linux/drivers/hv/ring_buffer.c
<<
>>
Prefs
   1/*
   2 *
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  16 * Place - Suite 330, Boston, MA 02111-1307 USA.
  17 *
  18 * Authors:
  19 *   Haiyang Zhang <haiyangz@microsoft.com>
  20 *   Hank Janssen  <hjanssen@microsoft.com>
  21 *   K. Y. Srinivasan <kys@microsoft.com>
  22 *
  23 */
  24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25
  26#include <linux/kernel.h>
  27#include <linux/mm.h>
  28#include <linux/hyperv.h>
  29#include <linux/uio.h>
  30#include <linux/vmalloc.h>
  31#include <linux/slab.h>
  32#include <linux/prefetch.h>
  33
  34#include "hyperv_vmbus.h"
  35
  36#define VMBUS_PKT_TRAILER       8
  37
  38/*
  39 * When we write to the ring buffer, check if the host needs to
  40 * be signaled. Here is the details of this protocol:
  41 *
  42 *      1. The host guarantees that while it is draining the
  43 *         ring buffer, it will set the interrupt_mask to
  44 *         indicate it does not need to be interrupted when
  45 *         new data is placed.
  46 *
  47 *      2. The host guarantees that it will completely drain
  48 *         the ring buffer before exiting the read loop. Further,
  49 *         once the ring buffer is empty, it will clear the
  50 *         interrupt_mask and re-check to see if new data has
  51 *         arrived.
  52 *
  53 * KYS: Oct. 30, 2016:
  54 * It looks like Windows hosts have logic to deal with DOS attacks that
  55 * can be triggered if it receives interrupts when it is not expecting
  56 * the interrupt. The host expects interrupts only when the ring
  57 * transitions from empty to non-empty (or full to non full on the guest
  58 * to host ring).
  59 * So, base the signaling decision solely on the ring state until the
  60 * host logic is fixed.
  61 */
  62
  63static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
  64{
  65        struct hv_ring_buffer_info *rbi = &channel->outbound;
  66
  67        mb();
  68        if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
  69                return;
  70
  71        /* check interrupt_mask before read_index */
  72        rmb();
  73        /*
  74         * This is the only case we need to signal when the
  75         * ring transitions from being empty to non-empty.
  76         */
  77        if (old_write == READ_ONCE(rbi->ring_buffer->read_index))
  78                vmbus_setevent(channel);
  79}
  80
  81/* Get the next write location for the specified ring buffer. */
  82static inline u32
  83hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
  84{
  85        u32 next = ring_info->ring_buffer->write_index;
  86
  87        return next;
  88}
  89
  90/* Set the next write location for the specified ring buffer. */
  91static inline void
  92hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
  93                     u32 next_write_location)
  94{
  95        ring_info->ring_buffer->write_index = next_write_location;
  96}
  97
  98/* Set the next read location for the specified ring buffer. */
  99static inline void
 100hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
 101                    u32 next_read_location)
 102{
 103        ring_info->ring_buffer->read_index = next_read_location;
 104        ring_info->priv_read_index = next_read_location;
 105}
 106
 107/* Get the size of the ring buffer. */
 108static inline u32
 109hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
 110{
 111        return ring_info->ring_datasize;
 112}
 113
 114/* Get the read and write indices as u64 of the specified ring buffer. */
 115static inline u64
 116hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
 117{
 118        return (u64)ring_info->ring_buffer->write_index << 32;
 119}
 120
 121/*
 122 * Helper routine to copy from source to ring buffer.
 123 * Assume there is enough room. Handles wrap-around in dest case only!!
