linux/drivers/net/ethernet/sfc/falcon/io.h
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#ifndef EF4_IO_H
  12#define EF4_IO_H
  13
  14#include <linux/io.h>
  15#include <linux/spinlock.h>
  16
  17/**************************************************************************
  18 *
  19 * NIC register I/O
  20 *
  21 **************************************************************************
  22 *
  23 * Notes on locking strategy for the Falcon architecture:
  24 *
  25 * Many CSRs are very wide and cannot be read or written atomically.
  26 * Writes from the host are buffered by the Bus Interface Unit (BIU)
  27 * up to 128 bits.  Whenever the host writes part of such a register,
  28 * the BIU collects the written value and does not write to the
  29 * underlying register until all 4 dwords have been written.  A
  30 * similar buffering scheme applies to host access to the NIC's 64-bit
  31 * SRAM.
  32 *
  33 * Writes to different CSRs and 64-bit SRAM words must be serialised,
  34 * since interleaved access can result in lost writes.  We use
  35 * ef4_nic::biu_lock for this.
  36 *
  37 * We also serialise reads from 128-bit CSRs and SRAM with the same
  38 * spinlock.  This may not be necessary, but it doesn't really matter
  39 * as there are no such reads on the fast path.
  40 *
  41 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
  42 * 128-bit but are special-cased in the BIU to avoid the need for
  43 * locking in the host:
  44 *
  45 * - They are write-only.
  46 * - The semantics of writing to these registers are such that
  47 *   replacing the low 96 bits with zero does not affect functionality.
  48 * - If the host writes to the last dword address of such a register
  49 *   (i.e. the high 32 bits) the underlying register will always be
  50 *   written.  If the collector and the current write together do not
  51 *   provide values for all 128 bits of the register, the low 96 bits
  52 *   will be written as zero.
  53 * - If the host writes to the address of any other part of such a
  54 *   register while the collector already holds values for some other
  55 *   register, the write is discarded and the collector maintains its
  56 *   current state.
  57 *
  58 * The EF10 architecture exposes very few registers to the host and
  59 * most of them are only 32 bits wide.  The only exceptions are the MC
  60 * doorbell register pair, which has its own latching, and
  61 * TX_DESC_UPD, which works in a similar way to the Falcon
  62 * architecture.
  63 */
  64
  65#if BITS_PER_LONG == 64
  66#define EF4_USE_QWORD_IO 1
  67#endif
  68
  69#ifdef EF4_USE_QWORD_IO
  70static inline void _ef4_writeq(struct ef4_nic *efx, __le64 value,
  71                                  unsigned int reg)
  72{
  73        __raw_writeq((__force u64)value, efx->membase + reg);
  74}
  75static inline __le64 _ef4_readq(struct ef4_nic *efx, unsigned int reg)
  76{
  77        return (__force __le64)__raw_readq(efx->membase + reg);
  78}
  79#endif
  80
  81static inline void _ef4_writed(struct ef4_nic *efx, __le32 value,
  82                                  unsigned int reg)
  83{
  84        __raw_writel((__force u32)value, efx->membase + reg);
  85}
  86static inline __le32 _ef4_readd(struct ef4_nic *efx, unsigned int reg)
  87{
  88        return (__force __le32)__raw_readl(efx->membase + reg);
  89}
  90
  91/* Write a normal 128-bit CSR, locking as appropriate. */
  92static inline void ef4_writeo(struct ef4_nic *efx, const ef4_oword_t *value,
  93                              unsigned int reg)
  94{
  95        unsigned long flags __attribute__ ((unused));
  96
  97        netif_vdbg(efx, hw, efx->net_dev,
  98                   "writing register %x with " EF4_OWORD_FMT "\n", reg,
  99                   EF4_OWORD_VAL(*value));
 100
 101        spin_lock_irqsave(&efx->biu_lock, flags);
 102#ifdef EF4_USE_QWORD_IO
 103        _ef4_writeq(efx, value->u64[0], reg + 0);
 104        _ef4_writeq(efx, value->u64[1], reg + 8);
 105#else
