linux/arch/arm/mm/mmu.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sizes.h>
  20
  21#include <asm/cp15.h>
  22#include <asm/cputype.h>
  23#include <asm/sections.h>
  24#include <asm/cachetype.h>
  25#include <asm/setup.h>
  26#include <asm/smp_plat.h>
  27#include <asm/tlb.h>
  28#include <asm/highmem.h>
  29#include <asm/system_info.h>
  30#include <asm/traps.h>
  31
  32#include <asm/mach/arch.h>
  33#include <asm/mach/map.h>
  34#include <asm/mach/pci.h>
  35
  36#include "mm.h"
  37#include "tcm.h"
  38
  39/*
  40 * empty_zero_page is a special page that is used for
  41 * zero-initialized data and COW.
  42 */
  43struct page *empty_zero_page;
  44EXPORT_SYMBOL(empty_zero_page);
  45
  46/*
  47 * The pmd table for the upper-most set of pages.
  48 */
  49pmd_t *top_pmd;
  50
  51#define CPOLICY_UNCACHED        0
  52#define CPOLICY_BUFFERED        1
  53#define CPOLICY_WRITETHROUGH    2
  54#define CPOLICY_WRITEBACK       3
  55#define CPOLICY_WRITEALLOC      4
  56
  57static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  58static unsigned int ecc_mask __initdata = 0;
  59pgprot_t pgprot_user;
  60pgprot_t pgprot_kernel;
  61pgprot_t pgprot_hyp_device;
  62pgprot_t pgprot_s2;
  63pgprot_t pgprot_s2_device;
  64
  65EXPORT_SYMBOL(pgprot_user);
  66EXPORT_SYMBOL(pgprot_kernel);
  67
  68struct cachepolicy {
  69        const char      policy[16];
  70        unsigned int    cr_mask;
  71        pmdval_t        pmd;
  72        pteval_t        pte;
  73        pteval_t        pte_s2;
  74};
  75
  76#ifdef CONFIG_ARM_LPAE
  77#define s2_policy(policy)       policy
  78#else
  79#define s2_policy(policy)       0
  80#endif
  81
  82static struct cachepolicy cache_policies[] __initdata = {
  83        {
  84                .policy         = "uncached",
  85                .cr_mask        = CR_W|CR_C,
  86                .pmd            = PMD_SECT_UNCACHED,
  87                .pte            = L_PTE_MT_UNCACHED,
  88                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
  89        }, {
  90                .policy         = "buffered",
  91                .cr_mask        = CR_C,
  92                .pmd            = PMD_SECT_BUFFERED,
  93                .pte            = L_PTE_MT_BUFFERABLE,
  94                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
  95        }, {
  96                .policy         = "writethrough",
  97                .cr_mask        = 0,
  98                .pmd            = PMD_SECT_WT,
  99                .pte            = L_PTE_MT_WRITETHROUGH,
 100                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 101        }, {
 102                .policy         = "writeback",
 103                .cr_mask        = 0,
 104                .pmd            = PMD_SECT_WB,
 105                .pte            = L_PTE_MT_WRITEBACK,
 106                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 107        }, {
 108                .policy         = "writealloc",
 109                .cr_mask        = 0,
 110                .pmd            = PMD_SECT_WBWA,
 111                .pte            = L_PTE_MT_WRITEALLOC,
 112                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 113        }
 114};
 115
 116#ifdef CONFIG_CPU_CP15
 117/*
 118 * These are useful for identifying cache coherency
 119 * problems by allowing the cache or the cache and
 120 * writebuffer to be turned off.  (Note: the write
 121 * buffer should not be on and the cache off).
 122 */
 123static int __init early_cachepolicy(char *p)
 124{
 125        int i;
 126
 127        for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 128                int len = strlen(cache_policies[i].policy);
 129
 130                if (memcmp(p, cache_policies[i].policy, len) == 0) {
 131                        cachepolicy = i;
 132                        cr_alignment &= ~cache_policies[i].cr_mask;
 133                        cr_no_alignment &= ~cache_policies[i].cr_mask;
 134                        break;
 135                }
 136        }
 137        if (i == ARRAY_SIZE(cache_policies))
 138                printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
 139        /*
 140         * This restriction is partly to do with the way we boot; it is
 141         * unpredictable to have memory mapped using two different sets of
 142         * memory attributes (shared, type, and cache attribs).  We can not
 143         * change these attributes once the initial assembly has setup the
 144         * page tables.
