linux/drivers/atm/fore200e.c
<<
>>
Prefs
   1/*
   2  A FORE Systems 200E-series driver for ATM on Linux.
   3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   4
   5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   6
   7  This driver simultaneously supports PCA-200E and SBA-200E adapters
   8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
   9
  10  This program is free software; you can redistribute it and/or modify
  11  it under the terms of the GNU General Public License as published by
  12  the Free Software Foundation; either version 2 of the License, or
  13  (at your option) any later version.
  14
  15  This program is distributed in the hope that it will be useful,
  16  but WITHOUT ANY WARRANTY; without even the implied warranty of
  17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18  GNU General Public License for more details.
  19
  20  You should have received a copy of the GNU General Public License
  21  along with this program; if not, write to the Free Software
  22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23*/
  24
  25
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/capability.h>
  30#include <linux/interrupt.h>
  31#include <linux/bitops.h>
  32#include <linux/pci.h>
  33#include <linux/module.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/atm_suni.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/delay.h>
  39#include <linux/firmware.h>
  40#include <asm/io.h>
  41#include <asm/string.h>
  42#include <asm/page.h>
  43#include <asm/irq.h>
  44#include <asm/dma.h>
  45#include <asm/byteorder.h>
  46#include <asm/uaccess.h>
  47#include <linux/atomic.h>
  48
  49#ifdef CONFIG_SBUS
  50#include <linux/of.h>
  51#include <linux/of_device.h>
  52#include <asm/idprom.h>
  53#include <asm/openprom.h>
  54#include <asm/oplib.h>
  55#include <asm/pgtable.h>
  56#endif
  57
  58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  59#define FORE200E_USE_TASKLET
  60#endif
  61
  62#if 0 /* enable the debugging code of the buffer supply queues */
  63#define FORE200E_BSQ_DEBUG
  64#endif
  65
  66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  67#define FORE200E_52BYTE_AAL0_SDU
  68#endif
  69
  70#include "fore200e.h"
  71#include "suni.h"
  72
  73#define FORE200E_VERSION "0.3e"
  74
  75#define FORE200E         "fore200e: "
  76
  77#if 0 /* override .config */
  78#define CONFIG_ATM_FORE200E_DEBUG 1
  79#endif
  80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  81#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  82                                                  printk(FORE200E format, ##args); } while (0)
  83#else
  84#define DPRINTK(level, format, args...)  do {} while (0)
  85#endif
  86
  87
  88#define FORE200E_ALIGN(addr, alignment) \
  89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  90
  91#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  92
  93#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  94
  95#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  96
  97#if 1
  98#define ASSERT(expr)     if (!(expr)) { \
  99                             printk(FORE200E "assertion failed! %s[%d]: %s\n", \
 100                                    __func__, __LINE__, #expr); \
 101                             panic(FORE200E "%s", __func__); \
 102                         }
 103#else
 104#define ASSERT(expr)     do {} while (0)
 105#endif
 106
 107
 108static const struct atmdev_ops   fore200e_ops;
 109static const struct fore200e_bus fore200e_bus[];
 110
 111static LIST_HEAD(fore200e_boards);
 112
 113
 114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 117
 118
 119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 122};
 123
 124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 127};
 128
 129
 130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 132#endif
 133
 134
 135#if 0 /* currently unused */
 136static int 
 137fore200e_fore2atm_aal(enum fore200e_aal aal)
 138{
 139    switch(aal) {
 140    case FORE200E_AAL0:  return ATM_AAL0;
 141    case FORE200E_AAL34: return ATM_AAL34;
 142    case FORE200E_AAL5:  return ATM_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147#endif
 148
 149
 150static enum fore200e_aal
 151fore200e_atm2fore_aal(int aal)
 152{
 153    switch(aal) {
 154    case ATM_AAL0:  return FORE200E_AAL0;
 155    case ATM_AAL34: return FORE200E_AAL34;
 156    case ATM_AAL1:
 157    case ATM_AAL2:
 158    case ATM_AAL5:  return FORE200E_AAL5;
 159    }
 160
 161    return -EINVAL;
 162}
 163
 164
 165static char*
 166fore200e_irq_itoa(int irq)
 167{
 168    static char str[8];
 169    sprintf(str, "%d", irq);
 170    return str;
 171}
 172
 173
 174/* allocate and align a chunk of memory intended to hold the data behing exchanged
 175   between the driver and the adapter (using streaming DVMA) */
 176
 177static int
 178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 179{
 180    unsigned long offset = 0;
 181
 182    if (alignment <= sizeof(int))
 183        alignment = 0;
 184
 185    chunk->alloc_size = size + alignment;
 186    chunk->align_size = size;
 187    chunk->direction  = direction;
 188
 189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
 190    if (chunk->alloc_addr == NULL)
 191        return -ENOMEM;
 192
 193    if (alignment > 0)
 194        offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 195    
 196    chunk->align_addr = chunk->alloc_addr + offset;
 197
 198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
 199    
 200    return 0;
 201}
 202
 203
 204/* free a chunk of memory */
 205
 206static void
 207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 208{
 209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
 210
 211    kfree(chunk->alloc_addr);
 212}
 213
 214
 215static void
 216fore200e_spin(int msecs)
 217{
 218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 219    while (time_before(jiffies, timeout));
 220}
 221
 222
 223static int
 224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 225{
 226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 227    int           ok;
 228
 229    mb();
 230    do {
 231        if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 232            break;
 233
 234    } while (time_before(jiffies, timeout));
 235
 236#if 1
 237    if (!ok) {
 238        printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 239               *addr, val);
 240    }
 241#endif
 242
 243    return ok;
 244}
 245
 246
 247static int
 248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 249{
 250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 251    int           ok;
 252
 253    do {
 254        if ((ok = (fore200e->bus->read(addr) == val)))
 255            break;
 256
 257    } while (time_before(jiffies, timeout));
 258
 259#if 1
 260    if (!ok) {
 261        printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 262               fore200e->bus->read(addr), val);
 263    }
 264#endif
 265
 266    return ok;
 267}
 268
 269
 270static void
 271fore200e_free_rx_buf(struct fore200e* fore200e)
 272{
 273    int scheme, magn, nbr;
 274    struct buffer* buffer;
 275
 276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 277        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 278
 279            if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 280
 281                for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 282
 283                    struct chunk* data = &buffer[ nbr ].data;
 284
 285                    if (data->alloc_addr != NULL)
 286                        fore200e_chunk_free(fore200e, data);
 287                }
 288            }
 289        }
 290    }
 291}
 292
 293
 294static void
 295fore200e_uninit_bs_queue(struct fore200e* fore200e)
 296{
 297    int scheme, magn;
 298    
 299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 300        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 301
 302            struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 303            struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 304            
 305            if (status->alloc_addr)
 306                fore200e->bus->dma_chunk_free(fore200e, status);
 307            
 308            if (rbd_block->alloc_addr)
 309                fore200e->bus->dma_chunk_free(fore200e, rbd_block);
 310        }
 311    }
 312}
 313
 314
 315static int
 316fore200e_reset(struct fore200e* fore200e, int diag)
 317{
 318    int ok;
 319
 320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 321    
 322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 323
 324    fore200e->bus->reset(fore200e);
 325
 326    if (diag) {
 327        ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 328        if (ok == 0) {
 329            
 330            printk(FORE200E "device %s self-test failed\n", fore200e->name);
 331            return -ENODEV;
 332        }
 333
 334        printk(FORE200E "device %s self-test passed\n", fore200e->name);
 335        
 336        fore200e->state = FORE200E_STATE_RESET;
 337    }
 338
 339    return 0;
 340}
 341
 342
 343static void
 344fore200e_shutdown(struct fore200e* fore200e)
 345{
 346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 347           fore200e->name, fore200e->phys_base, 
 348           fore200e_irq_itoa(fore200e->irq));
 349    
 350    if (fore200e->state > FORE200E_STATE_RESET) {
 351        /* first, reset the board to prevent further interrupts or data transfers */
 352        fore200e_reset(fore200e, 0);
 353    }
 354    
 355    /* then, release all allocated resources */
 356    switch(fore200e->state) {
 357
 358    case FORE200E_STATE_COMPLETE:
 359        kfree(fore200e->stats);
 360
 361    case FORE200E_STATE_IRQ:
 362        free_irq(fore200e->irq, fore200e->atm_dev);
 363
 364    case FORE200E_STATE_ALLOC_BUF:
 365        fore200e_free_rx_buf(fore200e);
 366
 367    case FORE200E_STATE_INIT_BSQ:
 368        fore200e_uninit_bs_queue(fore200e);
 369
 370    case FORE200E_STATE_INIT_RXQ:
 371        fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 372        fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 373
 374    case FORE200E_STATE_INIT_TXQ:
 375        fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
 376        fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 377
 378    case FORE200E_STATE_INIT_CMDQ:
 379        fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 380
 381    case FORE200E_STATE_INITIALIZE:
 382        /* nothing to do for that state */
 383
 384    case FORE200E_STATE_START_FW:
 385        /* nothing to do for that state */
 386
 387    case FORE200E_STATE_RESET:
 388        /* nothing to do for that state */
 389
 390    case FORE200E_STATE_MAP:
 391        fore200e->bus->unmap(fore200e);
 392
 393    case FORE200E_STATE_CONFIGURE:
 394        /* nothing to do for that state */
 395
 396    case FORE200E_STATE_REGISTER:
 397        /* XXX shouldn't we *start* by deregistering the device? */
 398        atm_dev_deregister(fore200e->atm_dev);
 399
 400    case FORE200E_STATE_BLANK:
 401        /* nothing to do for that state */
 402        break;
 403    }
 404}
 405
 406
 407#ifdef CONFIG_PCI
 408
 409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 410{
 411    /* on big-endian hosts, the board is configured to convert
 412       the endianess of slave RAM accesses  */
 413    return le32_to_cpu(readl(addr));
 414}
 415
 416
 417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 418{
 419    /* on big-endian hosts, the board is configured to convert
 420       the endianess of slave RAM accesses  */
 421    writel(cpu_to_le32(val), addr);
 422}
 423
 424
 425static u32
 426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
 427{
 428    u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
 429
 430    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
 431            virt_addr, size, direction, dma_addr);
 432    
 433    return dma_addr;
 434}
 435
 436
 437static void
 438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 439{
 440    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
 441            dma_addr, size, direction);
 442
 443    pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 444}
 445
 446
 447static void
 448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 449{
 450    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 451
 452    pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 453}
 454
 455static void
 456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 457{
 458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 459
 460    pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 461}
 462
 463
 464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
 465   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
 466
 467static int
 468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
 469                             int size, int nbr, int alignment)
 470{
 471    /* returned chunks are page-aligned */
 472    chunk->alloc_size = size * nbr;
 473    chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
 474                                             chunk->alloc_size,
 475                                             &chunk->dma_addr);
 476    
 477    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 478        return -ENOMEM;
 479
 480    chunk->align_addr = chunk->alloc_addr;
