364         * We always allocate a guard page.
1365         */
1366        size += PAGE_SIZE;
1367
1368        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1369        if (IS_ERR(va)) {
1370                kfree(area);
1371                return NULL;
1372        }
1373
1374        /*
1375         * When this function is called from __vmalloc_node_range,
1376         * we add VM_UNLIST flag to avoid accessing uninitialized
1377         * members of vm_struct such as pages and nr_pages fields.
1378         * They will be set later.
1379         */
1380        if (flags & VM_UNLIST)
1381                setup_vmalloc_vm(area, va, flags, caller);
1382        else
1383                insert_vmalloc_vm(area, va, flags, caller);
1384
1385        return area;
1386}
1387
1388struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1389                                unsigned long start, unsigned long end)
1390{
1391        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1392                                  GFP_KERNEL, __builtin_return_address(0));
1393}
1394EXPORT_SYMBOL_GPL(__get_vm_area);
1395
1396struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1397                                       unsigned long start, unsigned long end,
1398                                       const void *caller)
1399{
1400        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1401                                  GFP_KERNEL, caller);
1402}
1403
1404/**
1405 *      get_vm_area  -  reserve a contiguous kernel virtual area
1406 *      @size:          size of the area
1407 *      @flags:         %VM_IOREMAP for I/O mappings or VM_ALLOC
1408 *
1409 *      Search an area of @size in the kernel virtual mapping area,
1410 *      and reserved it for out purposes.  Returns the area descriptor
1411 *      on success or %NULL on failure.
1412 */
1413struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1414{
1415        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1416                                  NUMA_NO_NODE, GFP_KERNEL,
1417                                  __builtin_return_address(0));
1418}
1419
1420struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1421                                const void *caller)
1422{
1423        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1424                                  NUMA_NO_NODE, GFP_KERNEL, caller);
1425}
1426
1427/**
1428 *      find_vm_area  -  find a continuous kernel virtual area
1429 *      @addr:          base address
1430 *
1431 *      Search for the kernel VM area starting at @addr, and return it.
1432 *      It is up to the caller to do all required locking to keep the returned
1433 *      pointer valid.
1434 */
1435struct vm_struct *find_vm_area(const void *addr)
1436{
1437        struct vmap_area *va;
1438
1439        va = find_vmap_area((unsigned long)addr);
1440        if (va && va->flags & VM_VM_AREA)
1441                return va->vm;
1442
1443        return NULL;
1444}
1445
1446/**
1447 *      remove_vm_area  -  find and remove a continuous kernel virtual area
1448 *      @addr:          base address
1449 *
1450 *      Search for the kernel VM area starting at @addr, and remove it.
1451 *      This function returns the found VM area, but using it is NOT safe
1452 *      on SMP machines, except for its size or flags.
1453 */
1454struct vm_struct *remove_vm_area(const void *addr)
1455{
1456        struct vmap_area *va;
1457
1458        va = find_vmap_area((unsigned long)addr);
1459        if (va && va->flags & VM_VM_AREA) {
1460                struct vm_struct *vm = va->vm;
1461
1462                spin_lock(&vmap_area_lock);
1463                va->vm = NULL;
1464                va->flags &= ~VM_VM_AREA;
1465                spin_unlock(&vmap_area_lock);
1466
1467                vmap_debug_free_range(va->va_start, va->va_end);
1468                free_unmap_vmap_area(va);
1469                vm->size -= PAGE_SIZE;
1470
1471                return vm;
1472        }
1473        return NULL;
1474}
1475
1476static void __vunmap(const void *addr, int deallocate_pages)
1477{
1478        struct vm_struct *area;
1479
1480        if (!addr)
1481                return;
1482
1483        if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1484                        addr))
1485                return;
1486
1487        area = remove_vm_area(addr);
1488        if (unlikely(!area)) {
1489                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1490                                addr);
1491                return;
1492        }
1493
1494        debug_check_no_locks_freed(addr, area->size);
1495        debug_check_no_obj_freed(addr, area->size);
1496
1497        if (deallocate_pages) {
1498                int i;
1499
1500                for (i = 0; i < area->nr_pages; i++) {
1501                        struct page *page = area->pages[i];
1502
1503                        BUG_ON(!page);
1504                        __free_page(page);
1505                }
1506
1507                if (area->flags & VM_VPAGES)
1508                        vfree(area->pages);
1509                else
1510                        kfree(area->pages);
1511        }
1512
1513        kfree(area);
1514        return;
1515}
1516 
1517/**
1518 *      vfree  -  release memory allocated by vmalloc()
1519 *      @addr:          memory base address
1520 *
1521 *      Free the virtually continuous memory area starting at @addr, as
1522 *      obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1523 *      NULL, no operation is performed.
1524 *
1525 *      Must not be called in NMI context (strictly speaking, only if we don't
1526 *      have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1527 *      conventions for vfree() arch-depenedent would be a really bad idea)
1528 *
1529 *      NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1530 *      
1531 */
1532void vfree(const void *addr)
1533{
1534        BUG_ON(in_nmi());
1535
1536        kmemleak_free(addr);
1537
1538        if (!addr)
1539                return;
1540        if (unlikely(in_interrupt())) {
1541                struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1542                llist_add((struct llist_node *)addr, &p->list);
1543                schedule_work(&p->wq);
1544        } else
1545                __vunmap(addr, 1);
1546}
1547EXPORT_SYMBOL(vfree);
1548
1549/**
1550 *      vunmap  -  release virtual mapping obtained by vmap()
1551 *      @addr:          memory base address
1552 *
1553 *      Free the virtually contiguous memory area starting at @addr,
1554 *      which was created from the page array passed to vmap().
