linux/arch/x86/events/intel/pt.c
<<
>>
Prefs
   1/*
   2 * Intel(R) Processor Trace PMU driver for perf
   3 * Copyright (c) 2013-2014, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * Intel PT is specified in the Intel Architecture Instruction Set Extensions
  15 * Programming Reference:
  16 * http://software.intel.com/en-us/intel-isa-extensions
  17 */
  18
  19#undef DEBUG
  20
  21#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  22
  23#include <linux/types.h>
  24#include <linux/slab.h>
  25#include <linux/device.h>
  26
  27#include <asm/perf_event.h>
  28#include <asm/insn.h>
  29#include <asm/io.h>
  30#include <asm/intel_pt.h>
  31#include <asm/intel-family.h>
  32
  33#include "../perf_event.h"
  34#include "pt.h"
  35
  36static DEFINE_PER_CPU(struct pt, pt_ctx);
  37
  38static struct pt_pmu pt_pmu;
  39
  40/*
  41 * Capabilities of Intel PT hardware, such as number of address bits or
  42 * supported output schemes, are cached and exported to userspace as "caps"
  43 * attribute group of pt pmu device
  44 * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
  45 * relevant bits together with intel_pt traces.
  46 *
  47 * These are necessary for both trace decoding (payloads_lip, contains address
  48 * width encoded in IP-related packets), and event configuration (bitmasks with
  49 * permitted values for certain bit fields).
  50 */
  51#define PT_CAP(_n, _l, _r, _m)                                          \
  52        [PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,        \
  53                            .reg = _r, .mask = _m }
  54
  55static struct pt_cap_desc {
  56        const char      *name;
  57        u32             leaf;
  58        u8              reg;
  59        u32             mask;
  60} pt_caps[] = {
  61        PT_CAP(max_subleaf,             0, CPUID_EAX, 0xffffffff),
  62        PT_CAP(cr3_filtering,           0, CPUID_EBX, BIT(0)),
  63        PT_CAP(psb_cyc,                 0, CPUID_EBX, BIT(1)),
  64        PT_CAP(ip_filtering,            0, CPUID_EBX, BIT(2)),
  65        PT_CAP(mtc,                     0, CPUID_EBX, BIT(3)),
  66        PT_CAP(ptwrite,                 0, CPUID_EBX, BIT(4)),
  67        PT_CAP(power_event_trace,       0, CPUID_EBX, BIT(5)),
  68        PT_CAP(topa_output,             0, CPUID_ECX, BIT(0)),
  69        PT_CAP(topa_multiple_entries,   0, CPUID_ECX, BIT(1)),
  70        PT_CAP(single_range_output,     0, CPUID_ECX, BIT(2)),
  71        PT_CAP(payloads_lip,            0, CPUID_ECX, BIT(31)),
  72        PT_CAP(num_address_ranges,      1, CPUID_EAX, 0x3),
  73        PT_CAP(mtc_periods,             1, CPUID_EAX, 0xffff0000),
  74        PT_CAP(cycle_thresholds,        1, CPUID_EBX, 0xffff),
  75        PT_CAP(psb_periods,             1, CPUID_EBX, 0xffff0000),
  76};
  77
  78static u32 pt_cap_get(enum pt_capabilities cap)
  79{
  80        struct pt_cap_desc *cd = &pt_caps[cap];
  81        u32 c = pt_pmu.caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
  82        unsigned int shift = __ffs(cd->mask);
  83
  84        return (c & cd->mask) >> shift;
  85}
  86
  87static ssize_t pt_cap_show(struct device *cdev,
  88                           struct device_attribute *attr,
  89                           char *buf)
  90{
  91        struct dev_ext_attribute *ea =
  92                container_of(attr, struct dev_ext_attribute, attr);
  93        enum pt_capabilities cap = (long)ea->var;
  94
  95        return snprintf(buf, PAGE_SIZE, "%x\n", pt_cap_get(cap));
  96}
  97
  98static struct attribute_group pt_cap_group = {
  99        .name   = "caps",
 100};
 101
 102PMU_FORMAT_ATTR(pt,             "config:0"      );
 103PMU_FORMAT_ATTR(cyc,            "config:1"      );
 104PMU_FORMAT_ATTR(pwr_evt,        "config:4"      );
 105PMU_FORMAT_ATTR(fup_on_ptw,     "config:5"      );
 106PMU_FORMAT_ATTR(mtc,            "config:9"      );
 107PMU_FORMAT_ATTR(tsc,            "config:10"     );
 108PMU_FORMAT_ATTR(noretcomp,      "config:11"     );
 109PMU_FORMAT_ATTR(ptw,            "config:12"     );
 110PMU_FORMAT_ATTR(branch,         "config:13"     );
 111PMU_FORMAT_ATTR(mtc_period,     "config:14-17"  );
 112PMU_FORMAT_ATTR(cyc_thresh,     "config:19-22"  );
 113PMU_FORMAT_ATTR(psb_period,     "config:24-27"  );
 114
 115static struct attribute *pt_formats_attr[] = {
 116        &format_attr_pt.attr,
 117        &format_attr_cyc.attr,
 118        &format_attr_pwr_evt.attr,
 119        &format_attr_fup_on_ptw.attr,
 120        &format_attr_mtc.attr,
 121        &format_attr_tsc.attr,
 122        &format_attr_noretcomp.attr,
 123        &format_attr_ptw.attr,
 124        &format_attr_branch.attr,
 125        &format_attr_mtc_period.attr,
 126        &format_attr_cyc_thresh.attr,
 127        &format_attr_psb_period.attr,
 128        NULL,
 129};
 130
 131static struct attribute_group pt_format_group = {
 132        .name   = "format",
 133        .attrs  = pt_formats_attr,
 134};
 135
 136static ssize_t
 137pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
 138                    char *page)
 139{
 140        struct perf_pmu_events_attr *pmu_attr =
 141                container_of(attr, struct perf_pmu_events_attr, attr);
 142
 143        switch (pmu_attr->id) {
 144        case 0:
 145                return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
 146        case 1:
 147                return sprintf(page, "%u:%u\n",
 148                               pt_pmu.tsc_art_num,
 149                               pt_pmu.tsc_art_den);
 150        default:
 151                break;
 152        }
 153
 154        return -EINVAL;
 155}
 156
 157PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
 158               pt_timing_attr_show);
 159PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
 160               pt_timing_attr_show);
 161
 162static struct attribute *pt_timing_attr[] = {
 163        &timing_attr_max_nonturbo_ratio.attr.attr,
 164        &timing_attr_tsc_art_ratio.attr.attr,
 165        NULL,
 166};
 167
 168static struct attribute_group pt_timing_group = {
 169        .attrs  = pt_timing_attr,
 170};
 171
 172static const struct attribute_group *pt_attr_groups[] = {
 173        &pt_cap_group,
 174        &pt_format_group,
 175        &pt_timing_group,
 176        NULL,
 177};
 178
 179static int __init pt_pmu_hw_init(void)
 180{
 181        struct dev_ext_attribute *de_attrs;
 182        struct attribute **attrs;
 183        size_t size;
 184        u64 reg;
 185        int ret;
 186        long i;
 187
 188        rdmsrl(MSR_PLATFORM_INFO, reg);
 189        pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
 190
 191        /*
 192         * if available, read in TSC to core crystal clock ratio,
 193         * otherwise, zero for numerator stands for "not enumerated"
 194         * as per SDM
 195         */
 196        if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
 197                u32 eax, ebx, ecx, edx;
 198
 199                cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
 200
 201                pt_pmu.tsc_art_num = ebx;
 202                pt_pmu.tsc_art_den = eax;
 203        }
 204
 205        /* model-specific quirks */
 206        switch (boot_cpu_data.x86_model) {
 207        case INTEL_FAM6_BROADWELL_CORE:
 208        case INTEL_FAM6_BROADWELL_XEON_D:
 209        case INTEL_FAM6_BROADWELL_GT3E:
 210        case INTEL_FAM6_BROADWELL_X:
 211                /* not setting BRANCH_EN will #GP, erratum BDM106 */
 212                pt_pmu.branch_en_always_on = true;
 213                break;
 214        default:
 215                break;
 216        }
 217
 218        if (boot_cpu_has(X86_FEATURE_VMX)) {
 219                /*
 220                 * Intel SDM, 36.5 "Tracing post-VMXON" says that
 221                 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
 222                 * post-VMXON.
