linux/drivers/nvdimm/pmem.c
<<
>>
Prefs
   1/*
   2 * Persistent Memory Driver
   3 *
   4 * Copyright (c) 2014-2015, Intel Corporation.
   5 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
   6 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms and conditions of the GNU General Public License,
  10 * version 2, as published by the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope it will be useful, but WITHOUT
  13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  15 * more details.
  16 */
  17
  18#include <asm/cacheflush.h>
  19#include <linux/blkdev.h>
  20#include <linux/hdreg.h>
  21#include <linux/init.h>
  22#include <linux/platform_device.h>
  23#include <linux/module.h>
  24#include <linux/moduleparam.h>
  25#include <linux/badblocks.h>
  26#include <linux/memremap.h>
  27#include <linux/vmalloc.h>
  28#include <linux/pfn_t.h>
  29#include <linux/slab.h>
  30#include <linux/socket.h>
  31#include <linux/dax.h>
  32#include <linux/nd.h>
  33#include "pmem.h"
  34#include "pfn.h"
  35#include "nd.h"
  36#include "nd-core.h"
  37
  38#ifndef set_mce_nospec
  39static inline int set_mce_nospec(unsigned long pfn)
  40{
  41        return 0;
  42}
  43#endif
  44
  45#ifndef clear_mce_nospec
  46static inline int clear_mce_nospec(unsigned long pfn)
  47{
  48        return 0;
  49}
  50#endif
  51
  52static struct device *to_dev(struct pmem_device *pmem)
  53{
  54        /*
  55         * nvdimm bus services need a 'dev' parameter, and we record the device
  56         * at init in bb.dev.
  57         */
  58        return pmem->bb.dev;
  59}
  60
  61static struct nd_region *to_region(struct pmem_device *pmem)
  62{
  63        return to_nd_region(to_dev(pmem)->parent);
  64}
  65
  66static void hwpoison_clear(struct pmem_device *pmem,
  67                phys_addr_t phys, unsigned int len)
  68{
  69        unsigned long pfn_start, pfn_end, pfn;
  70
  71        /* only pmem in the linear map supports HWPoison */
  72        if (is_vmalloc_addr(pmem->virt_addr))
  73                return;
  74
  75        pfn_start = PHYS_PFN(phys);
  76        pfn_end = pfn_start + PHYS_PFN(len);
  77        for (pfn = pfn_start; pfn < pfn_end; pfn++) {
  78                struct page *page = pfn_to_page(pfn);
  79
  80                /*
  81                 * Note, no need to hold a get_dev_pagemap() reference
  82                 * here since we're in the driver I/O path and
  83                 * outstanding I/O requests pin the dev_pagemap.
  84                 */
  85                if (test_and_clear_pmem_poison(page))
  86                        clear_mce_nospec(pfn);
  87        }
  88}
  89
  90static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
  91                unsigned int len)
  92{
  93        struct device *dev = to_dev(pmem);
  94        sector_t sector;
  95        long cleared;
  96        int rc = 0;
  97
  98        sector = (offset - pmem->data_offset) / 512;
  99
 100        cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
 101        if (cleared < len)
 102                rc = -EIO;
 103        if (cleared > 0 && cleared / 512) {
 104                hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
 105                cleared /= 512;
 106                dev_dbg(dev, "%#llx clear %ld sector%s\n",
 107                                (unsigned long long) sector, cleared,
 108                                cleared > 1 ? "s" : "");
 109                badblocks_clear(&pmem->bb, sector, cleared);
 110                if (pmem->bb_state)
 111                        sysfs_notify_dirent(pmem->bb_state);
 112        }
 113
 114        arch_invalidate_pmem(pmem->virt_addr + offset, len);
 115        return rc;
 116}
 117
 118static void write_pmem(void *pmem_addr, struct page *page,
 119                unsigned int off, unsigned int len)
 120{
 121        void *mem = kmap_atomic(page);
 122
 123        memcpy_flushcache(pmem_addr, mem + off, len);
 124        kunmap_atomic(mem);
 125}
 126
 127static int read_pmem(struct page *page, unsigned int off,
 128                void *pmem_addr, unsigned int len)
 129{
 130        unsigned long rem;
 131        void *mem = kmap_atomic(page);
 132
 133        rem = memcpy_mcsafe(mem + off, pmem_addr, len);
 134        kunmap_atomic(mem);
 135        if (rem)
 136                return -EIO;
 137        return 0;
 138}
 139
 140static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
 141                        unsigned int len, unsigned int off, int rw,
 142                        sector_t sector)
 143{
 144        int rc = 0;
 145        bool bad_pmem = false;
 146        phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
 147        void *pmem_addr = pmem->virt_addr + pmem_off;
 148
 149        if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
 150                bad_pmem = true;
 151
 152        if (rw == READ) {
 153                if (unlikely(bad_pmem))
 154                        rc = -EIO;
 155                else {
 156                        rc = read_pmem(page, off, pmem_addr, len);
 157                        flush_dcache_page(page);
 158                }
 159        } else {
 160                /*
 161                 * Note that we write the data both before and after
 162                 * clearing poison.  The write before clear poison
 163                 * handles situations where the latest written data is
 164                 * preserved and the clear poison operation simply marks
 165                 * the address range as valid without changing the data.