 106        _ef4_writed(efx, value->u32[0], reg + 0);
 107        _ef4_writed(efx, value->u32[1], reg + 4);
 108        _ef4_writed(efx, value->u32[2], reg + 8);
 109        _ef4_writed(efx, value->u32[3], reg + 12);
 110#endif
 111        mmiowb();
 112        spin_unlock_irqrestore(&efx->biu_lock, flags);
 113}
 114
 115/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
 116static inline void ef4_sram_writeq(struct ef4_nic *efx, void __iomem *membase,
 117                                   const ef4_qword_t *value, unsigned int index)
 118{
 119        unsigned int addr = index * sizeof(*value);
 120        unsigned long flags __attribute__ ((unused));
 121
 122        netif_vdbg(efx, hw, efx->net_dev,
 123                   "writing SRAM address %x with " EF4_QWORD_FMT "\n",
 124                   addr, EF4_QWORD_VAL(*value));
 125
 126        spin_lock_irqsave(&efx->biu_lock, flags);
 127#ifdef EF4_USE_QWORD_IO
 128        __raw_writeq((__force u64)value->u64[0], membase + addr);
 129#else
 130        __raw_writel((__force u32)value->u32[0], membase + addr);
 131        __raw_writel((__force u32)value->u32[1], membase + addr + 4);
 132#endif
 133        mmiowb();
 134        spin_unlock_irqrestore(&efx->biu_lock, flags);
 135}
 136
 137/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
 138static inline void ef4_writed(struct ef4_nic *efx, const ef4_dword_t *value,
 139                              unsigned int reg)
 140{
 141        netif_vdbg(efx, hw, efx->net_dev,
 142                   "writing register %x with "EF4_DWORD_FMT"\n",
 143                   reg, EF4_DWORD_VAL(*value));
 144
 145        /* No lock required */
 146        _ef4_writed(efx, value->u32[0], reg);
 147}
 148
 149/* Read a 128-bit CSR, locking as appropriate. */
 150static inline void ef4_reado(struct ef4_nic *efx, ef4_oword_t *value,
 151                             unsigned int reg)
 152{
 153        unsigned long flags __attribute__ ((unused));
 154
 155        spin_lock_irqsave(&efx->biu_lock, flags);
 156        value->u32[0] = _ef4_readd(efx, reg + 0);
 157        value->u32[1] = _ef4_readd(efx, reg + 4);
 158        value->u32[2] = _ef4_readd(efx, reg + 8);
 159        value->u32[3] = _ef4_readd(efx, reg + 12);
 160        spin_unlock_irqrestore(&efx->biu_lock, flags);
 161
 162        netif_vdbg(efx, hw, efx->net_dev,
 163                   "read from register %x, got " EF4_OWORD_FMT "\n", reg,
 164                   EF4_OWORD_VAL(*value));
 165}
 166
 167/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
 168static inline void ef4_sram_readq(struct ef4_nic *efx, void __iomem *membase,
 169                                  ef4_qword_t *value, unsigned int index)
 170{
 171        unsigned int addr = index * sizeof(*value);
 172        unsigned long flags __attribute__ ((unused));
 173
 174        spin_lock_irqsave(&efx->biu_lock, flags);
 175#ifdef EF4_USE_QWORD_IO
 176        value->u64[0] = (__force __le64)__raw_readq(membase + addr);
 177#else
 178        value->u32[0] = (__force __le32)__raw_readl(membase + addr);
 179        value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
 180#endif
 181        spin_unlock_irqrestore(&efx->biu_lock, flags);
 182
 183        netif_vdbg(efx, hw, efx->net_dev,
 184                   "read from SRAM address %x, got "EF4_QWORD_FMT"\n",
 185                   addr, EF4_QWORD_VAL(*value));
 186}
 187
 188/* Read a 32-bit CSR or SRAM */
 189static inline void ef4_readd(struct ef4_nic *efx, ef4_dword_t *value,
 190                                unsigned int reg)
 191{
 192        value->u32[0] = _ef4_readd(efx, reg);
 193        netif_vdbg(efx, hw, efx->net_dev,
 194                   "read from register %x, got "EF4_DWORD_FMT"\n",
 195                   reg, EF4_DWORD_VAL(*value));
 196}
 197
 198/* Write a 128-bit CSR forming part of a table */
 199static inline void
 200ef4_writeo_table(struct ef4_nic *efx, const ef4_oword_t *value,
 201                 unsigned int reg, unsigned int index)
 202{