 481    
 482    return 0;
 483}
 484
 485
 486/* free a DMA consistent chunk of memory */
 487
 488static void
 489fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 490{
 491    pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
 492                        chunk->alloc_size,
 493                        chunk->alloc_addr,
 494                        chunk->dma_addr);
 495}
 496
 497
 498static int
 499fore200e_pca_irq_check(struct fore200e* fore200e)
 500{
 501    /* this is a 1 bit register */
 502    int irq_posted = readl(fore200e->regs.pca.psr);
 503
 504#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 505    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 506        DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 507    }
 508#endif
 509
 510    return irq_posted;
 511}
 512
 513
 514static void
 515fore200e_pca_irq_ack(struct fore200e* fore200e)
 516{
 517    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 518}
 519
 520
 521static void
 522fore200e_pca_reset(struct fore200e* fore200e)
 523{
 524    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 525    fore200e_spin(10);
 526    writel(0, fore200e->regs.pca.hcr);
 527}
 528
 529
 530static int fore200e_pca_map(struct fore200e* fore200e)
 531{
 532    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 533
 534    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 535    
 536    if (fore200e->virt_base == NULL) {
 537        printk(FORE200E "can't map device %s\n", fore200e->name);
 538        return -EFAULT;
 539    }
 540
 541    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 542
 543    /* gain access to the PCA specific registers  */
 544    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 545    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 546    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 547
 548    fore200e->state = FORE200E_STATE_MAP;
 549    return 0;
 550}
 551
 552
 553static void
 554fore200e_pca_unmap(struct fore200e* fore200e)
 555{
 556    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 557
 558    if (fore200e->virt_base != NULL)
 559        iounmap(fore200e->virt_base);
 560}
 561
 562
 563static int fore200e_pca_configure(struct fore200e *fore200e)
 564{
 565    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 566    u8              master_ctrl, latency;
 567
 568    DPRINTK(2, "device %s being configured\n", fore200e->name);
 569
 570    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 571        printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 572        return -EIO;
 573    }
 574
 575    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 576
 577    master_ctrl = master_ctrl
 578#if defined(__BIG_ENDIAN)
 579        /* request the PCA board to convert the endianess of slave RAM accesses */
 580        | PCA200E_CTRL_CONVERT_ENDIAN
 581#endif
 582#if 0
 583        | PCA200E_CTRL_DIS_CACHE_RD
 584        | PCA200E_CTRL_DIS_WRT_INVAL
 585        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 586        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 587#endif
 588        | PCA200E_CTRL_LARGE_PCI_BURSTS;
 589    
 590    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 591
 592    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 593       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 594       this may impact the performances of other PCI devices on the same bus, though */
 595    latency = 192;
 596    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 597
 598    fore200e->state = FORE200E_STATE_CONFIGURE;
 599    return 0;
 600}
 601
 602
 603static int __init
 604fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 605{
 606    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 607    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 608    struct prom_opcode      opcode;
 609    int                     ok;
 610    u32                     prom_dma;
 611
 612    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 613
 614    opcode.opcode = OPCODE_GET_PROM;
 615    opcode.pad    = 0;
 616
 617    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
 618
 619    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 620    
 621    *entry->status = STATUS_PENDING;
 622
 623    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 624
 625    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 626
 627    *entry->status = STATUS_FREE;
 628
 629    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 630
 631    if (ok == 0) {
 632        printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 633        return -EIO;
 634    }
 635
 636#if defined(__BIG_ENDIAN)
 637    
 638#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 639
 640    /* MAC address is stored as little-endian */
 641    swap_here(&prom->mac_addr[0]);
 642    swap_here(&prom->mac_addr[4]);
 643#endif
 644    
 645    return 0;
 646}
 647
 648
 649static int
 650fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 651{
 652    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 653
 654    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 655                   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 656}
 657
 658#endif /* CONFIG_PCI */
 659
 660
 661#ifdef CONFIG_SBUS
 662
 663static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 664{
 665    return sbus_readl(addr);
 666}
 667
 668static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 669{
 670    sbus_writel(val, addr);
 671}
 672
 673static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
 674{
 675        struct platform_device *op = fore200e->bus_dev;
 676        u32 dma_addr;
 677
 678        dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
 679
 680        DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
 681                virt_addr, size, direction, dma_addr);
 682    
 683        return dma_addr;
 684}
 685
 686static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 687{
 688        struct platform_device *op = fore200e->bus_dev;
 689
 690        DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
 691                dma_addr, size, direction);
 692
 693        dma_unmap_single(&op->dev, dma_addr, size, direction);
 694}
 695
 696static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 697{
 698        struct platform_device *op = fore200e->bus_dev;
 699
 700        DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 701    
 702        dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
 703}
 704
 705static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 706{
 707        struct platform_device *op = fore200e->bus_dev;
 708
 709        DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 710
 711        dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
 712}
 713
 714/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
 715 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
 716 */
 717static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 718                                        int size, int nbr, int alignment)
 719{
 720        struct platform_device *op = fore200e->bus_dev;
 721
 722        chunk->alloc_size = chunk->align_size = size * nbr;
 723
 724        /* returned chunks are page-aligned */
 725        chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
 726                                               &chunk->dma_addr, GFP_ATOMIC);
 727
 728        if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 729                return -ENOMEM;
 730
 731        chunk->align_addr = chunk->alloc_addr;
 732    
 733        return 0;
 734}
 735
 736/* free a DVMA consistent chunk of memory */
 737static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
 738{
 739        struct platform_device *op = fore200e->bus_dev;
 740
 741        dma_free_coherent(&op->dev, chunk->alloc_size,
 742                          chunk->alloc_addr, chunk->dma_addr);
 743}
 744
 745static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 746{
 747        u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 748        fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 749}
 750
 751static int fore200e_sba_irq_check(struct fore200e *fore200e)
 752{
 753        return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 754}
 755
 756static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 757{
 758        u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 759        fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 760}
 761
 762static void fore200e_sba_reset(struct fore200e *fore200e)
 763{
 764        fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 765        fore200e_spin(10);
 766        fore200e->bus->write(0, fore200e->regs.sba.hcr);
 767}
 768
 769static int __init fore200e_sba_map(struct fore200e *fore200e)
 770{
 771        struct platform_device *op = fore200e->bus_dev;
 772        unsigned int bursts;
 773
 774        /* gain access to the SBA specific registers  */
 775        fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 776        fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 777        fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 778        fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 779
 780        if (!fore200e->virt_base) {
 781                printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 782                return -EFAULT;
 783        }
 784
 785        DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 786    
 787        fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 788
 789        /* get the supported DVMA burst sizes */
 790        bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 791
 792        if (sbus_can_dma_64bit())
 793                sbus_set_sbus64(&op->dev, bursts);
 794
 795        fore200e->state = FORE200E_STATE_MAP;
 796        return 0;
 797}
 798
 799static void fore200e_sba_unmap(struct fore200e *fore200e)
 800{
 801        struct platform_device *op = fore200e->bus_dev;
 802
 803        of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 804        of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 805        of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 806        of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 807}
 808
 809static int __init fore200e_sba_configure(struct fore200e *fore200e)
 810{
 811        fore200e->state = FORE200E_STATE_CONFIGURE;
 812        return 0;
 813}
 814
 815static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 816{
 817        struct platform_device *op = fore200e->bus_dev;
 818        const u8 *prop;
 819        int len;
 820
 821        prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 822        if (!prop)
 823                return -ENODEV;
 824        memcpy(&prom->mac_addr[4], prop, 4);
 825
 826        prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 827        if (!prop)
 828                return -ENODEV;
 829        memcpy(&prom->mac_addr[2], prop, 4);
 830
 831        prom->serial_number = of_getintprop_default(op->dev.of_node,
 832                                                    "serialnumber", 0);
 833        prom->hw_revision = of_getintprop_default(op->dev.of_node,
 834                                                  "promversion", 0);
 835    
 836        return 0;
 837}
 838
 839static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 840{
 841        struct platform_device *op = fore200e->bus_dev;
 842        const struct linux_prom_registers *regs;
 843
 844        regs = of_get_property(op->dev.of_node, "reg", NULL);
 845
 846        return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
 847                       (regs ? regs->which_io : 0), op->dev.of_node->name);
 848}
 849#endif /* CONFIG_SBUS */
 850
 851
 852static void
 853fore200e_tx_irq(struct fore200e* fore200e)
 854{
 855    struct host_txq*        txq = &fore200e->host_txq;
 856    struct host_txq_entry*  entry;
 857    struct atm_vcc*         vcc;
 858    struct fore200e_vc_map* vc_map;
 859
 860    if (fore200e->host_txq.txing == 0)
 861        return;
 862
 863    for (;;) {
 864        
 865        entry = &txq->host_entry[ txq->tail ];
 866
 867        if ((*entry->status & STATUS_COMPLETE) == 0) {
 868            break;
 869        }
 870
 871        DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 872                entry, txq->tail, entry->vc_map, entry->skb);
 873
 874        /* free copy of misaligned data */
 875        kfree(entry->data);
 876        
 877        /* remove DMA mapping */
 878        fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 879                                 DMA_TO_DEVICE);
 880
 881        vc_map = entry->vc_map;
 882
 883        /* vcc closed since the time the entry was submitted for tx? */
 884        if ((vc_map->vcc == NULL) ||
 885            (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 886
 887            DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 888                    fore200e->atm_dev->number);
 889
 890            dev_kfree_skb_any(entry->skb);
 891        }
 892        else {
 893            ASSERT(vc_map->vcc);
 894
 895            /* vcc closed then immediately re-opened? */
 896            if (vc_map->incarn != entry->incarn) {
 897
 898                /* when a vcc is closed, some PDUs may be still pending in the tx queue.