 166                 * In this case application software can assume that an
 167                 * interrupted write will either return the new good
 168                 * data or an error.
 169                 *
 170                 * However, if pmem_clear_poison() leaves the data in an
 171                 * indeterminate state we need to perform the write
 172                 * after clear poison.
 173                 */
 174                flush_dcache_page(page);
 175                write_pmem(pmem_addr, page, off, len);
 176                if (unlikely(bad_pmem)) {
 177                        rc = pmem_clear_poison(pmem, pmem_off, len);
 178                        write_pmem(pmem_addr, page, off, len);
 179                }
 180        }
 181
 182        return rc;
 183}
 184
 185static void pmem_make_request(struct request_queue *q, struct bio *bio)
 186{
 187        int rc = 0;
 188        bool do_acct;
 189        unsigned long start;
 190        struct pmem_device *pmem = q->queuedata;
 191        struct bio_vec *bvec;
 192        sector_t sector;
 193        int i;
 194        struct nd_region *nd_region = to_region(pmem);
 195
 196        if (bio->bi_rw & REQ_FLUSH)
 197                nvdimm_flush(nd_region);
 198
 199        do_acct = nd_iostat_start(bio, &start);
 200        sector = bio->bi_sector;
 201        bio_for_each_segment(bvec, bio, i) {
 202                rc = pmem_do_bvec(pmem, bvec->bv_page, bvec->bv_len,
 203                                  bvec->bv_offset, bio_data_dir(bio), sector);
 204                if (rc)
 205                        break;
 206                sector += bvec->bv_len >> 9;
 207        }
 208        if (do_acct)
 209                nd_iostat_end(bio, start);
 210
 211        if (bio->bi_rw & REQ_FUA)
 212                nvdimm_flush(nd_region);
 213
 214        bio_endio(bio, rc);
 215}
 216
 217static int pmem_rw_page(struct block_device *bdev, sector_t sector,
 218                       struct page *page, int rw)
 219{
 220        struct pmem_device *pmem = bdev->bd_queue->queuedata;
 221        int rc;
 222
 223        rc = pmem_do_bvec(pmem, page, PAGE_CACHE_SIZE, 0, rw, sector);
 224
 225        /*
 226         * The ->rw_page interface is subtle and tricky.  The core
 227         * retries on any error, so we can only invoke page_endio() in
 228         * the successful completion case.  Otherwise, we'll see crashes
 229         * caused by double completion.
 230         */
 231        if (rc == 0)
 232                page_endio(page, rw & WRITE, 0);
 233
 234        return rc;
 235}
 236
 237/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
 238__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
 239                long nr_pages, void **kaddr, pfn_t *pfn)
 240{
 241        resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
 242
 243        if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
 244                                        PFN_PHYS(nr_pages))))
 245                return -EIO;
 246
 247        if (kaddr)
 248                *kaddr = pmem->virt_addr + offset;
 249        if (pfn)
 250                *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
 251
 252        /*
 253         * If badblocks are present, limit known good range to the
 254         * requested range.
