linux/arch/x86/xen/time.c
<<
>>
Prefs
   1/*
   2 * Xen time implementation.
   3 *
   4 * This is implemented in terms of a clocksource driver which uses
   5 * the hypervisor clock as a nanosecond timebase, and a clockevent
   6 * driver which uses the hypervisor's timer mechanism.
   7 *
   8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
   9 */
  10#include <linux/kernel.h>
  11#include <linux/interrupt.h>
  12#include <linux/clocksource.h>
  13#include <linux/clockchips.h>
  14#include <linux/kernel_stat.h>
  15#include <linux/math64.h>
  16#include <linux/gfp.h>
  17#include <linux/slab.h>
  18#include <linux/pvclock_gtod.h>
  19
  20#include <asm/pvclock.h>
  21#include <asm/xen/hypervisor.h>
  22#include <asm/xen/hypercall.h>
  23
  24#include <xen/events.h>
  25#include <xen/features.h>
  26#include <xen/interface/xen.h>
  27#include <xen/interface/vcpu.h>
  28
  29#include "xen-ops.h"
  30
  31/* Xen may fire a timer up to this many ns early */
  32#define TIMER_SLOP      100000
  33#define NS_PER_TICK     (1000000000LL / HZ)
  34
  35/* runstate info updated by Xen */
  36static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
  37
  38/* snapshots of runstate info */
  39static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
  40
  41/* unused ns of stolen time */
  42static DEFINE_PER_CPU(u64, xen_residual_stolen);
  43
  44/* return an consistent snapshot of 64-bit time/counter value */
  45static u64 get64(const u64 *p)
  46{
  47        u64 ret;
  48
  49        if (BITS_PER_LONG < 64) {
  50                u32 *p32 = (u32 *)p;
  51                u32 h, l;
  52
  53                /*
  54                 * Read high then low, and then make sure high is
  55                 * still the same; this will only loop if low wraps
  56                 * and carries into high.
  57                 * XXX some clean way to make this endian-proof?
  58                 */
  59                do {
  60                        h = p32[1];
  61                        barrier();
  62                        l = p32[0];
  63                        barrier();
  64                } while (p32[1] != h);
  65
  66                ret = (((u64)h) << 32) | l;
  67        } else
  68                ret = *p;
  69
  70        return ret;
  71}
  72
  73/*
  74 * Runstate accounting
  75 */
  76static void get_runstate_snapshot(struct vcpu_runstate_info *res)
  77{
  78        u64 state_time;
  79        struct vcpu_runstate_info *state;
  80
  81        BUG_ON(preemptible());
  82
  83        state = &__get_cpu_var(xen_runstate);
  84
  85        /*
  86         * The runstate info is always updated by the hypervisor on
  87         * the current CPU, so there's no need to use anything
  88         * stronger than a compiler barrier when fetching it.
  89         */
  90        do {
  91                state_time = get64(&state->state_entry_time);
  92                barrier();
  93                *res = *state;
  94                barrier();
  95        } while (get64(&state->state_entry_time) != state_time);
  96}
  97
  98/* return true when a vcpu could run but has no real cpu to run on */
  99bool xen_vcpu_stolen(int vcpu)
 100{
 101        return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
 102}
 103
 104void xen_setup_runstate_info(int cpu)
 105{
 106        struct vcpu_register_runstate_memory_area area;
 107
 108        area.addr.v = &per_cpu(xen_runstate, cpu);
 109
 110        if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
 111                               xen_vcpu_nr(cpu), &area))
 112                BUG();
 113}
 114
 115static void do_stolen_accounting(void)
 116{
 117        struct vcpu_runstate_info state;
 118        struct vcpu_runstate_info *snap;
 119        s64 runnable, offline, stolen;
 120        cputime_t ticks;
 121
 122        get_runstate_snapshot(&state);
 123
 124        WARN_ON(state.state != RUNSTATE_running);
 125
 126        snap = &__get_cpu_var(xen_runstate_snapshot);
 127
 128        /* work out how much time the VCPU has not been runn*ing*  */
 129        runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
 130        offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
 131
 132        *snap = state;
 133
 134        /* Add the appropriate number of ticks of stolen time,
 135           including any left-overs from last time. */
 136        stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
 137
 138        if (stolen < 0)
 139                stolen = 0;
 140
 141        ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