 899                   if the same vcc is immediately re-opened, those pending PDUs must
 900                   not be popped after the completion of their emission, as they refer
 901                   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 902                   would be decremented by the size of the (unrelated) skb, possibly
 903                   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 904                   we thus bind the tx entry to the current incarnation of the vcc
 905                   when the entry is submitted for tx. When the tx later completes,
 906                   if the incarnation number of the tx entry does not match the one
 907                   of the vcc, then this implies that the vcc has been closed then re-opened.
 908                   we thus just drop the skb here. */
 909
 910                DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 911                        fore200e->atm_dev->number);
 912
 913                dev_kfree_skb_any(entry->skb);
 914            }
 915            else {
 916                vcc = vc_map->vcc;
 917                ASSERT(vcc);
 918
 919                /* notify tx completion */
 920                if (vcc->pop) {
 921                    vcc->pop(vcc, entry->skb);
 922                }
 923                else {
 924                    dev_kfree_skb_any(entry->skb);
 925                }
 926#if 1
 927                /* race fixed by the above incarnation mechanism, but... */
 928                if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
 929                    atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
 930                }
 931#endif
 932                /* check error condition */
 933                if (*entry->status & STATUS_ERROR)
 934                    atomic_inc(&vcc->stats->tx_err);
 935                else
 936                    atomic_inc(&vcc->stats->tx);
 937            }
 938        }
 939
 940        *entry->status = STATUS_FREE;
 941
 942        fore200e->host_txq.txing--;
 943
 944        FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 945    }
 946}
 947
 948
 949#ifdef FORE200E_BSQ_DEBUG
 950int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 951{
 952    struct buffer* buffer;
 953    int count = 0;
 954
 955    buffer = bsq->freebuf;
 956    while (buffer) {
 957
 958        if (buffer->supplied) {
 959            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 960                   where, scheme, magn, buffer->index);
 961        }
 962
 963        if (buffer->magn != magn) {
 964            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 965                   where, scheme, magn, buffer->index, buffer->magn);
 966        }
 967
 968        if (buffer->scheme != scheme) {
 969            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 970                   where, scheme, magn, buffer->index, buffer->scheme);
 971        }
 972
 973        if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 974            printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 975                   where, scheme, magn, buffer->index);
 976        }
 977
 978        count++;
 979        buffer = buffer->next;
 980    }
 981
 982    if (count != bsq->freebuf_count) {
 983        printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 984               where, scheme, magn, count, bsq->freebuf_count);
 985    }
 986    return 0;
 987}
 988#endif
 989
 990
 991static void
 992fore200e_supply(struct fore200e* fore200e)
 993{
 994    int  scheme, magn, i;
 995
 996    struct host_bsq*       bsq;
 997    struct host_bsq_entry* entry;
 998    struct buffer*         buffer;
 999
1000    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1001        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1002
1003            bsq = &fore200e->host_bsq[ scheme ][ magn ];
1004
1005#ifdef FORE200E_BSQ_DEBUG
1006            bsq_audit(1, bsq, scheme, magn);
1007#endif
1008            while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1009
1010                DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1011                        RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1012
1013                entry = &bsq->host_entry[ bsq->head ];
1014
1015                for (i = 0; i < RBD_BLK_SIZE; i++) {
1016
1017                    /* take the first buffer in the free buffer list */
1018                    buffer = bsq->freebuf;
1019                    if (!buffer) {
1020                        printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1021                               scheme, magn, bsq->freebuf_count);
1022                        return;
1023                    }
1024                    bsq->freebuf = buffer->next;
1025                    
1026#ifdef FORE200E_BSQ_DEBUG
1027                    if (buffer->supplied)
1028                        printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1029                               scheme, magn, buffer->index);
1030                    buffer->supplied = 1;
1031#endif
1032                    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1033                    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1034                }
1035
1036                FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1037
1038                /* decrease accordingly the number of free rx buffers */
1039                bsq->freebuf_count -= RBD_BLK_SIZE;
1040
1041                *entry->status = STATUS_PENDING;
1042                fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1043            }
1044        }
1045    }
1046}
1047
1048
1049static int
1050fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1051{
1052    struct sk_buff*      skb;
1053    struct buffer*       buffer;
1054    struct fore200e_vcc* fore200e_vcc;
1055    int                  i, pdu_len = 0;
1056#ifdef FORE200E_52BYTE_AAL0_SDU
1057    u32                  cell_header = 0;
1058#endif
1059
1060    ASSERT(vcc);
1061    
1062    fore200e_vcc = FORE200E_VCC(vcc);
1063    ASSERT(fore200e_vcc);
1064
1065#ifdef FORE200E_52BYTE_AAL0_SDU
1066    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1067
1068        cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1069                      (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1070                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1071                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1072                       rpd->atm_header.clp;
1073        pdu_len = 4;
1074    }
1075#endif
1076    
1077    /* compute total PDU length */
1078    for (i = 0; i < rpd->nseg; i++)
1079        pdu_len += rpd->rsd[ i ].length;
1080    
1081    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1082    if (skb == NULL) {
1083        DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1084
1085        atomic_inc(&vcc->stats->rx_drop);
1086        return -ENOMEM;
1087    } 
1088
1089    __net_timestamp(skb);
1090    
1091#ifdef FORE200E_52BYTE_AAL0_SDU
1092    if (cell_header) {
1093        *((u32*)skb_put(skb, 4)) = cell_header;
1094    }
1095#endif
1096
1097    /* reassemble segments */
1098    for (i = 0; i < rpd->nseg; i++) {
1099        
1100        /* rebuild rx buffer address from rsd handle */
1101        buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1102        
1103        /* Make device DMA transfer visible to CPU.  */
1104        fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1105        
1106        memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1107
1108        /* Now let the device get at it again.  */
1109        fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1110    }
1111
1112    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1113    
1114    if (pdu_len < fore200e_vcc->rx_min_pdu)
1115        fore200e_vcc->rx_min_pdu = pdu_len;
1116    if (pdu_len > fore200e_vcc->rx_max_pdu)
1117        fore200e_vcc->rx_max_pdu = pdu_len;
1118    fore200e_vcc->rx_pdu++;
1119
1120    /* push PDU */
1121    if (atm_charge(vcc, skb->truesize) == 0) {
1122
1123        DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1124                vcc->itf, vcc->vpi, vcc->vci);
1125
1126        dev_kfree_skb_any(skb);
1127
1128        atomic_inc(&vcc->stats->rx_drop);
1129        return -ENOMEM;
1130    }
1131
1132    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1133
1134    vcc->push(vcc, skb);
1135    atomic_inc(&vcc->stats->rx);
1136
1137    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1138
1139    return 0;
1140}
1141
1142
1143static void
1144fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1145{
1146    struct host_bsq* bsq;
1147    struct buffer*   buffer;
1148    int              i;
1149    
1150    for (i = 0; i < rpd->nseg; i++) {
1151
1152        /* rebuild rx buffer address from rsd handle */
1153        buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1154
1155        bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1156
1157#ifdef FORE200E_BSQ_DEBUG
1158        bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1159
1160        if (buffer->supplied == 0)
1161            printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1162                   buffer->scheme, buffer->magn, buffer->index);
1163        buffer->supplied = 0;
1164#endif
1165
1166        /* re-insert the buffer into the free buffer list */
1167        buffer->next = bsq->freebuf;
1168        bsq->freebuf = buffer;
1169
1170        /* then increment the number of free rx buffers */
1171        bsq->freebuf_count++;
1172    }
1173}
1174
1175
1176static void
1177fore200e_rx_irq(struct fore200e* fore200e)
1178{
1179    struct host_rxq*        rxq = &fore200e->host_rxq;
1180    struct host_rxq_entry*  entry;
1181    struct atm_vcc*         vcc;
1182    struct fore200e_vc_map* vc_map;
1183
1184    for (;;) {
1185        
1186        entry = &rxq->host_entry[ rxq->head ];
1187
1188        /* no more received PDUs */
1189        if ((*entry->status & STATUS_COMPLETE) == 0)
1190            break;
1191
1192        vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1193
1194        if ((vc_map->vcc == NULL) ||
1195            (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1196
1197            DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1198                    fore200e->atm_dev->number,
1199                    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1200        }
1201        else {
1202            vcc = vc_map->vcc;
1203            ASSERT(vcc);
1204
1205            if ((*entry->status & STATUS_ERROR) == 0) {
1206
1207                fore200e_push_rpd(fore200e, vcc, entry->rpd);
1208            }
1209            else {
1210                DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1211                        fore200e->atm_dev->number,
1212                        entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1213                atomic_inc(&vcc->stats->rx_err);
1214            }
1215        }
1216
1217        FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1218
1219        fore200e_collect_rpd(fore200e, entry->rpd);
1220
1221        /* rewrite the rpd address to ack the received PDU */
1222        fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1223        *entry->status = STATUS_FREE;
1224
1225        fore200e_supply(fore200e);
1226    }
1227}
1228
1229
1230#ifndef FORE200E_USE_TASKLET
1231static void
1232fore200e_irq(struct fore200e* fore200e)
1233{
1234    unsigned long flags;
1235
1236    spin_lock_irqsave(&fore200e->q_lock, flags);
1237    fore200e_rx_irq(fore200e);
1238    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1239
1240    spin_lock_irqsave(&fore200e->q_lock, flags);
1241    fore200e_tx_irq(fore200e);
1242    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1243}
1244#endif
1245
1246
1247static irqreturn_t
1248fore200e_interrupt(int irq, void* dev)
1249{
1250    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1251
1252    if (fore200e->bus->irq_check(fore200e) == 0) {
1253        
1254        DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1255        return IRQ_NONE;
1256    }
1257    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1258
1259#ifdef FORE200E_USE_TASKLET
1260    tasklet_schedule(&fore200e->tx_tasklet);
1261    tasklet_schedule(&fore200e->rx_tasklet);
1262#else
1263    fore200e_irq(fore200e);
1264#endif
1265    
1266    fore200e->bus->irq_ack(fore200e);
1267    return IRQ_HANDLED;
1268}
1269
1270
1271#ifdef FORE200E_USE_TASKLET
1272static void
1273fore200e_tx_tasklet(unsigned long data)
1274{
1275    struct fore200e* fore200e = (struct fore200e*) data;
1276    unsigned long flags;
1277
1278    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1279
1280    spin_lock_irqsave(&fore200e->q_lock, flags);
1281    fore200e_tx_irq(fore200e);
1282    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1283}
1284
1285
1286static void
1287fore200e_rx_tasklet(unsigned long data)
1288{