 223                 */
 224                rdmsrl(MSR_IA32_VMX_MISC, reg);
 225                if (reg & BIT(14))
 226                        pt_pmu.vmx = true;
 227        }
 228
 229        attrs = NULL;
 230
 231        for (i = 0; i < PT_CPUID_LEAVES; i++) {
 232                cpuid_count(20, i,
 233                            &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
 234                            &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
 235                            &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
 236                            &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
 237        }
 238
 239        ret = -ENOMEM;
 240        size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
 241        attrs = kzalloc(size, GFP_KERNEL);
 242        if (!attrs)
 243                goto fail;
 244
 245        size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
 246        de_attrs = kzalloc(size, GFP_KERNEL);
 247        if (!de_attrs)
 248                goto fail;
 249
 250        for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
 251                struct dev_ext_attribute *de_attr = de_attrs + i;
 252
 253                de_attr->attr.attr.name = pt_caps[i].name;
 254
 255                sysfs_attr_init(&de_attr->attr.attr);
 256
 257                de_attr->attr.attr.mode         = S_IRUGO;
 258                de_attr->attr.show              = pt_cap_show;
 259                de_attr->var                    = (void *)i;
 260
 261                attrs[i] = &de_attr->attr.attr;
 262        }
 263
 264        pt_cap_group.attrs = attrs;
 265
 266        return 0;
 267
 268fail:
 269        kfree(attrs);
 270
 271        return ret;
 272}
 273
 274#define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC     | \
 275                          RTIT_CTL_CYC_THRESH   | \
 276                          RTIT_CTL_PSB_FREQ)
 277
 278#define RTIT_CTL_MTC    (RTIT_CTL_MTC_EN        | \
 279                         RTIT_CTL_MTC_RANGE)
 280
 281#define RTIT_CTL_PTW    (RTIT_CTL_PTW_EN        | \
 282                         RTIT_CTL_FUP_ON_PTW)
 283
 284/*
 285 * Bit 0 (TraceEn) in the attr.config is meaningless as the
 286 * corresponding bit in the RTIT_CTL can only be controlled
 287 * by the driver; therefore, repurpose it to mean: pass
 288 * through the bit that was previously assumed to be always
 289 * on for PT, thereby allowing the user to *not* set it if
 290 * they so wish. See also pt_event_valid() and pt_config().
 291 */
 292#define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
 293
 294#define PT_CONFIG_MASK (RTIT_CTL_TRACEEN        | \
 295                        RTIT_CTL_TSC_EN         | \
 296                        RTIT_CTL_DISRETC        | \
 297                        RTIT_CTL_BRANCH_EN      | \
 298                        RTIT_CTL_CYC_PSB        | \
 299                        RTIT_CTL_MTC            | \
 300                        RTIT_CTL_PWR_EVT_EN     | \
 301                        RTIT_CTL_FUP_ON_PTW     | \
 302                        RTIT_CTL_PTW_EN)
 303
 304static bool pt_event_valid(struct perf_event *event)
 305{
 306        u64 config = event->attr.config;
 307        u64 allowed, requested;
 308
 309        if ((config & PT_CONFIG_MASK) != config)
 310                return false;
 311
 312        if (config & RTIT_CTL_CYC_PSB) {
 313                if (!pt_cap_get(PT_CAP_psb_cyc))
 314                        return false;
 315
 316                allowed = pt_cap_get(PT_CAP_psb_periods);
 317                requested = (config & RTIT_CTL_PSB_FREQ) >>
 318                        RTIT_CTL_PSB_FREQ_OFFSET;
 319                if (requested && (!(allowed & BIT(requested))))
 320                        return false;
 321
 322                allowed = pt_cap_get(PT_CAP_cycle_thresholds);
 323                requested = (config & RTIT_CTL_CYC_THRESH) >>
 324                        RTIT_CTL_CYC_THRESH_OFFSET;
 325                if (requested && (!(allowed & BIT(requested))))
 326                        return false;
 327        }
 328
 329        if (config & RTIT_CTL_MTC) {
 330                /*
 331                 * In the unlikely case that CPUID lists valid mtc periods,
 332                 * but not the mtc capability, drop out here.
 333                 *
 334                 * Spec says that setting mtc period bits while mtc bit in
 335                 * CPUID is 0 will #GP, so better safe than sorry.
 336                 */
 337                if (!pt_cap_get(PT_CAP_mtc))
 338                        return false;
 339
 340                allowed = pt_cap_get(PT_CAP_mtc_periods);
 341                if (!allowed)
 342                        return false;
 343
 344                requested = (config & RTIT_CTL_MTC_RANGE) >>
 345                        RTIT_CTL_MTC_RANGE_OFFSET;
 346
 347                if (!(allowed & BIT(requested)))
 348                        return false;
 349        }
 350
 351        if (config & RTIT_CTL_PWR_EVT_EN &&
 352            !pt_cap_get(PT_CAP_power_event_trace))
 353                return false;
 354
 355        if (config & RTIT_CTL_PTW) {
 356                if (!pt_cap_get(PT_CAP_ptwrite))
 357                        return false;
 358
 359                /* FUPonPTW without PTW doesn't make sense */
 360                if ((config & RTIT_CTL_FUP_ON_PTW) &&
 361                    !(config & RTIT_CTL_PTW_EN))
 362                        return false;
 363        }
 364
 365        /*
 366         * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
 367         * clears the assomption that BranchEn must always be enabled,
 368         * as was the case with the first implementation of PT.