 124 */
 125static u32 hv_copyto_ringbuffer(
 126        struct hv_ring_buffer_info      *ring_info,
 127        u32                             start_write_offset,
 128        const void                      *src,
 129        u32                             srclen)
 130{
 131        void *ring_buffer = hv_get_ring_buffer(ring_info);
 132        u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
 133
 134        memcpy(ring_buffer + start_write_offset, src, srclen);
 135
 136        start_write_offset += srclen;
 137        if (start_write_offset >= ring_buffer_size)
 138                start_write_offset -= ring_buffer_size;
 139
 140        return start_write_offset;
 141}
 142
 143/*
 144 *
 145 * hv_get_ringbuffer_availbytes()
 146 *
 147 * Get number of bytes available to read and to write to
 148 * for the specified ring buffer
 149 */
 150static void
 151hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
 152                             u32 *read, u32 *write)
 153{
 154        u32 read_loc, write_loc, dsize;
 155
 156        /* Capture the read/write indices before they changed */
 157        read_loc = READ_ONCE(rbi->ring_buffer->read_index);
 158        write_loc = READ_ONCE(rbi->ring_buffer->write_index);
 159        dsize = rbi->ring_datasize;
 160
 161        *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
 162                read_loc - write_loc;
 163        *read = dsize - *write;
 164}
 165
 166/* Get various debug metrics for the specified ring buffer. */
 167int hv_ringbuffer_get_debuginfo(const struct hv_ring_buffer_info *ring_info,
 168                                struct hv_ring_buffer_debug_info *debug_info)
 169{
 170        u32 bytes_avail_towrite;
 171        u32 bytes_avail_toread;
 172
 173        if (!ring_info->ring_buffer)
 174                return -EINVAL;
 175
 176        hv_get_ringbuffer_availbytes(ring_info,
 177                                     &bytes_avail_toread,
 178                                     &bytes_avail_towrite);
 179        debug_info->bytes_avail_toread = bytes_avail_toread;
 180        debug_info->bytes_avail_towrite = bytes_avail_towrite;
 181        debug_info->current_read_index = ring_info->ring_buffer->read_index;
 182        debug_info->current_write_index = ring_info->ring_buffer->write_index;
 183        debug_info->current_interrupt_mask
 184                = ring_info->ring_buffer->interrupt_mask;
 185        return 0;
 186}
 187EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
 188
 189/* Initialize the ring buffer. */
 190int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
 191                       struct page *pages, u32 page_cnt)
 192{
 193        int i;
 194        struct page **pages_wraparound;
 195
 196        BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
 197
 198        memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
 199
 200        /*
 201         * First page holds struct hv_ring_buffer, do wraparound mapping for
 202         * the rest.
 203         */
 204        pages_wraparound = kzalloc(sizeof(struct page *) * (page_cnt * 2 - 1),
 205                                   GFP_KERNEL);
 206        if (!pages_wraparound)
 207                return -ENOMEM;
 208
 209        pages_wraparound[0] = pages;
 210        for (i = 0; i < 2 * (page_cnt - 1); i++)
 211                pages_wraparound[i + 1] = &pages[i % (page_cnt - 1) + 1];
 212
 213        ring_info->ring_buffer = (struct hv_ring_buffer *)
 214                vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP, PAGE_KERNEL);
 215
 216        kfree(pages_wraparound);
 217
 218
 219        if (!ring_info->ring_buffer)
 220                return -ENOMEM;
 221
 222        ring_info->ring_buffer->read_index =
 223                ring_info->ring_buffer->write_index = 0;
 224
 225        /* Set the feature bit for enabling flow control. */
 226        ring_info->ring_buffer->feature_bits.value = 1;
 227
 228        ring_info->ring_size = page_cnt << PAGE_SHIFT;
 229        ring_info->ring_size_div10_reciprocal =
 230                reciprocal_value(ring_info->ring_size / 10);
 231        ring_info->ring_datasize = ring_info->ring_size -
 232                sizeof(struct hv_ring_buffer);
 233
 234        spin_lock_init(&ring_info->ring_lock);
 235
 236        return 0;
 237}
 238
 239/* Cleanup the ring buffer. */
 240void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
 241{
 242        vunmap(ring_info->ring_buffer);
 243        ring_info->ring_buffer = NULL;
 244}
 245
 246/* Write to the ring buffer. */
 247int hv_ringbuffer_write(struct vmbus_channel *channel,
 248                        const struct kvec *kv_list, u32 kv_count)
 249{
 250        int i;
 251        u32 bytes_avail_towrite;
 252        u32 totalbytes_towrite = sizeof(u64);
 253        u32 next_write_location;
 254        u32 old_write;
 255        u64 prev_indices;
 256        unsigned long flags;
 257        struct hv_ring_buffer_info *outring_info = &channel->outbound;
 258
 259        if (channel->rescind)
 260                return -ENODEV;
 261
 262        for (i = 0; i < kv_count; i++)
 263                totalbytes_towrite += kv_list[i].iov_len;
 264
 265        spin_lock_irqsave(&outring_info->ring_lock, flags);
 266
 267        bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
 268
 269        /*
 270         * If there is only room for the packet, assume it is full.