1289    struct fore200e* fore200e = (struct fore200e*) data;
1290    unsigned long    flags;
1291
1292    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1293
1294    spin_lock_irqsave(&fore200e->q_lock, flags);
1295    fore200e_rx_irq((struct fore200e*) data);
1296    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1297}
1298#endif
1299
1300
1301static int
1302fore200e_select_scheme(struct atm_vcc* vcc)
1303{
1304    /* fairly balance the VCs over (identical) buffer schemes */
1305    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1306
1307    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1308            vcc->itf, vcc->vpi, vcc->vci, scheme);
1309
1310    return scheme;
1311}
1312
1313
1314static int 
1315fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1316{
1317    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1318    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1319    struct activate_opcode   activ_opcode;
1320    struct deactivate_opcode deactiv_opcode;
1321    struct vpvc              vpvc;
1322    int                      ok;
1323    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1324
1325    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1326    
1327    if (activate) {
1328        FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1329        
1330        activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1331        activ_opcode.aal    = aal;
1332        activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1333        activ_opcode.pad    = 0;
1334    }
1335    else {
1336        deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1337        deactiv_opcode.pad    = 0;
1338    }
1339
1340    vpvc.vci = vcc->vci;
1341    vpvc.vpi = vcc->vpi;
1342
1343    *entry->status = STATUS_PENDING;
1344
1345    if (activate) {
1346
1347#ifdef FORE200E_52BYTE_AAL0_SDU
1348        mtu = 48;
1349#endif
1350        /* the MTU is not used by the cp, except in the case of AAL0 */
1351        fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1352        fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1353        fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1354    }
1355    else {
1356        fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1357        fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1358    }
1359
1360    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1361
1362    *entry->status = STATUS_FREE;
1363
1364    if (ok == 0) {
1365        printk(FORE200E "unable to %s VC %d.%d.%d\n",
1366               activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1367        return -EIO;
1368    }
1369
1370    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1371            activate ? "open" : "clos");
1372
1373    return 0;
1374}
1375
1376
1377#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1378
1379static void
1380fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1381{
1382    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1383    
1384        /* compute the data cells to idle cells ratio from the tx PCR */
1385        rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1386        rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1387    }
1388    else {
1389        /* disable rate control */
1390        rate->data_cells = rate->idle_cells = 0;
1391    }
1392}
1393
1394
1395static int
1396fore200e_open(struct atm_vcc *vcc)
1397{
1398    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1399    struct fore200e_vcc*    fore200e_vcc;
1400    struct fore200e_vc_map* vc_map;
1401    unsigned long           flags;
1402    int                     vci = vcc->vci;
1403    short                   vpi = vcc->vpi;
1404
1405    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1406    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1407
1408    spin_lock_irqsave(&fore200e->q_lock, flags);
1409
1410    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1411    if (vc_map->vcc) {
1412
1413        spin_unlock_irqrestore(&fore200e->q_lock, flags);
1414
1415        printk(FORE200E "VC %d.%d.%d already in use\n",
1416               fore200e->atm_dev->number, vpi, vci);
1417
1418        return -EINVAL;
1419    }
1420
1421    vc_map->vcc = vcc;
1422
1423    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1424
1425    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1426    if (fore200e_vcc == NULL) {
1427        vc_map->vcc = NULL;
1428        return -ENOMEM;
1429    }
1430
1431    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1432            "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1433            vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1434            fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1435            vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1436            fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1437            vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1438    
1439    /* pseudo-CBR bandwidth requested? */
1440    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1441        
1442        mutex_lock(&fore200e->rate_mtx);
1443        if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1444            mutex_unlock(&fore200e->rate_mtx);
1445
1446            kfree(fore200e_vcc);
1447            vc_map->vcc = NULL;
1448            return -EAGAIN;
1449        }
1450
1451        /* reserve bandwidth */
1452        fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1453        mutex_unlock(&fore200e->rate_mtx);
1454    }
1455    
1456    vcc->itf = vcc->dev->number;
1457
1458    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1459    set_bit(ATM_VF_ADDR, &vcc->flags);
1460
1461    vcc->dev_data = fore200e_vcc;
1462    
1463    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1464
1465        vc_map->vcc = NULL;
1466
1467        clear_bit(ATM_VF_ADDR, &vcc->flags);
1468        clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1469
1470        vcc->dev_data = NULL;
1471
1472        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1473
1474        kfree(fore200e_vcc);
1475        return -EINVAL;
1476    }
1477    
1478    /* compute rate control parameters */
1479    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1480        
1481        fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1482        set_bit(ATM_VF_HASQOS, &vcc->flags);
1483
1484        DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1485                vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1486                vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1487                fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1488    }
1489    
1490    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1491    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1492    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1493
1494    /* new incarnation of the vcc */
1495    vc_map->incarn = ++fore200e->incarn_count;
1496
1497    /* VC unusable before this flag is set */
1498    set_bit(ATM_VF_READY, &vcc->flags);
1499
1500    return 0;
1501}
1502
1503
1504static void
1505fore200e_close(struct atm_vcc* vcc)
1506{
1507    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1508    struct fore200e_vcc*    fore200e_vcc;
1509    struct fore200e_vc_map* vc_map;
1510    unsigned long           flags;
1511
1512    ASSERT(vcc);
1513    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1514    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1515
1516    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1517
1518    clear_bit(ATM_VF_READY, &vcc->flags);
1519
1520    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1521
1522    spin_lock_irqsave(&fore200e->q_lock, flags);
1523
1524    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1525
1526    /* the vc is no longer considered as "in use" by fore200e_open() */
1527    vc_map->vcc = NULL;
1528
1529    vcc->itf = vcc->vci = vcc->vpi = 0;
1530
1531    fore200e_vcc = FORE200E_VCC(vcc);
1532    vcc->dev_data = NULL;
1533
1534    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1535
1536    /* release reserved bandwidth, if any */
1537    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1538
1539        mutex_lock(&fore200e->rate_mtx);
1540        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1541        mutex_unlock(&fore200e->rate_mtx);
1542
1543        clear_bit(ATM_VF_HASQOS, &vcc->flags);
1544    }
1545
1546    clear_bit(ATM_VF_ADDR, &vcc->flags);
1547    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1548
1549    ASSERT(fore200e_vcc);
1550    kfree(fore200e_vcc);
1551}
1552
1553
1554static int
1555fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1556{
1557    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1558    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1559    struct fore200e_vc_map* vc_map;
1560    struct host_txq*        txq          = &fore200e->host_txq;
1561    struct host_txq_entry*  entry;
1562    struct tpd*             tpd;
1563    struct tpd_haddr        tpd_haddr;
1564    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1565    int                     tx_copy      = 0;
1566    int                     tx_len       = skb->len;
1567    u32*                    cell_header  = NULL;
1568    unsigned char*          skb_data;
1569    int                     skb_len;
1570    unsigned char*          data;
1571    unsigned long           flags;
1572
1573    ASSERT(vcc);
1574    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1575    ASSERT(fore200e);
1576    ASSERT(fore200e_vcc);
1577
1578    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1579        DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1580        dev_kfree_skb_any(skb);
1581        return -EINVAL;
1582    }
1583
1584#ifdef FORE200E_52BYTE_AAL0_SDU
1585    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1586        cell_header = (u32*) skb->data;
1587        skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1588        skb_len     = tx_len = skb->len  - 4;
1589
1590        DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1591    }
1592    else 
1593#endif
1594    {
1595        skb_data = skb->data;
1596        skb_len  = skb->len;
1597    }
1598    
1599    if (((unsigned long)skb_data) & 0x3) {
1600
1601        DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1602        tx_copy = 1;
1603        tx_len  = skb_len;
1604    }
1605
1606    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1607
1608        /* this simply NUKES the PCA board */
1609        DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1610        tx_copy = 1;
1611        tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1612    }
1613    
1614    if (tx_copy) {
1615        data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1616        if (data == NULL) {
1617            if (vcc->pop) {
1618                vcc->pop(vcc, skb);
1619            }
1620            else {
1621                dev_kfree_skb_any(skb);
1622            }
1623            return -ENOMEM;
1624        }
1625
1626        memcpy(data, skb_data, skb_len);
1627        if (skb_len < tx_len)
1628            memset(data + skb_len, 0x00, tx_len - skb_len);
1629    }
1630    else {
1631        data = skb_data;
1632    }
1633
1634    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1635    ASSERT(vc_map->vcc == vcc);
1636
1637  retry_here:
1638
1639    spin_lock_irqsave(&fore200e->q_lock, flags);
1640
1641    entry = &txq->host_entry[ txq->head ];
1642
1643    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1644
1645        /* try to free completed tx queue entries */
1646        fore200e_tx_irq(fore200e);
1647
1648        if (*entry->status != STATUS_FREE) {
1649
1650            spin_unlock_irqrestore(&fore200e->q_lock, flags);
1651
1652            /* retry once again? */
1653            if (--retry > 0) {
1654                udelay(50);
1655                goto retry_here;
1656            }
1657
1658            atomic_inc(&vcc->stats->tx_err);
1659
1660            fore200e->tx_sat++;
1661            DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1662                    fore200e->name, fore200e->cp_queues->heartbeat);
1663            if (vcc->pop) {
1664                vcc->pop(vcc, skb);
1665            }
1666            else {
1667                dev_kfree_skb_any(skb);
1668            }
1669
1670            if (tx_copy)
1671                kfree(data);
1672
1673            return -ENOBUFS;
1674        }
1675    }
1676
1677    entry->incarn = vc_map->incarn;
1678    entry->vc_map = vc_map;
1679    entry->skb    = skb;
1680    entry->data   = tx_copy ? data : NULL;
1681
1682    tpd = entry->tpd;
1683    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1684    tpd->tsd[ 0 ].length = tx_len;
1685
1686    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1687    txq->txing++;
1688
1689    /* The dma_map call above implies a dma_sync so the device can use it,
1690     * thus no explicit dma_sync call is necessary here.