 369         * If this bit is not set, the legacy behavior is preserved
 370         * for compatibility with the older userspace.
 371         *
 372         * Re-using bit 0 for this purpose is fine because it is never
 373         * directly set by the user; previous attempts at setting it in
 374         * the attr.config resulted in -EINVAL.
 375         */
 376        if (config & RTIT_CTL_PASSTHROUGH) {
 377                /*
 378                 * Disallow not setting BRANCH_EN where BRANCH_EN is
 379                 * always required.
 380                 */
 381                if (pt_pmu.branch_en_always_on &&
 382                    !(config & RTIT_CTL_BRANCH_EN))
 383                        return false;
 384        } else {
 385                /*
 386                 * Disallow BRANCH_EN without the PASSTHROUGH.
 387                 */
 388                if (config & RTIT_CTL_BRANCH_EN)
 389                        return false;
 390        }
 391
 392        return true;
 393}
 394
 395/*
 396 * PT configuration helpers
 397 * These all are cpu affine and operate on a local PT
 398 */
 399
 400/* Address ranges and their corresponding msr configuration registers */
 401static const struct pt_address_range {
 402        unsigned long   msr_a;
 403        unsigned long   msr_b;
 404        unsigned int    reg_off;
 405} pt_address_ranges[] = {
 406        {
 407                .msr_a   = MSR_IA32_RTIT_ADDR0_A,
 408                .msr_b   = MSR_IA32_RTIT_ADDR0_B,
 409                .reg_off = RTIT_CTL_ADDR0_OFFSET,
 410        },
 411        {
 412                .msr_a   = MSR_IA32_RTIT_ADDR1_A,
 413                .msr_b   = MSR_IA32_RTIT_ADDR1_B,
 414                .reg_off = RTIT_CTL_ADDR1_OFFSET,
 415        },
 416        {
 417                .msr_a   = MSR_IA32_RTIT_ADDR2_A,
 418                .msr_b   = MSR_IA32_RTIT_ADDR2_B,
 419                .reg_off = RTIT_CTL_ADDR2_OFFSET,
 420        },
 421        {
 422                .msr_a   = MSR_IA32_RTIT_ADDR3_A,
 423                .msr_b   = MSR_IA32_RTIT_ADDR3_B,
 424                .reg_off = RTIT_CTL_ADDR3_OFFSET,
 425        }
 426};
 427
 428static u64 pt_config_filters(struct perf_event *event)
 429{
 430        struct pt_filters *filters = event->hw.addr_filters;
 431        struct pt *pt = this_cpu_ptr(&pt_ctx);
 432        unsigned int range = 0;
 433        u64 rtit_ctl = 0;
 434
 435        if (!filters)
 436                return 0;
 437
 438        perf_event_addr_filters_sync(event);
 439
 440        for (range = 0; range < filters->nr_filters; range++) {
 441                struct pt_filter *filter = &filters->filter[range];
 442
 443                /*
 444                 * Note, if the range has zero start/end addresses due
 445                 * to its dynamic object not being loaded yet, we just
 446                 * go ahead and program zeroed range, which will simply
 447                 * produce no data. Note^2: if executable code at 0x0
 448                 * is a concern, we can set up an "invalid" configuration
 449                 * such as msr_b < msr_a.
 450                 */
 451
 452                /* avoid redundant msr writes */
 453                if (pt->filters.filter[range].msr_a != filter->msr_a) {
 454                        wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
 455                        pt->filters.filter[range].msr_a = filter->msr_a;
 456                }
 457
 458                if (pt->filters.filter[range].msr_b != filter->msr_b) {
 459                        wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
 460                        pt->filters.filter[range].msr_b = filter->msr_b;
 461                }
 462
 463                rtit_ctl |= filter->config << pt_address_ranges[range].reg_off;
 464        }
 465
 466        return rtit_ctl;
 467}
 468
 469static void pt_config(struct perf_event *event)
 470{
 471        struct pt *pt = this_cpu_ptr(&pt_ctx);
 472        u64 reg;
 473
 474        /* First round: clear STATUS, in particular the PSB byte counter. */
 475        if (!event->hw.config) {
 476                perf_event_itrace_started(event);
 477                wrmsrl(MSR_IA32_RTIT_STATUS, 0);
 478        }
 479
 480        reg = pt_config_filters(event);
 481        reg |= RTIT_CTL_TOPA | RTIT_CTL_TRACEEN;
 482
 483        /*
 484         * Previously, we had BRANCH_EN on by default, but now that PT has
 485         * grown features outside of branch tracing, it is useful to allow
 486         * the user to disable it. Setting bit 0 in the event's attr.config
 487         * allows BRANCH_EN to pass through instead of being always on. See
 488         * also the comment in pt_event_valid().
 489         */
 490        if (event->attr.config & BIT(0)) {
 491                reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
 492        } else {
 493                reg |= RTIT_CTL_BRANCH_EN;
 494        }
 495
 496        if (!event->attr.exclude_kernel)
 497                reg |= RTIT_CTL_OS;
 498        if (!event->attr.exclude_user)
 499                reg |= RTIT_CTL_USR;
 500
 501        reg |= (event->attr.config & PT_CONFIG_MASK);
 502
 503        event->hw.config = reg;
 504        if (READ_ONCE(pt->vmx_on))
 505                perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
 506        else
 507                wrmsrl(MSR_IA32_RTIT_CTL, reg);
 508}
 509
 510static void pt_config_stop(struct perf_event *event)
 511{
 512        struct pt *pt = this_cpu_ptr(&pt_ctx);
 513        u64 ctl = READ_ONCE(event->hw.config);
 514
 515        /* may be already stopped by a PMI */
 516        if (!(ctl & RTIT_CTL_TRACEEN))
 517                return;
 518
 519        ctl &= ~RTIT_CTL_TRACEEN;
 520        if (!READ_ONCE(pt->vmx_on))
 521                wrmsrl(MSR_IA32_RTIT_CTL, ctl);
 522
 523        WRITE_ONCE(event->hw.config, ctl);
 524
 525        /*
 526         * A wrmsr that disables trace generation serializes other PT
 527         * registers and causes all data packets to be written to memory,
 528         * but a fence is required for the data to become globally visible.
