linux/arch/arm/mach-davinci/dma.c
<<
>>
Prefs
   1/*
   2 * EDMA3 support for DaVinci
   3 *
   4 * Copyright (C) 2006-2009 Texas Instruments.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20#include <linux/kernel.h>
  21#include <linux/init.h>
  22#include <linux/module.h>
  23#include <linux/interrupt.h>
  24#include <linux/platform_device.h>
  25#include <linux/io.h>
  26#include <linux/slab.h>
  27
  28#include <mach/edma.h>
  29
  30/* Offsets matching "struct edmacc_param" */
  31#define PARM_OPT                0x00
  32#define PARM_SRC                0x04
  33#define PARM_A_B_CNT            0x08
  34#define PARM_DST                0x0c
  35#define PARM_SRC_DST_BIDX       0x10
  36#define PARM_LINK_BCNTRLD       0x14
  37#define PARM_SRC_DST_CIDX       0x18
  38#define PARM_CCNT               0x1c
  39
  40#define PARM_SIZE               0x20
  41
  42/* Offsets for EDMA CC global channel registers and their shadows */
  43#define SH_ER           0x00    /* 64 bits */
  44#define SH_ECR          0x08    /* 64 bits */
  45#define SH_ESR          0x10    /* 64 bits */
  46#define SH_CER          0x18    /* 64 bits */
  47#define SH_EER          0x20    /* 64 bits */
  48#define SH_EECR         0x28    /* 64 bits */
  49#define SH_EESR         0x30    /* 64 bits */
  50#define SH_SER          0x38    /* 64 bits */
  51#define SH_SECR         0x40    /* 64 bits */
  52#define SH_IER          0x50    /* 64 bits */
  53#define SH_IECR         0x58    /* 64 bits */
  54#define SH_IESR         0x60    /* 64 bits */
  55#define SH_IPR          0x68    /* 64 bits */
  56#define SH_ICR          0x70    /* 64 bits */
  57#define SH_IEVAL        0x78
  58#define SH_QER          0x80
  59#define SH_QEER         0x84
  60#define SH_QEECR        0x88
  61#define SH_QEESR        0x8c
  62#define SH_QSER         0x90
  63#define SH_QSECR        0x94
  64#define SH_SIZE         0x200
  65
  66/* Offsets for EDMA CC global registers */
  67#define EDMA_REV        0x0000
  68#define EDMA_CCCFG      0x0004
  69#define EDMA_QCHMAP     0x0200  /* 8 registers */
  70#define EDMA_DMAQNUM    0x0240  /* 8 registers (4 on OMAP-L1xx) */
  71#define EDMA_QDMAQNUM   0x0260
  72#define EDMA_QUETCMAP   0x0280
  73#define EDMA_QUEPRI     0x0284
  74#define EDMA_EMR        0x0300  /* 64 bits */
  75#define EDMA_EMCR       0x0308  /* 64 bits */
  76#define EDMA_QEMR       0x0310
  77#define EDMA_QEMCR      0x0314
  78#define EDMA_CCERR      0x0318
  79#define EDMA_CCERRCLR   0x031c
  80#define EDMA_EEVAL      0x0320
  81#define EDMA_DRAE       0x0340  /* 4 x 64 bits*/
  82#define EDMA_QRAE       0x0380  /* 4 registers */
  83#define EDMA_QUEEVTENTRY        0x0400  /* 2 x 16 registers */
  84#define EDMA_QSTAT      0x0600  /* 2 registers */
  85#define EDMA_QWMTHRA    0x0620
  86#define EDMA_QWMTHRB    0x0624
  87#define EDMA_CCSTAT     0x0640
  88
  89#define EDMA_M          0x1000  /* global channel registers */
  90#define EDMA_ECR        0x1008
  91#define EDMA_ECRH       0x100C
  92#define EDMA_SHADOW0    0x2000  /* 4 regions shadowing global channels */
  93#define EDMA_PARM       0x4000  /* 128 param entries */
  94
  95#define PARM_OFFSET(param_no)   (EDMA_PARM + ((param_no) << 5))
  96
  97#define EDMA_DCHMAP     0x0100  /* 64 registers */
  98#define CHMAP_EXIST     BIT(24)
  99
 100#define EDMA_MAX_DMACH           64
 101#define EDMA_MAX_PARAMENTRY     512
 102
 103/*****************************************************************************/
 104
 105static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
 106
 107static inline unsigned int edma_read(unsigned ctlr, int offset)
 108{
 109        return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
 110}
 111
 112static inline void edma_write(unsigned ctlr, int offset, int val)
 113{
 114        __raw_writel(val, edmacc_regs_base[ctlr] + offset);
 115}
 116static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
 117                unsigned or)
 118{
 119        unsigned val = edma_read(ctlr, offset);
 120        val &= and;
 121        val |= or;
 122        edma_write(ctlr, offset, val);
 123}
 124static inline void edma_and(unsigned ctlr, int offset, unsigned and)
 125{
 126        unsigned val = edma_read(ctlr, offset);
 127        val &= and;
 128        edma_write(ctlr, offset, val);
 129}
 130static inline void edma_or(unsigned ctlr, int offset, unsigned or)
 131{
 132        unsigned val = edma_read(ctlr, offset);
 133        val |= or;
 134        edma_write(ctlr, offset, val);
 135}
 136static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
 137{
 138        return edma_read(ctlr, offset + (i << 2));
 139}
 140static inline void edma_write_array(unsigned ctlr, int offset, int i,
 141                unsigned val)
 142{
 143        edma_write(ctlr, offset + (i << 2), val);
 144}
 145static inline void edma_modify_array(unsigned ctlr, int offset, int i,
 146                unsigned and, unsigned or)
 147{
 148        edma_modify(ctlr, offset + (i << 2), and, or);
 149}
 150static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
 151{
 152        edma_or(ctlr, offset + (i << 2), or);
 153}
 154static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
 155                unsigned or)
 156{
 157        edma_or(ctlr, offset + ((i*2 + j) << 2), or);
 158}
 159static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
 160                unsigned val)
 161{
 162        edma_write(ctlr, offset + ((i*2 + j) << 2), val);
 163}
 164static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
 165{
 166        return edma_read(ctlr, EDMA_SHADOW0 + offset);
 167}
 168static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
 169                int i)
 170{
 171        return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
 172}
 173static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
 174{
 175        edma_write(ctlr, EDMA_SHADOW0 + offset, val);
 176}
 177static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
 178                unsigned val)
 179{
 180        edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
 181}
 182static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
 183                int param_no)
 184{
 185        return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
 186}
 187static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
 188                unsigned val)
 189{
 190        edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
 191}
 192static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
 193                unsigned and, unsigned or)
 194{
 195        edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
 196}
 197static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
 198                unsigned and)
 199{
 200        edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
 201}
 202static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
 203                unsigned or)
 204{
 205        edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
 206}
 207
 208static inline void set_bits(int offset, int len, unsigned long *p)
 209{
 210        for (; len > 0; len--)
 211                set_bit(offset + (len - 1), p);
 212}
 213
 214static inline void clear_bits(int offset, int len, unsigned long *p)
 215{
 216        for (; len > 0; len--)
 217                clear_bit(offset + (len - 1), p);
 218}
 219
 220/*****************************************************************************/
 221
 222/* actual number of DMA channels and slots on this silicon */
 223struct edma {
 224        /* how many dma resources of each type */
 225        unsigned        num_channels;
 226        unsigned        num_region;
 227        unsigned        num_slots;
 228        unsigned        num_tc;
 229        unsigned        num_cc;
 230        enum dma_event_q        default_queue;
 231
 232        /* list of channels with no even trigger; terminated by "-1" */
 233        const s8        *noevent;
 234
 235        /* The edma_inuse bit for each PaRAM slot is clear unless the
 236         * channel is in use ... by ARM or DSP, for QDMA, or whatever.