 145         */
 146        if (cpu_architecture() >= CPU_ARCH_ARMv6) {
 147                printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
 148                cachepolicy = CPOLICY_WRITEBACK;
 149        }
 150        flush_cache_all();
 151        set_cr(cr_alignment);
 152        return 0;
 153}
 154early_param("cachepolicy", early_cachepolicy);
 155
 156static int __init early_nocache(char *__unused)
 157{
 158        char *p = "buffered";
 159        printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
 160        early_cachepolicy(p);
 161        return 0;
 162}
 163early_param("nocache", early_nocache);
 164
 165static int __init early_nowrite(char *__unused)
 166{
 167        char *p = "uncached";
 168        printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
 169        early_cachepolicy(p);
 170        return 0;
 171}
 172early_param("nowb", early_nowrite);
 173
 174#ifndef CONFIG_ARM_LPAE
 175static int __init early_ecc(char *p)
 176{
 177        if (memcmp(p, "on", 2) == 0)
 178                ecc_mask = PMD_PROTECTION;
 179        else if (memcmp(p, "off", 3) == 0)
 180                ecc_mask = 0;
 181        return 0;
 182}
 183early_param("ecc", early_ecc);
 184#endif
 185
 186static int __init noalign_setup(char *__unused)
 187{
 188        cr_alignment &= ~CR_A;
 189        cr_no_alignment &= ~CR_A;
 190        set_cr(cr_alignment);
 191        return 1;
 192}
 193__setup("noalign", noalign_setup);
 194
 195#ifndef CONFIG_SMP
 196void adjust_cr(unsigned long mask, unsigned long set)
 197{
 198        unsigned long flags;
 199
 200        mask &= ~CR_A;
 201
 202        set &= mask;
 203
 204        local_irq_save(flags);
 205
 206        cr_no_alignment = (cr_no_alignment & ~mask) | set;
 207        cr_alignment = (cr_alignment & ~mask) | set;
 208
 209        set_cr((get_cr() & ~mask) | set);
 210
 211        local_irq_restore(flags);
 212}
 213#endif
 214
 215#else /* ifdef CONFIG_CPU_CP15 */
 216
 217static int __init early_cachepolicy(char *p)
 218{
 219        pr_warning("cachepolicy kernel parameter not supported without cp15\n");
 220}
 221early_param("cachepolicy", early_cachepolicy);
 222
 223static int __init noalign_setup(char *__unused)
 224{
 225        pr_warning("noalign kernel parameter not supported without cp15\n");
 226}
 227__setup("noalign", noalign_setup);
 228
 229#endif /* ifdef CONFIG_CPU_CP15 / else */
 230
 231#define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 232#define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 233
 234static struct mem_type mem_types[] = {
 235        [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
 236                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 237                                  L_PTE_SHARED,
 238                .prot_l1        = PMD_TYPE_TABLE,
 239                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
 240                .domain         = DOMAIN_IO,
 241        },
 242        [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 243                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 244                .prot_l1        = PMD_TYPE_TABLE,
 245                .prot_sect      = PROT_SECT_DEVICE,
 246                .domain         = DOMAIN_IO,
 247        },
 248        [MT_DEVICE_CACHED] = {    /* ioremap_cached */
 249                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 250                .prot_l1        = PMD_TYPE_TABLE,
 251                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
 252                .domain         = DOMAIN_IO,
 253        },
 254        [MT_DEVICE_WC] = {      /* ioremap_wc */
 255                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 256                .prot_l1        = PMD_TYPE_TABLE,
 257                .prot_sect      = PROT_SECT_DEVICE,
 258                .domain         = DOMAIN_IO,
 259        },
 260        [MT_UNCACHED] = {
 261                .prot_pte       = PROT_PTE_DEVICE,
 262                .prot_l1        = PMD_TYPE_TABLE,
 263                .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
 264                .domain         = DOMAIN_IO,
 265        },
 266        [MT_CACHECLEAN] = {
 267                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 268                .domain    = DOMAIN_KERNEL,
 269        },
 270#ifndef CONFIG_ARM_LPAE
 271        [MT_MINICLEAN] = {
 272                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 273                .domain    = DOMAIN_KERNEL,
 274        },
 275#endif
 276        [MT_LOW_VECTORS] = {
 277                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 278                                L_PTE_RDONLY,
 279                .prot_l1   = PMD_TYPE_TABLE,
 280                .domain    = DOMAIN_USER,
 281        },
 282        [MT_HIGH_VECTORS] = {
 283                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 284                                L_PTE_USER | L_PTE_RDONLY,
 285                .prot_l1   = PMD_TYPE_TABLE,
 286                .domain    = DOMAIN_USER,
 287        },
 288        [MT_MEMORY] = {
 289                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 290                .prot_l1   = PMD_TYPE_TABLE,
 291                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 292                .domain    = DOMAIN_KERNEL,
 293        },
 294        [MT_ROM] = {
 295                .prot_sect = PMD_TYPE_SECT,
 296                .domain    = DOMAIN_KERNEL,
 297        },
 298        [MT_MEMORY_NONCACHED] = {
 299                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 300                                L_PTE_MT_BUFFERABLE,
 301                .prot_l1   = PMD_TYPE_TABLE,
 302                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 303                .domain    = DOMAIN_KERNEL,
 304        },
 305        [MT_MEMORY_DTCM] = {
 306                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 307                                L_PTE_XN,
 308                .prot_l1   = PMD_TYPE_TABLE,
 309                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 310                .domain    = DOMAIN_KERNEL,
 311        },
 312        [MT_MEMORY_ITCM] = {
 313                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 314                .prot_l1   = PMD_TYPE_TABLE,
 315                .domain    = DOMAIN_KERNEL,
 316        },
 317        [MT_MEMORY_SO] = {
 318                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 319                                L_PTE_MT_UNCACHED | L_PTE_XN,
 320                .prot_l1   = PMD_TYPE_TABLE,
 321                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 322                                PMD_SECT_UNCACHED | PMD_SECT_XN,
 323                .domain    = DOMAIN_KERNEL,
 324        },
 325        [MT_MEMORY_DMA_READY] = {
 326                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 327                .prot_l1   = PMD_TYPE_TABLE,
 328                .domain    = DOMAIN_KERNEL,
 329        },
 330};
 331
 332const struct mem_type *get_mem_type(unsigned int type)
 333{
 334        return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 335}
 336EXPORT_SYMBOL(get_mem_type);
 337
 338/*
 339 * Adjust the PMD section entries according to the CPU in use.
