linux/fs/ext4/indirect.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/indirect.c
   3 *
   4 *  from
   5 *
   6 *  linux/fs/ext4/inode.c
   7 *
   8 * Copyright (C) 1992, 1993, 1994, 1995
   9 * Remy Card (card@masi.ibp.fr)
  10 * Laboratoire MASI - Institut Blaise Pascal
  11 * Universite Pierre et Marie Curie (Paris VI)
  12 *
  13 *  from
  14 *
  15 *  linux/fs/minix/inode.c
  16 *
  17 *  Copyright (C) 1991, 1992  Linus Torvalds
  18 *
  19 *  Goal-directed block allocation by Stephen Tweedie
  20 *      (sct@redhat.com), 1993, 1998
  21 */
  22
  23#include <linux/aio.h>
  24#include "ext4_jbd2.h"
  25#include "truncate.h"
  26#include <linux/dax.h>
  27
  28#include <trace/events/ext4.h>
  29
  30typedef struct {
  31        __le32  *p;
  32        __le32  key;
  33        struct buffer_head *bh;
  34} Indirect;
  35
  36static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  37{
  38        p->key = *(p->p = v);
  39        p->bh = bh;
  40}
  41
  42/**
  43 *      ext4_block_to_path - parse the block number into array of offsets
  44 *      @inode: inode in question (we are only interested in its superblock)
  45 *      @i_block: block number to be parsed
  46 *      @offsets: array to store the offsets in
  47 *      @boundary: set this non-zero if the referred-to block is likely to be
  48 *             followed (on disk) by an indirect block.
  49 *
  50 *      To store the locations of file's data ext4 uses a data structure common
  51 *      for UNIX filesystems - tree of pointers anchored in the inode, with
  52 *      data blocks at leaves and indirect blocks in intermediate nodes.
  53 *      This function translates the block number into path in that tree -
  54 *      return value is the path length and @offsets[n] is the offset of
  55 *      pointer to (n+1)th node in the nth one. If @block is out of range
  56 *      (negative or too large) warning is printed and zero returned.
  57 *
  58 *      Note: function doesn't find node addresses, so no IO is needed. All
  59 *      we need to know is the capacity of indirect blocks (taken from the
  60 *      inode->i_sb).
  61 */
  62
  63/*
  64 * Portability note: the last comparison (check that we fit into triple
  65 * indirect block) is spelled differently, because otherwise on an
  66 * architecture with 32-bit longs and 8Kb pages we might get into trouble
  67 * if our filesystem had 8Kb blocks. We might use long long, but that would
  68 * kill us on x86. Oh, well, at least the sign propagation does not matter -
  69 * i_block would have to be negative in the very beginning, so we would not
  70 * get there at all.
  71 */
  72
  73static int ext4_block_to_path(struct inode *inode,
  74                              ext4_lblk_t i_block,
  75                              ext4_lblk_t offsets[4], int *boundary)
  76{
  77        int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  78        int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  79        const long direct_blocks = EXT4_NDIR_BLOCKS,
  80                indirect_blocks = ptrs,
  81                double_blocks = (1 << (ptrs_bits * 2));
  82        int n = 0;
  83        int final = 0;
  84
  85        if (i_block < direct_blocks) {
  86                offsets[n++] = i_block;
  87                final = direct_blocks;
  88        } else if ((i_block -= direct_blocks) < indirect_blocks) {
  89                offsets[n++] = EXT4_IND_BLOCK;
  90                offsets[n++] = i_block;
  91                final = ptrs;
  92        } else if ((i_block -= indirect_blocks) < double_blocks) {
  93                offsets[n++] = EXT4_DIND_BLOCK;
  94                offsets[n++] = i_block >> ptrs_bits;
  95                offsets[n++] = i_block & (ptrs - 1);
  96                final = ptrs;
  97        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  98                offsets[n++] = EXT4_TIND_BLOCK;
  99                offsets[n++] = i_block >> (ptrs_bits * 2);
 100                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 101                offsets[n++] = i_block & (ptrs - 1);
 102                final = ptrs;
 103        } else {
 104                ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
 105                             i_block + direct_blocks +
 106                             indirect_blocks + double_blocks, inode->i_ino);
 107        }
 108        if (boundary)
 109                *boundary = final - 1 - (i_block & (ptrs - 1));
 110        return n;
 111}
 112
 113/**
 114 *      ext4_get_branch - read the chain of indirect blocks leading to data
 115 *      @inode: inode in question
 116 *      @depth: depth of the chain (1 - direct pointer, etc.)
 117 *      @offsets: offsets of pointers in inode/indirect blocks
 118 *      @chain: place to store the result
 119 *      @err: here we store the error value
 120 *
 121 *      Function fills the array of triples <key, p, bh> and returns %NULL
 122 *      if everything went OK or the pointer to the last filled triple
 123 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 124 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 125 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 126 *      number (it points into struct inode for i==0 and into the bh->b_data
 127 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 128 *      block for i>0 and NULL for i==0. In other words, it holds the block
 129 *      numbers of the chain, addresses they were taken from (and where we can
 130 *      verify that chain did not change) and buffer_heads hosting these
 131 *      numbers.