1555 *
1556 *      Must not be called in interrupt context.
1557 */
1558void vunmap(const void *addr)
1559{
1560        BUG_ON(in_interrupt());
1561        might_sleep();
1562        if (addr)
1563                __vunmap(addr, 0);
1564}
1565EXPORT_SYMBOL(vunmap);
1566
1567/**
1568 *      vmap  -  map an array of pages into virtually contiguous space
1569 *      @pages:         array of page pointers
1570 *      @count:         number of pages to map
1571 *      @flags:         vm_area->flags
1572 *      @prot:          page protection for the mapping
1573 *
1574 *      Maps @count pages from @pages into contiguous kernel virtual
1575 *      space.
1576 */
1577void *vmap(struct page **pages, unsigned int count,
1578                unsigned long flags, pgprot_t prot)
1579{
1580        struct vm_struct *area;
1581
1582        might_sleep();
1583
1584        if (count > totalram_pages)
1585                return NULL;
1586
1587        area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1588                                        __builtin_return_address(0));
1589        if (!area)
1590                return NULL;
1591
1592        if (map_vm_area(area, prot, &pages)) {
1593                vunmap(area->addr);
1594                return NULL;
1595        }
1596
1597        return area->addr;
1598}
1599EXPORT_SYMBOL(vmap);
1600
1601static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1602                                 pgprot_t prot, int node, const void *caller)
1603{
1604        const int order = 0;
1605        struct page **pages;
1606        unsigned int nr_pages, array_size, i;
1607        gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1608
1609        nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1610        array_size = (nr_pages * sizeof(struct page *));
1611
1612        area->nr_pages = nr_pages;
1613        /* Please note that the recursion is strictly bounded. */
1614        if (array_size > PAGE_SIZE) {
1615                pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1616                                PAGE_KERNEL, node, caller);
1617                area->flags |= VM_VPAGES;
1618        } else {
1619                pages = kmalloc_node(array_size, nested_gfp, node);
1620        }
1621        area->pages = pages;
1622        area->caller = caller;
1623        if (!area->pages) {
1624                remove_vm_area(area->addr);
1625                kfree(area);
1626                return NULL;
1627        }
1628
1629        for (i = 0; i < area->nr_pages; i++) {
1630                struct page *page;
1631                gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1632
1633                if (node < 0)
1634                        page = alloc_page(tmp_mask);
1635                else
1636                        page = alloc_pages_node(node, tmp_mask, order);
1637
1638                if (unlikely(!page)) {
1639                        /* Successfully allocated i pages, free them in __vunmap() */
1640                        area->nr_pages = i;
1641                        goto fail;
1642                }
1643                area->pages[i] = page;
1644        }
1645
1646        if (map_vm_area(area, prot, &pages))
1647                goto fail;
1648        return area->addr;
1649
1650fail:
1651        warn_alloc_failed(gfp_mask, order,
1652                          "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1653                          (area->nr_pages*PAGE_SIZE), area->size);
1654        vfree(area->addr);
1655        return NULL;
1656}
1657
1658/**
1659 *      __vmalloc_node_range  -  allocate virtually contiguous memory
1660 *      @size:          allocation size
1661 *      @align:         desired alignment
1662 *      @start:         vm area range start
1663 *      @end:           vm area range end
1664 *      @gfp_mask:      flags for the page level allocator
1665 *      @prot:          protection mask for the allocated pages
1666 *      @node:          node to use for allocation or NUMA_NO_NODE
1667 *      @caller:        caller's return address
1668 *
1669 *      Allocate enough pages to cover @size from the page level
1670 *      allocator with @gfp_mask flags.  Map them into contiguous
1671 *      kernel virtual space, using a pagetable protection of @prot.
1672 */
1673void *__vmalloc_node_range(unsigned long size, unsigned long align,
1674                        unsigned long start, unsigned long end, gfp_t gfp_mask,
1675                        pgprot_t prot, int node, const void *caller)
1676{
1677        struct vm_struct *area;
1678        void *addr;
1679        unsigned long real_size = size;
1680
1681        size = PAGE_ALIGN(size);
1682        if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1683                goto fail;
1684
1685        area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
1686                                  start, end, node, gfp_mask, caller);
1687        if (!area)
1688                goto fail;
1689
1690        addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1691        if (!addr)
1692                return NULL;
1693
1694        /*
1695         * In this function, newly allocated vm_struct has VM_UNLIST flag.
1696         * It means that vm_struct is not fully initialized.
1697         * Now, it is fully initialized, so remove this flag here.
1698         */
1699        clear_vm_unlist(area);
1700
1701        /*
1702         * A ref_count = 3 is needed because the vm_struct and vmap_area
1703         * structures allocated in the __get_vm_area_node() function contain
1704         * references to the virtual address of the vmalloc'ed block.
1705         */
1706        kmemleak_alloc(addr, real_size, 3, gfp_mask);
1707
1708        return addr;
1709
1710fail:
1711        warn_alloc_failed(gfp_mask, 0,
1712                          "vmalloc: allocation failure: %lu bytes\n",
1713                          real_size);
1714        return NULL;
1715}
1716
1717/**
1718 *      __vmalloc_node  -  allocate virtually contiguous memory
1719 *      @size:          allocation size
1720 *      @align:         desired alignment
1721 *      @gfp_mask:      flags for the page level allocator
1722 *      @prot:          protection mask for the allocated pages
1723 *      @node:          node to use for allocation or NUMA_NO_NODE
1724 *      @caller:        caller's return address
1725 *
1726 *      Allocate enough pages to cover @size from the page level
1727 *      allocator with @gfp_mask flags.  Map them into contiguous
1728 *      kernel virtual space, using a pagetable protection of @prot.