 340 */
 341static void __init build_mem_type_table(void)
 342{
 343        struct cachepolicy *cp;
 344        unsigned int cr = get_cr();
 345        pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 346        pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 347        int cpu_arch = cpu_architecture();
 348        int i;
 349
 350        if (cpu_arch < CPU_ARCH_ARMv6) {
 351#if defined(CONFIG_CPU_DCACHE_DISABLE)
 352                if (cachepolicy > CPOLICY_BUFFERED)
 353                        cachepolicy = CPOLICY_BUFFERED;
 354#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 355                if (cachepolicy > CPOLICY_WRITETHROUGH)
 356                        cachepolicy = CPOLICY_WRITETHROUGH;
 357#endif
 358        }
 359        if (cpu_arch < CPU_ARCH_ARMv5) {
 360                if (cachepolicy >= CPOLICY_WRITEALLOC)
 361                        cachepolicy = CPOLICY_WRITEBACK;
 362                ecc_mask = 0;
 363        }
 364        if (is_smp())
 365                cachepolicy = CPOLICY_WRITEALLOC;
 366
 367        /*
 368         * Strip out features not present on earlier architectures.
 369         * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 370         * without extended page tables don't have the 'Shared' bit.
 371         */
 372        if (cpu_arch < CPU_ARCH_ARMv5)
 373                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 374                        mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 375        if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 376                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 377                        mem_types[i].prot_sect &= ~PMD_SECT_S;
 378
 379        /*
 380         * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 381         * "update-able on write" bit on ARM610).  However, Xscale and
 382         * Xscale3 require this bit to be cleared.
 383         */
 384        if (cpu_is_xscale() || cpu_is_xsc3()) {
 385                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 386                        mem_types[i].prot_sect &= ~PMD_BIT4;
 387                        mem_types[i].prot_l1 &= ~PMD_BIT4;
 388                }
 389        } else if (cpu_arch < CPU_ARCH_ARMv6) {
 390                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 391                        if (mem_types[i].prot_l1)
 392                                mem_types[i].prot_l1 |= PMD_BIT4;
 393                        if (mem_types[i].prot_sect)
 394                                mem_types[i].prot_sect |= PMD_BIT4;
 395                }
 396        }
 397
 398        /*
 399         * Mark the device areas according to the CPU/architecture.
 400         */
 401        if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 402                if (!cpu_is_xsc3()) {
 403                        /*
 404                         * Mark device regions on ARMv6+ as execute-never
 405                         * to prevent speculative instruction fetches.
 406                         */
 407                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 408                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 409                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 410                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 411                }
 412                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 413                        /*
 414                         * For ARMv7 with TEX remapping,
 415                         * - shared device is SXCB=1100
 416                         * - nonshared device is SXCB=0100
 417                         * - write combine device mem is SXCB=0001
 418                         * (Uncached Normal memory)
 419                         */
 420                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 421                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 422                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 423                } else if (cpu_is_xsc3()) {
 424                        /*
 425                         * For Xscale3,
 426                         * - shared device is TEXCB=00101
 427                         * - nonshared device is TEXCB=01000
 428                         * - write combine device mem is TEXCB=00100
 429                         * (Inner/Outer Uncacheable in xsc3 parlance)
 430                         */
 431                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 432                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 433                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 434                } else {
 435                        /*
 436                         * For ARMv6 and ARMv7 without TEX remapping,
 437                         * - shared device is TEXCB=00001
 438                         * - nonshared device is TEXCB=01000
 439                         * - write combine device mem is TEXCB=00100
 440                         * (Uncached Normal in ARMv6 parlance).
 441                         */
 442                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 443                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 444                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 445                }
 446        } else {
 447                /*
 448                 * On others, write combining is "Uncached/Buffered"
 449                 */
 450                mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 451        }
 452
 453        /*
 454         * Now deal with the memory-type mappings
 455         */
 456        cp = &cache_policies[cachepolicy];
 457        vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 458        s2_pgprot = cp->pte_s2;
 459        hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 460
 461        /*
 462         * ARMv6 and above have extended page tables.
 463         */
 464        if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 465#ifndef CONFIG_ARM_LPAE
 466                /*
 467                 * Mark cache clean areas and XIP ROM read only
 468                 * from SVC mode and no access from userspace.