 255         */
 256        if (unlikely(pmem->bb.count))
 257                return nr_pages;
 258        return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
 259}
 260
 261static const struct block_device_operations pmem_fops = {
 262        .owner =                THIS_MODULE,
 263        .rw_page =              pmem_rw_page,
 264        .revalidate_disk =      nvdimm_revalidate_disk,
 265};
 266
 267static long pmem_dax_direct_access(struct dax_device *dax_dev,
 268                pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
 269{
 270        struct pmem_device *pmem = dax_get_private(dax_dev);
 271
 272        return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
 273}
 274
 275static int pmem_memcpy_fromiovecend(struct dax_device *dax_dev, pgoff_t pgoff,
 276                        void *addr, const struct iovec *iov, int offset, int len)
 277{
 278        return memcpy_fromiovecend_partial_flushcache(addr, iov, offset, len);
 279}
 280
 281static int pmem_memcpy_toiovecend(struct dax_device *dax_dev, pgoff_t pgoff,
 282                        const struct iovec *iov, void *addr, int offset, int len)
 283{
 284        return memcpy_toiovecend_partial_mcsafe(iov, addr, offset, len);
 285}
 286
 287static const struct dax_operations pmem_dax_ops = {
 288        .direct_access = pmem_dax_direct_access,
 289        .memcpy_fromiovecend = pmem_memcpy_fromiovecend,
 290        .memcpy_toiovecend = pmem_memcpy_toiovecend,
 291};
 292
 293static const struct attribute_group *pmem_attribute_groups[] = {
 294        &dax_attribute_group,
 295        NULL,
 296};
 297
 298static void pmem_release_queue(void *q)
 299{
 300        blk_cleanup_queue(q);
 301}
 302
 303static void pmem_release_disk(void *__pmem)
 304{
 305        struct pmem_device *pmem = __pmem;
 306
 307        kill_dax(pmem->dax_dev);
 308        put_dax(pmem->dax_dev);
 309        del_gendisk(pmem->disk);
 310        put_disk(pmem->disk);
 311}
 312
 313static void fsdax_pagefree(struct page *page, void *data)
 314{
 315        wake_up_var(&page->_count);
 316}
 317
 318static int setup_pagemap_fsdax(struct device *dev, struct dev_pagemap *pgmap)
 319{
 320        pgmap->type = MEMORY_DEVICE_FS_DAX;
 321        pgmap->page_free = fsdax_pagefree;
 322
 323        return 0;
 324}
 325
 326static int pmem_attach_disk(struct device *dev,
 327                struct nd_namespace_common *ndns)
 328{
 329        struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
 330        struct nd_region *nd_region = to_nd_region(dev->parent);
 331        int nid = dev_to_node(dev), fua;
 332        unsigned flush_flags = REQ_FLUSH;
 333        struct resource *res = &nsio->res;
 334        struct resource bb_res;
 335        struct nd_pfn *nd_pfn = NULL;
 336        struct dax_device *dax_dev;
 337        struct nd_pfn_sb *pfn_sb;
 338        struct pmem_device *pmem;
 339        struct request_queue *q;
 340        struct device *gendev;
 341        struct gendisk *disk;
 342        void *addr;
 343        int rc;
 344
 345        pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
 346        if (!pmem)
 347                return -ENOMEM;
 348
 349        /* while nsio_rw_bytes is active, parse a pfn info block if present */
 350        if (is_nd_pfn(dev)) {
 351                nd_pfn = to_nd_pfn(dev);
 352                rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
 353                if (rc)
 354                        return rc;
 355        }
 356
 357        /* we're attaching a block device, disable raw namespace access */
 358        devm_nsio_disable(dev, nsio);
 359
 360        dev_set_drvdata(dev, pmem);
 361        pmem->phys_addr = res->start;
 362        pmem->size = resource_size(res);
 363        fua = nvdimm_has_flush(nd_region);
 364        if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
 365                dev_warn(dev, "unable to guarantee persistence of writes\n");
 366                fua = 0;
 367        }
 368        if (fua)
 369                flush_flags |= REQ_FUA;
 370
 371        if (!devm_request_mem_region(dev, res->start, resource_size(res),
 372                                dev_name(&ndns->dev))) {