1729 *
1730 *      Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_REPEAT
1731 *      and __GFP_NOFAIL are not supported
1732 *
1733 *      Any use of gfp flags outside of GFP_KERNEL should be consulted
1734 *      with mm people.
1735 *
1736 */
1737void *__vmalloc_node(unsigned long size, unsigned long align,
1738                            gfp_t gfp_mask, pgprot_t prot,
1739                            int node, const void *caller)
1740{
1741        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1742                                gfp_mask, prot, node, caller);
1743}
1744
1745void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1746{
1747        return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1748                                __builtin_return_address(0));
1749}
1750EXPORT_SYMBOL(__vmalloc);
1751
1752/**
1753 *      vmalloc  -  allocate virtually contiguous memory
1754 *      @size:          allocation size
1755 *      Allocate enough pages to cover @size from the page level
1756 *      allocator and map them into contiguous kernel virtual space.
1757 *
1758 *      For tight control over page level allocator and protection flags
1759 *      use __vmalloc() instead.
1760 */
1761void *vmalloc(unsigned long size)
1762{
1763        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1764                                    GFP_KERNEL | __GFP_HIGHMEM);
1765}
1766EXPORT_SYMBOL(vmalloc);
1767
1768/**
1769 *      vzalloc - allocate virtually contiguous memory with zero fill
1770 *      @size:  allocation size
1771 *      Allocate enough pages to cover @size from the page level
1772 *      allocator and map them into contiguous kernel virtual space.
1773 *      The memory allocated is set to zero.
1774 *
1775 *      For tight control over page level allocator and protection flags
1776 *      use __vmalloc() instead.
1777 */
1778void *vzalloc(unsigned long size)
1779{
1780        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1781                                GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1782}
1783EXPORT_SYMBOL(vzalloc);
1784
1785/**
1786 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1787 * @size: allocation size
1788 *
1789 * The resulting memory area is zeroed so it can be mapped to userspace
1790 * without leaking data.
1791 */
1792void *vmalloc_user(unsigned long size)
1793{
1794        struct vm_struct *area;
1795        void *ret;
1796
1797        ret = __vmalloc_node(size, SHMLBA,
1798                             GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1799                             PAGE_KERNEL, NUMA_NO_NODE,
1800                             __builtin_return_address(0));
1801        if (ret) {
1802                area = find_vm_area(ret);
1803                area->flags |= VM_USERMAP;
1804        }
1805        return ret;
1806}
1807EXPORT_SYMBOL(vmalloc_user);
1808
1809/**
1810 *      vmalloc_node  -  allocate memory on a specific node
1811 *      @size:          allocation size
1812 *      @node:          numa node
1813 *
1814 *      Allocate enough pages to cover @size from the page level
1815 *      allocator and map them into contiguous kernel virtual space.
1816 *
1817 *      For tight control over page level allocator and protection flags
1818 *      use __vmalloc() instead.
1819 */
1820void *vmalloc_node(unsigned long size, int node)
1821{
1822        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1823                                        node, __builtin_return_address(0));
1824}
1825EXPORT_SYMBOL(vmalloc_node);
1826
1827/**
1828 * vzalloc_node - allocate memory on a specific node with zero fill
1829 * @size:       allocation size
1830 * @node:       numa node
1831 *
1832 * Allocate enough pages to cover @size from the page level
1833 * allocator and map them into contiguous kernel virtual space.
1834 * The memory allocated is set to zero.
1835 *
1836 * For tight control over page level allocator and protection flags
1837 * use __vmalloc_node() instead.
1838 */
1839void *vzalloc_node(unsigned long size, int node)
1840{
1841        return __vmalloc_node_flags(size, node,
1842                         GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1843}
1844EXPORT_SYMBOL(vzalloc_node);
1845
1846#ifndef PAGE_KERNEL_EXEC
1847# define PAGE_KERNEL_EXEC PAGE_KERNEL
1848#endif
1849
1850/**
1851 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
1852 *      @size:          allocation size
1853 *
1854 *      Kernel-internal function to allocate enough pages to cover @size
1855 *      the page level allocator and map them into contiguous and
1856 *      executable kernel virtual space.
1857 *
1858 *      For tight control over page level allocator and protection flags
1859 *      use __vmalloc() instead.
1860 */
1861
1862void *vmalloc_exec(unsigned long size)
1863{
1864        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1865                              NUMA_NO_NODE, __builtin_return_address(0));
1866}
1867
1868#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1869#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1870#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1871#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1872#else
1873#define GFP_VMALLOC32 GFP_KERNEL
1874#endif
1875
1876/**
1877 *      vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1878 *      @size:          allocation size
1879 *
1880 *      Allocate enough 32bit PA addressable pages to cover @size from the
1881 *      page level allocator and map them into contiguous kernel virtual space.
1882 */
1883void *vmalloc_32(unsigned long size)
1884{
1885        return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1886                              NUMA_NO_NODE, __builtin_return_address(0));
1887}
1888EXPORT_SYMBOL(vmalloc_32);
1889
1890/**
1891 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1892 *      @size:          allocation size
1893 *
1894 * The resulting memory area is 32bit addressable and zeroed so it can be
1895 * mapped to userspace without leaking data.