 469                 */
 470                mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 471                mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 472                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 473#endif
 474
 475                if (is_smp()) {
 476                        /*
 477                         * Mark memory with the "shared" attribute
 478                         * for SMP systems
 479                         */
 480                        user_pgprot |= L_PTE_SHARED;
 481                        kern_pgprot |= L_PTE_SHARED;
 482                        vecs_pgprot |= L_PTE_SHARED;
 483                        s2_pgprot |= L_PTE_SHARED;
 484                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 485                        mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 486                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 487                        mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 488                        mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
 489                        mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
 490                        mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 491                        mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
 492                        mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
 493                }
 494        }
 495
 496        /*
 497         * Non-cacheable Normal - intended for memory areas that must
 498         * not cause dirty cache line writebacks when used
 499         */
 500        if (cpu_arch >= CPU_ARCH_ARMv6) {
 501                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 502                        /* Non-cacheable Normal is XCB = 001 */
 503                        mem_types[MT_MEMORY_NONCACHED].prot_sect |=
 504                                PMD_SECT_BUFFERED;
 505                } else {
 506                        /* For both ARMv6 and non-TEX-remapping ARMv7 */
 507                        mem_types[MT_MEMORY_NONCACHED].prot_sect |=
 508                                PMD_SECT_TEX(1);
 509                }
 510        } else {
 511                mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 512        }
 513
 514#ifdef CONFIG_ARM_LPAE
 515        /*
 516         * Do not generate access flag faults for the kernel mappings.
 517         */
 518        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 519                mem_types[i].prot_pte |= PTE_EXT_AF;
 520                if (mem_types[i].prot_sect)
 521                        mem_types[i].prot_sect |= PMD_SECT_AF;
 522        }
 523        kern_pgprot |= PTE_EXT_AF;
 524        vecs_pgprot |= PTE_EXT_AF;
 525#endif
 526
 527        for (i = 0; i < 16; i++) {
 528                pteval_t v = pgprot_val(protection_map[i]);
 529                protection_map[i] = __pgprot(v | user_pgprot);
 530        }
 531
 532        mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 533        mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 534
 535        pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 536        pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 537                                 L_PTE_DIRTY | kern_pgprot);
 538        pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 539        pgprot_s2_device  = __pgprot(s2_device_pgprot);
 540        pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 541
 542        mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 543        mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 544        mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
 545        mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
 546        mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 547        mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
 548        mem_types[MT_ROM].prot_sect |= cp->pmd;
 549
 550        switch (cp->pmd) {
 551        case PMD_SECT_WT:
 552                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 553                break;
 554        case PMD_SECT_WB:
 555        case PMD_SECT_WBWA:
 556                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 557                break;
 558        }
 559        printk("Memory policy: ECC %sabled, Data cache %s\n",
 560                ecc_mask ? "en" : "dis", cp->policy);
 561
 562        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 563                struct mem_type *t = &mem_types[i];
 564                if (t->prot_l1)
 565                        t->prot_l1 |= PMD_DOMAIN(t->domain);
 566                if (t->prot_sect)
 567                        t->prot_sect |= PMD_DOMAIN(t->domain);
 568        }
 569}
 570
 571#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 572pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 573                              unsigned long size, pgprot_t vma_prot)
 574{
 575        if (!pfn_valid(pfn))
 576                return pgprot_noncached(vma_prot);
 577        else if (file->f_flags & O_SYNC)
 578                return pgprot_writecombine(vma_prot);
 579        return vma_prot;
 580}
 581EXPORT_SYMBOL(phys_mem_access_prot);
 582#endif
 583
 584#define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
 585
 586static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 587{
 588        void *ptr = __va(memblock_alloc(sz, align));
 589        memset(ptr, 0, sz);
 590        return ptr;
 591}
 592
 593static void __init *early_alloc(unsigned long sz)
 594{
 595        return early_alloc_aligned(sz, sz);
 596}
 597
 598static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
 599{
 600        if (pmd_none(*pmd)) {
 601                pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 602                __pmd_populate(pmd, __pa(pte), prot);
 603        }
 604        BUG_ON(pmd_bad(*pmd));
 605        return pte_offset_kernel(pmd, addr);
 606}
 607
 608static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 609                                  unsigned long end, unsigned long pfn,
 610                                  const struct mem_type *type)
 611{
 612        pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
 613        do {
 614                set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
 615                pfn++;
 616        } while (pte++, addr += PAGE_SIZE, addr != end);
 617}
 618
 619static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 620                        unsigned long end, phys_addr_t phys,
 621                        const struct mem_type *type)
 622{
 623        pmd_t *p = pmd;
 624
 625#ifndef CONFIG_ARM_LPAE
 626        /*
 627         * In classic MMU format, puds and pmds are folded in to
 628         * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 629         * group of L1 entries making up one logical pointer to
 630         * an L2 table (2MB), where as PMDs refer to the individual
 631         * L1 entries (1MB). Hence increment to get the correct
 632         * offset for odd 1MB sections.
 633         * (See arch/arm/include/asm/pgtable-2level.h)
 634         */
 635        if (addr & SECTION_SIZE)
 636                pmd++;
 637#endif
 638        do {
 639                *pmd = __pmd(phys | type->prot_sect);
 640                phys += SECTION_SIZE;
 641        } while (pmd++, addr += SECTION_SIZE, addr != end);
 642
 643        flush_pmd_entry(p);
 644}
 645
 646static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 647                                      unsigned long end, phys_addr_t phys,
 648                                      const struct mem_type *type)
 649{
 650        pmd_t *pmd = pmd_offset(pud, addr);
 651        unsigned long next;
 652
 653        do {
 654                /*
 655                 * With LPAE, we must loop over to map
 656                 * all the pmds for the given range.
 657                 */
 658                next = pmd_addr_end(addr, end);
 659
 660                /*
 661                 * Try a section mapping - addr, next and phys must all be
 662                 * aligned to a section boundary.