 529         *
 530         * The below WMB, separating data store and aux_head store matches
 531         * the consumer's RMB that separates aux_head load and data load.
 532         */
 533        wmb();
 534}
 535
 536static void pt_config_buffer(void *buf, unsigned int topa_idx,
 537                             unsigned int output_off)
 538{
 539        u64 reg;
 540
 541        wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, virt_to_phys(buf));
 542
 543        reg = 0x7f | ((u64)topa_idx << 7) | ((u64)output_off << 32);
 544
 545        wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
 546}
 547
 548/*
 549 * Keep ToPA table-related metadata on the same page as the actual table,
 550 * taking up a few words from the top
 551 */
 552
 553#define TENTS_PER_PAGE (((PAGE_SIZE - 40) / sizeof(struct topa_entry)) - 1)
 554
 555/**
 556 * struct topa - page-sized ToPA table with metadata at the top
 557 * @table:      actual ToPA table entries, as understood by PT hardware
 558 * @list:       linkage to struct pt_buffer's list of tables
 559 * @phys:       physical address of this page
 560 * @offset:     offset of the first entry in this table in the buffer
 561 * @size:       total size of all entries in this table
 562 * @last:       index of the last initialized entry in this table
 563 */
 564struct topa {
 565        struct topa_entry       table[TENTS_PER_PAGE];
 566        struct list_head        list;
 567        u64                     phys;
 568        u64                     offset;
 569        size_t                  size;
 570        int                     last;
 571};
 572
 573/* make -1 stand for the last table entry */
 574#define TOPA_ENTRY(t, i) ((i) == -1 ? &(t)->table[(t)->last] : &(t)->table[(i)])
 575
 576/**
 577 * topa_alloc() - allocate page-sized ToPA table
 578 * @cpu:        CPU on which to allocate.
 579 * @gfp:        Allocation flags.
 580 *
 581 * Return:      On success, return the pointer to ToPA table page.
 582 */
 583static struct topa *topa_alloc(int cpu, gfp_t gfp)
 584{
 585        int node = cpu_to_node(cpu);
 586        struct topa *topa;
 587        struct page *p;
 588
 589        p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
 590        if (!p)
 591                return NULL;
 592
 593        topa = page_address(p);
 594        topa->last = 0;
 595        topa->phys = page_to_phys(p);
 596
 597        /*
 598         * In case of singe-entry ToPA, always put the self-referencing END
 599         * link as the 2nd entry in the table
 600         */
 601        if (!pt_cap_get(PT_CAP_topa_multiple_entries)) {
 602                TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT;
 603                TOPA_ENTRY(topa, 1)->end = 1;
 604        }
 605
 606        return topa;
 607}
 608
 609/**
 610 * topa_free() - free a page-sized ToPA table
 611 * @topa:       Table to deallocate.
 612 */
 613static void topa_free(struct topa *topa)
 614{
 615        free_page((unsigned long)topa);
 616}
 617
 618/**
 619 * topa_insert_table() - insert a ToPA table into a buffer
 620 * @buf:         PT buffer that's being extended.
 621 * @topa:        New topa table to be inserted.
 622 *
 623 * If it's the first table in this buffer, set up buffer's pointers
 624 * accordingly; otherwise, add a END=1 link entry to @topa to the current
 625 * "last" table and adjust the last table pointer to @topa.
 626 */
 627static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
 628{
 629        struct topa *last = buf->last;
 630
 631        list_add_tail(&topa->list, &buf->tables);
 632
 633        if (!buf->first) {
 634                buf->first = buf->last = buf->cur = topa;
 635                return;
 636        }
 637
 638        topa->offset = last->offset + last->size;
 639        buf->last = topa;
 640
 641        if (!pt_cap_get(PT_CAP_topa_multiple_entries))
 642                return;
 643
 644        BUG_ON(last->last != TENTS_PER_PAGE - 1);
 645
 646        TOPA_ENTRY(last, -1)->base = topa->phys >> TOPA_SHIFT;
 647        TOPA_ENTRY(last, -1)->end = 1;
 648}
 649
 650/**
 651 * topa_table_full() - check if a ToPA table is filled up
 652 * @topa:       ToPA table.
 653 */
 654static bool topa_table_full(struct topa *topa)
 655{
 656        /* single-entry ToPA is a special case */
 657        if (!pt_cap_get(PT_CAP_topa_multiple_entries))
 658                return !!topa->last;
 659
 660        return topa->last == TENTS_PER_PAGE - 1;
 661}
 662
 663/**
 664 * topa_insert_pages() - create a list of ToPA tables
 665 * @buf:        PT buffer being initialized.
 666 * @gfp:        Allocation flags.
 667 *
 668 * This initializes a list of ToPA tables with entries from
 669 * the data_pages provided by rb_alloc_aux().
 670 *
 671 * Return:      0 on success or error code.
 672 */
 673static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp)
 674{
 675        struct topa *topa = buf->last;
 676        int order = 0;
 677        struct page *p;
 678
 679        p = virt_to_page(buf->data_pages[buf->nr_pages]);
 680        if (PagePrivate(p))
 681                order = page_private(p);
 682
 683        if (topa_table_full(topa)) {
 684                topa = topa_alloc(buf->cpu, gfp);
 685                if (!topa)
 686                        return -ENOMEM;
 687
 688                topa_insert_table(buf, topa);
 689        }
 690
 691        TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
 692        TOPA_ENTRY(topa, -1)->size = order;
 693        if (!buf->snapshot && !pt_cap_get(PT_CAP_topa_multiple_entries)) {
 694                TOPA_ENTRY(topa, -1)->intr = 1;
 695                TOPA_ENTRY(topa, -1)->stop = 1;
 696        }
 697
 698        topa->last++;
 699        topa->size += sizes(order);
 700
 701        buf->nr_pages += 1ul << order;
 702
 703        return 0;
 704}
 705
 706/**
 707 * pt_topa_dump() - print ToPA tables and their entries
 708 * @buf:        PT buffer.
 709 */
 710static void pt_topa_dump(struct pt_buffer *buf)
 711{
 712        struct topa *topa;
 713
 714        list_for_each_entry(topa, &buf->tables, list) {
 715                int i;
 716
 717                pr_debug("# table @%p (%016Lx), off %llx size %zx\n", topa->table,
 718                         topa->phys, topa->offset, topa->size);
 719                for (i = 0; i < TENTS_PER_PAGE; i++) {
 720                        pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
 721                                 &topa->table[i],
 722                                 (unsigned long)topa->table[i].base << TOPA_SHIFT,
 723                                 sizes(topa->table[i].size),
 724                                 topa->table[i].end ?  'E' : ' ',
 725                                 topa->table[i].intr ? 'I' : ' ',
 726                                 topa->table[i].stop ? 'S' : ' ',
 727                                 *(u64 *)&topa->table[i]);
 728                        if ((pt_cap_get(PT_CAP_topa_multiple_entries) &&
 729                             topa->table[i].stop) ||
 730                            topa->table[i].end)
 731                                break;
 732                }
 733        }
 734}
 735
 736/**
 737 * pt_buffer_advance() - advance to the next output region
 738 * @buf:        PT buffer.