1691     */
1692    
1693    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1694            vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1695            tpd->tsd[0].length, skb_len);
1696
1697    if (skb_len < fore200e_vcc->tx_min_pdu)
1698        fore200e_vcc->tx_min_pdu = skb_len;
1699    if (skb_len > fore200e_vcc->tx_max_pdu)
1700        fore200e_vcc->tx_max_pdu = skb_len;
1701    fore200e_vcc->tx_pdu++;
1702
1703    /* set tx rate control information */
1704    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1705    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1706
1707    if (cell_header) {
1708        tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1709        tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1710        tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1711        tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1712        tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1713    }
1714    else {
1715        /* set the ATM header, common to all cells conveying the PDU */
1716        tpd->atm_header.clp = 0;
1717        tpd->atm_header.plt = 0;
1718        tpd->atm_header.vci = vcc->vci;
1719        tpd->atm_header.vpi = vcc->vpi;
1720        tpd->atm_header.gfc = 0;
1721    }
1722
1723    tpd->spec.length = tx_len;
1724    tpd->spec.nseg   = 1;
1725    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1726    tpd->spec.intr   = 1;
1727
1728    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1729    tpd_haddr.pad   = 0;
1730    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1731
1732    *entry->status = STATUS_PENDING;
1733    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1734
1735    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1736
1737    return 0;
1738}
1739
1740
1741static int
1742fore200e_getstats(struct fore200e* fore200e)
1743{
1744    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1745    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1746    struct stats_opcode     opcode;
1747    int                     ok;
1748    u32                     stats_dma_addr;
1749
1750    if (fore200e->stats == NULL) {
1751        fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1752        if (fore200e->stats == NULL)
1753            return -ENOMEM;
1754    }
1755    
1756    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1757                                            sizeof(struct stats), DMA_FROM_DEVICE);
1758    
1759    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1760
1761    opcode.opcode = OPCODE_GET_STATS;
1762    opcode.pad    = 0;
1763
1764    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1765    
1766    *entry->status = STATUS_PENDING;
1767
1768    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1769
1770    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1771
1772    *entry->status = STATUS_FREE;
1773
1774    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1775    
1776    if (ok == 0) {
1777        printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1778        return -EIO;
1779    }
1780
1781    return 0;
1782}
1783
1784
1785static int
1786fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1787{
1788    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1789
1790    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1791            vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1792
1793    return -EINVAL;
1794}
1795
1796
1797static int
1798fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1799{
1800    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1801    
1802    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1803            vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1804    
1805    return -EINVAL;
1806}
1807
1808
1809#if 0 /* currently unused */
1810static int
1811fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1812{
1813    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1814    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1815    struct oc3_opcode       opcode;
1816    int                     ok;
1817    u32                     oc3_regs_dma_addr;
1818
1819    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1820
1821    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1822
1823    opcode.opcode = OPCODE_GET_OC3;
1824    opcode.reg    = 0;
1825    opcode.value  = 0;
1826    opcode.mask   = 0;
1827
1828    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1829    
1830    *entry->status = STATUS_PENDING;
1831
1832    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1833
1834    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1835
1836    *entry->status = STATUS_FREE;
1837
1838    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1839    
1840    if (ok == 0) {
1841        printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1842        return -EIO;
1843    }
1844
1845    return 0;
1846}
1847#endif
1848
1849
1850static int
1851fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1852{
1853    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1854    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1855    struct oc3_opcode       opcode;
1856    int                     ok;
1857
1858    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1859
1860    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1861
1862    opcode.opcode = OPCODE_SET_OC3;
1863    opcode.reg    = reg;
1864    opcode.value  = value;
1865    opcode.mask   = mask;
1866
1867    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1868    
1869    *entry->status = STATUS_PENDING;
1870
1871    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1872
1873    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1874
1875    *entry->status = STATUS_FREE;
1876
1877    if (ok == 0) {
1878        printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1879        return -EIO;
1880    }
1881
1882    return 0;
1883}
1884
1885
1886static int
1887fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1888{
1889    u32 mct_value, mct_mask;
1890    int error;
1891
1892    if (!capable(CAP_NET_ADMIN))
1893        return -EPERM;
1894    
1895    switch (loop_mode) {
1896
1897    case ATM_LM_NONE:
1898        mct_value = 0; 
1899        mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1900        break;
1901        
1902    case ATM_LM_LOC_PHY:
1903        mct_value = mct_mask = SUNI_MCT_DLE;
1904        break;
1905
1906    case ATM_LM_RMT_PHY:
1907        mct_value = mct_mask = SUNI_MCT_LLE;
1908        break;
1909
1910    default:
1911        return -EINVAL;
1912    }
1913
1914    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1915    if (error == 0)
1916        fore200e->loop_mode = loop_mode;
1917
1918    return error;
1919}
1920
1921
1922static int
1923fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1924{
1925    struct sonet_stats tmp;
1926
1927    if (fore200e_getstats(fore200e) < 0)
1928        return -EIO;
1929
1930    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1931    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1932    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1933    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1934    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1935    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1936    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1937    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1938                      be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1939                      be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1940    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1941                      be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1942                      be32_to_cpu(fore200e->stats->aal5.cells_received);
1943
1944    if (arg)
1945        return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;       
1946    
1947    return 0;
1948}
1949
1950
1951static int
1952fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1953{
1954    struct fore200e* fore200e = FORE200E_DEV(dev);
1955    
1956    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1957
1958    switch (cmd) {
1959
1960    case SONET_GETSTAT:
1961        return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1962
1963    case SONET_GETDIAG:
1964        return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1965
1966    case ATM_SETLOOP:
1967        return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1968
1969    case ATM_GETLOOP:
1970        return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1971
1972    case ATM_QUERYLOOP:
1973        return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1974    }
1975
1976    return -ENOSYS; /* not implemented */
1977}
1978
1979
1980static int
1981fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1982{
1983    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1984    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1985
1986    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1987        DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1988        return -EINVAL;
1989    }
1990
1991    DPRINTK(2, "change_qos %d.%d.%d, "
1992            "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1993            "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1994            "available_cell_rate = %u",
1995            vcc->itf, vcc->vpi, vcc->vci,
1996            fore200e_traffic_class[ qos->txtp.traffic_class ],
1997            qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1998            fore200e_traffic_class[ qos->rxtp.traffic_class ],
1999            qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2000            flags, fore200e->available_cell_rate);
2001
2002    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2003
2004        mutex_lock(&fore200e->rate_mtx);
2005        if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2006            mutex_unlock(&fore200e->rate_mtx);
2007            return -EAGAIN;
2008        }
2009
2010        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2011        fore200e->available_cell_rate -= qos->txtp.max_pcr;
2012
2013        mutex_unlock(&fore200e->rate_mtx);
2014        
2015        memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2016        
2017        /* update rate control parameters */
2018        fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2019
2020        set_bit(ATM_VF_HASQOS, &vcc->flags);
2021
2022        return 0;
2023    }
2024    
2025    return -EINVAL;
2026}
2027    
2028
2029static int fore200e_irq_request(struct fore200e *fore200e)
2030{
2031    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2032
2033        printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2034               fore200e_irq_itoa(fore200e->irq), fore200e->name);
2035        return -EBUSY;
2036    }
2037
2038    printk(FORE200E "IRQ %s reserved for device %s\n",
2039           fore200e_irq_itoa(fore200e->irq), fore200e->name);
2040
2041#ifdef FORE200E_USE_TASKLET
2042    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2043    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2044#endif
2045
2046    fore200e->state = FORE200E_STATE_IRQ;
2047    return 0;
2048}
2049
2050
2051static int fore200e_get_esi(struct fore200e *fore200e)
2052{
2053    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2054    int ok, i;
2055
2056    if (!prom)
2057        return -ENOMEM;
2058
2059    ok = fore200e->bus->prom_read(fore200e, prom);
2060    if (ok < 0) {
2061        kfree(prom);
2062        return -EBUSY;
2063    }
2064        
2065    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2066           fore200e->name, 
2067           (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2068           prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2069        
2070    for (i = 0; i < ESI_LEN; i++) {
2071        fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2072    }
2073    
2074    kfree(prom);
2075
2076    return 0;
2077}
2078
2079
2080static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2081{
2082    int scheme, magn, nbr, size, i;
2083
2084    struct host_bsq* bsq;
2085    struct buffer*   buffer;
2086
2087    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2088        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2089
2090            bsq = &fore200e->host_bsq[ scheme ][ magn ];
2091
2092            nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2093            size = fore200e_rx_buf_size[ scheme ][ magn ];
2094
2095            DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2096
2097            /* allocate the array of receive buffers */
2098            buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2099
2100            if (buffer == NULL)
2101                return -ENOMEM;
2102
2103            bsq->freebuf = NULL;
2104
2105            for (i = 0; i < nbr; i++) {
2106
2107                buffer[ i ].scheme = scheme;
2108                buffer[ i ].magn   = magn;
2109#ifdef FORE200E_BSQ_DEBUG
2110                buffer[ i ].index  = i;
2111                buffer[ i ].supplied = 0;