 663                 */
 664                if (type->prot_sect &&
 665                                ((addr | next | phys) & ~SECTION_MASK) == 0) {
 666                        __map_init_section(pmd, addr, next, phys, type);
 667                } else {
 668                        alloc_init_pte(pmd, addr, next,
 669                                                __phys_to_pfn(phys), type);
 670                }
 671
 672                phys += next - addr;
 673
 674        } while (pmd++, addr = next, addr != end);
 675}
 676
 677static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 678        unsigned long end, unsigned long phys, const struct mem_type *type)
 679{
 680        pud_t *pud = pud_offset(pgd, addr);
 681        unsigned long next;
 682
 683        do {
 684                next = pud_addr_end(addr, end);
 685                alloc_init_pmd(pud, addr, next, phys, type);
 686                phys += next - addr;
 687        } while (pud++, addr = next, addr != end);
 688}
 689
 690#ifndef CONFIG_ARM_LPAE
 691static void __init create_36bit_mapping(struct map_desc *md,
 692                                        const struct mem_type *type)
 693{
 694        unsigned long addr, length, end;
 695        phys_addr_t phys;
 696        pgd_t *pgd;
 697
 698        addr = md->virtual;
 699        phys = __pfn_to_phys(md->pfn);
 700        length = PAGE_ALIGN(md->length);
 701
 702        if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 703                printk(KERN_ERR "MM: CPU does not support supersection "
 704                       "mapping for 0x%08llx at 0x%08lx\n",
 705                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 706                return;
 707        }
 708
 709        /* N.B. ARMv6 supersections are only defined to work with domain 0.
 710         *      Since domain assignments can in fact be arbitrary, the
 711         *      'domain == 0' check below is required to insure that ARMv6
 712         *      supersections are only allocated for domain 0 regardless
 713         *      of the actual domain assignments in use.
 714         */
 715        if (type->domain) {
 716                printk(KERN_ERR "MM: invalid domain in supersection "
 717                       "mapping for 0x%08llx at 0x%08lx\n",
 718                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 719                return;
 720        }
 721
 722        if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 723                printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
 724                       " at 0x%08lx invalid alignment\n",
 725                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 726                return;
 727        }
 728
 729        /*
 730         * Shift bits [35:32] of address into bits [23:20] of PMD
 731         * (See ARMv6 spec).
 732         */
 733        phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 734
 735        pgd = pgd_offset_k(addr);
 736        end = addr + length;
 737        do {
 738                pud_t *pud = pud_offset(pgd, addr);
 739                pmd_t *pmd = pmd_offset(pud, addr);
 740                int i;
 741
 742                for (i = 0; i < 16; i++)
 743                        *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
 744
 745                addr += SUPERSECTION_SIZE;
 746                phys += SUPERSECTION_SIZE;
 747                pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 748        } while (addr != end);
 749}
 750#endif  /* !CONFIG_ARM_LPAE */
 751
 752/*
 753 * Create the page directory entries and any necessary
 754 * page tables for the mapping specified by `md'.  We
 755 * are able to cope here with varying sizes and address
 756 * offsets, and we take full advantage of sections and
 757 * supersections.
 758 */
 759static void __init create_mapping(struct map_desc *md)
 760{
 761        unsigned long addr, length, end;
 762        phys_addr_t phys;
 763        const struct mem_type *type;
 764        pgd_t *pgd;
 765
 766        if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 767                printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
 768                       " at 0x%08lx in user region\n",
 769                       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 770                return;
 771        }
 772
 773        if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 774            md->virtual >= PAGE_OFFSET &&
 775            (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 776                printk(KERN_WARNING "BUG: mapping for 0x%08llx"
 777                       " at 0x%08lx out of vmalloc space\n",
 778                       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 779        }
 780
 781        type = &mem_types[md->type];
 782
 783#ifndef CONFIG_ARM_LPAE
 784        /*
 785         * Catch 36-bit addresses
 786         */
 787        if (md->pfn >= 0x100000) {
 788                create_36bit_mapping(md, type);
 789                return;
 790        }
 791#endif
 792
 793        addr = md->virtual & PAGE_MASK;
 794        phys = __pfn_to_phys(md->pfn);
 795        length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 796
 797        if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 798                printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
 799                       "be mapped using pages, ignoring.\n",
 800                       (long long)__pfn_to_phys(md->pfn), addr);
 801                return;
 802        }
 803
 804        pgd = pgd_offset_k(addr);
 805        end = addr + length;
 806        do {
 807                unsigned long next = pgd_addr_end(addr, end);
 808
 809                alloc_init_pud(pgd, addr, next, phys, type);
 810
 811                phys += next - addr;
 812                addr = next;
 813        } while (pgd++, addr != end);
 814}
 815
 816/*
 817 * Create the architecture specific mappings
 818 */
 819void __init iotable_init(struct map_desc *io_desc, int nr)
 820{
 821        struct map_desc *md;
 822        struct vm_struct *vm;
 823        struct static_vm *svm;
 824
 825        if (!nr)
 826                return;
 827
 828        svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
 829
 830        for (md = io_desc; nr; md++, nr--) {
 831                create_mapping(md);
 832
 833                vm = &svm->vm;
 834                vm->addr = (void *)(md->virtual & PAGE_MASK);
 835                vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 836                vm->phys_addr = __pfn_to_phys(md->pfn);
 837                vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
 838                vm->flags |= VM_ARM_MTYPE(md->type);
 839                vm->caller = iotable_init;
 840                add_static_vm_early(svm++);
 841        }
 842}
 843
 844void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
 845                                  void *caller)
 846{
 847        struct vm_struct *vm;
 848        struct static_vm *svm;
 849
 850        svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
 851
 852        vm = &svm->vm;
 853        vm->addr = (void *)addr;
 854        vm->size = size;
 855        vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
 856        vm->caller = caller;
 857        add_static_vm_early(svm);
 858}
 859
 860#ifndef CONFIG_ARM_LPAE
 861
 862/*
 863 * The Linux PMD is made of two consecutive section entries covering 2MB
 864 * (see definition in include/asm/pgtable-2level.h).  However a call to
 865 * create_mapping() may optimize static mappings by using individual
 866 * 1MB section mappings.  This leaves the actual PMD potentially half
 867 * initialized if the top or bottom section entry isn't used, leaving it
 868 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 869 * the virtual space left free by that unused section entry.