 739 *
 740 * Advance the current pointers in the buffer to the next ToPA entry.
 741 */
 742static void pt_buffer_advance(struct pt_buffer *buf)
 743{
 744        buf->output_off = 0;
 745        buf->cur_idx++;
 746
 747        if (buf->cur_idx == buf->cur->last) {
 748                if (buf->cur == buf->last)
 749                        buf->cur = buf->first;
 750                else
 751                        buf->cur = list_entry(buf->cur->list.next, struct topa,
 752                                              list);
 753                buf->cur_idx = 0;
 754        }
 755}
 756
 757/**
 758 * pt_update_head() - calculate current offsets and sizes
 759 * @pt:         Per-cpu pt context.
 760 *
 761 * Update buffer's current write pointer position and data size.
 762 */
 763static void pt_update_head(struct pt *pt)
 764{
 765        struct pt_buffer *buf = perf_get_aux(&pt->handle);
 766        u64 topa_idx, base, old;
 767
 768        /* offset of the first region in this table from the beginning of buf */
 769        base = buf->cur->offset + buf->output_off;
 770
 771        /* offset of the current output region within this table */
 772        for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
 773                base += sizes(buf->cur->table[topa_idx].size);
 774
 775        if (buf->snapshot) {
 776                local_set(&buf->data_size, base);
 777        } else {
 778                old = (local64_xchg(&buf->head, base) &
 779                       ((buf->nr_pages << PAGE_SHIFT) - 1));
 780                if (base < old)
 781                        base += buf->nr_pages << PAGE_SHIFT;
 782
 783                local_add(base - old, &buf->data_size);
 784        }
 785}
 786
 787/**
 788 * pt_buffer_region() - obtain current output region's address
 789 * @buf:        PT buffer.
 790 */
 791static void *pt_buffer_region(struct pt_buffer *buf)
 792{
 793        return phys_to_virt(buf->cur->table[buf->cur_idx].base << TOPA_SHIFT);
 794}
 795
 796/**
 797 * pt_buffer_region_size() - obtain current output region's size
 798 * @buf:        PT buffer.
 799 */
 800static size_t pt_buffer_region_size(struct pt_buffer *buf)
 801{
 802        return sizes(buf->cur->table[buf->cur_idx].size);
 803}
 804
 805/**
 806 * pt_handle_status() - take care of possible status conditions
 807 * @pt:         Per-cpu pt context.
 808 */
 809static void pt_handle_status(struct pt *pt)
 810{
 811        struct pt_buffer *buf = perf_get_aux(&pt->handle);
 812        int advance = 0;
 813        u64 status;
 814
 815        rdmsrl(MSR_IA32_RTIT_STATUS, status);
 816
 817        if (status & RTIT_STATUS_ERROR) {
 818                pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
 819                pt_topa_dump(buf);
 820                status &= ~RTIT_STATUS_ERROR;
 821        }
 822
 823        if (status & RTIT_STATUS_STOPPED) {
 824                status &= ~RTIT_STATUS_STOPPED;
 825
 826                /*
 827                 * On systems that only do single-entry ToPA, hitting STOP
 828                 * means we are already losing data; need to let the decoder
 829                 * know.
 830                 */
 831                if (!pt_cap_get(PT_CAP_topa_multiple_entries) ||
 832                    buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
 833                        perf_aux_output_flag(&pt->handle,
 834                                             PERF_AUX_FLAG_TRUNCATED);
 835                        advance++;
 836                }
 837        }
 838
 839        /*
 840         * Also on single-entry ToPA implementations, interrupt will come
 841         * before the output reaches its output region's boundary.
 842         */
 843        if (!pt_cap_get(PT_CAP_topa_multiple_entries) && !buf->snapshot &&
 844            pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
 845                void *head = pt_buffer_region(buf);
 846
 847                /* everything within this margin needs to be zeroed out */
 848                memset(head + buf->output_off, 0,
 849                       pt_buffer_region_size(buf) -
 850                       buf->output_off);
 851                advance++;
 852        }
 853
 854        if (advance)
 855                pt_buffer_advance(buf);
 856
 857        wrmsrl(MSR_IA32_RTIT_STATUS, status);
 858}
 859
 860/**
 861 * pt_read_offset() - translate registers into buffer pointers
 862 * @buf:        PT buffer.
 863 *
 864 * Set buffer's output pointers from MSR values.
 865 */
 866static void pt_read_offset(struct pt_buffer *buf)
 867{
 868        u64 offset, base_topa;
 869
 870        rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, base_topa);
 871        buf->cur = phys_to_virt(base_topa);
 872
 873        rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, offset);
 874        /* offset within current output region */
 875        buf->output_off = offset >> 32;
 876        /* index of current output region within this table */
 877        buf->cur_idx = (offset & 0xffffff80) >> 7;
 878}
 879
 880/**
 881 * pt_topa_next_entry() - obtain index of the first page in the next ToPA entry
 882 * @buf:        PT buffer.
 883 * @pg:         Page offset in the buffer.
 884 *
 885 * When advancing to the next output region (ToPA entry), given a page offset
 886 * into the buffer, we need to find the offset of the first page in the next
 887 * region.
 888 */
 889static unsigned int pt_topa_next_entry(struct pt_buffer *buf, unsigned int pg)
 890{
 891        struct topa_entry *te = buf->topa_index[pg];
 892
 893        /* one region */
 894        if (buf->first == buf->last && buf->first->last == 1)
 895                return pg;
 896
 897        do {
 898                pg++;
 899                pg &= buf->nr_pages - 1;
 900        } while (buf->topa_index[pg] == te);
 901
 902        return pg;
 903}
 904
 905/**
 906 * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
 907 * @buf:        PT buffer.
 908 * @handle:     Current output handle.
 909 *
 910 * Place INT and STOP marks to prevent overwriting old data that the consumer
 911 * hasn't yet collected and waking up the consumer after a certain fraction of
 912 * the buffer has filled up. Only needed and sensible for non-snapshot counters.
 913 *
 914 * This obviously relies on buf::head to figure out buffer markers, so it has
 915 * to be called after pt_buffer_reset_offsets() and before the hardware tracing
 916 * is enabled.