 237         */
 238        DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
 239
 240        /* The edma_unused bit for each channel is clear unless
 241         * it is not being used on this platform. It uses a bit
 242         * of SOC-specific initialization code.
 243         */
 244        DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
 245
 246        unsigned        irq_res_start;
 247        unsigned        irq_res_end;
 248
 249        struct dma_interrupt_data {
 250                void (*callback)(unsigned channel, unsigned short ch_status,
 251                                void *data);
 252                void *data;
 253        } intr_data[EDMA_MAX_DMACH];
 254};
 255
 256static struct edma *edma_cc[EDMA_MAX_CC];
 257static int arch_num_cc;
 258
 259/* dummy param set used to (re)initialize parameter RAM slots */
 260static const struct edmacc_param dummy_paramset = {
 261        .link_bcntrld = 0xffff,
 262        .ccnt = 1,
 263};
 264
 265/*****************************************************************************/
 266
 267static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
 268                enum dma_event_q queue_no)
 269{
 270        int bit = (ch_no & 0x7) * 4;
 271
 272        /* default to low priority queue */
 273        if (queue_no == EVENTQ_DEFAULT)
 274                queue_no = edma_cc[ctlr]->default_queue;
 275
 276        queue_no &= 7;
 277        edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
 278                        ~(0x7 << bit), queue_no << bit);
 279}
 280
 281static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
 282{
 283        int bit = queue_no * 4;
 284        edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
 285}
 286
 287static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
 288                int priority)
 289{
 290        int bit = queue_no * 4;
 291        edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
 292                        ((priority & 0x7) << bit));
 293}
 294
 295/**
 296 * map_dmach_param - Maps channel number to param entry number
 297 *
 298 * This maps the dma channel number to param entry numberter. In
 299 * other words using the DMA channel mapping registers a param entry
 300 * can be mapped to any channel
 301 *
 302 * Callers are responsible for ensuring the channel mapping logic is
 303 * included in that particular EDMA variant (Eg : dm646x)
 304 *
 305 */
 306static void __init map_dmach_param(unsigned ctlr)
 307{
 308        int i;
 309        for (i = 0; i < EDMA_MAX_DMACH; i++)
 310                edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
 311}
 312
 313static inline void
 314setup_dma_interrupt(unsigned lch,
 315        void (*callback)(unsigned channel, u16 ch_status, void *data),
 316        void *data)
 317{
 318        unsigned ctlr;
 319
 320        ctlr = EDMA_CTLR(lch);
 321        lch = EDMA_CHAN_SLOT(lch);
 322
 323        if (!callback)
 324                edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
 325                                BIT(lch & 0x1f));
 326
 327        edma_cc[ctlr]->intr_data[lch].callback = callback;
 328        edma_cc[ctlr]->intr_data[lch].data = data;
 329
 330        if (callback) {
 331                edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
 332                                BIT(lch & 0x1f));
 333                edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
 334                                BIT(lch & 0x1f));
 335        }
 336}
 337
 338static int irq2ctlr(int irq)
 339{
 340        if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
 341                return 0;
 342        else if (irq >= edma_cc[1]->irq_res_start &&
 343                irq <= edma_cc[1]->irq_res_end)
 344                return 1;
 345
 346        return -1;
 347}
 348
 349/******************************************************************************
 350 *
 351 * DMA interrupt handler
 352 *
 353 *****************************************************************************/
 354static irqreturn_t dma_irq_handler(int irq, void *data)
 355{
 356        int ctlr;
 357        u32 sh_ier;
 358        u32 sh_ipr;
 359        u32 bank;
 360
 361        ctlr = irq2ctlr(irq);
 362        if (ctlr < 0)
 363                return IRQ_NONE;
 364
 365        dev_dbg(data, "dma_irq_handler\n");
 366
 367        sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0);
 368        if (!sh_ipr) {
 369                sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1);
 370                if (!sh_ipr)
 371                        return IRQ_NONE;
 372                sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1);
 373                bank = 1;
 374        } else {
 375                sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0);
 376                bank = 0;
 377        }
 378
 379        do {
 380                u32 slot;
 381                u32 channel;
 382
 383                dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr);
 384
 385                slot = __ffs(sh_ipr);
 386                sh_ipr &= ~(BIT(slot));
 387
 388                if (sh_ier & BIT(slot)) {
 389                        channel = (bank << 5) | slot;
 390                        /* Clear the corresponding IPR bits */
 391                        edma_shadow0_write_array(ctlr, SH_ICR, bank,
 392                                        BIT(slot));
 393                        if (edma_cc[ctlr]->intr_data[channel].callback)
 394                                edma_cc[ctlr]->intr_data[channel].callback(
 395                                        channel, DMA_COMPLETE,
 396                                        edma_cc[ctlr]->intr_data[channel].data);
 397                }
 398        } while (sh_ipr);
 399
 400        edma_shadow0_write(ctlr, SH_IEVAL, 1);
 401        return IRQ_HANDLED;
 402}
 403
 404/******************************************************************************
 405 *
 406 * DMA error interrupt handler
 407 *
 408 *****************************************************************************/
 409static irqreturn_t dma_ccerr_handler(int irq, void *data)
 410{
 411        int i;
 412        int ctlr;
 413        unsigned int cnt = 0;
 414
 415        ctlr = irq2ctlr(irq);
 416        if (ctlr < 0)
 417                return IRQ_NONE;
 418
 419        dev_dbg(data, "dma_ccerr_handler\n");
 420
 421        if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
 422            (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
 423            (edma_read(ctlr, EDMA_QEMR) == 0) &&
 424            (edma_read(ctlr, EDMA_CCERR) == 0))
 425                return IRQ_NONE;
 426
 427        while (1) {
 428                int j = -1;
 429                if (edma_read_array(ctlr, EDMA_EMR, 0))
 430                        j = 0;
 431                else if (edma_read_array(ctlr, EDMA_EMR, 1))
 432                        j = 1;
 433                if (j >= 0) {
 434                        dev_dbg(data, "EMR%d %08x\n", j,
 435                                        edma_read_array(ctlr, EDMA_EMR, j));
 436                        for (i = 0; i < 32; i++) {
 437                                int k = (j << 5) + i;
 438                                if (edma_read_array(ctlr, EDMA_EMR, j) &
 439                                                        BIT(i)) {
 440                                        /* Clear the corresponding EMR bits */
 441                                        edma_write_array(ctlr, EDMA_EMCR, j,
 442                                                        BIT(i));
 443                                        /* Clear any SER */
 444                                        edma_shadow0_write_array(ctlr, SH_SECR,
 445                                                                j, BIT(i));
 446                                        if (edma_cc[ctlr]->intr_data[k].