 271         * Otherwise, the next time around, we think the ring buffer
 272         * is empty since the read index == write index.
 273         */
 274        if (bytes_avail_towrite <= totalbytes_towrite) {
 275                spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 276                return -EAGAIN;
 277        }
 278
 279        /* Write to the ring buffer */
 280        next_write_location = hv_get_next_write_location(outring_info);
 281
 282        old_write = next_write_location;
 283
 284        for (i = 0; i < kv_count; i++) {
 285                next_write_location = hv_copyto_ringbuffer(outring_info,
 286                                                     next_write_location,
 287                                                     kv_list[i].iov_base,
 288                                                     kv_list[i].iov_len);
 289        }
 290
 291        /* Set previous packet start */
 292        prev_indices = hv_get_ring_bufferindices(outring_info);
 293
 294        next_write_location = hv_copyto_ringbuffer(outring_info,
 295                                             next_write_location,
 296                                             &prev_indices,
 297                                             sizeof(u64));
 298
 299        /* Issue a full memory barrier before updating the write index */
 300        mb();
 301
 302        /* Now, update the write location */
 303        hv_set_next_write_location(outring_info, next_write_location);
 304
 305
 306        spin_unlock_irqrestore(&outring_info->ring_lock, flags);
 307
 308        hv_signal_on_write(old_write, channel);
 309
 310        if (channel->rescind)
 311                return -ENODEV;
 312
 313        return 0;
 314}
 315
 316int hv_ringbuffer_read(struct vmbus_channel *channel,
 317                       void *buffer, u32 buflen, u32 *buffer_actual_len,
 318                       u64 *requestid, bool raw)
 319{
 320        struct vmpacket_descriptor *desc;
 321        u32 packetlen, offset;
 322
 323        if (unlikely(buflen == 0))
 324                return -EINVAL;
 325
 326        *buffer_actual_len = 0;
 327        *requestid = 0;
 328
 329        /* Make sure there is something to read */
 330        desc = hv_pkt_iter_first(channel);
 331        if (desc == NULL) {
 332                /*
 333                 * No error is set when there is even no header, drivers are
 334                 * supposed to analyze buffer_actual_len.
 335                 */
 336                return 0;
 337        }
 338
 339        offset = raw ? 0 : (desc->offset8 << 3);
 340        packetlen = (desc->len8 << 3) - offset;
 341        *buffer_actual_len = packetlen;
 342        *requestid = desc->trans_id;
 343
 344        if (unlikely(packetlen > buflen))
 345                return -ENOBUFS;
 346
 347        /* since ring is double mapped, only one copy is necessary */
 348        memcpy(buffer, (const char *)desc + offset, packetlen);
 349
 350        /* Advance ring index to next packet descriptor */
 351        __hv_pkt_iter_next(channel, desc);
 352
 353        /* Notify host of update */
 354        hv_pkt_iter_close(channel);
 355
 356        return 0;
 357}
 358
 359/*
 360 * Determine number of bytes available in ring buffer after
 361 * the current iterator (priv_read_index) location.
 362 *
 363 * This is similar to hv_get_bytes_to_read but with private
 364 * read index instead.