 870 *
 871 * Let's avoid the issue by inserting dummy vm entries covering the unused
 872 * PMD halves once the static mappings are in place.
 873 */
 874
 875static void __init pmd_empty_section_gap(unsigned long addr)
 876{
 877        vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
 878}
 879
 880static void __init fill_pmd_gaps(void)
 881{
 882        struct static_vm *svm;
 883        struct vm_struct *vm;
 884        unsigned long addr, next = 0;
 885        pmd_t *pmd;
 886
 887        list_for_each_entry(svm, &static_vmlist, list) {
 888                vm = &svm->vm;
 889                addr = (unsigned long)vm->addr;
 890                if (addr < next)
 891                        continue;
 892
 893                /*
 894                 * Check if this vm starts on an odd section boundary.
 895                 * If so and the first section entry for this PMD is free
 896                 * then we block the corresponding virtual address.
 897                 */
 898                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 899                        pmd = pmd_off_k(addr);
 900                        if (pmd_none(*pmd))
 901                                pmd_empty_section_gap(addr & PMD_MASK);
 902                }
 903
 904                /*
 905                 * Then check if this vm ends on an odd section boundary.
 906                 * If so and the second section entry for this PMD is empty
 907                 * then we block the corresponding virtual address.
 908                 */
 909                addr += vm->size;
 910                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 911                        pmd = pmd_off_k(addr) + 1;
 912                        if (pmd_none(*pmd))
 913                                pmd_empty_section_gap(addr);
 914                }
 915
 916                /* no need to look at any vm entry until we hit the next PMD */
 917                next = (addr + PMD_SIZE - 1) & PMD_MASK;
 918        }
 919}
 920
 921#else
 922#define fill_pmd_gaps() do { } while (0)
 923#endif
 924
 925#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
 926static void __init pci_reserve_io(void)
 927{
 928        struct static_vm *svm;
 929
 930        svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
 931        if (svm)
 932                return;
 933
 934        vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
 935}
 936#else
 937#define pci_reserve_io() do { } while (0)
 938#endif
 939
 940#ifdef CONFIG_DEBUG_LL
 941void __init debug_ll_io_init(void)
 942{
 943        struct map_desc map;
 944
 945        debug_ll_addr(&map.pfn, &map.virtual);
 946        if (!map.pfn || !map.virtual)
 947                return;
 948        map.pfn = __phys_to_pfn(map.pfn);
 949        map.virtual &= PAGE_MASK;
 950        map.length = PAGE_SIZE;
 951        map.type = MT_DEVICE;
 952        create_mapping(&map);
 953}
 954#endif
 955
 956static void * __initdata vmalloc_min =
 957        (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
 958
 959/*
 960 * vmalloc=size forces the vmalloc area to be exactly 'size'
 961 * bytes. This can be used to increase (or decrease) the vmalloc
 962 * area - the default is 240m.
 963 */
 964static int __init early_vmalloc(char *arg)
 965{
 966        unsigned long vmalloc_reserve = memparse(arg, NULL);
 967
 968        if (vmalloc_reserve < SZ_16M) {
 969                vmalloc_reserve = SZ_16M;
 970                printk(KERN_WARNING
 971                        "vmalloc area too small, limiting to %luMB\n",
 972                        vmalloc_reserve >> 20);
 973        }
 974
 975        if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
 976                vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
 977                printk(KERN_WARNING
 978                        "vmalloc area is too big, limiting to %luMB\n",
 979                        vmalloc_reserve >> 20);
 980        }
 981
 982        vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
 983        return 0;
 984}
 985early_param("vmalloc", early_vmalloc);
 986
 987phys_addr_t arm_lowmem_limit __initdata = 0;
 988
 989void __init sanity_check_meminfo(void)
 990{
 991        int i, j, highmem = 0;
 992
 993        for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
 994                struct membank *bank = &meminfo.bank[j];
 995                *bank = meminfo.bank[i];
 996
 997                if (bank->start > ULONG_MAX)
 998                        highmem = 1;
 999
1000#ifdef CONFIG_HIGHMEM
1001                if (__va(bank->start) >= vmalloc_min ||
1002                    __va(bank->start) < (void *)PAGE_OFFSET)
1003                        highmem = 1;
1004
1005                bank->highmem = highmem;
1006
1007                /*
1008                 * Split those memory banks which are partially overlapping
1009                 * the vmalloc area greatly simplifying things later.