1896 */
1897void *vmalloc_32_user(unsigned long size)
1898{
1899        struct vm_struct *area;
1900        void *ret;
1901
1902        ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1903                             NUMA_NO_NODE, __builtin_return_address(0));
1904        if (ret) {
1905                area = find_vm_area(ret);
1906                area->flags |= VM_USERMAP;
1907        }
1908        return ret;
1909}
1910EXPORT_SYMBOL(vmalloc_32_user);
1911
1912/*
1913 * small helper routine , copy contents to buf from addr.
1914 * If the page is not present, fill zero.
1915 */
1916
1917static int aligned_vread(char *buf, char *addr, unsigned long count)
1918{
1919        struct page *p;
1920        int copied = 0;
1921
1922        while (count) {
1923                unsigned long offset, length;
1924
1925                offset = (unsigned long)addr & ~PAGE_MASK;
1926                length = PAGE_SIZE - offset;
1927                if (length > count)
1928                        length = count;
1929                p = vmalloc_to_page(addr);
1930                /*
1931                 * To do safe access to this _mapped_ area, we need
1932                 * lock. But adding lock here means that we need to add
1933                 * overhead of vmalloc()/vfree() calles for this _debug_
1934                 * interface, rarely used. Instead of that, we'll use
1935                 * kmap() and get small overhead in this access function.
1936                 */
1937                if (p) {
1938                        /*
1939                         * we can expect USER0 is not used (see vread/vwrite's
1940                         * function description)
1941                         */
1942                        void *map = kmap_atomic(p);
1943                        memcpy(buf, map + offset, length);
1944                        kunmap_atomic(map);
1945                } else
1946                        memset(buf, 0, length);
1947
1948                addr += length;
1949                buf += length;
1950                copied += length;
1951                count -= length;
1952        }
1953        return copied;
1954}
1955
1956static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1957{
1958        struct page *p;
1959        int copied = 0;
1960
1961        while (count) {
1962                unsigned long offset, length;
1963
1964                offset = (unsigned long)addr & ~PAGE_MASK;
1965                length = PAGE_SIZE - offset;
1966                if (length > count)
1967                        length = count;
1968                p = vmalloc_to_page(addr);
1969                /*
1970                 * To do safe access to this _mapped_ area, we need
1971                 * lock. But adding lock here means that we need to add
1972                 * overhead of vmalloc()/vfree() calles for this _debug_
1973                 * interface, rarely used. Instead of that, we'll use
1974                 * kmap() and get small overhead in this access function.
1975                 */
1976                if (p) {
1977                        /*
1978                         * we can expect USER0 is not used (see vread/vwrite's
1979                         * function description)
1980                         */
1981                        void *map = kmap_atomic(p);
1982                        memcpy(map + offset, buf, length);
1983                        kunmap_atomic(map);
1984                }
1985                addr += length;
1986                buf += length;
1987                copied += length;
1988                count -= length;
1989        }
1990        return copied;
1991}
1992
1993/**
1994 *      vread() -  read vmalloc area in a safe way.
1995 *      @buf:           buffer for reading data
1996 *      @addr:          vm address.
1997 *      @count:         number of bytes to be read.
1998 *
1999 *      Returns # of bytes which addr and buf should be increased.
2000 *      (same number to @count). Returns 0 if [addr...addr+count) doesn't
2001 *      includes any intersect with alive vmalloc area.
2002 *
2003 *      This function checks that addr is a valid vmalloc'ed area, and
2004 *      copy data from that area to a given buffer. If the given memory range
2005 *      of [addr...addr+count) includes some valid address, data is copied to
2006 *      proper area of @buf. If there are memory holes, they'll be zero-filled.
2007 *      IOREMAP area is treated as memory hole and no copy is done.
2008 *
2009 *      If [addr...addr+count) doesn't includes any intersects with alive
2010 *      vm_struct area, returns 0. @buf should be kernel's buffer.
2011 *
2012 *      Note: In usual ops, vread() is never necessary because the caller
2013 *      should know vmalloc() area is valid and can use memcpy().
2014 *      This is for routines which have to access vmalloc area without
2015 *      any informaion, as /dev/kmem.
2016 *
2017 */
2018
2019long vread(char *buf, char *addr, unsigned long count)
2020{
2021        struct vmap_area *va;
2022        struct vm_struct *vm;
2023        char *vaddr, *buf_start = buf;
2024        unsigned long buflen = count;
2025        unsigned long n;
2026
2027        /* Don't allow overflow */
2028        if ((unsigned long) addr + count < count)
2029                count = -(unsigned long) addr;
2030
2031        spin_lock(&vmap_area_lock);
2032        list_for_each_entry(va, &vmap_area_list, list) {
2033                if (!count)
2034                        break;
2035
2036                if (!(va->flags & VM_VM_AREA))
2037                        continue;
2038
2039                vm = va->vm;
2040                vaddr = (char *) vm->addr;
2041                if (addr >= vaddr + vm->size - PAGE_SIZE)
2042                        continue;
2043                while (addr < vaddr) {
2044                        if (count == 0)
2045                                goto finished;
2046                        *buf = '\0';
2047                        buf++;
2048                        addr++;
2049                        count--;
2050                }
2051                n = vaddr + vm->size - PAGE_SIZE - addr;
2052                if (n > count)
2053                        n = count;
2054                if (!(vm->flags & VM_IOREMAP))
2055                        aligned_vread(buf, addr, n);
2056                else /* IOREMAP area is treated as memory hole */
2057                        memset(buf, 0, n);
2058                buf += n;
2059                addr += n;
2060                count -= n;
2061        }
2062finished:
2063        spin_unlock(&vmap_area_lock);
2064
2065        if (buf == buf_start)
2066                return 0;
2067        /* zero-fill memory holes */
2068        if (buf != buf_start + buflen)
2069                memset(buf, 0, buflen - (buf - buf_start));
2070
2071        return buflen;
2072}
2073
2074/**
2075 *      vwrite() -  write vmalloc area in a safe way.