 447                                                                callback) {
 448                                                edma_cc[ctlr]->intr_data[k].
 449                                                callback(k,
 450                                                DMA_CC_ERROR,
 451                                                edma_cc[ctlr]->intr_data
 452                                                [k].data);
 453                                        }
 454                                }
 455                        }
 456                } else if (edma_read(ctlr, EDMA_QEMR)) {
 457                        dev_dbg(data, "QEMR %02x\n",
 458                                edma_read(ctlr, EDMA_QEMR));
 459                        for (i = 0; i < 8; i++) {
 460                                if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
 461                                        /* Clear the corresponding IPR bits */
 462                                        edma_write(ctlr, EDMA_QEMCR, BIT(i));
 463                                        edma_shadow0_write(ctlr, SH_QSECR,
 464                                                                BIT(i));
 465
 466                                        /* NOTE:  not reported!! */
 467                                }
 468                        }
 469                } else if (edma_read(ctlr, EDMA_CCERR)) {
 470                        dev_dbg(data, "CCERR %08x\n",
 471                                edma_read(ctlr, EDMA_CCERR));
 472                        /* FIXME:  CCERR.BIT(16) ignored!  much better
 473                         * to just write CCERRCLR with CCERR value...
 474                         */
 475                        for (i = 0; i < 8; i++) {
 476                                if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
 477                                        /* Clear the corresponding IPR bits */
 478                                        edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
 479
 480                                        /* NOTE:  not reported!! */
 481                                }
 482                        }
 483                }
 484                if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
 485                    (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
 486                    (edma_read(ctlr, EDMA_QEMR) == 0) &&
 487                    (edma_read(ctlr, EDMA_CCERR) == 0))
 488                        break;
 489                cnt++;
 490                if (cnt > 10)
 491                        break;
 492        }
 493        edma_write(ctlr, EDMA_EEVAL, 1);
 494        return IRQ_HANDLED;
 495}
 496
 497/******************************************************************************
 498 *
 499 * Transfer controller error interrupt handlers
 500 *
 501 *****************************************************************************/
 502
 503#define tc_errs_handled false   /* disabled as long as they're NOPs */
 504
 505static irqreturn_t dma_tc0err_handler(int irq, void *data)
 506{
 507        dev_dbg(data, "dma_tc0err_handler\n");
 508        return IRQ_HANDLED;
 509}
 510
 511static irqreturn_t dma_tc1err_handler(int irq, void *data)
 512{
 513        dev_dbg(data, "dma_tc1err_handler\n");
 514        return IRQ_HANDLED;
 515}
 516
 517static int reserve_contiguous_slots(int ctlr, unsigned int id,
 518                                     unsigned int num_slots,
 519                                     unsigned int start_slot)
 520{
 521        int i, j;
 522        unsigned int count = num_slots;
 523        int stop_slot = start_slot;
 524        DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
 525
 526        for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
 527                j = EDMA_CHAN_SLOT(i);
 528                if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
 529                        /* Record our current beginning slot */
 530                        if (count == num_slots)
 531                                stop_slot = i;
 532
 533                        count--;
 534                        set_bit(j, tmp_inuse);
 535
 536                        if (count == 0)
 537                                break;
 538                } else {
 539                        clear_bit(j, tmp_inuse);
 540
 541                        if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
 542                                stop_slot = i;
 543                                break;
 544                        } else {
 545                                count = num_slots;
 546                        }
 547                }
 548        }
 549
 550        /*
 551         * We have to clear any bits that we set
 552         * if we run out parameter RAM slots, i.e we do find a set
 553         * of contiguous parameter RAM slots but do not find the exact number
 554         * requested as we may reach the total number of parameter RAM slots
 555         */
 556        if (i == edma_cc[ctlr]->num_slots)
 557                stop_slot = i;
 558
 559        j = start_slot;
 560        for_each_set_bit_from(j, tmp_inuse, stop_slot)
 561                clear_bit(j, edma_cc[ctlr]->edma_inuse);
 562
 563        if (count)
 564                return -EBUSY;
 565
 566        for (j = i - num_slots + 1; j <= i; ++j)
 567                memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
 568                        &dummy_paramset, PARM_SIZE);
 569
 570        return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
 571}
 572
 573static int prepare_unused_channel_list(struct device *dev, void *data)
 574{
 575        struct platform_device *pdev = to_platform_device(dev);
 576        int i, ctlr;
 577
 578        for (i = 0; i < pdev->num_resources; i++) {
 579                if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
 580                                (int)pdev->resource[i].start >= 0) {
 581                        ctlr = EDMA_CTLR(pdev->resource[i].start);
 582                        clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
 583                                        edma_cc[ctlr]->edma_unused);
 584                }
 585        }
 586
 587        return 0;
 588}
 589
 590/*-----------------------------------------------------------------------*/
 591
 592static bool unused_chan_list_done;
 593
 594/* Resource alloc/free:  dma channels, parameter RAM slots */
 595
 596/**
 597 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
 598 * @channel: specific channel to allocate; negative for "any unmapped channel"
 599 * @callback: optional; to be issued on DMA completion or errors
 600 * @data: passed to callback
 601 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
 602 *      Controller (TC) executes requests using this channel.  Use
 603 *      EVENTQ_DEFAULT unless you really need a high priority queue.
 604 *
 605 * This allocates a DMA channel and its associated parameter RAM slot.
 606 * The parameter RAM is initialized to hold a dummy transfer.
 607 *
 608 * Normal use is to pass a specific channel number as @channel, to make
 609 * use of hardware events mapped to that channel.  When the channel will
 610 * be used only for software triggering or event chaining, channels not
 611 * mapped to hardware events (or mapped to unused events) are preferable.
 612 *
 613 * DMA transfers start from a channel using edma_start(), or by
 614 * chaining.  When the transfer described in that channel's parameter RAM
 615 * slot completes, that slot's data may be reloaded through a link.