 365 */
 366static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
 367{
 368        u32 priv_read_loc = rbi->priv_read_index;
 369        u32 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
 370
 371        if (write_loc >= priv_read_loc)
 372                return write_loc - priv_read_loc;
 373        else
 374                return (rbi->ring_datasize - priv_read_loc) + write_loc;
 375}
 376
 377/*
 378 * Get first vmbus packet from ring buffer after read_index
 379 *
 380 * If ring buffer is empty, returns NULL and no other action needed.
 381 */
 382struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
 383{
 384        struct hv_ring_buffer_info *rbi = &channel->inbound;
 385        struct vmpacket_descriptor *desc;
 386
 387        if (hv_pkt_iter_avail(rbi) < sizeof(struct vmpacket_descriptor))
 388                return NULL;
 389
 390        desc = hv_get_ring_buffer(rbi) + rbi->priv_read_index;
 391        if (desc)
 392                prefetch((char *)desc + (desc->len8 << 3));
 393
 394        return desc;
 395}
 396EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
 397
 398/*
 399 * Get next vmbus packet from ring buffer.
 400 *
 401 * Advances the current location (priv_read_index) and checks for more
 402 * data. If the end of the ring buffer is reached, then return NULL.
 403 */
 404struct vmpacket_descriptor *
 405__hv_pkt_iter_next(struct vmbus_channel *channel,
 406                   const struct vmpacket_descriptor *desc)
 407{
 408        struct hv_ring_buffer_info *rbi = &channel->inbound;
 409        u32 packetlen = desc->len8 << 3;
 410        u32 dsize = rbi->ring_datasize;
 411
 412        /* bump offset to next potential packet */
 413        rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
 414        if (rbi->priv_read_index >= dsize)
 415                rbi->priv_read_index -= dsize;
 416
 417        /* more data? */
 418        return hv_pkt_iter_first(channel);
 419}
 420EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
 421
 422/* How many bytes were read in this iterator cycle */
 423static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
 424                                        u32 start_read_index)
 425{
 426        if (rbi->priv_read_index >= start_read_index)
 427                return rbi->priv_read_index - start_read_index;
 428        else
 429                return rbi->ring_datasize - start_read_index +
 430                        rbi->priv_read_index;
 431}
 432
 433/*
 434 * Update host ring buffer after iterating over packets.
 435 */
 436void hv_pkt_iter_close(struct vmbus_channel *channel)
 437{
 438        struct hv_ring_buffer_info *rbi = &channel->inbound;
 439        u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
 440
 441        /*
 442         * Make sure all reads are done before we update the read index since
 443         * the writer may start writing to the read area once the read index
 444         * is updated.
 445         */
 446        virt_rmb();
 447        start_read_index = rbi->ring_buffer->read_index;
 448        rbi->ring_buffer->read_index = rbi->priv_read_index;
 449
 450        if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
 451                return;
 452
 453        /*
 454         * Issue a full memory barrier before making the signaling decision.
 455         * Here is the reason for having this barrier:
 456         * If the reading of the pend_sz (in this function)
 457         * were to be reordered and read before we commit the new read
 458         * index (in the calling function)  we could
 459         * have a problem. If the host were to set the pending_sz after we
 460         * have sampled pending_sz and go to sleep before we commit the
 461         * read index, we could miss sending the interrupt. Issue a full
 462         * memory barrier to address this.
 463         */
 464        mb();
 465
 466        pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
 467        if (!pending_sz)
 468                return;
 469
 470        /*
 471         * Ensure the read of write_index in hv_get_bytes_to_write()
 472         * happens after the read of pending_send_sz.
 473         */
 474        virt_rmb();
 475        curr_write_sz = hv_get_bytes_to_write(rbi);
 476        bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
 477
 478        /*
 479         * If there was space before we began iteration,
 480         * then host was not blocked.
 481         */
 482
 483        if (curr_write_sz - bytes_read > pending_sz)
 484                return;
 485
 486        /* If pending write will not fit, don't give false hope. */
 487        if (curr_write_sz <= pending_sz)
 488                return;
 489
 490        vmbus_setevent(channel);
 491}
 492EXPORT_SYMBOL_GPL(hv_pkt_iter_close);
 493