2076 *      @buf:           buffer for source data
2077 *      @addr:          vm address.
2078 *      @count:         number of bytes to be read.
2079 *
2080 *      Returns # of bytes which addr and buf should be incresed.
2081 *      (same number to @count).
2082 *      If [addr...addr+count) doesn't includes any intersect with valid
2083 *      vmalloc area, returns 0.
2084 *
2085 *      This function checks that addr is a valid vmalloc'ed area, and
2086 *      copy data from a buffer to the given addr. If specified range of
2087 *      [addr...addr+count) includes some valid address, data is copied from
2088 *      proper area of @buf. If there are memory holes, no copy to hole.
2089 *      IOREMAP area is treated as memory hole and no copy is done.
2090 *
2091 *      If [addr...addr+count) doesn't includes any intersects with alive
2092 *      vm_struct area, returns 0. @buf should be kernel's buffer.
2093 *
2094 *      Note: In usual ops, vwrite() is never necessary because the caller
2095 *      should know vmalloc() area is valid and can use memcpy().
2096 *      This is for routines which have to access vmalloc area without
2097 *      any informaion, as /dev/kmem.
2098 */
2099
2100long vwrite(char *buf, char *addr, unsigned long count)
2101{
2102        struct vmap_area *va;
2103        struct vm_struct *vm;
2104        char *vaddr;
2105        unsigned long n, buflen;
2106        int copied = 0;
2107
2108        /* Don't allow overflow */
2109        if ((unsigned long) addr + count < count)
2110                count = -(unsigned long) addr;
2111        buflen = count;
2112
2113        spin_lock(&vmap_area_lock);
2114        list_for_each_entry(va, &vmap_area_list, list) {
2115                if (!count)
2116                        break;
2117
2118                if (!(va->flags & VM_VM_AREA))
2119                        continue;
2120
2121                vm = va->vm;
2122                vaddr = (char *) vm->addr;
2123                if (addr >= vaddr + vm->size - PAGE_SIZE)
2124                        continue;
2125                while (addr < vaddr) {
2126                        if (count == 0)
2127                                goto finished;
2128                        buf++;
2129                        addr++;
2130                        count--;
2131                }
2132                n = vaddr + vm->size - PAGE_SIZE - addr;
2133                if (n > count)
2134                        n = count;
2135                if (!(vm->flags & VM_IOREMAP)) {
2136                        aligned_vwrite(buf, addr, n);
2137                        copied++;
2138                }
2139                buf += n;
2140                addr += n;
2141                count -= n;
2142        }
2143finished:
2144        spin_unlock(&vmap_area_lock);
2145        if (!copied)
2146                return 0;
2147        return buflen;
2148}
2149
2150/**
2151 *      remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2152 *      @vma:           vma to cover
2153 *      @uaddr:         target user address to start at
2154 *      @kaddr:         virtual address of vmalloc kernel memory
2155 *      @size:          size of map area
2156 *
2157 *      Returns:        0 for success, -Exxx on failure
2158 *
2159 *      This function checks that @kaddr is a valid vmalloc'ed area,
2160 *      and that it is big enough to cover the range starting at
2161 *      @uaddr in @vma. Will return failure if that criteria isn't
2162 *      met.
2163 *
2164 *      Similar to remap_pfn_range() (see mm/memory.c)
2165 */
2166int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2167                                void *kaddr, unsigned long size)
2168{
2169        struct vm_struct *area;
2170
2171        size = PAGE_ALIGN(size);
2172
2173        if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2174                return -EINVAL;
2175
2176        area = find_vm_area(kaddr);
2177        if (!area)
2178                return -EINVAL;
2179
2180        if (!(area->flags & VM_USERMAP))
2181                return -EINVAL;
2182
2183        if (kaddr + size > area->addr + area->size)
2184                return -EINVAL;
2185
2186        do {
2187                struct page *page = vmalloc_to_page(kaddr);
2188                int ret;
2189
2190                ret = vm_insert_page(vma, uaddr, page);
2191                if (ret)
2192                        return ret;
2193
2194                uaddr += PAGE_SIZE;
2195                kaddr += PAGE_SIZE;
2196                size -= PAGE_SIZE;
2197        } while (size > 0);
2198
2199        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2200
2201        return 0;
2202}
2203EXPORT_SYMBOL(remap_vmalloc_range_partial);
2204
2205/**
2206 *      remap_vmalloc_range  -  map vmalloc pages to userspace
2207 *      @vma:           vma to cover (map full range of vma)
2208 *      @addr:          vmalloc memory
2209 *      @pgoff:         number of pages into addr before first page to map
2210 *
2211 *      Returns:        0 for success, -Exxx on failure
2212 *
2213 *      This function checks that addr is a valid vmalloc'ed area, and
2214 *      that it is big enough to cover the vma. Will return failure if
2215 *      that criteria isn't met.