 616 *
 617 * DMA errors are only reported to the @callback associated with the
 618 * channel driving that transfer, but transfer completion callbacks can
 619 * be sent to another channel under control of the TCC field in
 620 * the option word of the transfer's parameter RAM set.  Drivers must not
 621 * use DMA transfer completion callbacks for channels they did not allocate.
 622 * (The same applies to TCC codes used in transfer chaining.)
 623 *
 624 * Returns the number of the channel, else negative errno.
 625 */
 626int edma_alloc_channel(int channel,
 627                void (*callback)(unsigned channel, u16 ch_status, void *data),
 628                void *data,
 629                enum dma_event_q eventq_no)
 630{
 631        unsigned i, done = 0, ctlr = 0;
 632        int ret = 0;
 633
 634        if (!unused_chan_list_done) {
 635                /*
 636                 * Scan all the platform devices to find out the EDMA channels
 637                 * used and clear them in the unused list, making the rest
 638                 * available for ARM usage.
 639                 */
 640                ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
 641                                prepare_unused_channel_list);
 642                if (ret < 0)
 643                        return ret;
 644
 645                unused_chan_list_done = true;
 646        }
 647
 648        if (channel >= 0) {
 649                ctlr = EDMA_CTLR(channel);
 650                channel = EDMA_CHAN_SLOT(channel);
 651        }
 652
 653        if (channel < 0) {
 654                for (i = 0; i < arch_num_cc; i++) {
 655                        channel = 0;
 656                        for (;;) {
 657                                channel = find_next_bit(edma_cc[i]->edma_unused,
 658                                                edma_cc[i]->num_channels,
 659                                                channel);
 660                                if (channel == edma_cc[i]->num_channels)
 661                                        break;
 662                                if (!test_and_set_bit(channel,
 663                                                edma_cc[i]->edma_inuse)) {
 664                                        done = 1;
 665                                        ctlr = i;
 666                                        break;
 667                                }
 668                                channel++;
 669                        }
 670                        if (done)
 671                                break;
 672                }
 673                if (!done)
 674                        return -ENOMEM;
 675        } else if (channel >= edma_cc[ctlr]->num_channels) {
 676                return -EINVAL;
 677        } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
 678                return -EBUSY;
 679        }
 680
 681        /* ensure access through shadow region 0 */
 682        edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
 683
 684        /* ensure no events are pending */
 685        edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
 686        memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
 687                        &dummy_paramset, PARM_SIZE);
 688
 689        if (callback)
 690                setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
 691                                        callback, data);
 692
 693        map_dmach_queue(ctlr, channel, eventq_no);
 694
 695        return EDMA_CTLR_CHAN(ctlr, channel);
 696}
 697EXPORT_SYMBOL(edma_alloc_channel);
 698
 699
 700/**
 701 * edma_free_channel - deallocate DMA channel
 702 * @channel: dma channel returned from edma_alloc_channel()
 703 *
 704 * This deallocates the DMA channel and associated parameter RAM slot
 705 * allocated by edma_alloc_channel().
 706 *
 707 * Callers are responsible for ensuring the channel is inactive, and
 708 * will not be reactivated by linking, chaining, or software calls to
 709 * edma_start().
 710 */
 711void edma_free_channel(unsigned channel)
 712{
 713        unsigned ctlr;
 714
 715        ctlr = EDMA_CTLR(channel);
 716        channel = EDMA_CHAN_SLOT(channel);
 717
 718        if (channel >= edma_cc[ctlr]->num_channels)
 719                return;
 720
 721        setup_dma_interrupt(channel, NULL, NULL);
 722        /* REVISIT should probably take out of shadow region 0 */
 723
 724        memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
 725                        &dummy_paramset, PARM_SIZE);
 726        clear_bit(channel, edma_cc[ctlr]->edma_inuse);
 727}
 728EXPORT_SYMBOL(edma_free_channel);
 729
 730/**
 731 * edma_alloc_slot - allocate DMA parameter RAM
 732 * @slot: specific slot to allocate; negative for "any unused slot"
 733 *
 734 * This allocates a parameter RAM slot, initializing it to hold a
 735 * dummy transfer.  Slots allocated using this routine have not been
 736 * mapped to a hardware DMA channel, and will normally be used by
 737 * linking to them from a slot associated with a DMA channel.
 738 *
 739 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 740 * slots may be allocated on behalf of DSP firmware.
 741 *
 742 * Returns the number of the slot, else negative errno.
 743 */
 744int edma_alloc_slot(unsigned ctlr, int slot)
 745{
 746        if (!edma_cc[ctlr])
 747                return -EINVAL;
 748
 749        if (slot >= 0)
 750                slot = EDMA_CHAN_SLOT(slot);
 751
 752        if (slot < 0) {
 753                slot = edma_cc[ctlr]->num_channels;
 754                for (;;) {
 755                        slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
 756                                        edma_cc[ctlr]->num_slots, slot);
 757                        if (slot == edma_cc[ctlr]->num_slots)
 758                                return -ENOMEM;
 759                        if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
 760                                break;
 761                }
 762        } else if (slot < edma_cc[ctlr]->num_channels ||
 763                        slot >= edma_cc[ctlr]->num_slots) {
 764                return -EINVAL;
 765        } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
 766                return -EBUSY;
 767        }
 768
 769        memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
 770                        &dummy_paramset, PARM_SIZE);
 771
 772        return EDMA_CTLR_CHAN(ctlr, slot);
 773}
 774EXPORT_SYMBOL(edma_alloc_slot);
 775
 776/**
 777 * edma_free_slot - deallocate DMA parameter RAM
 778 * @slot: parameter RAM slot returned from edma_alloc_slot()
 779 *
 780 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
 781 * Callers are responsible for ensuring the slot is inactive, and will
 782 * not be activated.
 783 */
 784void edma_free_slot(unsigned slot)
 785{
 786        unsigned ctlr;
 787
 788        ctlr = EDMA_CTLR(slot);
 789        slot = EDMA_CHAN_SLOT(slot);
 790
 791        if (slot < edma_cc[ctlr]->num_channels ||
 792                slot >= edma_cc[ctlr]->num_slots)
 793                return;
 794
 795        memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
 796                        &dummy_paramset, PARM_SIZE);
 797        clear_bit(slot, edma_cc[ctlr]->edma_inuse);
 798}
 799EXPORT_SYMBOL(edma_free_slot);
 800
 801
 802/**
 803 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
 804 * The API will return the starting point of a set of
 805 * contiguous parameter RAM slots that have been requested
 806 *
 807 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
 808 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
 809 * @count: number of contiguous Paramter RAM slots
 810 * @slot  - the start value of Parameter RAM slot that should be passed if id
 811 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
 812 *
 813 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
 814 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
 815 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
 816 *
 817 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
 818 * set of contiguous parameter RAM slots from the "slot" that is passed as an
 819 * argument to the API.