 142        __this_cpu_write(xen_residual_stolen, stolen);
 143        account_steal_ticks(ticks);
 144}
 145
 146/* Get the TSC speed from Xen */
 147static unsigned long xen_tsc_khz(void)
 148{
 149        struct pvclock_vcpu_time_info *info =
 150                &HYPERVISOR_shared_info->vcpu_info[0].time;
 151
 152        return pvclock_tsc_khz(info);
 153}
 154
 155u64 xen_clocksource_read(void)
 156{
 157        struct pvclock_vcpu_time_info *src;
 158        u64 ret;
 159
 160        preempt_disable_notrace();
 161        src = &__get_cpu_var(xen_vcpu)->time;
 162        ret = pvclock_clocksource_read(src);
 163        preempt_enable_notrace();
 164        return ret;
 165}
 166
 167static u64 xen_clocksource_get_cycles(struct clocksource *cs)
 168{
 169        return xen_clocksource_read();
 170}
 171
 172static void xen_read_wallclock(struct timespec *ts)
 173{
 174        struct shared_info *s = HYPERVISOR_shared_info;
 175        struct pvclock_wall_clock *wall_clock = &(s->wc);
 176        struct pvclock_vcpu_time_info *vcpu_time;
 177
 178        vcpu_time = &get_cpu_var(xen_vcpu)->time;
 179        pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 180        put_cpu_var(xen_vcpu);
 181}
 182
 183static void xen_get_wallclock(struct timespec *now)
 184{
 185        xen_read_wallclock(now);
 186}
 187
 188static int xen_set_wallclock(const struct timespec *now)
 189{
 190        return -1;
 191}
 192
 193static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 194                                   unsigned long was_set, void *priv)
 195{
 196        /* Protected by the calling core code serialization */
 197        static struct timespec next_sync;
 198
 199        struct xen_platform_op op;
 200        struct timespec now;
 201
 202        now = __current_kernel_time();
 203
 204        /*
 205         * We only take the expensive HV call when the clock was set
 206         * or when the 11 minutes RTC synchronization time elapsed.
 207         */
 208        if (!was_set && timespec_compare(&now, &next_sync) < 0)
 209                return NOTIFY_OK;
 210
 211        op.cmd = XENPF_settime;
 212        op.u.settime.secs = now.tv_sec;
 213        op.u.settime.nsecs = now.tv_nsec;
 214        op.u.settime.system_time = xen_clocksource_read();
 215
 216        (void)HYPERVISOR_dom0_op(&op);
 217
 218        /*
 219         * Move the next drift compensation time 11 minutes
 220         * ahead. That's emulating the sync_cmos_clock() update for
 221         * the hardware RTC.
 222         */
 223        next_sync = now;
 224        next_sync.tv_sec += 11 * 60;
 225
 226        return NOTIFY_OK;
 227}
 228
 229static struct notifier_block xen_pvclock_gtod_notifier = {
 230        .notifier_call = xen_pvclock_gtod_notify,
 231};
 232
 233static struct clocksource xen_clocksource __read_mostly = {
 234        .name = "xen",
 235        .rating = 400,
 236        .read = xen_clocksource_get_cycles,
 237        .mask = ~0,
 238        .flags = CLOCK_SOURCE_IS_CONTINUOUS,
 239};
 240
 241/*
 242   Xen clockevent implementation
 243
 244   Xen has two clockevent implementations:
 245
 246   The old timer_op one works with all released versions of Xen prior
 247   to version 3.0.4.  This version of the hypervisor provides a
 248   single-shot timer with nanosecond resolution.  However, sharing the
 249   same event channel is a 100Hz tick which is delivered while the
 250   vcpu is running.  We don't care about or use this tick, but it will
 251   cause the core time code to think the timer fired too soon, and
 252   will end up resetting it each time.  It could be filtered, but
 253   doing so has complications when the ktime clocksource is not yet
 254   the xen clocksource (ie, at boot time).
 255
 256   The new vcpu_op-based timer interface allows the tick timer period
 257   to be changed or turned off.  The tick timer is not useful as a
 258   periodic timer because events are only delivered to running vcpus.
 259   The one-shot timer can report when a timeout is in the past, so
 260   set_next_event is capable of returning -ETIME when appropriate.
 261   This interface is used when available.
 262*/
 263
 264
 265/*
 266  Get a hypervisor absolute time.  In theory we could maintain an
 267  offset between the kernel's time and the hypervisor's time, and
 268  apply that to a kernel's absolute timeout.  Unfortunately the
 269  hypervisor and kernel times can drift even if the kernel is using
 270  the Xen clocksource, because ntp can warp the kernel's clocksource.