2112#endif
2113
2114                /* allocate the receive buffer body */
2115                if (fore200e_chunk_alloc(fore200e,
2116                                         &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2117                                         DMA_FROM_DEVICE) < 0) {
2118                    
2119                    while (i > 0)
2120                        fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2121                    kfree(buffer);
2122                    
2123                    return -ENOMEM;
2124                }
2125
2126                /* insert the buffer into the free buffer list */
2127                buffer[ i ].next = bsq->freebuf;
2128                bsq->freebuf = &buffer[ i ];
2129            }
2130            /* all the buffers are free, initially */
2131            bsq->freebuf_count = nbr;
2132
2133#ifdef FORE200E_BSQ_DEBUG
2134            bsq_audit(3, bsq, scheme, magn);
2135#endif
2136        }
2137    }
2138
2139    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2140    return 0;
2141}
2142
2143
2144static int fore200e_init_bs_queue(struct fore200e *fore200e)
2145{
2146    int scheme, magn, i;
2147
2148    struct host_bsq*     bsq;
2149    struct cp_bsq_entry __iomem * cp_entry;
2150
2151    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2152        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2153
2154            DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2155
2156            bsq = &fore200e->host_bsq[ scheme ][ magn ];
2157
2158            /* allocate and align the array of status words */
2159            if (fore200e->bus->dma_chunk_alloc(fore200e,
2160                                               &bsq->status,
2161                                               sizeof(enum status), 
2162                                               QUEUE_SIZE_BS,
2163                                               fore200e->bus->status_alignment) < 0) {
2164                return -ENOMEM;
2165            }
2166
2167            /* allocate and align the array of receive buffer descriptors */
2168            if (fore200e->bus->dma_chunk_alloc(fore200e,
2169                                               &bsq->rbd_block,
2170                                               sizeof(struct rbd_block),
2171                                               QUEUE_SIZE_BS,
2172                                               fore200e->bus->descr_alignment) < 0) {
2173                
2174                fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2175                return -ENOMEM;
2176            }
2177            
2178            /* get the base address of the cp resident buffer supply queue entries */
2179            cp_entry = fore200e->virt_base + 
2180                       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2181            
2182            /* fill the host resident and cp resident buffer supply queue entries */
2183            for (i = 0; i < QUEUE_SIZE_BS; i++) {
2184                
2185                bsq->host_entry[ i ].status = 
2186                                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2187                bsq->host_entry[ i ].rbd_block =
2188                                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2189                bsq->host_entry[ i ].rbd_block_dma =
2190                                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2191                bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2192                
2193                *bsq->host_entry[ i ].status = STATUS_FREE;
2194                
2195                fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2196                                     &cp_entry[ i ].status_haddr);
2197            }
2198        }
2199    }
2200
2201    fore200e->state = FORE200E_STATE_INIT_BSQ;
2202    return 0;
2203}
2204
2205
2206static int fore200e_init_rx_queue(struct fore200e *fore200e)
2207{
2208    struct host_rxq*     rxq =  &fore200e->host_rxq;
2209    struct cp_rxq_entry __iomem * cp_entry;
2210    int i;
2211
2212    DPRINTK(2, "receive queue is being initialized\n");
2213
2214    /* allocate and align the array of status words */
2215    if (fore200e->bus->dma_chunk_alloc(fore200e,
2216                                       &rxq->status,
2217                                       sizeof(enum status), 
2218                                       QUEUE_SIZE_RX,
2219                                       fore200e->bus->status_alignment) < 0) {
2220        return -ENOMEM;
2221    }
2222
2223    /* allocate and align the array of receive PDU descriptors */
2224    if (fore200e->bus->dma_chunk_alloc(fore200e,
2225                                       &rxq->rpd,
2226                                       sizeof(struct rpd), 
2227                                       QUEUE_SIZE_RX,
2228                                       fore200e->bus->descr_alignment) < 0) {
2229        
2230        fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2231        return -ENOMEM;
2232    }
2233
2234    /* get the base address of the cp resident rx queue entries */
2235    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2236
2237    /* fill the host resident and cp resident rx entries */
2238    for (i=0; i < QUEUE_SIZE_RX; i++) {
2239        
2240        rxq->host_entry[ i ].status = 
2241                             FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2242        rxq->host_entry[ i ].rpd = 
2243                             FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2244        rxq->host_entry[ i ].rpd_dma = 
2245                             FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2246        rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2247
2248        *rxq->host_entry[ i ].status = STATUS_FREE;
2249
2250        fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2251                             &cp_entry[ i ].status_haddr);
2252
2253        fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2254                             &cp_entry[ i ].rpd_haddr);
2255    }
2256
2257    /* set the head entry of the queue */
2258    rxq->head = 0;
2259
2260    fore200e->state = FORE200E_STATE_INIT_RXQ;
2261    return 0;
2262}
2263
2264
2265static int fore200e_init_tx_queue(struct fore200e *fore200e)
2266{
2267    struct host_txq*     txq =  &fore200e->host_txq;
2268    struct cp_txq_entry __iomem * cp_entry;
2269    int i;
2270
2271    DPRINTK(2, "transmit queue is being initialized\n");
2272
2273    /* allocate and align the array of status words */
2274    if (fore200e->bus->dma_chunk_alloc(fore200e,
2275                                       &txq->status,
2276                                       sizeof(enum status), 
2277                                       QUEUE_SIZE_TX,
2278                                       fore200e->bus->status_alignment) < 0) {
2279        return -ENOMEM;
2280    }
2281
2282    /* allocate and align the array of transmit PDU descriptors */
2283    if (fore200e->bus->dma_chunk_alloc(fore200e,
2284                                       &txq->tpd,
2285                                       sizeof(struct tpd), 
2286                                       QUEUE_SIZE_TX,
2287                                       fore200e->bus->descr_alignment) < 0) {
2288        
2289        fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2290        return -ENOMEM;
2291    }
2292
2293    /* get the base address of the cp resident tx queue entries */
2294    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2295
2296    /* fill the host resident and cp resident tx entries */
2297    for (i=0; i < QUEUE_SIZE_TX; i++) {
2298        
2299        txq->host_entry[ i ].status = 
2300                             FORE200E_INDEX(txq->status.align_addr, enum status, i);
2301        txq->host_entry[ i ].tpd = 
2302                             FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2303        txq->host_entry[ i ].tpd_dma  = 
2304                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2305        txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2306
2307        *txq->host_entry[ i ].status = STATUS_FREE;
2308        
2309        fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2310                             &cp_entry[ i ].status_haddr);
2311        
2312        /* although there is a one-to-one mapping of tx queue entries and tpds,
2313           we do not write here the DMA (physical) base address of each tpd into
2314           the related cp resident entry, because the cp relies on this write
2315           operation to detect that a new pdu has been submitted for tx */
2316    }
2317
2318    /* set the head and tail entries of the queue */
2319    txq->head = 0;
2320    txq->tail = 0;
2321
2322    fore200e->state = FORE200E_STATE_INIT_TXQ;
2323    return 0;
2324}
2325
2326
2327static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2328{
2329    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2330    struct cp_cmdq_entry __iomem * cp_entry;
2331    int i;
2332
2333    DPRINTK(2, "command queue is being initialized\n");
2334
2335    /* allocate and align the array of status words */
2336    if (fore200e->bus->dma_chunk_alloc(fore200e,
2337                                       &cmdq->status,
2338                                       sizeof(enum status), 
2339                                       QUEUE_SIZE_CMD,
2340                                       fore200e->bus->status_alignment) < 0) {
2341        return -ENOMEM;
2342    }
2343    
2344    /* get the base address of the cp resident cmd queue entries */
2345    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2346
2347    /* fill the host resident and cp resident cmd entries */
2348    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2349        
2350        cmdq->host_entry[ i ].status   = 
2351                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2352        cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2353
2354        *cmdq->host_entry[ i ].status = STATUS_FREE;
2355
2356        fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2357                             &cp_entry[ i ].status_haddr);
2358    }
2359
2360    /* set the head entry of the queue */
2361    cmdq->head = 0;
2362
2363    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2364    return 0;
2365}
2366
2367
2368static void fore200e_param_bs_queue(struct fore200e *fore200e,
2369                                    enum buffer_scheme scheme,
2370                                    enum buffer_magn magn, int queue_length,
2371                                    int pool_size, int supply_blksize)
2372{
2373    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2374
2375    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2376    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2377    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2378    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2379}
2380
2381
2382static int fore200e_initialize(struct fore200e *fore200e)
2383{
2384    struct cp_queues __iomem * cpq;
2385    int               ok, scheme, magn;
2386
2387    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2388
2389    mutex_init(&fore200e->rate_mtx);
2390    spin_lock_init(&fore200e->q_lock);
2391
2392    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2393
2394    /* enable cp to host interrupts */
2395    fore200e->bus->write(1, &cpq->imask);
2396
2397    if (fore200e->bus->irq_enable)
2398        fore200e->bus->irq_enable(fore200e);
2399    
2400    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2401
2402    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2403    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2404    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2405
2406    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2407    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2408
2409    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2410        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2411            fore200e_param_bs_queue(fore200e, scheme, magn,
2412                                    QUEUE_SIZE_BS, 
2413                                    fore200e_rx_buf_nbr[ scheme ][ magn ],
2414                                    RBD_BLK_SIZE);
2415
2416    /* issue the initialize command */
2417    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2418    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2419
2420    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2421    if (ok == 0) {
2422        printk(FORE200E "device %s initialization failed\n", fore200e->name);
2423        return -ENODEV;
2424    }
2425
2426    printk(FORE200E "device %s initialized\n", fore200e->name);
2427
2428    fore200e->state = FORE200E_STATE_INITIALIZE;
2429    return 0;
2430}
2431
2432
2433static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2434{
2435    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2436
2437#if 0
2438    printk("%c", c);
2439#endif