 820 *
 821 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
 822 * starts looking for a set of contiguous parameter RAMs from the "slot"
 823 * that is passed as an argument to the API. On failure the API will try to
 824 * find a set of contiguous Parameter RAM slots from the remaining Parameter
 825 * RAM slots
 826 */
 827int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
 828{
 829        /*
 830         * The start slot requested should be greater than
 831         * the number of channels and lesser than the total number
 832         * of slots
 833         */
 834        if ((id != EDMA_CONT_PARAMS_ANY) &&
 835                (slot < edma_cc[ctlr]->num_channels ||
 836                slot >= edma_cc[ctlr]->num_slots))
 837                return -EINVAL;
 838
 839        /*
 840         * The number of parameter RAM slots requested cannot be less than 1
 841         * and cannot be more than the number of slots minus the number of
 842         * channels
 843         */
 844        if (count < 1 || count >
 845                (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
 846                return -EINVAL;
 847
 848        switch (id) {
 849        case EDMA_CONT_PARAMS_ANY:
 850                return reserve_contiguous_slots(ctlr, id, count,
 851                                                 edma_cc[ctlr]->num_channels);
 852        case EDMA_CONT_PARAMS_FIXED_EXACT:
 853        case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
 854                return reserve_contiguous_slots(ctlr, id, count, slot);
 855        default:
 856                return -EINVAL;
 857        }
 858
 859}
 860EXPORT_SYMBOL(edma_alloc_cont_slots);
 861
 862/**
 863 * edma_free_cont_slots - deallocate DMA parameter RAM slots
 864 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
 865 * @count: the number of contiguous parameter RAM slots to be freed
 866 *
 867 * This deallocates the parameter RAM slots allocated by
 868 * edma_alloc_cont_slots.
 869 * Callers/applications need to keep track of sets of contiguous
 870 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
 871 * API.
 872 * Callers are responsible for ensuring the slots are inactive, and will
 873 * not be activated.
 874 */
 875int edma_free_cont_slots(unsigned slot, int count)
 876{
 877        unsigned ctlr, slot_to_free;
 878        int i;
 879
 880        ctlr = EDMA_CTLR(slot);
 881        slot = EDMA_CHAN_SLOT(slot);
 882
 883        if (slot < edma_cc[ctlr]->num_channels ||
 884                slot >= edma_cc[ctlr]->num_slots ||
 885                count < 1)
 886                return -EINVAL;
 887
 888        for (i = slot; i < slot + count; ++i) {
 889                ctlr = EDMA_CTLR(i);
 890                slot_to_free = EDMA_CHAN_SLOT(i);
 891
 892                memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
 893                        &dummy_paramset, PARM_SIZE);
 894                clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
 895        }
 896
 897        return 0;
 898}
 899EXPORT_SYMBOL(edma_free_cont_slots);
 900
 901/*-----------------------------------------------------------------------*/
 902
 903/* Parameter RAM operations (i) -- read/write partial slots */
 904
 905/**
 906 * edma_set_src - set initial DMA source address in parameter RAM slot
 907 * @slot: parameter RAM slot being configured
 908 * @src_port: physical address of source (memory, controller FIFO, etc)
 909 * @addressMode: INCR, except in very rare cases
 910 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
 911 *      width to use when addressing the fifo (e.g. W8BIT, W32BIT)
 912 *
 913 * Note that the source address is modified during the DMA transfer
 914 * according to edma_set_src_index().
 915 */
 916void edma_set_src(unsigned slot, dma_addr_t src_port,
 917                                enum address_mode mode, enum fifo_width width)
 918{
 919        unsigned ctlr;
 920
 921        ctlr = EDMA_CTLR(slot);
 922        slot = EDMA_CHAN_SLOT(slot);
 923
 924        if (slot < edma_cc[ctlr]->num_slots) {
 925                unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
 926
 927                if (mode) {
 928                        /* set SAM and program FWID */
 929                        i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
 930                } else {
 931                        /* clear SAM */
 932                        i &= ~SAM;
 933                }
 934                edma_parm_write(ctlr, PARM_OPT, slot, i);
 935
 936                /* set the source port address
 937                   in source register of param structure */
 938                edma_parm_write(ctlr, PARM_SRC, slot, src_port);
 939        }
 940}
 941EXPORT_SYMBOL(edma_set_src);
 942
 943/**
 944 * edma_set_dest - set initial DMA destination address in parameter RAM slot
 945 * @slot: parameter RAM slot being configured
 946 * @dest_port: physical address of destination (memory, controller FIFO, etc)
 947 * @addressMode: INCR, except in very rare cases
 948 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
 949 *      width to use when addressing the fifo (e.g. W8BIT, W32BIT)
 950 *
 951 * Note that the destination address is modified during the DMA transfer
 952 * according to edma_set_dest_index().
 953 */
 954void edma_set_dest(unsigned slot, dma_addr_t dest_port,
 955                                 enum address_mode mode, enum fifo_width width)
 956{
 957        unsigned ctlr;
 958
 959        ctlr = EDMA_CTLR(slot);
 960        slot = EDMA_CHAN_SLOT(slot);
 961
 962        if (slot < edma_cc[ctlr]->num_slots) {
 963                unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
 964
 965                if (mode) {
 966                        /* set DAM and program FWID */
 967                        i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
 968                } else {
 969                        /* clear DAM */
 970                        i &= ~DAM;
 971                }
 972                edma_parm_write(ctlr, PARM_OPT, slot, i);
 973                /* set the destination port address
 974                   in dest register of param structure */
 975                edma_parm_write(ctlr, PARM_DST, slot, dest_port);
 976        }
 977}
 978EXPORT_SYMBOL(edma_set_dest);
 979
 980/**
 981 * edma_get_position - returns the current transfer points
 982 * @slot: parameter RAM slot being examined
 983 * @src: pointer to source port position
 984 * @dst: pointer to destination port position
 985 *
 986 * Returns current source and destination addresses for a particular
 987 * parameter RAM slot.  Its channel should not be active when this is called.
 988 */
 989void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
 990{
 991        struct edmacc_param temp;
 992        unsigned ctlr;
 993
 994        ctlr = EDMA_CTLR(slot);
 995        slot = EDMA_CHAN_SLOT(slot);
 996
 997        edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
 998        if (src != NULL)
 999                *src = temp.src;
1000        if (dst != NULL)
1001                *dst = temp.dst;
1002}
1003EXPORT_SYMBOL(edma_get_position);
1004
1005/**
1006 * edma_set_src_index - configure DMA source address indexing
1007 * @slot: parameter RAM slot being configured
1008 * @src_bidx: byte offset between source arrays in a frame
1009 * @src_cidx: byte offset between source frames in a block
1010 *
1011 * Offsets are specified to support either contiguous or discontiguous
1012 * memory transfers, or repeated access to a hardware register, as needed.