 917 */
 918static int pt_buffer_reset_markers(struct pt_buffer *buf,
 919                                   struct perf_output_handle *handle)
 920
 921{
 922        unsigned long head = local64_read(&buf->head);
 923        unsigned long idx, npages, wakeup;
 924
 925        /* can't stop in the middle of an output region */
 926        if (buf->output_off + handle->size + 1 <
 927            sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
 928                perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
 929                return -EINVAL;
 930        }
 931
 932
 933        /* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
 934        if (!pt_cap_get(PT_CAP_topa_multiple_entries))
 935                return 0;
 936
 937        /* clear STOP and INT from current entry */
 938        buf->topa_index[buf->stop_pos]->stop = 0;
 939        buf->topa_index[buf->stop_pos]->intr = 0;
 940        buf->topa_index[buf->intr_pos]->intr = 0;
 941
 942        /* how many pages till the STOP marker */
 943        npages = handle->size >> PAGE_SHIFT;
 944
 945        /* if it's on a page boundary, fill up one more page */
 946        if (!offset_in_page(head + handle->size + 1))
 947                npages++;
 948
 949        idx = (head >> PAGE_SHIFT) + npages;
 950        idx &= buf->nr_pages - 1;
 951        buf->stop_pos = idx;
 952
 953        wakeup = handle->wakeup >> PAGE_SHIFT;
 954
 955        /* in the worst case, wake up the consumer one page before hard stop */
 956        idx = (head >> PAGE_SHIFT) + npages - 1;
 957        if (idx > wakeup)
 958                idx = wakeup;
 959
 960        idx &= buf->nr_pages - 1;
 961        buf->intr_pos = idx;
 962
 963        buf->topa_index[buf->stop_pos]->stop = 1;
 964        buf->topa_index[buf->stop_pos]->intr = 1;
 965        buf->topa_index[buf->intr_pos]->intr = 1;
 966
 967        return 0;
 968}
 969
 970/**
 971 * pt_buffer_setup_topa_index() - build topa_index[] table of regions
 972 * @buf:        PT buffer.
 973 *
 974 * topa_index[] references output regions indexed by offset into the
 975 * buffer for purposes of quick reverse lookup.
 976 */
 977static void pt_buffer_setup_topa_index(struct pt_buffer *buf)
 978{
 979        struct topa *cur = buf->first, *prev = buf->last;
 980        struct topa_entry *te_cur = TOPA_ENTRY(cur, 0),
 981                *te_prev = TOPA_ENTRY(prev, prev->last - 1);
 982        int pg = 0, idx = 0;
 983
 984        while (pg < buf->nr_pages) {
 985                int tidx;
 986
 987                /* pages within one topa entry */
 988                for (tidx = 0; tidx < 1 << te_cur->size; tidx++, pg++)
 989                        buf->topa_index[pg] = te_prev;
 990
 991                te_prev = te_cur;
 992
 993                if (idx == cur->last - 1) {
 994                        /* advance to next topa table */
 995                        idx = 0;
 996                        cur = list_entry(cur->list.next, struct topa, list);
 997                } else {
 998                        idx++;
 999                }
1000                te_cur = TOPA_ENTRY(cur, idx);
1001        }
1002
1003}
1004
1005/**
1006 * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
1007 * @buf:        PT buffer.
1008 * @head:       Write pointer (aux_head) from AUX buffer.
1009 *
1010 * Find the ToPA table and entry corresponding to given @head and set buffer's
1011 * "current" pointers accordingly. This is done after we have obtained the
1012 * current aux_head position from a successful call to perf_aux_output_begin()
1013 * to make sure the hardware is writing to the right place.
1014 *
1015 * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
1016 * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
1017 * which are used to determine INT and STOP markers' locations by a subsequent
1018 * call to pt_buffer_reset_markers().
1019 */
1020static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
1021{
1022        int pg;
1023
1024        if (buf->snapshot)
1025                head &= (buf->nr_pages << PAGE_SHIFT) - 1;
1026
1027        pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
1028        pg = pt_topa_next_entry(buf, pg);
1029
1030        buf->cur = (struct topa *)((unsigned long)buf->topa_index[pg] & PAGE_MASK);
1031        buf->cur_idx = ((unsigned long)buf->topa_index[pg] -
1032                        (unsigned long)buf->cur) / sizeof(struct topa_entry);
1033        buf->output_off = head & (sizes(buf->cur->table[buf->cur_idx].size) - 1);
1034
1035        local64_set(&buf->head, head);
1036        local_set(&buf->data_size, 0);
1037}
1038
1039/**
1040 * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
1041 * @buf:        PT buffer.
1042 */
1043static void pt_buffer_fini_topa(struct pt_buffer *buf)
1044{
1045        struct topa *topa, *iter;
1046
1047        list_for_each_entry_safe(topa, iter, &buf->tables, list) {
1048                /*
1049                 * right now, this is in free_aux() path only, so
1050                 * no need to unlink this table from the list
1051                 */
1052                topa_free(topa);
1053        }
1054}
1055
1056/**
1057 * pt_buffer_init_topa() - initialize ToPA table for pt buffer
1058 * @buf:        PT buffer.
1059 * @size:       Total size of all regions within this ToPA.
1060 * @gfp:        Allocation flags.
1061 */
1062static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages,
1063                               gfp_t gfp)
1064{
1065        struct topa *topa;
1066        int err;
1067
1068        topa = topa_alloc(buf->cpu, gfp);
1069        if (!topa)
1070                return -ENOMEM;
1071
1072        topa_insert_table(buf, topa);
1073
1074        while (buf->nr_pages < nr_pages) {
1075                err = topa_insert_pages(buf, gfp);
1076                if (err) {
1077                        pt_buffer_fini_topa(buf);
1078                        return -ENOMEM;
1079                }
1080        }
1081
1082        pt_buffer_setup_topa_index(buf);
1083
1084        /* link last table to the first one, unless we're double buffering */
1085        if (pt_cap_get(PT_CAP_topa_multiple_entries)) {
1086                TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT;
1087                TOPA_ENTRY(buf->last, -1)->end = 1;
1088        }
1089
1090        pt_topa_dump(buf);
1091        return 0;
1092}
1093
1094/**
1095 * pt_buffer_setup_aux() - set up topa tables for a PT buffer
1096 * @cpu:        Cpu on which to allocate, -1 means current.
1097 * @pages:      Array of pointers to buffer pages passed from perf core.
1098 * @nr_pages:   Number of pages in the buffer.
1099 * @snapshot:   If this is a snapshot/overwrite counter.
1100 *
1101 * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1102 * bookkeeping for an AUX buffer.
1103 *
1104 * Return:      Our private PT buffer structure.