2440    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2441}
2442
2443
2444static int fore200e_monitor_getc(struct fore200e *fore200e)
2445{
2446    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2448    int                c;
2449
2450    while (time_before(jiffies, timeout)) {
2451
2452        c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2453
2454        if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2455
2456            fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2457#if 0
2458            printk("%c", c & 0xFF);
2459#endif
2460            return c & 0xFF;
2461        }
2462    }
2463
2464    return -1;
2465}
2466
2467
2468static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2469{
2470    while (*str) {
2471
2472        /* the i960 monitor doesn't accept any new character if it has something to say */
2473        while (fore200e_monitor_getc(fore200e) >= 0);
2474        
2475        fore200e_monitor_putc(fore200e, *str++);
2476    }
2477
2478    while (fore200e_monitor_getc(fore200e) >= 0);
2479}
2480
2481#ifdef __LITTLE_ENDIAN
2482#define FW_EXT ".bin"
2483#else
2484#define FW_EXT "_ecd.bin2"
2485#endif
2486
2487static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2488{
2489    const struct firmware *firmware;
2490    struct device *device;
2491    struct fw_header *fw_header;
2492    const __le32 *fw_data;
2493    u32 fw_size;
2494    u32 __iomem *load_addr;
2495    char buf[48];
2496    int err = -ENODEV;
2497
2498    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2499        device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2500#ifdef CONFIG_SBUS
2501    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2502        device = &((struct platform_device *) fore200e->bus_dev)->dev;
2503#endif
2504    else
2505        return err;
2506
2507    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2508    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2509        printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2510        return err;
2511    }
2512
2513    fw_data = (__le32 *) firmware->data;
2514    fw_size = firmware->size / sizeof(u32);
2515    fw_header = (struct fw_header *) firmware->data;
2516    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2517
2518    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2519            fore200e->name, load_addr, fw_size);
2520
2521    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2522        printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2523        goto release;
2524    }
2525
2526    for (; fw_size--; fw_data++, load_addr++)
2527        fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2528
2529    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2530
2531#if defined(__sparc_v9__)
2532    /* reported to be required by SBA cards on some sparc64 hosts */
2533    fore200e_spin(100);
2534#endif
2535
2536    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2537    fore200e_monitor_puts(fore200e, buf);
2538
2539    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2540        printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2541        goto release;
2542    }
2543
2544    printk(FORE200E "device %s firmware started\n", fore200e->name);
2545
2546    fore200e->state = FORE200E_STATE_START_FW;
2547    err = 0;
2548
2549release:
2550    release_firmware(firmware);
2551    return err;
2552}
2553
2554
2555static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2556{
2557    struct atm_dev* atm_dev;
2558
2559    DPRINTK(2, "device %s being registered\n", fore200e->name);
2560
2561    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2562                               -1, NULL);
2563    if (atm_dev == NULL) {
2564        printk(FORE200E "unable to register device %s\n", fore200e->name);
2565        return -ENODEV;
2566    }
2567
2568    atm_dev->dev_data = fore200e;
2569    fore200e->atm_dev = atm_dev;
2570
2571    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2572    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2573
2574    fore200e->available_cell_rate = ATM_OC3_PCR;
2575
2576    fore200e->state = FORE200E_STATE_REGISTER;
2577    return 0;
2578}
2579
2580
2581static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2582{
2583    if (fore200e_register(fore200e, parent) < 0)
2584        return -ENODEV;
2585    
2586    if (fore200e->bus->configure(fore200e) < 0)
2587        return -ENODEV;
2588
2589    if (fore200e->bus->map(fore200e) < 0)
2590        return -ENODEV;
2591
2592    if (fore200e_reset(fore200e, 1) < 0)
2593        return -ENODEV;
2594
2595    if (fore200e_load_and_start_fw(fore200e) < 0)
2596        return -ENODEV;
2597
2598    if (fore200e_initialize(fore200e) < 0)
2599        return -ENODEV;
2600
2601    if (fore200e_init_cmd_queue(fore200e) < 0)
2602        return -ENOMEM;
2603
2604    if (fore200e_init_tx_queue(fore200e) < 0)
2605        return -ENOMEM;
2606
2607    if (fore200e_init_rx_queue(fore200e) < 0)
2608        return -ENOMEM;
2609
2610    if (fore200e_init_bs_queue(fore200e) < 0)
2611        return -ENOMEM;
2612
2613    if (fore200e_alloc_rx_buf(fore200e) < 0)
2614        return -ENOMEM;
2615
2616    if (fore200e_get_esi(fore200e) < 0)
2617        return -EIO;
2618
2619    if (fore200e_irq_request(fore200e) < 0)
2620        return -EBUSY;
2621
2622    fore200e_supply(fore200e);
2623
2624    /* all done, board initialization is now complete */
2625    fore200e->state = FORE200E_STATE_COMPLETE;
2626    return 0;
2627}
2628
2629#ifdef CONFIG_SBUS
2630static const struct of_device_id fore200e_sba_match[];
2631static int fore200e_sba_probe(struct platform_device *op)
2632{
2633        const struct of_device_id *match;
2634        const struct fore200e_bus *bus;
2635        struct fore200e *fore200e;
2636        static int index = 0;
2637        int err;
2638
2639        match = of_match_device(fore200e_sba_match, &op->dev);
2640        if (!match)
2641                return -EINVAL;
2642        bus = match->data;
2643
2644        fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2645        if (!fore200e)
2646                return -ENOMEM;
2647
2648        fore200e->bus = bus;
2649        fore200e->bus_dev = op;
2650        fore200e->irq = op->archdata.irqs[0];
2651        fore200e->phys_base = op->resource[0].start;
2652
2653        sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2654
2655        err = fore200e_init(fore200e, &op->dev);
2656        if (err < 0) {
2657                fore200e_shutdown(fore200e);
2658                kfree(fore200e);
2659                return err;
2660        }
2661
2662        index++;
2663        dev_set_drvdata(&op->dev, fore200e);
2664
2665        return 0;
2666}
2667
2668static int fore200e_sba_remove(struct platform_device *op)
2669{
2670        struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2671
2672        fore200e_shutdown(fore200e);
2673        kfree(fore200e);
2674
2675        return 0;
2676}
2677
2678static const struct of_device_id fore200e_sba_match[] = {
2679        {
2680                .name = SBA200E_PROM_NAME,
2681                .data = (void *) &fore200e_bus[1],
2682        },
2683        {},
2684};
2685MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2686
2687static struct platform_driver fore200e_sba_driver = {
2688        .driver = {
2689                .name = "fore_200e",
2690                .owner = THIS_MODULE,
2691                .of_match_table = fore200e_sba_match,
2692        },
2693        .probe          = fore200e_sba_probe,
2694        .remove         = fore200e_sba_remove,
2695};
2696#endif
2697
2698#ifdef CONFIG_PCI
2699static int fore200e_pca_detect(struct pci_dev *pci_dev,
2700                               const struct pci_device_id *pci_ent)
2701{
2702    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2703    struct fore200e* fore200e;
2704    int err = 0;
2705    static int index = 0;
2706
2707    if (pci_enable_device(pci_dev)) {
2708        err = -EINVAL;
2709        goto out;
2710    }
2711    
2712    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2713    if (fore200e == NULL) {
2714        err = -ENOMEM;
2715        goto out_disable;
2716    }
2717
2718    fore200e->bus       = bus;
2719    fore200e->bus_dev   = pci_dev;    
2720    fore200e->irq       = pci_dev->irq;
2721    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2722
2723    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2724
2725    pci_set_master(pci_dev);
2726
2727    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2728           fore200e->bus->model_name, 
2729           fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2730
2731    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2732
2733    err = fore200e_init(fore200e, &pci_dev->dev);
2734    if (err < 0) {
2735        fore200e_shutdown(fore200e);
2736        goto out_free;
2737    }
2738
2739    ++index;
2740    pci_set_drvdata(pci_dev, fore200e);
2741
2742out:
2743    return err;
2744
2745out_free:
2746    kfree(fore200e);
2747out_disable:
2748    pci_disable_device(pci_dev);
2749    goto out;
2750}
2751
2752
2753static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2754{
2755    struct fore200e *fore200e;
2756
2757    fore200e = pci_get_drvdata(pci_dev);
2758
2759    fore200e_shutdown(fore200e);
2760    kfree(fore200e);
2761    pci_disable_device(pci_dev);
2762}
2763
2764
2765static struct pci_device_id fore200e_pca_tbl[] = {
2766    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2767      0, 0, (unsigned long) &fore200e_bus[0] },
2768    { 0, }
2769};
2770
2771MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2772
2773static struct pci_driver fore200e_pca_driver = {
2774    .name =     "fore_200e",
2775    .probe =    fore200e_pca_detect,
2776    .remove =   fore200e_pca_remove_one,
2777    .id_table = fore200e_pca_tbl,
2778};
2779#endif
2780
2781static int __init fore200e_module_init(void)
2782{
2783        int err;
2784
2785        printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2786
2787#ifdef CONFIG_SBUS
2788        err = platform_driver_register(&fore200e_sba_driver);
2789        if (err)
2790                return err;
2791#endif
2792
2793#ifdef CONFIG_PCI
2794        err = pci_register_driver(&fore200e_pca_driver);
2795#endif
2796
2797#ifdef CONFIG_SBUS
2798        if (err)
2799                platform_driver_unregister(&fore200e_sba_driver);
2800#endif
2801
2802        return err;
2803}
2804
2805static void __exit fore200e_module_cleanup(void)
2806{
2807#ifdef CONFIG_PCI
2808        pci_unregister_driver(&fore200e_pca_driver);
2809#endif
2810#ifdef CONFIG_SBUS
2811        platform_driver_unregister(&fore200e_sba_driver);
2812#endif
2813}
2814
2815static int
2816fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2817{
2818    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2819    struct fore200e_vcc* fore200e_vcc;
2820    struct atm_vcc*      vcc;
2821    int                  i, len, left = *pos;
2822    unsigned long        flags;
2823
2824    if (!left--) {
2825
2826        if (fore200e_getstats(fore200e) < 0)
2827            return -EIO;
2828
2829        len = sprintf(page,"\n"
2830                       " device:\n"
2831                       "   internal name:\t\t%s\n", fore200e->name);
2832
2833        /* print bus-specific information */
2834        if (fore200e->bus->proc_read)
2835            len += fore200e->bus->proc_read(fore200e, page + len);
2836        
2837        len += sprintf(page + len,
2838                "   interrupt line:\t\t%s\n"
2839                "   physical base address:\t0x%p\n"
2840                "   virtual base address:\t0x%p\n"
2841                "   factory address (ESI):\t%pM\n"
2842                "   board serial number:\t\t%d\n\n",
2843                fore200e_irq_itoa(fore200e->irq),
2844                (void*)fore200e->phys_base,
2845                fore200e->virt_base,
2846                fore200e->esi,
2847                fore200e->esi[4] * 256 + fore200e->esi[5]);
2848
2849        return len;
2850    }
2851
2852    if (!left--)
2853        return sprintf(page,
2854                       "   free small bufs, scheme 1:\t%d\n"
2855                       "   free large bufs, scheme 1:\t%d\n"
2856                       "   free small bufs, scheme 2:\t%d\n"
2857                       "   free large bufs, scheme 2:\t%d\n",
2858                       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2859                       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2860                       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2861                       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2862
2863    if (!left--) {
2864        u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2865
2866        len = sprintf(page,"\n\n"
2867                      " cell processor:\n"
2868                      "   heartbeat state:\t\t");
2869        
2870        if (hb >> 16 != 0xDEAD)
2871            len += sprintf(page + len, "0x%08x\n", hb);
2872        else
2873            len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2874
2875        return len;
2876    }
2877
2878    if (!left--) {