1013 * When accessing hardware registers, both offsets are normally zero.
1014 */
1015void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1016{
1017        unsigned ctlr;
1018
1019        ctlr = EDMA_CTLR(slot);
1020        slot = EDMA_CHAN_SLOT(slot);
1021
1022        if (slot < edma_cc[ctlr]->num_slots) {
1023                edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1024                                0xffff0000, src_bidx);
1025                edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1026                                0xffff0000, src_cidx);
1027        }
1028}
1029EXPORT_SYMBOL(edma_set_src_index);
1030
1031/**
1032 * edma_set_dest_index - configure DMA destination address indexing
1033 * @slot: parameter RAM slot being configured
1034 * @dest_bidx: byte offset between destination arrays in a frame
1035 * @dest_cidx: byte offset between destination frames in a block
1036 *
1037 * Offsets are specified to support either contiguous or discontiguous
1038 * memory transfers, or repeated access to a hardware register, as needed.
1039 * When accessing hardware registers, both offsets are normally zero.
1040 */
1041void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1042{
1043        unsigned ctlr;
1044
1045        ctlr = EDMA_CTLR(slot);
1046        slot = EDMA_CHAN_SLOT(slot);
1047
1048        if (slot < edma_cc[ctlr]->num_slots) {
1049                edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
1050                                0x0000ffff, dest_bidx << 16);
1051                edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
1052                                0x0000ffff, dest_cidx << 16);
1053        }
1054}
1055EXPORT_SYMBOL(edma_set_dest_index);
1056
1057/**
1058 * edma_set_transfer_params - configure DMA transfer parameters
1059 * @slot: parameter RAM slot being configured
1060 * @acnt: how many bytes per array (at least one)
1061 * @bcnt: how many arrays per frame (at least one)
1062 * @ccnt: how many frames per block (at least one)
1063 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1064 *      the value to reload into bcnt when it decrements to zero
1065 * @sync_mode: ASYNC or ABSYNC
1066 *
1067 * See the EDMA3 documentation to understand how to configure and link
1068 * transfers using the fields in PaRAM slots.  If you are not doing it
1069 * all at once with edma_write_slot(), you will use this routine
1070 * plus two calls each for source and destination, setting the initial
1071 * address and saying how to index that address.
1072 *
1073 * An example of an A-Synchronized transfer is a serial link using a
1074 * single word shift register.  In that case, @acnt would be equal to
1075 * that word size; the serial controller issues a DMA synchronization
1076 * event to transfer each word, and memory access by the DMA transfer
1077 * controller will be word-at-a-time.
1078 *
1079 * An example of an AB-Synchronized transfer is a device using a FIFO.
1080 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1081 * The controller with the FIFO issues DMA synchronization events when
1082 * the FIFO threshold is reached, and the DMA transfer controller will
1083 * transfer one frame to (or from) the FIFO.  It will probably use
1084 * efficient burst modes to access memory.
1085 */
1086void edma_set_transfer_params(unsigned slot,
1087                u16 acnt, u16 bcnt, u16 ccnt,
1088                u16 bcnt_rld, enum sync_dimension sync_mode)
1089{
1090        unsigned ctlr;
1091
1092        ctlr = EDMA_CTLR(slot);
1093        slot = EDMA_CHAN_SLOT(slot);
1094
1095        if (slot < edma_cc[ctlr]->num_slots) {
1096                edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
1097                                0x0000ffff, bcnt_rld << 16);
1098                if (sync_mode == ASYNC)
1099                        edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
1100                else
1101                        edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
1102                /* Set the acount, bcount, ccount registers */
1103                edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1104                edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
1105        }
1106}
1107EXPORT_SYMBOL(edma_set_transfer_params);
1108
1109/**
1110 * edma_link - link one parameter RAM slot to another
1111 * @from: parameter RAM slot originating the link
1112 * @to: parameter RAM slot which is the link target
1113 *
1114 * The originating slot should not be part of any active DMA transfer.
1115 */
1116void edma_link(unsigned from, unsigned to)
1117{
1118        unsigned ctlr_from, ctlr_to;
1119
1120        ctlr_from = EDMA_CTLR(from);
1121        from = EDMA_CHAN_SLOT(from);
1122        ctlr_to = EDMA_CTLR(to);
1123        to = EDMA_CHAN_SLOT(to);
1124
1125        if (from >= edma_cc[ctlr_from]->num_slots)
1126                return;
1127        if (to >= edma_cc[ctlr_to]->num_slots)
1128                return;
1129        edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1130                                PARM_OFFSET(to));
1131}
1132EXPORT_SYMBOL(edma_link);
1133
1134/**
1135 * edma_unlink - cut link from one parameter RAM slot
1136 * @from: parameter RAM slot originating the link
1137 *
1138 * The originating slot should not be part of any active DMA transfer.
1139 * Its link is set to 0xffff.
1140 */
1141void edma_unlink(unsigned from)
1142{
1143        unsigned ctlr;
1144
1145        ctlr = EDMA_CTLR(from);
1146        from = EDMA_CHAN_SLOT(from);
1147
1148        if (from >= edma_cc[ctlr]->num_slots)
1149                return;
1150        edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
1151}
1152EXPORT_SYMBOL(edma_unlink);
1153
1154/*-----------------------------------------------------------------------*/
1155
1156/* Parameter RAM operations (ii) -- read/write whole parameter sets */
1157
1158/**
1159 * edma_write_slot - write parameter RAM data for slot
1160 * @slot: number of parameter RAM slot being modified
1161 * @param: data to be written into parameter RAM slot
1162 *
1163 * Use this to assign all parameters of a transfer at once.  This
1164 * allows more efficient setup of transfers than issuing multiple
1165 * calls to set up those parameters in small pieces, and provides
1166 * complete control over all transfer options.
1167 */
1168void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1169{
1170        unsigned ctlr;
1171
1172        ctlr = EDMA_CTLR(slot);
1173        slot = EDMA_CHAN_SLOT(slot);
1174
1175        if (slot >= edma_cc[ctlr]->num_slots)
1176                return;
1177        memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1178                        PARM_SIZE);
1179}
1180EXPORT_SYMBOL(edma_write_slot);
1181
1182/**
1183 * edma_read_slot - read parameter RAM data from slot
1184 * @slot: number of parameter RAM slot being copied
1185 * @param: where to store copy of parameter RAM data
1186 *
1187 * Use this to read data from a parameter RAM slot, perhaps to
1188 * save them as a template for later reuse.