 373                dev_warn(dev, "could not reserve region %pR\n", res);
 374                return -EBUSY;
 375        }
 376
 377        q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev), NULL);
 378        if (!q)
 379                return -ENOMEM;
 380
 381        pmem->pfn_flags = PFN_DEV;
 382        pmem->pgmap.ref = &q->q_usage_counter;
 383        if (is_nd_pfn(dev)) {
 384                if (setup_pagemap_fsdax(dev, &pmem->pgmap))
 385                        return -ENOMEM;
 386                addr = devm_memremap_pages(dev, &pmem->pgmap);
 387                pfn_sb = nd_pfn->pfn_sb;
 388                pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
 389                pmem->pfn_pad = resource_size(res) -
 390                        resource_size(&pmem->pgmap.res);
 391                pmem->pfn_flags |= PFN_MAP;
 392                memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
 393                bb_res.start += pmem->data_offset;
 394        } else if (pmem_should_map_pages(dev)) {
 395                memcpy(&pmem->pgmap.res, &nsio->res, sizeof(pmem->pgmap.res));
 396                pmem->pgmap.altmap_valid = false;
 397                if (setup_pagemap_fsdax(dev, &pmem->pgmap))
 398                        return -ENOMEM;
 399                addr = devm_memremap_pages(dev, &pmem->pgmap);
 400                pmem->pfn_flags |= PFN_MAP;
 401                memcpy(&bb_res, &pmem->pgmap.res, sizeof(bb_res));
 402        } else {
 403                addr = devm_memremap(dev, pmem->phys_addr,
 404                                pmem->size, ARCH_MEMREMAP_PMEM);
 405                memcpy(&bb_res, &nsio->res, sizeof(bb_res));
 406        }
 407
 408        /*
 409         * At release time the queue must be dead before
 410         * devm_memremap_pages is unwound
 411         */
 412        if (devm_add_action_or_reset(dev, pmem_release_queue, q))
 413                return -ENOMEM;
 414
 415        if (IS_ERR(addr))
 416                return PTR_ERR(addr);
 417        pmem->virt_addr = addr;
 418
 419        blk_queue_flush(q, flush_flags);
 420        blk_queue_make_request(q, pmem_make_request);
 421        blk_queue_physical_block_size(q, PAGE_SIZE);
 422        blk_queue_logical_block_size(q, pmem_sector_size(ndns));
 423        blk_queue_max_hw_sectors(q, UINT_MAX);
 424        blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
 425        queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
 426        if (pmem->pfn_flags & PFN_MAP)
 427                queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
 428        q->queuedata = pmem;
 429
 430        disk = alloc_disk_node(0, nid);
 431        if (!disk)
 432                return -ENOMEM;
 433        pmem->disk = disk;
 434
 435        disk->fops              = &pmem_fops;
 436        disk->queue             = q;
 437        disk->flags             = GENHD_FL_EXT_DEVT;
 438        nvdimm_namespace_disk_name(ndns, disk->disk_name);
 439        disk->driverfs_dev = dev;
 440        set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
 441                        / 512);
 442        if (devm_init_badblocks(dev, &pmem->bb))
 443                return -ENOMEM;
 444        nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_res);
 445        disk->bb = &pmem->bb;
 446
 447        dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops);
 448        if (!dax_dev) {
 449                put_disk(disk);
 450                return -ENOMEM;
 451        }
 452        dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
 453        pmem->dax_dev = dax_dev;
 454
 455        gendev = disk_to_dev(disk);
 456        gendev->groups = pmem_attribute_groups;
 457
 458        add_disk(disk);
 459        if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
 460                return -ENOMEM;
 461
 462        revalidate_disk(disk);
 463
 464        pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
 465                                          "badblocks");
 466        if (!pmem->bb_state)
 467                dev_warn(dev, "'badblocks' notification disabled\n");
 468
 469        return 0;
 470}
 471