2216 *
2217 *      Similar to remap_pfn_range() (see mm/memory.c)
2218 */
2219int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2220                                                unsigned long pgoff)
2221{
2222        return remap_vmalloc_range_partial(vma, vma->vm_start,
2223                                           addr + (pgoff << PAGE_SHIFT),
2224                                           vma->vm_end - vma->vm_start);
2225}
2226EXPORT_SYMBOL(remap_vmalloc_range);
2227
2228/*
2229 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2230 * have one.
2231 */
2232void  __attribute__((weak)) vmalloc_sync_all(void)
2233{
2234}
2235
2236
2237static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2238{
2239        pte_t ***p = data;
2240
2241        if (p) {
2242                *(*p) = pte;
2243                (*p)++;
2244        }
2245        return 0;
2246}
2247
2248/**
2249 *      alloc_vm_area - allocate a range of kernel address space
2250 *      @size:          size of the area
2251 *      @ptes:          returns the PTEs for the address space
2252 *
2253 *      Returns:        NULL on failure, vm_struct on success
2254 *
2255 *      This function reserves a range of kernel address space, and
2256 *      allocates pagetables to map that range.  No actual mappings
2257 *      are created.
2258 *
2259 *      If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2260 *      allocated for the VM area are returned.
2261 */
2262struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2263{
2264        struct vm_struct *area;
2265
2266        area = get_vm_area_caller(size, VM_IOREMAP,
2267                                __builtin_return_address(0));
2268        if (area == NULL)
2269                return NULL;
2270
2271        /*
2272         * This ensures that page tables are constructed for this region
2273         * of kernel virtual address space and mapped into init_mm.
2274         */
2275        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2276                                size, f, ptes ? &ptes : NULL)) {
2277                free_vm_area(area);
2278                return NULL;
2279        }
2280
2281        return area;
2282}
2283EXPORT_SYMBOL_GPL(alloc_vm_area);
2284
2285void free_vm_area(struct vm_struct *area)
2286{
2287        struct vm_struct *ret;
2288        ret = remove_vm_area(area->addr);
2289        BUG_ON(ret != area);
2290        kfree(area);
2291}
2292EXPORT_SYMBOL_GPL(free_vm_area);
2293
2294#ifdef CONFIG_SMP
2295static struct vmap_area *node_to_va(struct rb_node *n)
2296{
2297        return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2298}
2299
2300/**
2301 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2302 * @end: target address
2303 * @pnext: out arg for the next vmap_area
2304 * @pprev: out arg for the previous vmap_area
2305 *
2306 * Returns: %true if either or both of next and prev are found,
2307 *          %false if no vmap_area exists
2308 *
2309 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2310 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2311 */
2312static bool pvm_find_next_prev(unsigned long end,
2313                               struct vmap_area **pnext,
2314                               struct vmap_area **pprev)
2315{
2316        struct rb_node *n = vmap_area_root.rb_node;
2317        struct vmap_area *va = NULL;
2318
2319        while (n) {
2320                va = rb_entry(n, struct vmap_area, rb_node);
2321                if (end < va->va_end)
2322                        n = n->rb_left;
2323                else if (end > va->va_end)
2324                        n = n->rb_right;
2325                else
2326                        break;
2327        }
2328
2329        if (!va)
2330                return false;
2331
2332        if (va->va_end > end) {
2333                *pnext = va;
2334                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2335        } else {
2336                *pprev = va;
2337                *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2338        }
2339        return true;
2340}
2341
2342/**
2343 * pvm_determine_end - find the highest aligned address between two vmap_areas
2344 * @pnext: in/out arg for the next vmap_area
2345 * @pprev: in/out arg for the previous vmap_area
2346 * @align: alignment
2347 *
2348 * Returns: determined end address
2349 *
2350 * Find the highest aligned address between *@pnext and *@pprev below
2351 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2352 * down address is between the end addresses of the two vmap_areas.
2353 *
2354 * Please note that the address returned by this function may fall
2355 * inside *@pnext vmap_area.  The caller is responsible for checking
2356 * that.
2357 */
2358static unsigned long pvm_determine_end(struct vmap_area **pnext,
2359                                       struct vmap_area **pprev,
2360                                       unsigned long align)
2361{
2362        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2363        unsigned long addr;
2364
2365        if (*pnext)
2366                addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2367        else
2368                addr = vmalloc_end;
2369
2370        while (*pprev && (*pprev)->va_end > addr) {
2371                *pnext = *pprev;
2372                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2373        }
2374
2375        return addr;
2376}
2377
2378/**
2379 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2380 * @offsets: array containing offset of each area
2381 * @sizes: array containing size of each area
2382 * @nr_vms: the number of areas to allocate
2383 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2384 *
2385 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2386 *          vm_structs on success, %NULL on failure
2387 *
2388 * Percpu allocator wants to use congruent vm areas so that it can
2389 * maintain the offsets among percpu areas.  This function allocates
2390 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2391 * be scattered pretty far, distance between two areas easily going up
2392 * to gigabytes.  To avoid interacting with regular vmallocs, these
2393 * areas are allocated from top.
2394 *
2395 * Despite its complicated look, this allocator is rather simple.  It
2396 * does everything top-down and scans areas from the end looking for
2397 * matching slot.  While scanning, if any of the areas overlaps with
2398 * existing vmap_area, the base address is pulled down to fit the
2399 * area.  Scanning is repeated till all the areas fit and then all
2400 * necessary data structres are inserted and the result is returned.