1010                 */
1011                if (!highmem && __va(bank->start) < vmalloc_min &&
1012                    bank->size > vmalloc_min - __va(bank->start)) {
1013                        if (meminfo.nr_banks >= NR_BANKS) {
1014                                printk(KERN_CRIT "NR_BANKS too low, "
1015                                                 "ignoring high memory\n");
1016                        } else {
1017                                memmove(bank + 1, bank,
1018                                        (meminfo.nr_banks - i) * sizeof(*bank));
1019                                meminfo.nr_banks++;
1020                                i++;
1021                                bank[1].size -= vmalloc_min - __va(bank->start);
1022                                bank[1].start = __pa(vmalloc_min - 1) + 1;
1023                                bank[1].highmem = highmem = 1;
1024                                j++;
1025                        }
1026                        bank->size = vmalloc_min - __va(bank->start);
1027                }
1028#else
1029                bank->highmem = highmem;
1030
1031                /*
1032                 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1033                 */
1034                if (highmem) {
1035                        printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1036                               "(!CONFIG_HIGHMEM).\n",
1037                               (unsigned long long)bank->start,
1038                               (unsigned long long)bank->start + bank->size - 1);
1039                        continue;
1040                }
1041
1042                /*
1043                 * Check whether this memory bank would entirely overlap
1044                 * the vmalloc area.
1045                 */
1046                if (__va(bank->start) >= vmalloc_min ||
1047                    __va(bank->start) < (void *)PAGE_OFFSET) {
1048                        printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1049                               "(vmalloc region overlap).\n",
1050                               (unsigned long long)bank->start,
1051                               (unsigned long long)bank->start + bank->size - 1);
1052                        continue;
1053                }
1054
1055                /*
1056                 * Check whether this memory bank would partially overlap
1057                 * the vmalloc area.
1058                 */
1059                if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
1060                    __va(bank->start + bank->size - 1) <= __va(bank->start)) {
1061                        unsigned long newsize = vmalloc_min - __va(bank->start);
1062                        printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1063                               "to -%.8llx (vmalloc region overlap).\n",
1064                               (unsigned long long)bank->start,
1065                               (unsigned long long)bank->start + bank->size - 1,
1066                               (unsigned long long)bank->start + newsize - 1);
1067                        bank->size = newsize;
1068                }
1069#endif
1070                if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1071                        arm_lowmem_limit = bank->start + bank->size;
1072
1073                j++;
1074        }
1075#ifdef CONFIG_HIGHMEM
1076        if (highmem) {
1077                const char *reason = NULL;
1078
1079                if (cache_is_vipt_aliasing()) {
1080                        /*
1081                         * Interactions between kmap and other mappings
1082                         * make highmem support with aliasing VIPT caches
1083                         * rather difficult.
1084                         */
1085                        reason = "with VIPT aliasing cache";
1086                }
1087                if (reason) {
1088                        printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1089                                reason);
1090                        while (j > 0 && meminfo.bank[j - 1].highmem)
1091                                j--;
1092                }
1093        }
1094#endif
1095        meminfo.nr_banks = j;
1096        high_memory = __va(arm_lowmem_limit - 1) + 1;
1097        memblock_set_current_limit(arm_lowmem_limit);
1098}
1099
1100static inline void prepare_page_table(void)
1101{
1102        unsigned long addr;
1103        phys_addr_t end;
1104
1105        /*
1106         * Clear out all the mappings below the kernel image.
1107         */
1108        for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1109                pmd_clear(pmd_off_k(addr));
1110
1111#ifdef CONFIG_XIP_KERNEL
1112        /* The XIP kernel is mapped in the module area -- skip over it */
1113        addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1114#endif
1115        for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1116                pmd_clear(pmd_off_k(addr));
1117
1118        /*
1119         * Find the end of the first block of lowmem.
1120         */
1121        end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1122        if (end >= arm_lowmem_limit)
1123                end = arm_lowmem_limit;
1124
1125        /*
1126         * Clear out all the kernel space mappings, except for the first
1127         * memory bank, up to the vmalloc region.
1128         */
1129        for (addr = __phys_to_virt(end);
1130             addr < VMALLOC_START; addr += PMD_SIZE)
1131                pmd_clear(pmd_off_k(addr));
1132}
1133
1134#ifdef CONFIG_ARM_LPAE
1135/* the first page is reserved for pgd */
1136#define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1137                                 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1138#else
1139#define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1140#endif
1141
1142/*
1143 * Reserve the special regions of memory
1144 */
1145void __init arm_mm_memblock_reserve(void)
1146{
1147        /*
1148         * Reserve the page tables.  These are already in use,
1149         * and can only be in node 0.
1150         */
1151        memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1152
1153#ifdef CONFIG_SA1111
1154        /*
1155         * Because of the SA1111 DMA bug, we want to preserve our
1156         * precious DMA-able memory...