1189 */
1190void edma_read_slot(unsigned slot, struct edmacc_param *param)
1191{
1192        unsigned ctlr;
1193
1194        ctlr = EDMA_CTLR(slot);
1195        slot = EDMA_CHAN_SLOT(slot);
1196
1197        if (slot >= edma_cc[ctlr]->num_slots)
1198                return;
1199        memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1200                        PARM_SIZE);
1201}
1202EXPORT_SYMBOL(edma_read_slot);
1203
1204/*-----------------------------------------------------------------------*/
1205
1206/* Various EDMA channel control operations */
1207
1208/**
1209 * edma_pause - pause dma on a channel
1210 * @channel: on which edma_start() has been called
1211 *
1212 * This temporarily disables EDMA hardware events on the specified channel,
1213 * preventing them from triggering new transfers on its behalf
1214 */
1215void edma_pause(unsigned channel)
1216{
1217        unsigned ctlr;
1218
1219        ctlr = EDMA_CTLR(channel);
1220        channel = EDMA_CHAN_SLOT(channel);
1221
1222        if (channel < edma_cc[ctlr]->num_channels) {
1223                unsigned int mask = BIT(channel & 0x1f);
1224
1225                edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
1226        }
1227}
1228EXPORT_SYMBOL(edma_pause);
1229
1230/**
1231 * edma_resume - resumes dma on a paused channel
1232 * @channel: on which edma_pause() has been called
1233 *
1234 * This re-enables EDMA hardware events on the specified channel.
1235 */
1236void edma_resume(unsigned channel)
1237{
1238        unsigned ctlr;
1239
1240        ctlr = EDMA_CTLR(channel);
1241        channel = EDMA_CHAN_SLOT(channel);
1242
1243        if (channel < edma_cc[ctlr]->num_channels) {
1244                unsigned int mask = BIT(channel & 0x1f);
1245
1246                edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
1247        }
1248}
1249EXPORT_SYMBOL(edma_resume);
1250
1251/**
1252 * edma_start - start dma on a channel
1253 * @channel: channel being activated
1254 *
1255 * Channels with event associations will be triggered by their hardware
1256 * events, and channels without such associations will be triggered by
1257 * software.  (At this writing there is no interface for using software
1258 * triggers except with channels that don't support hardware triggers.)
1259 *
1260 * Returns zero on success, else negative errno.
1261 */
1262int edma_start(unsigned channel)
1263{
1264        unsigned ctlr;
1265
1266        ctlr = EDMA_CTLR(channel);
1267        channel = EDMA_CHAN_SLOT(channel);
1268
1269        if (channel < edma_cc[ctlr]->num_channels) {
1270                int j = channel >> 5;
1271                unsigned int mask = BIT(channel & 0x1f);
1272
1273                /* EDMA channels without event association */
1274                if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
1275                        pr_debug("EDMA: ESR%d %08x\n", j,
1276                                edma_shadow0_read_array(ctlr, SH_ESR, j));
1277                        edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
1278                        return 0;
1279                }
1280
1281                /* EDMA channel with event association */
1282                pr_debug("EDMA: ER%d %08x\n", j,
1283                        edma_shadow0_read_array(ctlr, SH_ER, j));
1284                /* Clear any pending event or error */
1285                edma_write_array(ctlr, EDMA_ECR, j, mask);
1286                edma_write_array(ctlr, EDMA_EMCR, j, mask);
1287                /* Clear any SER */
1288                edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1289                edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
1290                pr_debug("EDMA: EER%d %08x\n", j,
1291                        edma_shadow0_read_array(ctlr, SH_EER, j));
1292                return 0;
1293        }
1294
1295        return -EINVAL;
1296}
1297EXPORT_SYMBOL(edma_start);
1298
1299/**
1300 * edma_stop - stops dma on the channel passed
1301 * @channel: channel being deactivated
1302 *
1303 * When @lch is a channel, any active transfer is paused and
1304 * all pending hardware events are cleared.  The current transfer
1305 * may not be resumed, and the channel's Parameter RAM should be
1306 * reinitialized before being reused.
1307 */
1308void edma_stop(unsigned channel)
1309{
1310        unsigned ctlr;
1311
1312        ctlr = EDMA_CTLR(channel);
1313        channel = EDMA_CHAN_SLOT(channel);
1314
1315        if (channel < edma_cc[ctlr]->num_channels) {
1316                int j = channel >> 5;
1317                unsigned int mask = BIT(channel & 0x1f);
1318
1319                edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1320                edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1321                edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1322                edma_write_array(ctlr, EDMA_EMCR, j, mask);
1323
1324                pr_debug("EDMA: EER%d %08x\n", j,
1325                                edma_shadow0_read_array(ctlr, SH_EER, j));
1326
1327                /* REVISIT:  consider guarding against inappropriate event
1328                 * chaining by overwriting with dummy_paramset.
1329                 */
1330        }
1331}
1332EXPORT_SYMBOL(edma_stop);
1333
1334/******************************************************************************
1335 *
1336 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1337 * been removed before EDMA has finished.It is usedful for removable media.
1338 * Arguments:
1339 *      ch_no     - channel no
1340 *
1341 * Return: zero on success, or corresponding error no on failure
1342 *
1343 * FIXME this should not be needed ... edma_stop() should suffice.