1105 */
1106static void *
1107pt_buffer_setup_aux(int cpu, void **pages, int nr_pages, bool snapshot)
1108{
1109        struct pt_buffer *buf;
1110        int node, ret;
1111
1112        if (!nr_pages)
1113                return NULL;
1114
1115        if (cpu == -1)
1116                cpu = raw_smp_processor_id();
1117        node = cpu_to_node(cpu);
1118
1119        buf = kzalloc_node(offsetof(struct pt_buffer, topa_index[nr_pages]),
1120                           GFP_KERNEL, node);
1121        if (!buf)
1122                return NULL;
1123
1124        buf->cpu = cpu;
1125        buf->snapshot = snapshot;
1126        buf->data_pages = pages;
1127
1128        INIT_LIST_HEAD(&buf->tables);
1129
1130        ret = pt_buffer_init_topa(buf, nr_pages, GFP_KERNEL);
1131        if (ret) {
1132                kfree(buf);
1133                return NULL;
1134        }
1135
1136        return buf;
1137}
1138
1139/**
1140 * pt_buffer_free_aux() - perf AUX deallocation path callback
1141 * @data:       PT buffer.
1142 */
1143static void pt_buffer_free_aux(void *data)
1144{
1145        struct pt_buffer *buf = data;
1146
1147        pt_buffer_fini_topa(buf);
1148        kfree(buf);
1149}
1150
1151static int pt_addr_filters_init(struct perf_event *event)
1152{
1153        struct pt_filters *filters;
1154        int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1155
1156        if (!pt_cap_get(PT_CAP_num_address_ranges))
1157                return 0;
1158
1159        filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1160        if (!filters)
1161                return -ENOMEM;
1162
1163        if (event->parent)
1164                memcpy(filters, event->parent->hw.addr_filters,
1165                       sizeof(*filters));
1166
1167        event->hw.addr_filters = filters;
1168
1169        return 0;
1170}
1171
1172static void pt_addr_filters_fini(struct perf_event *event)
1173{
1174        kfree(event->hw.addr_filters);
1175        event->hw.addr_filters = NULL;
1176}
1177
1178static inline bool valid_kernel_ip(unsigned long ip)
1179{
1180        return virt_addr_valid(ip) && kernel_ip(ip);
1181}
1182
1183static int pt_event_addr_filters_validate(struct list_head *filters)
1184{
1185        struct perf_addr_filter *filter;
1186        int range = 0;
1187
1188        list_for_each_entry(filter, filters, entry) {
1189                /* PT doesn't support single address triggers */
1190                if (!filter->range || !filter->size)
1191                        return -EOPNOTSUPP;
1192
1193                if (!filter->inode) {
1194                        if (!valid_kernel_ip(filter->offset))
1195                                return -EINVAL;
1196
1197                        if (!valid_kernel_ip(filter->offset + filter->size))
1198                                return -EINVAL;
1199                }
1200
1201                if (++range > pt_cap_get(PT_CAP_num_address_ranges))
1202                        return -EOPNOTSUPP;
1203        }
1204
1205        return 0;
1206}
1207
1208static void pt_event_addr_filters_sync(struct perf_event *event)
1209{
1210        struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1211        unsigned long msr_a, msr_b, *offs = event->addr_filters_offs;
1212        struct pt_filters *filters = event->hw.addr_filters;
1213        struct perf_addr_filter *filter;
1214        int range = 0;
1215
1216        if (!filters)
1217                return;
1218
1219        list_for_each_entry(filter, &head->list, entry) {
1220                if (filter->inode && !offs[range]) {
1221                        msr_a = msr_b = 0;
1222                } else {
1223                        /* apply the offset */
1224                        msr_a = filter->offset + offs[range];
1225                        msr_b = filter->size + msr_a - 1;
1226                }
1227
1228                filters->filter[range].msr_a  = msr_a;
1229                filters->filter[range].msr_b  = msr_b;
1230                filters->filter[range].config = filter->filter ? 1 : 2;
1231                range++;
1232        }
1233
1234        filters->nr_filters = range;
1235}
1236
1237/**
1238 * intel_pt_interrupt() - PT PMI handler
1239 */
1240void intel_pt_interrupt(void)
1241{
1242        struct pt *pt = this_cpu_ptr(&pt_ctx);
1243        struct pt_buffer *buf;
1244        struct perf_event *event = pt->handle.event;
1245
1246        /*
1247         * There may be a dangling PT bit in the interrupt status register
1248         * after PT has been disabled by pt_event_stop(). Make sure we don't
1249         * do anything (particularly, re-enable) for this event here.
1250         */
1251        if (!READ_ONCE(pt->handle_nmi))
1252                return;
1253
1254        if (!event)
1255                return;
1256
1257        pt_config_stop(event);
1258
1259        buf = perf_get_aux(&pt->handle);
1260        if (!buf)
1261                return;
1262
1263        pt_read_offset(buf);
1264
1265        pt_handle_status(pt);
1266
1267        pt_update_head(pt);
1268
1269        perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1270
1271        if (!event->hw.state) {
1272                int ret;
1273
1274                buf = perf_aux_output_begin(&pt->handle, event);
1275                if (!buf) {
1276                        event->hw.state = PERF_HES_STOPPED;
1277                        return;
1278                }
1279
1280                pt_buffer_reset_offsets(buf, pt->handle.head);
1281                /* snapshot counters don't use PMI, so it's safe */
1282                ret = pt_buffer_reset_markers(buf, &pt->handle);
1283                if (ret) {
1284                        perf_aux_output_end(&pt->handle, 0);
1285                        return;
1286                }
1287
1288                pt_config_buffer(buf->cur->table, buf->cur_idx,
1289                                 buf->output_off);
1290                pt_config(event);
1291        }
1292}
1293
1294void intel_pt_handle_vmx(int on)
1295{
1296        struct pt *pt = this_cpu_ptr(&pt_ctx);
1297        struct perf_event *event;
1298        unsigned long flags;
1299
1300        /* PT plays nice with VMX, do nothing */
1301        if (pt_pmu.vmx)
1302                return;
1303
1304        /*
1305         * VMXON will clear RTIT_CTL.TraceEn; we need to make
1306         * sure to not try to set it while VMX is on. Disable
1307         * interrupts to avoid racing with pmu callbacks;
1308         * concurrent PMI should be handled fine.
1309         */
1310        local_irq_save(flags);
1311        WRITE_ONCE(pt->vmx_on, on);
1312
1313        /*
1314         * If an AUX transaction is in progress, it will contain
1315         * gap(s), so flag it PARTIAL to inform the user.