1157         */
1158        memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1159#endif
1160}
1161
1162/*
1163 * Set up the device mappings.  Since we clear out the page tables for all
1164 * mappings above VMALLOC_START, we will remove any debug device mappings.
1165 * This means you have to be careful how you debug this function, or any
1166 * called function.  This means you can't use any function or debugging
1167 * method which may touch any device, otherwise the kernel _will_ crash.
1168 */
1169static void __init devicemaps_init(struct machine_desc *mdesc)
1170{
1171        struct map_desc map;
1172        unsigned long addr;
1173        void *vectors;
1174
1175        /*
1176         * Allocate the vector page early.
1177         */
1178        vectors = early_alloc(PAGE_SIZE * 2);
1179
1180        early_trap_init(vectors);
1181
1182        for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1183                pmd_clear(pmd_off_k(addr));
1184
1185        /*
1186         * Map the kernel if it is XIP.
1187         * It is always first in the modulearea.
1188         */
1189#ifdef CONFIG_XIP_KERNEL
1190        map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1191        map.virtual = MODULES_VADDR;
1192        map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1193        map.type = MT_ROM;
1194        create_mapping(&map);
1195#endif
1196
1197        /*
1198         * Map the cache flushing regions.
1199         */
1200#ifdef FLUSH_BASE
1201        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1202        map.virtual = FLUSH_BASE;
1203        map.length = SZ_1M;
1204        map.type = MT_CACHECLEAN;
1205        create_mapping(&map);
1206#endif
1207#ifdef FLUSH_BASE_MINICACHE
1208        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1209        map.virtual = FLUSH_BASE_MINICACHE;
1210        map.length = SZ_1M;
1211        map.type = MT_MINICLEAN;
1212        create_mapping(&map);
1213#endif
1214
1215        /*
1216         * Create a mapping for the machine vectors at the high-vectors
1217         * location (0xffff0000).  If we aren't using high-vectors, also
1218         * create a mapping at the low-vectors virtual address.
1219         */
1220        map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1221        map.virtual = 0xffff0000;
1222        map.length = PAGE_SIZE;
1223#ifdef CONFIG_KUSER_HELPERS
1224        map.type = MT_HIGH_VECTORS;
1225#else
1226        map.type = MT_LOW_VECTORS;
1227#endif
1228        create_mapping(&map);
1229
1230        if (!vectors_high()) {
1231                map.virtual = 0;
1232                map.length = PAGE_SIZE * 2;
1233                map.type = MT_LOW_VECTORS;
1234                create_mapping(&map);
1235        }
1236
1237        /* Now create a kernel read-only mapping */
1238        map.pfn += 1;
1239        map.virtual = 0xffff0000 + PAGE_SIZE;
1240        map.length = PAGE_SIZE;
1241        map.type = MT_LOW_VECTORS;
1242        create_mapping(&map);
1243
1244        /*
1245         * Ask the machine support to map in the statically mapped devices.
1246         */
1247        if (mdesc->map_io)
1248                mdesc->map_io();
1249        fill_pmd_gaps();
1250
1251        /* Reserve fixed i/o space in VMALLOC region */
1252        pci_reserve_io();
1253
1254        /*
1255         * Finally flush the caches and tlb to ensure that we're in a
1256         * consistent state wrt the writebuffer.  This also ensures that
1257         * any write-allocated cache lines in the vector page are written
1258         * back.  After this point, we can start to touch devices again.
1259         */
1260        local_flush_tlb_all();
1261        flush_cache_all();
1262}
1263
1264static void __init kmap_init(void)
1265{
1266#ifdef CONFIG_HIGHMEM
1267        pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1268                PKMAP_BASE, _PAGE_KERNEL_TABLE);
1269#endif
1270}
1271
1272static void __init map_lowmem(void)
1273{
1274        struct memblock_region *reg;
1275
1276        /* Map all the lowmem memory banks. */
1277        for_each_memblock(memory, reg) {
1278                phys_addr_t start = reg->base;
1279                phys_addr_t end = start + reg->size;
1280                struct map_desc map;
1281
1282                if (end > arm_lowmem_limit)
1283                        end = arm_lowmem_limit;
1284                if (start >= end)
1285                        break;
1286
1287                map.pfn = __phys_to_pfn(start);
1288                map.virtual = __phys_to_virt(start);
1289                map.length = end - start;
1290                map.type = MT_MEMORY;
1291
1292                create_mapping(&map);
1293        }
1294}
1295
1296/*
1297 * paging_init() sets up the page tables, initialises the zone memory
1298 * maps, and sets up the zero page, bad page and bad page tables.
1299 */
1300void __init paging_init(struct machine_desc *mdesc)
1301{
1302        void *zero_page;
1303
1304        memblock_set_current_limit(arm_lowmem_limit);
1305
1306        build_mem_type_table();
1307        prepare_page_table();
1308        map_lowmem();
1309        dma_contiguous_remap();
1310        devicemaps_init(mdesc);
1311        kmap_init();
1312        tcm_init();
1313
1314        top_pmd = pmd_off_k(0xffff0000);
1315
1316        /* allocate the zero page. */
1317        zero_page = early_alloc(PAGE_SIZE);
1318
1319        bootmem_init();
1320
1321        empty_zero_page = virt_to_page(zero_page);
1322        __flush_dcache_page(NULL, empty_zero_page);
1323}
1324