1344 *
1345 *****************************************************************************/
1346
1347void edma_clean_channel(unsigned channel)
1348{
1349        unsigned ctlr;
1350
1351        ctlr = EDMA_CTLR(channel);
1352        channel = EDMA_CHAN_SLOT(channel);
1353
1354        if (channel < edma_cc[ctlr]->num_channels) {
1355                int j = (channel >> 5);
1356                unsigned int mask = BIT(channel & 0x1f);
1357
1358                pr_debug("EDMA: EMR%d %08x\n", j,
1359                                edma_read_array(ctlr, EDMA_EMR, j));
1360                edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1361                /* Clear the corresponding EMR bits */
1362                edma_write_array(ctlr, EDMA_EMCR, j, mask);
1363                /* Clear any SER */
1364                edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1365                edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
1366        }
1367}
1368EXPORT_SYMBOL(edma_clean_channel);
1369
1370/*
1371 * edma_clear_event - clear an outstanding event on the DMA channel
1372 * Arguments:
1373 *      channel - channel number
1374 */
1375void edma_clear_event(unsigned channel)
1376{
1377        unsigned ctlr;
1378
1379        ctlr = EDMA_CTLR(channel);
1380        channel = EDMA_CHAN_SLOT(channel);
1381
1382        if (channel >= edma_cc[ctlr]->num_channels)
1383                return;
1384        if (channel < 32)
1385                edma_write(ctlr, EDMA_ECR, BIT(channel));
1386        else
1387                edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
1388}
1389EXPORT_SYMBOL(edma_clear_event);
1390
1391/*-----------------------------------------------------------------------*/
1392
1393static int __init edma_probe(struct platform_device *pdev)
1394{
1395        struct edma_soc_info    **info = pdev->dev.platform_data;
1396        const s8                (*queue_priority_mapping)[2];
1397        const s8                (*queue_tc_mapping)[2];
1398        int                     i, j, off, ln, found = 0;
1399        int                     status = -1;
1400        const s16               (*rsv_chans)[2];
1401        const s16               (*rsv_slots)[2];
1402        int                     irq[EDMA_MAX_CC] = {0, 0};
1403        int                     err_irq[EDMA_MAX_CC] = {0, 0};
1404        struct resource         *r[EDMA_MAX_CC] = {NULL};
1405        resource_size_t         len[EDMA_MAX_CC];
1406        char                    res_name[10];
1407        char                    irq_name[10];
1408
1409        if (!info)
1410                return -ENODEV;
1411
1412        for (j = 0; j < EDMA_MAX_CC; j++) {
1413                sprintf(res_name, "edma_cc%d", j);
1414                r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1415                                                res_name);
1416                if (!r[j] || !info[j]) {
1417                        if (found)
1418                                break;
1419                        else
1420                                return -ENODEV;
1421                } else {
1422                        found = 1;
1423                }
1424
1425                len[j] = resource_size(r[j]);
1426
1427                r[j] = request_mem_region(r[j]->start, len[j],
1428                        dev_name(&pdev->dev));
1429                if (!r[j]) {
1430                        status = -EBUSY;
1431                        goto fail1;
1432                }
1433
1434                edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
1435                if (!edmacc_regs_base[j]) {
1436                        status = -EBUSY;
1437                        goto fail1;
1438                }
1439
1440                edma_cc[j] = kzalloc(sizeof(struct edma), GFP_KERNEL);
1441                if (!edma_cc[j]) {
1442                        status = -ENOMEM;
1443                        goto fail1;
1444                }
1445
1446                edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
1447                                                        EDMA_MAX_DMACH);
1448                edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
1449                                                        EDMA_MAX_PARAMENTRY);
1450                edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
1451                                                        EDMA_MAX_CC);
1452
1453                edma_cc[j]->default_queue = info[j]->default_queue;
1454
1455                dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1456                        edmacc_regs_base[j]);
1457
1458                for (i = 0; i < edma_cc[j]->num_slots; i++)
1459                        memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1460                                        &dummy_paramset, PARM_SIZE);
1461
1462                /* Mark all channels as unused */
1463                memset(edma_cc[j]->edma_unused, 0xff,
1464                        sizeof(edma_cc[j]->edma_unused));
1465
1466                if (info[j]->rsv) {
1467
1468                        /* Clear the reserved channels in unused list */
1469                        rsv_chans = info[j]->rsv->rsv_chans;
1470                        if (rsv_chans) {
1471                                for (i = 0; rsv_chans[i][0] != -1; i++) {
1472                                        off = rsv_chans[i][0];
1473                                        ln = rsv_chans[i][1];
1474                                        clear_bits(off, ln,
1475                                                edma_cc[j]->edma_unused);
1476                                }
1477                        }
1478
1479                        /* Set the reserved slots in inuse list */
1480                        rsv_slots = info[j]->rsv->rsv_slots;
1481                        if (rsv_slots) {
1482                                for (i = 0; rsv_slots[i][0] != -1; i++) {
1483                                        off = rsv_slots[i][0];
1484                                        ln = rsv_slots[i][1];
1485                                        set_bits(off, ln,
1486                                                edma_cc[j]->edma_inuse);
1487                                }
1488                        }
1489                }
1490
1491                sprintf(irq_name, "edma%d", j);
1492                irq[j] = platform_get_irq_byname(pdev, irq_name);
1493                edma_cc[j]->irq_res_start = irq[j];
1494                status = request_irq(irq[j], dma_irq_handler, 0, "edma",
1495                                        &pdev->dev);
1496                if (status < 0) {
1497                        dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1498                                irq[j], status);
1499                        goto fail;
1500                }
1501
1502                sprintf(irq_name, "edma%d_err", j);
1503                err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1504                edma_cc[j]->irq_res_end = err_irq[j];
1505                status = request_irq(err_irq[j], dma_ccerr_handler, 0,
1506                                        "edma_error", &pdev->dev);
1507                if (status < 0) {
1508                        dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1509                                err_irq[j], status);
1510                        goto fail;
1511                }
1512
1513                for (i = 0; i < edma_cc[j]->num_channels; i++)
1514                        map_dmach_queue(j, i, info[j]->default_queue);
1515
1516                queue_tc_mapping = info[j]->queue_tc_mapping;
1517                queue_priority_mapping = info[j]->queue_priority_mapping;
1518
1519                /* Event queue to TC mapping */
1520                for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1521                        map_queue_tc(j, queue_tc_mapping[i][0],
1522                                        queue_tc_mapping[i][1]);
1523
1524                /* Event queue priority mapping */
1525                for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1526                        assign_priority_to_queue(j,
1527                                                queue_priority_mapping[i][0],
1528                                                queue_priority_mapping[i][1]);
1529
1530                /* Map the channel to param entry if channel mapping logic
1531                 * exist
1532                 */
1533                if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1534                        map_dmach_param(j);
1535
1536                for (i = 0; i < info[j]->n_region; i++) {
1537                        edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1538                        edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1539                        edma_write_array(j, EDMA_QRAE, i, 0x0);
1540                }
1541                arch_num_cc++;
1542        }
1543
1544        if (tc_errs_handled) {
1545                status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
1546                                        "edma_tc0", &pdev->dev);
1547                if (status < 0) {
1548                        dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1549                                IRQ_TCERRINT0, status);
1550                        return status;
1551                }
1552                status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
1553                                        "edma_tc1", &pdev->dev);
1554                if (status < 0) {
1555                        dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
1556                                IRQ_TCERRINT, status);
1557                        return status;
1558                }
1559        }
1560
1561        return 0;
1562
1563fail:
1564        for (i = 0; i < EDMA_MAX_CC; i++) {
1565                if (err_irq[i])
1566                        free_irq(err_irq[i], &pdev->dev);
1567                if (irq[i])
1568                        free_irq(irq[i], &pdev->dev);
1569        }
1570fail1:
1571        for (i = 0; i < EDMA_MAX_CC; i++) {
1572                if (r[i])
1573                        release_mem_region(r[i]->start, len[i]);
1574                if (edmacc_regs_base[i])
1575                        iounmap(edmacc_regs_base[i]);
1576                kfree(edma_cc[i]);
1577        }
1578        return status;
1579}
1580
1581
1582static struct platform_driver edma_driver = {
1583        .driver.name    = "edma",
1584};
1585
1586static int __init edma_init(void)
1587{
1588        return platform_driver_probe(&edma_driver, edma_probe);
1589}
1590arch_initcall(edma_init);
1591
1592