2879        static const char* media_name[] = {
2880            "unshielded twisted pair",
2881            "multimode optical fiber ST",
2882            "multimode optical fiber SC",
2883            "single-mode optical fiber ST",
2884            "single-mode optical fiber SC",
2885            "unknown"
2886        };
2887
2888        static const char* oc3_mode[] = {
2889            "normal operation",
2890            "diagnostic loopback",
2891            "line loopback",
2892            "unknown"
2893        };
2894
2895        u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2896        u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2897        u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2898        u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2899        u32 oc3_index;
2900
2901        if (media_index > 4)
2902                media_index = 5;
2903        
2904        switch (fore200e->loop_mode) {
2905            case ATM_LM_NONE:    oc3_index = 0;
2906                                 break;
2907            case ATM_LM_LOC_PHY: oc3_index = 1;
2908                                 break;
2909            case ATM_LM_RMT_PHY: oc3_index = 2;
2910                                 break;
2911            default:             oc3_index = 3;
2912        }
2913
2914        return sprintf(page,
2915                       "   firmware release:\t\t%d.%d.%d\n"
2916                       "   monitor release:\t\t%d.%d\n"
2917                       "   media type:\t\t\t%s\n"
2918                       "   OC-3 revision:\t\t0x%x\n"
2919                       "   OC-3 mode:\t\t\t%s",
2920                       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2921                       mon960_release >> 16, mon960_release << 16 >> 16,
2922                       media_name[ media_index ],
2923                       oc3_revision,
2924                       oc3_mode[ oc3_index ]);
2925    }
2926
2927    if (!left--) {
2928        struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2929
2930        return sprintf(page,
2931                       "\n\n"
2932                       " monitor:\n"
2933                       "   version number:\t\t%d\n"
2934                       "   boot status word:\t\t0x%08x\n",
2935                       fore200e->bus->read(&cp_monitor->mon_version),
2936                       fore200e->bus->read(&cp_monitor->bstat));
2937    }
2938
2939    if (!left--)
2940        return sprintf(page,
2941                       "\n"
2942                       " device statistics:\n"
2943                       "  4b5b:\n"
2944                       "     crc_header_errors:\t\t%10u\n"
2945                       "     framing_errors:\t\t%10u\n",
2946                       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2947                       be32_to_cpu(fore200e->stats->phy.framing_errors));
2948    
2949    if (!left--)
2950        return sprintf(page, "\n"
2951                       "  OC-3:\n"
2952                       "     section_bip8_errors:\t%10u\n"
2953                       "     path_bip8_errors:\t\t%10u\n"
2954                       "     line_bip24_errors:\t\t%10u\n"
2955                       "     line_febe_errors:\t\t%10u\n"
2956                       "     path_febe_errors:\t\t%10u\n"
2957                       "     corr_hcs_errors:\t\t%10u\n"
2958                       "     ucorr_hcs_errors:\t\t%10u\n",
2959                       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2960                       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2961                       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2962                       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2963                       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2964                       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2965                       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2966
2967    if (!left--)
2968        return sprintf(page,"\n"
2969                       "   ATM:\t\t\t\t     cells\n"
2970                       "     TX:\t\t\t%10u\n"
2971                       "     RX:\t\t\t%10u\n"
2972                       "     vpi out of range:\t\t%10u\n"
2973                       "     vpi no conn:\t\t%10u\n"
2974                       "     vci out of range:\t\t%10u\n"
2975                       "     vci no conn:\t\t%10u\n",
2976                       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2977                       be32_to_cpu(fore200e->stats->atm.cells_received),
2978                       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2979                       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2980                       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2981                       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2982    
2983    if (!left--)
2984        return sprintf(page,"\n"
2985                       "   AAL0:\t\t\t     cells\n"
2986                       "     TX:\t\t\t%10u\n"
2987                       "     RX:\t\t\t%10u\n"
2988                       "     dropped:\t\t\t%10u\n",
2989                       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2990                       be32_to_cpu(fore200e->stats->aal0.cells_received),
2991                       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2992    
2993    if (!left--)
2994        return sprintf(page,"\n"
2995                       "   AAL3/4:\n"
2996                       "     SAR sublayer:\t\t     cells\n"
2997                       "       TX:\t\t\t%10u\n"
2998                       "       RX:\t\t\t%10u\n"
2999                       "       dropped:\t\t\t%10u\n"
3000                       "       CRC errors:\t\t%10u\n"
3001                       "       protocol errors:\t\t%10u\n\n"
3002                       "     CS  sublayer:\t\t      PDUs\n"
3003                       "       TX:\t\t\t%10u\n"
3004                       "       RX:\t\t\t%10u\n"
3005                       "       dropped:\t\t\t%10u\n"
3006                       "       protocol errors:\t\t%10u\n",
3007                       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3008                       be32_to_cpu(fore200e->stats->aal34.cells_received),
3009                       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3010                       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3011                       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3012                       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3013                       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3014                       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3015                       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3016    
3017    if (!left--)
3018        return sprintf(page,"\n"
3019                       "   AAL5:\n"
3020                       "     SAR sublayer:\t\t     cells\n"
3021                       "       TX:\t\t\t%10u\n"
3022                       "       RX:\t\t\t%10u\n"
3023                       "       dropped:\t\t\t%10u\n"
3024                       "       congestions:\t\t%10u\n\n"
3025                       "     CS  sublayer:\t\t      PDUs\n"
3026                       "       TX:\t\t\t%10u\n"
3027                       "       RX:\t\t\t%10u\n"
3028                       "       dropped:\t\t\t%10u\n"
3029                       "       CRC errors:\t\t%10u\n"
3030                       "       protocol errors:\t\t%10u\n",
3031                       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3032                       be32_to_cpu(fore200e->stats->aal5.cells_received),
3033                       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3034                       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3035                       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3036                       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3037                       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3038                       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3039                       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3040    
3041    if (!left--)
3042        return sprintf(page,"\n"
3043                       "   AUX:\t\t       allocation failures\n"
3044                       "     small b1:\t\t\t%10u\n"
3045                       "     large b1:\t\t\t%10u\n"
3046                       "     small b2:\t\t\t%10u\n"
3047                       "     large b2:\t\t\t%10u\n"
3048                       "     RX PDUs:\t\t\t%10u\n"
3049                       "     TX PDUs:\t\t\t%10lu\n",
3050                       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3051                       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3052                       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3053                       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3054                       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3055                       fore200e->tx_sat);
3056    
3057    if (!left--)
3058        return sprintf(page,"\n"
3059                       " receive carrier:\t\t\t%s\n",
3060                       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3061    
3062    if (!left--) {
3063        return sprintf(page,"\n"
3064                       " VCCs:\n  address   VPI VCI   AAL "
3065                       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3066    }
3067
3068    for (i = 0; i < NBR_CONNECT; i++) {
3069
3070        vcc = fore200e->vc_map[i].vcc;
3071
3072        if (vcc == NULL)
3073            continue;
3074
3075        spin_lock_irqsave(&fore200e->q_lock, flags);
3076
3077        if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3078
3079            fore200e_vcc = FORE200E_VCC(vcc);
3080            ASSERT(fore200e_vcc);
3081
3082            len = sprintf(page,
3083                          "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3084                          (u32)(unsigned long)vcc,
3085                          vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3086                          fore200e_vcc->tx_pdu,
3087                          fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3088                          fore200e_vcc->tx_max_pdu,
3089                          fore200e_vcc->rx_pdu,
3090                          fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3091                          fore200e_vcc->rx_max_pdu);
3092
3093            spin_unlock_irqrestore(&fore200e->q_lock, flags);
3094            return len;
3095        }
3096
3097        spin_unlock_irqrestore(&fore200e->q_lock, flags);
3098    }
3099    
3100    return 0;
3101}
3102
3103module_init(fore200e_module_init);
3104module_exit(fore200e_module_cleanup);
3105
3106
3107static const struct atmdev_ops fore200e_ops =
3108{
3109        .open       = fore200e_open,
3110        .close      = fore200e_close,
3111        .ioctl      = fore200e_ioctl,
3112        .getsockopt = fore200e_getsockopt,
3113        .setsockopt = fore200e_setsockopt,
3114        .send       = fore200e_send,
3115        .change_qos = fore200e_change_qos,
3116        .proc_read  = fore200e_proc_read,
3117        .owner      = THIS_MODULE
3118};
3119
3120
3121static const struct fore200e_bus fore200e_bus[] = {
3122#ifdef CONFIG_PCI
3123    { "PCA-200E", "pca200e", 32, 4, 32, 
3124      fore200e_pca_read,
3125      fore200e_pca_write,
3126      fore200e_pca_dma_map,
3127      fore200e_pca_dma_unmap,
3128      fore200e_pca_dma_sync_for_cpu,
3129      fore200e_pca_dma_sync_for_device,
3130      fore200e_pca_dma_chunk_alloc,
3131      fore200e_pca_dma_chunk_free,
3132      fore200e_pca_configure,
3133      fore200e_pca_map,
3134      fore200e_pca_reset,
3135      fore200e_pca_prom_read,
3136      fore200e_pca_unmap,
3137      NULL,
3138      fore200e_pca_irq_check,
3139      fore200e_pca_irq_ack,
3140      fore200e_pca_proc_read,
3141    },
3142#endif
3143#ifdef CONFIG_SBUS
3144    { "SBA-200E", "sba200e", 32, 64, 32,
3145      fore200e_sba_read,
3146      fore200e_sba_write,
3147      fore200e_sba_dma_map,
3148      fore200e_sba_dma_unmap,
3149      fore200e_sba_dma_sync_for_cpu,
3150      fore200e_sba_dma_sync_for_device,
3151      fore200e_sba_dma_chunk_alloc,
3152      fore200e_sba_dma_chunk_free,
3153      fore200e_sba_configure,
3154      fore200e_sba_map,
3155      fore200e_sba_reset,
3156      fore200e_sba_prom_read,
3157      fore200e_sba_unmap,
3158      fore200e_sba_irq_enable,
3159      fore200e_sba_irq_check,
3160      fore200e_sba_irq_ack,
3161      fore200e_sba_proc_read,
3162    },
3163#endif
3164    {}
3165};
3166
3167MODULE_LICENSE("GPL");
3168#ifdef CONFIG_PCI
3169#ifdef __LITTLE_ENDIAN__
3170MODULE_FIRMWARE("pca200e.bin");
3171#else
3172MODULE_FIRMWARE("pca200e_ecd.bin2");
3173#endif
3174#endif /* CONFIG_PCI */
3175#ifdef CONFIG_SBUS
3176MODULE_FIRMWARE("sba200e_ecd.bin2");
3177#endif
3178