1316         */
1317        event = pt->handle.event;
1318        if (event)
1319                perf_aux_output_flag(&pt->handle,
1320                                     PERF_AUX_FLAG_PARTIAL);
1321
1322        /* Turn PTs back on */
1323        if (!on && event)
1324                wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config);
1325
1326        local_irq_restore(flags);
1327}
1328EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1329
1330/*
1331 * PMU callbacks
1332 */
1333
1334static void pt_event_start(struct perf_event *event, int mode)
1335{
1336        struct hw_perf_event *hwc = &event->hw;
1337        struct pt *pt = this_cpu_ptr(&pt_ctx);
1338        struct pt_buffer *buf;
1339
1340        buf = perf_aux_output_begin(&pt->handle, event);
1341        if (!buf)
1342                goto fail_stop;
1343
1344        pt_buffer_reset_offsets(buf, pt->handle.head);
1345        if (!buf->snapshot) {
1346                if (pt_buffer_reset_markers(buf, &pt->handle))
1347                        goto fail_end_stop;
1348        }
1349
1350        WRITE_ONCE(pt->handle_nmi, 1);
1351        hwc->state = 0;
1352
1353        pt_config_buffer(buf->cur->table, buf->cur_idx,
1354                         buf->output_off);
1355        pt_config(event);
1356
1357        return;
1358
1359fail_end_stop:
1360        perf_aux_output_end(&pt->handle, 0);
1361fail_stop:
1362        hwc->state = PERF_HES_STOPPED;
1363}
1364
1365static void pt_event_stop(struct perf_event *event, int mode)
1366{
1367        struct pt *pt = this_cpu_ptr(&pt_ctx);
1368
1369        /*
1370         * Protect against the PMI racing with disabling wrmsr,
1371         * see comment in intel_pt_interrupt().
1372         */
1373        WRITE_ONCE(pt->handle_nmi, 0);
1374
1375        pt_config_stop(event);
1376
1377        if (event->hw.state == PERF_HES_STOPPED)
1378                return;
1379
1380        event->hw.state = PERF_HES_STOPPED;
1381
1382        if (mode & PERF_EF_UPDATE) {
1383                struct pt_buffer *buf = perf_get_aux(&pt->handle);
1384
1385                if (!buf)
1386                        return;
1387
1388                if (WARN_ON_ONCE(pt->handle.event != event))
1389                        return;
1390
1391                pt_read_offset(buf);
1392
1393                pt_handle_status(pt);
1394
1395                pt_update_head(pt);
1396
1397                if (buf->snapshot)
1398                        pt->handle.head =
1399                                local_xchg(&buf->data_size,
1400                                           buf->nr_pages << PAGE_SHIFT);
1401                perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1402        }
1403}
1404
1405static void pt_event_del(struct perf_event *event, int mode)
1406{
1407        pt_event_stop(event, PERF_EF_UPDATE);
1408}
1409
1410static int pt_event_add(struct perf_event *event, int mode)
1411{
1412        struct pt *pt = this_cpu_ptr(&pt_ctx);
1413        struct hw_perf_event *hwc = &event->hw;
1414        int ret = -EBUSY;
1415
1416        if (pt->handle.event)
1417                goto fail;
1418
1419        if (mode & PERF_EF_START) {
1420                pt_event_start(event, 0);
1421                ret = -EINVAL;
1422                if (hwc->state == PERF_HES_STOPPED)
1423                        goto fail;
1424        } else {
1425                hwc->state = PERF_HES_STOPPED;
1426        }
1427
1428        ret = 0;
1429fail:
1430
1431        return ret;
1432}
1433
1434static void pt_event_read(struct perf_event *event)
1435{
1436}
1437
1438static void pt_event_destroy(struct perf_event *event)
1439{
1440        pt_addr_filters_fini(event);
1441        x86_del_exclusive(x86_lbr_exclusive_pt);
1442}
1443
1444static int pt_event_init(struct perf_event *event)
1445{
1446        if (event->attr.type != pt_pmu.pmu.type)
1447                return -ENOENT;
1448
1449        if (!pt_event_valid(event))
1450                return -EINVAL;
1451
1452        if (x86_add_exclusive(x86_lbr_exclusive_pt))
1453                return -EBUSY;
1454
1455        if (pt_addr_filters_init(event)) {
1456                x86_del_exclusive(x86_lbr_exclusive_pt);
1457                return -ENOMEM;
1458        }
1459
1460        event->destroy = pt_event_destroy;
1461
1462        return 0;
1463}
1464
1465void cpu_emergency_stop_pt(void)
1466{
1467        struct pt *pt = this_cpu_ptr(&pt_ctx);
1468
1469        if (pt->handle.event)
1470                pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1471}
1472
1473static __init int pt_init(void)
1474{
1475        int ret, cpu, prior_warn = 0;
1476
1477        BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1478
1479        if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1480                return -ENODEV;
1481
1482        get_online_cpus();
1483        for_each_online_cpu(cpu) {
1484                u64 ctl;
1485
1486                ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1487                if (!ret && (ctl & RTIT_CTL_TRACEEN))
1488                        prior_warn++;
1489        }
1490        put_online_cpus();
1491
1492        if (prior_warn) {
1493                x86_add_exclusive(x86_lbr_exclusive_pt);
1494                pr_warn("PT is enabled at boot time, doing nothing\n");
1495
1496                return -EBUSY;
1497        }
1498
1499        ret = pt_pmu_hw_init();
1500        if (ret)
1501                return ret;
1502
1503        if (!pt_cap_get(PT_CAP_topa_output)) {
1504                pr_warn("ToPA output is not supported on this CPU\n");
1505                return -ENODEV;
1506        }
1507
1508        if (!pt_cap_get(PT_CAP_topa_multiple_entries))
1509                pt_pmu.pmu.capabilities =
1510                        PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF;
1511
1512        pt_pmu.pmu.capabilities |= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1513        pt_pmu.pmu.attr_groups           = pt_attr_groups;
1514        pt_pmu.pmu.task_ctx_nr           = perf_sw_context;
1515        pt_pmu.pmu.event_init            = pt_event_init;
1516        pt_pmu.pmu.add                   = pt_event_add;
1517        pt_pmu.pmu.del                   = pt_event_del;
1518        pt_pmu.pmu.start                 = pt_event_start;
1519        pt_pmu.pmu.stop                  = pt_event_stop;
1520        pt_pmu.pmu.read                  = pt_event_read;
1521        pt_pmu.pmu.setup_aux             = pt_buffer_setup_aux;
1522        pt_pmu.pmu.free_aux              = pt_buffer_free_aux;
1523        pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1524        pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1525        pt_pmu.pmu.nr_addr_filters       =
1526                pt_cap_get(PT_CAP_num_address_ranges);
1527
1528        ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1529
1530        return ret;
1531}
1532arch_initcall(pt_init);
1533