2401 */
2402struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2403                                     const size_t *sizes, int nr_vms,
2404                                     size_t align)
2405{
2406        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2407        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2408        struct vmap_area **vas, *prev, *next;
2409        struct vm_struct **vms;
2410        int area, area2, last_area, term_area;
2411        unsigned long base, start, end, last_end;
2412        bool purged = false;
2413
2414        /* verify parameters and allocate data structures */
2415        BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2416        for (last_area = 0, area = 0; area < nr_vms; area++) {
2417                start = offsets[area];
2418                end = start + sizes[area];
2419
2420                /* is everything aligned properly? */
2421                BUG_ON(!IS_ALIGNED(offsets[area], align));
2422                BUG_ON(!IS_ALIGNED(sizes[area], align));
2423
2424                /* detect the area with the highest address */
2425                if (start > offsets[last_area])
2426                        last_area = area;
2427
2428                for (area2 = 0; area2 < nr_vms; area2++) {
2429                        unsigned long start2 = offsets[area2];
2430                        unsigned long end2 = start2 + sizes[area2];
2431
2432                        if (area2 == area)
2433                                continue;
2434
2435                        BUG_ON(start2 >= start && start2 < end);
2436                        BUG_ON(end2 <= end && end2 > start);
2437                }
2438        }
2439        last_end = offsets[last_area] + sizes[last_area];
2440
2441        if (vmalloc_end - vmalloc_start < last_end) {
2442                WARN_ON(true);
2443                return NULL;
2444        }
2445
2446        vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2447        vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2448        if (!vas || !vms)
2449                goto err_free2;
2450
2451        for (area = 0; area < nr_vms; area++) {
2452                vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2453                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2454                if (!vas[area] || !vms[area])
2455                        goto err_free;
2456        }
2457retry:
2458        spin_lock(&vmap_area_lock);
2459
2460        /* start scanning - we scan from the top, begin with the last area */
2461        area = term_area = last_area;
2462        start = offsets[area];
2463        end = start + sizes[area];
2464
2465        if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2466                base = vmalloc_end - last_end;
2467                goto found;
2468        }
2469        base = pvm_determine_end(&next, &prev, align) - end;
2470
2471        while (true) {
2472                BUG_ON(next && next->va_end <= base + end);
2473                BUG_ON(prev && prev->va_end > base + end);
2474
2475                /*
2476                 * base might have underflowed, add last_end before
2477                 * comparing.
2478                 */
2479                if (base + last_end < vmalloc_start + last_end) {
2480                        spin_unlock(&vmap_area_lock);
2481                        if (!purged) {
2482                                purge_vmap_area_lazy();
2483                                purged = true;
2484                                goto retry;
2485                        }
2486                        goto err_free;
2487                }
2488
2489                /*
2490                 * If next overlaps, move base downwards so that it's
2491                 * right below next and then recheck.
2492                 */
2493                if (next && next->va_start < base + end) {
2494                        base = pvm_determine_end(&next, &prev, align) - end;
2495                        term_area = area;
2496                        continue;
2497                }
2498
2499                /*
2500                 * If prev overlaps, shift down next and prev and move
2501                 * base so that it's right below new next and then
2502                 * recheck.
2503                 */
2504                if (prev && prev->va_end > base + start)  {
2505                        next = prev;
2506                        prev = node_to_va(rb_prev(&next->rb_node));
2507                        base = pvm_determine_end(&next, &prev, align) - end;
2508                        term_area = area;
2509                        continue;
2510                }
2511
2512                /*
2513                 * This area fits, move on to the previous one.  If
2514                 * the previous one is the terminal one, we're done.
2515                 */
2516                area = (area + nr_vms - 1) % nr_vms;
2517                if (area == term_area)
2518                        break;
2519                start = offsets[area];
2520                end = start + sizes[area];
2521                pvm_find_next_prev(base + end, &next, &prev);
2522        }
2523found:
2524        /* we've found a fitting base, insert all va's */
2525        for (area = 0; area < nr_vms; area++) {
2526                struct vmap_area *va = vas[area];
2527
2528                va->va_start = base + offsets[area];
2529                va->va_end = va->va_start + sizes[area];
2530                __insert_vmap_area(va);
2531        }
2532
2533        vmap_area_pcpu_hole = base + offsets[last_area];
2534
2535        spin_unlock(&vmap_area_lock);
2536
2537        /* insert all vm's */
2538        for (area = 0; area < nr_vms; area++)
2539                insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2540                                  pcpu_get_vm_areas);
2541
2542        kfree(vas);
2543        return vms;
2544
2545err_free:
2546        for (area = 0; area < nr_vms; area++) {
2547                kfree(vas[area]);
2548                kfree(vms[area]);
2549        }
2550err_free2:
2551        kfree(vas);
2552        kfree(vms);
2553        return NULL;
2554}
2555
2556/**
2557 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2558 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2559 * @nr_vms: the number of allocated areas
2560 *
2561 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2562 */