 203        ef4_writeo(efx, value, reg + index * sizeof(ef4_oword_t));
 204}
 205
 206/* Read a 128-bit CSR forming part of a table */
 207static inline void ef4_reado_table(struct ef4_nic *efx, ef4_oword_t *value,
 208                                     unsigned int reg, unsigned int index)
 209{
 210        ef4_reado(efx, value, reg + index * sizeof(ef4_oword_t));
 211}
 212
 213/* Page size used as step between per-VI registers */
 214#define EF4_VI_PAGE_SIZE 0x2000
 215
 216/* Calculate offset to page-mapped register */
 217#define EF4_PAGED_REG(page, reg) \
 218        ((page) * EF4_VI_PAGE_SIZE + (reg))
 219
 220/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
 221static inline void _ef4_writeo_page(struct ef4_nic *efx, ef4_oword_t *value,
 222                                    unsigned int reg, unsigned int page)
 223{
 224        reg = EF4_PAGED_REG(page, reg);
 225
 226        netif_vdbg(efx, hw, efx->net_dev,
 227                   "writing register %x with " EF4_OWORD_FMT "\n", reg,
 228                   EF4_OWORD_VAL(*value));
 229
 230#ifdef EF4_USE_QWORD_IO
 231        _ef4_writeq(efx, value->u64[0], reg + 0);
 232        _ef4_writeq(efx, value->u64[1], reg + 8);
 233#else
 234        _ef4_writed(efx, value->u32[0], reg + 0);
 235        _ef4_writed(efx, value->u32[1], reg + 4);
 236        _ef4_writed(efx, value->u32[2], reg + 8);
 237        _ef4_writed(efx, value->u32[3], reg + 12);
 238#endif
 239}
 240#define ef4_writeo_page(efx, value, reg, page)                          \
 241        _ef4_writeo_page(efx, value,                                    \
 242                         reg +                                          \
 243                         BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
 244                         page)
 245
 246/* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
 247 * high bits of RX_DESC_UPD or TX_DESC_UPD)
 248 */
 249static inline void
 250_ef4_writed_page(struct ef4_nic *efx, const ef4_dword_t *value,
 251                 unsigned int reg, unsigned int page)
 252{
 253        ef4_writed(efx, value, EF4_PAGED_REG(page, reg));
 254}
 255#define ef4_writed_page(efx, value, reg, page)                          \
 256        _ef4_writed_page(efx, value,                                    \
 257                         reg +                                          \
 258                         BUILD_BUG_ON_ZERO((reg) != 0x400 &&            \
 259                                           (reg) != 0x420 &&            \
 260                                           (reg) != 0x830 &&            \
 261                                           (reg) != 0x83c &&            \
 262                                           (reg) != 0xa18 &&            \
 263                                           (reg) != 0xa1c),             \
 264                         page)
 265
 266/* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
 267 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
 268 * collector register.
 269 */
 270static inline void _ef4_writed_page_locked(struct ef4_nic *efx,
 271                                           const ef4_dword_t *value,
 272                                           unsigned int reg,
 273                                           unsigned int page)
 274{
 275        unsigned long flags __attribute__ ((unused));
 276
 277        if (page == 0) {
 278                spin_lock_irqsave(&efx->biu_lock, flags);
 279                ef4_writed(efx, value, EF4_PAGED_REG(page, reg));
 280                spin_unlock_irqrestore(&efx->biu_lock, flags);
 281        } else {
 282                ef4_writed(efx, value, EF4_PAGED_REG(page, reg));
 283        }
 284}
 285#define ef4_writed_page_locked(efx, value, reg, page)                   \
 286        _ef4_writed_page_locked(efx, value,                             \
 287                                reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
 288                                page)
 289
 290#endif /* EF4_IO_H */
 291