 271*/
 272static s64 get_abs_timeout(unsigned long delta)
 273{
 274        return xen_clocksource_read() + delta;
 275}
 276
 277static void xen_timerop_set_mode(enum clock_event_mode mode,
 278                                 struct clock_event_device *evt)
 279{
 280        switch (mode) {
 281        case CLOCK_EVT_MODE_PERIODIC:
 282                /* unsupported */
 283                WARN_ON(1);
 284                break;
 285
 286        case CLOCK_EVT_MODE_ONESHOT:
 287        case CLOCK_EVT_MODE_RESUME:
 288                break;
 289
 290        case CLOCK_EVT_MODE_UNUSED:
 291        case CLOCK_EVT_MODE_SHUTDOWN:
 292                HYPERVISOR_set_timer_op(0);  /* cancel timeout */
 293                break;
 294        }
 295}
 296
 297static int xen_timerop_set_next_event(unsigned long delta,
 298                                      struct clock_event_device *evt)
 299{
 300        WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
 301
 302        if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
 303                BUG();
 304
 305        /* We may have missed the deadline, but there's no real way of
 306           knowing for sure.  If the event was in the past, then we'll
 307           get an immediate interrupt. */
 308
 309        return 0;
 310}
 311
 312static const struct clock_event_device xen_timerop_clockevent = {
 313        .name = "xen",
 314        .features = CLOCK_EVT_FEAT_ONESHOT,
 315
 316        .max_delta_ns = 0xffffffff,
 317        .min_delta_ns = TIMER_SLOP,
 318
 319        .mult = 1,
 320        .shift = 0,
 321        .rating = 500,
 322
 323        .set_mode = xen_timerop_set_mode,
 324        .set_next_event = xen_timerop_set_next_event,
 325};
 326
 327static void xen_vcpuop_set_mode(enum clock_event_mode mode,
 328                                struct clock_event_device *evt)
 329{
 330        int cpu = smp_processor_id();
 331
 332        switch (mode) {
 333        case CLOCK_EVT_MODE_PERIODIC:
 334                WARN_ON(1);     /* unsupported */
 335                break;
 336
 337        case CLOCK_EVT_MODE_ONESHOT:
 338                if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
 339                                       NULL))
 340                        BUG();
 341                break;
 342
 343        case CLOCK_EVT_MODE_UNUSED:
 344        case CLOCK_EVT_MODE_SHUTDOWN:
 345                if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
 346                                       NULL) ||
 347                    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
 348                                       NULL))
 349                        BUG();
 350                break;
 351        case CLOCK_EVT_MODE_RESUME:
 352                break;
 353        }
 354}
 355
 356static int xen_vcpuop_set_next_event(unsigned long delta,
 357                                     struct clock_event_device *evt)
 358{
 359        int cpu = smp_processor_id();
 360        struct vcpu_set_singleshot_timer single;
 361        int ret;
 362
 363        WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
 364
 365        single.timeout_abs_ns = get_abs_timeout(delta);
 366        single.flags = VCPU_SSHOTTMR_future;
 367
 368        ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
 369                                 &single);
 370
 371        BUG_ON(ret != 0 && ret != -ETIME);
 372
 373        return ret;
 374}
 375
 376static const struct clock_event_device xen_vcpuop_clockevent = {
 377        .name = "xen",
 378        .features = CLOCK_EVT_FEAT_ONESHOT,
 379
 380        .max_delta_ns = 0xffffffff,
 381        .min_delta_ns = TIMER_SLOP,
 382
 383        .mult = 1,
 384        .shift = 0,
 385        .rating = 500,
 386
 387        .set_mode = xen_vcpuop_set_mode,
 388        .set_next_event = xen_vcpuop_set_next_event,
 389};
 390
 391static const struct clock_event_device *xen_clockevent =
 392        &xen_timerop_clockevent;
 393
 394struct xen_clock_event_device {
 395        struct clock_event_device evt;
 396        char *name;
 397};
 398static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
 399
 400static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
 401{
 402        struct clock_event_device *evt = &__get_cpu_var(xen_clock_events).evt;
 403        irqreturn_t ret;
 404
 405        ret = IRQ_NONE;
 406        if (evt->event_handler) {
 407                evt->event_handler(evt);
 408                ret = IRQ_HANDLED;
 409        }
 410
 411        do_stolen_accounting();
 412
 413        return ret;
 414}
 415
 416void xen_teardown_timer(int cpu)
 417{
 418        struct clock_event_device *evt;
 419        evt = &per_cpu(xen_clock_events, cpu).evt;
 420
 421        if (evt->irq >= 0) {
 422                unbind_from_irqhandler(evt->irq, NULL);
 423                evt->irq = -1;
 424                kfree(per_cpu(xen_clock_events, cpu).name);