 472static int nd_pmem_probe(struct device *dev)
 473{
 474        struct nd_namespace_common *ndns;
 475
 476        ndns = nvdimm_namespace_common_probe(dev);
 477        if (IS_ERR(ndns))
 478                return PTR_ERR(ndns);
 479
 480        if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
 481                return -ENXIO;
 482
 483        if (is_nd_btt(dev))
 484                return nvdimm_namespace_attach_btt(ndns);
 485
 486        if (is_nd_pfn(dev))
 487                return pmem_attach_disk(dev, ndns);
 488
 489        /* if we find a valid info-block we'll come back as that personality */
 490        if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
 491                        || nd_dax_probe(dev, ndns) == 0)
 492                return -ENXIO;
 493
 494        /* ...otherwise we're just a raw pmem device */
 495        return pmem_attach_disk(dev, ndns);
 496}
 497
 498static int nd_pmem_remove(struct device *dev)
 499{
 500        struct pmem_device *pmem = dev_get_drvdata(dev);
 501
 502        if (is_nd_btt(dev))
 503                nvdimm_namespace_detach_btt(to_nd_btt(dev));
 504        else {
 505                /*
 506                 * Note, this assumes device_lock() context to not race
 507                 * nd_pmem_notify()
 508                 */
 509                sysfs_put(pmem->bb_state);
 510                pmem->bb_state = NULL;
 511        }
 512        nvdimm_flush(to_nd_region(dev->parent));
 513
 514        return 0;
 515}
 516
 517static void nd_pmem_shutdown(struct device *dev)
 518{
 519        nvdimm_flush(to_nd_region(dev->parent));
 520}
 521
 522static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
 523{
 524        struct nd_region *nd_region;
 525        resource_size_t offset = 0, end_trunc = 0;
 526        struct nd_namespace_common *ndns;
 527        struct nd_namespace_io *nsio;
 528        struct resource res;
 529        struct badblocks *bb;
 530        struct kernfs_node *bb_state;
 531
 532        if (event != NVDIMM_REVALIDATE_POISON)
 533                return;
 534
 535        if (is_nd_btt(dev)) {
 536                struct nd_btt *nd_btt = to_nd_btt(dev);
 537
 538                ndns = nd_btt->ndns;
 539                nd_region = to_nd_region(ndns->dev.parent);
 540                nsio = to_nd_namespace_io(&ndns->dev);
 541                bb = &nsio->bb;
 542                bb_state = NULL;
 543        } else {
 544                struct pmem_device *pmem = dev_get_drvdata(dev);
 545
 546                nd_region = to_region(pmem);
 547                bb = &pmem->bb;
 548                bb_state = pmem->bb_state;
 549
 550                if (is_nd_pfn(dev)) {
 551                        struct nd_pfn *nd_pfn = to_nd_pfn(dev);
 552                        struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
 553
 554                        ndns = nd_pfn->ndns;
 555                        offset = pmem->data_offset +
 556                                        __le32_to_cpu(pfn_sb->start_pad);
 557                        end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
 558                } else {
 559                        ndns = to_ndns(dev);
 560                }
 561
 562                nsio = to_nd_namespace_io(&ndns->dev);
 563        }
 564
 565        res.start = nsio->res.start + offset;
 566        res.end = nsio->res.end - end_trunc;
 567        nvdimm_badblocks_populate(nd_region, bb, &res);
 568        if (bb_state)
 569                sysfs_notify_dirent(bb_state);
 570}
 571
 572MODULE_ALIAS("pmem");
 573MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
 574MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
 575static struct nd_device_driver nd_pmem_driver = {
 576        .probe = nd_pmem_probe,
 577        .remove = nd_pmem_remove,
 578        .notify = nd_pmem_notify,
 579        .shutdown = nd_pmem_shutdown,
 580        .drv = {
 581                .name = "nd_pmem",
 582        },
 583        .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
 584};
 585
 586module_nd_driver(nd_pmem_driver);
 587
 588MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
 589MODULE_LICENSE("GPL v2");
 590