2563void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2564{
2565        int i;
2566
2567        for (i = 0; i < nr_vms; i++)
2568                free_vm_area(vms[i]);
2569        kfree(vms);
2570}
2571#endif  /* CONFIG_SMP */
2572
2573#ifdef CONFIG_PROC_FS
2574static void *s_start(struct seq_file *m, loff_t *pos)
2575        __acquires(&vmap_area_lock)
2576{
2577        loff_t n = *pos;
2578        struct vmap_area *va;
2579
2580        spin_lock(&vmap_area_lock);
2581        va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2582        while (n > 0 && &va->list != &vmap_area_list) {
2583                n--;
2584                va = list_entry(va->list.next, typeof(*va), list);
2585        }
2586        if (!n && &va->list != &vmap_area_list)
2587                return va;
2588
2589        return NULL;
2590
2591}
2592
2593static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2594{
2595        struct vmap_area *va = p, *next;
2596
2597        ++*pos;
2598        next = list_entry(va->list.next, typeof(*va), list);
2599        if (&next->list != &vmap_area_list)
2600                return next;
2601
2602        return NULL;
2603}
2604
2605static void s_stop(struct seq_file *m, void *p)
2606        __releases(&vmap_area_lock)
2607{
2608        spin_unlock(&vmap_area_lock);
2609}
2610
2611static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2612{
2613        if (IS_ENABLED(CONFIG_NUMA)) {
2614                unsigned int nr, *counters = m->private;
2615
2616                if (!counters)
2617                        return;
2618
2619                /* Pair with smp_wmb() in clear_vm_unlist() */
2620                smp_rmb();
2621                if (v->flags & VM_UNLIST)
2622                        return;
2623
2624                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2625
2626                for (nr = 0; nr < v->nr_pages; nr++)
2627                        counters[page_to_nid(v->pages[nr])]++;
2628
2629                for_each_node_state(nr, N_HIGH_MEMORY)
2630                        if (counters[nr])
2631                                seq_printf(m, " N%u=%u", nr, counters[nr]);
2632        }
2633}
2634
2635static int s_show(struct seq_file *m, void *p)
2636{
2637        struct vmap_area *va = p;
2638        struct vm_struct *v;
2639
2640        if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2641                return 0;
2642
2643        if (!(va->flags & VM_VM_AREA)) {
2644                seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
2645                        (void *)va->va_start, (void *)va->va_end,
2646                                        va->va_end - va->va_start);
2647                return 0;
2648        }
2649
2650        v = va->vm;
2651
2652        seq_printf(m, "0x%pK-0x%pK %7ld",
2653                v->addr, v->addr + v->size, v->size);
2654
2655        if (v->caller)
2656                seq_printf(m, " %pS", v->caller);
2657
2658        if (v->nr_pages)
2659                seq_printf(m, " pages=%d", v->nr_pages);
2660
2661        if (v->phys_addr)
2662                seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2663
2664        if (v->flags & VM_IOREMAP)
2665                seq_printf(m, " ioremap");
2666
2667        if (v->flags & VM_ALLOC)
2668                seq_printf(m, " vmalloc");
2669
2670        if (v->flags & VM_MAP)
2671                seq_printf(m, " vmap");
2672
2673        if (v->flags & VM_USERMAP)
2674                seq_printf(m, " user");
2675
2676        if (v->flags & VM_VPAGES)
2677                seq_printf(m, " vpages");
2678
2679        show_numa_info(m, v);
2680        seq_putc(m, '\n');
2681        return 0;
2682}
2683
2684static const struct seq_operations vmalloc_op = {
2685        .start = s_start,
2686        .next = s_next,
2687        .stop = s_stop,
2688        .show = s_show,
2689};
2690
2691static int vmalloc_open(struct inode *inode, struct file *file)
2692{
2693        unsigned int *ptr = NULL;
2694        int ret;
2695
2696        if (IS_ENABLED(CONFIG_NUMA)) {
2697                ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2698                if (ptr == NULL)
2699                        return -ENOMEM;
2700        }
2701        ret = seq_open(file, &vmalloc_op);
2702        if (!ret) {
2703                struct seq_file *m = file->private_data;
2704                m->private = ptr;
2705        } else
2706                kfree(ptr);
2707        return ret;
2708}
2709
2710static const struct file_operations proc_vmalloc_operations = {
2711        .open           = vmalloc_open,
2712        .read           = seq_read,
2713        .llseek         = seq_lseek,
2714        .release        = seq_release_private,
2715};
2716
2717static int __init proc_vmalloc_init(void)
2718{
2719        proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2720        return 0;
2721}
2722module_init(proc_vmalloc_init);
2723
2724void get_vmalloc_info(struct vmalloc_info *vmi)
2725{
2726        struct vmap_area *va;
2727        unsigned long free_area_size;
2728        unsigned long prev_end;
2729
2730        vmi->used = 0;
2731        vmi->largest_chunk = 0;
2732
2733        prev_end = VMALLOC_START;
2734
2735        spin_lock(&vmap_area_lock);
2736
2737        if (list_empty(&vmap_area_list)) {
2738                vmi->largest_chunk = VMALLOC_TOTAL;
2739                goto out;
2740        }
2741
2742        list_for_each_entry(va, &vmap_area_list, list) {
2743                unsigned long addr = va->va_start;
2744
2745                /*
2746                 * Some archs keep another range for modules in vmalloc space
2747                 */
2748                if (addr < VMALLOC_START)
2749                        continue;
2750                if (addr >= VMALLOC_END)
2751                        break;
2752
2753                if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2754                        continue;
2755
2756                vmi->used += (va->va_end - va->va_start);
2757
2758                free_area_size = addr - prev_end;
2759                if (vmi->largest_chunk < free_area_size)
2760                        vmi->largest_chunk = free_area_size;
2761
2762                prev_end = va->va_end;
2763        }
2764
2765        if (VMALLOC_END - prev_end > vmi->largest_chunk)
2766                vmi->largest_chunk = VMALLOC_END - prev_end;
2767
2768out:
2769        spin_unlock(&vmap_area_lock);
2770}
2771#endif
2772
2773