 425                per_cpu(xen_clock_events, cpu).name = NULL;
 426        }
 427}
 428
 429void xen_setup_timer(int cpu)
 430{
 431        char *name;
 432        struct clock_event_device *evt;
 433        int irq;
 434
 435        evt = &per_cpu(xen_clock_events, cpu).evt;
 436        WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
 437        if (evt->irq >= 0)
 438                xen_teardown_timer(cpu);
 439
 440        printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
 441
 442        name = kasprintf(GFP_KERNEL, "timer%d", cpu);
 443        if (!name)
 444                name = "<timer kasprintf failed>";
 445
 446        irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
 447                                      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
 448                                      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
 449                                      name, NULL);
 450
 451        memcpy(evt, xen_clockevent, sizeof(*evt));
 452
 453        evt->cpumask = cpumask_of(cpu);
 454        evt->irq = irq;
 455        per_cpu(xen_clock_events, cpu).name = name;
 456}
 457
 458
 459void xen_setup_cpu_clockevents(void)
 460{
 461        BUG_ON(preemptible());
 462
 463        clockevents_register_device(&__get_cpu_var(xen_clock_events).evt);
 464}
 465
 466void xen_timer_resume(void)
 467{
 468        int cpu;
 469
 470        pvclock_resume();
 471
 472        if (xen_clockevent != &xen_vcpuop_clockevent)
 473                return;
 474
 475        for_each_online_cpu(cpu) {
 476                if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
 477                                       xen_vcpu_nr(cpu), NULL))
 478                        BUG();
 479        }
 480}
 481
 482static const struct pv_time_ops xen_time_ops __initconst = {
 483        .sched_clock = xen_clocksource_read,
 484};
 485
 486static void __init xen_time_init(void)
 487{
 488        int cpu = smp_processor_id();
 489        struct timespec tp;
 490
 491        clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
 492
 493        if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
 494                               NULL) == 0) {
 495                /* Successfully turned off 100Hz tick, so we have the
 496                   vcpuop-based timer interface */
 497                printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
 498                xen_clockevent = &xen_vcpuop_clockevent;
 499        }
 500
 501        /* Set initial system time with full resolution */
 502        xen_read_wallclock(&tp);
 503        do_settimeofday(&tp);
 504
 505        setup_force_cpu_cap(X86_FEATURE_TSC);
 506
 507        xen_setup_runstate_info(cpu);
 508        xen_setup_timer(cpu);
 509        xen_setup_cpu_clockevents();
 510
 511        if (xen_initial_domain())
 512                pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
 513}
 514
 515void __init xen_init_time_ops(void)
 516{
 517        pv_time_ops = xen_time_ops;
 518
 519        x86_init.timers.timer_init = xen_time_init;
 520        x86_init.timers.setup_percpu_clockev = x86_init_noop;
 521        x86_cpuinit.setup_percpu_clockev = x86_init_noop;
 522
 523        x86_platform.calibrate_tsc = xen_tsc_khz;
 524        x86_platform.get_wallclock = xen_get_wallclock;
 525        /* Dom0 uses the native method to set the hardware RTC. */
 526        if (!xen_initial_domain())
 527                x86_platform.set_wallclock = xen_set_wallclock;
 528}
 529
 530#ifdef CONFIG_XEN_PVHVM
 531static void xen_hvm_setup_cpu_clockevents(void)
 532{
 533        int cpu = smp_processor_id();
 534        xen_setup_runstate_info(cpu);
 535        /*
 536         * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
 537         * doing it xen_hvm_cpu_notify (which gets called by smp_init during
 538         * early bootup and also during CPU hotplug events).
 539         */
 540        xen_setup_cpu_clockevents();
 541}
 542
 543void __init xen_hvm_init_time_ops(void)
 544{
 545        /* vector callback is needed otherwise we cannot receive interrupts
 546         * on cpu > 0 and at this point we don't know how many cpus are
 547         * available */
 548        if (!xen_have_vector_callback)
 549                return;
 550        if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
 551                printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
 552                                "disable pv timer\n");
 553                return;
 554        }
 555
 556        pv_time_ops = xen_time_ops;
 557        x86_init.timers.setup_percpu_clockev = xen_time_init;
 558        x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
 559
 560        x86_platform.calibrate_tsc = xen_tsc_khz;
 561        x86_platform.get_wallclock = xen_get_wallclock;
 562        x86_platform.set_wallclock = xen_set_wallclock;
 563}
 564#endif
 565