 132 *
 133 *      Function stops when it stumbles upon zero pointer (absent block)
 134 *              (pointer to last triple returned, *@err == 0)
 135 *      or when it gets an IO error reading an indirect block
 136 *              (ditto, *@err == -EIO)
 137 *      or when it reads all @depth-1 indirect blocks successfully and finds
 138 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 139 *
 140 *      Need to be called with
 141 *      down_read(&EXT4_I(inode)->i_data_sem)
 142 */
 143static Indirect *ext4_get_branch(struct inode *inode, int depth,
 144                                 ext4_lblk_t  *offsets,
 145                                 Indirect chain[4], int *err)
 146{
 147        struct super_block *sb = inode->i_sb;
 148        Indirect *p = chain;
 149        struct buffer_head *bh;
 150        int ret = -EIO;
 151
 152        *err = 0;
 153        /* i_data is not going away, no lock needed */
 154        add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
 155        if (!p->key)
 156                goto no_block;
 157        while (--depth) {
 158                bh = sb_getblk(sb, le32_to_cpu(p->key));
 159                if (unlikely(!bh)) {
 160                        ret = -ENOMEM;
 161                        goto failure;
 162                }
 163
 164                if (!bh_uptodate_or_lock(bh)) {
 165                        if (bh_submit_read(bh) < 0) {
 166                                put_bh(bh);
 167                                goto failure;
 168                        }
 169                        /* validate block references */
 170                        if (ext4_check_indirect_blockref(inode, bh)) {
 171                                put_bh(bh);
 172                                goto failure;
 173                        }
 174                }
 175
 176                add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
 177                /* Reader: end */
 178                if (!p->key)
 179                        goto no_block;
 180        }
 181        return NULL;
 182
 183failure:
 184        *err = ret;
 185no_block:
 186        return p;
 187}
 188
 189/**
 190 *      ext4_find_near - find a place for allocation with sufficient locality
 191 *      @inode: owner
 192 *      @ind: descriptor of indirect block.
 193 *
 194 *      This function returns the preferred place for block allocation.
 195 *      It is used when heuristic for sequential allocation fails.
 196 *      Rules are:
 197 *        + if there is a block to the left of our position - allocate near it.
 198 *        + if pointer will live in indirect block - allocate near that block.
 199 *        + if pointer will live in inode - allocate in the same
 200 *          cylinder group.
 201 *
 202 * In the latter case we colour the starting block by the callers PID to
 203 * prevent it from clashing with concurrent allocations for a different inode
 204 * in the same block group.   The PID is used here so that functionally related
 205 * files will be close-by on-disk.
 206 *
 207 *      Caller must make sure that @ind is valid and will stay that way.
 208 */
 209static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
 210{
 211        struct ext4_inode_info *ei = EXT4_I(inode);
 212        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 213        __le32 *p;
 214
 215        /* Try to find previous block */
 216        for (p = ind->p - 1; p >= start; p--) {
 217                if (*p)
 218                        return le32_to_cpu(*p);
 219        }
 220
 221        /* No such thing, so let's try location of indirect block */
 222        if (ind->bh)
 223                return ind->bh->b_blocknr;
 224
 225        /*
 226         * It is going to be referred to from the inode itself? OK, just put it
 227         * into the same cylinder group then.
 228         */
 229        return ext4_inode_to_goal_block(inode);
 230}
 231
 232/**
 233 *      ext4_find_goal - find a preferred place for allocation.
 234 *      @inode: owner
 235 *      @block:  block we want
 236 *      @partial: pointer to the last triple within a chain
 237 *
 238 *      Normally this function find the preferred place for block allocation,
 239 *      returns it.
 240 *      Because this is only used for non-extent files, we limit the block nr
 241 *      to 32 bits.
 242 */
 243static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
 244                                   Indirect *partial)
 245{
 246        ext4_fsblk_t goal;
 247
 248        /*
 249         * XXX need to get goal block from mballoc's data structures
 250         */
 251
 252        goal = ext4_find_near(inode, partial);
 253        goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
 254        return goal;
 255}
 256
 257/**
 258 *      ext4_blks_to_allocate - Look up the block map and count the number
 259 *      of direct blocks need to be allocated for the given branch.
 260 *
 261 *      @branch: chain of indirect blocks
 262 *      @k: number of blocks need for indirect blocks
 263 *      @blks: number of data blocks to be mapped.
 264 *      @blocks_to_boundary:  the offset in the indirect block
 265 *
 266 *      return the total number of blocks to be allocate, including the
 267 *      direct and indirect blocks.
 268 */
 269static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
 270                                 int blocks_to_boundary)
 271{
 272        unsigned int count = 0;
 273
 274        /*
 275         * Simple case, [t,d]Indirect block(s) has not allocated yet
 276         * then it's clear blocks on that path have not allocated
 277         */
 278        if (k > 0) {
 279                /* right now we don't handle cross boundary allocation */
 280                if (blks < blocks_to_boundary + 1)
 281                        count += blks;
 282                else
 283                        count += blocks_to_boundary + 1;
 284                return count;
 285        }
 286
 287        count++;
 288        while (count < blks && count <= blocks_to_boundary &&
 289                le32_to_cpu(*(branch[0].p + count)) == 0) {
 290                count++;
 291        }
 292        return count;
 293}
 294
 295/**
 296 *      ext4_alloc_branch - allocate and set up a chain of blocks.
 297 *      @handle: handle for this transaction
 298 *      @inode: owner
 299 *      @indirect_blks: number of allocated indirect blocks
 300 *      @blks: number of allocated direct blocks
 301 *      @goal: preferred place for allocation
 302 *      @offsets: offsets (in the blocks) to store the pointers to next.
 303 *      @branch: place to store the chain in.
 304 *
 305 *      This function allocates blocks, zeroes out all but the last one,
 306 *      links them into chain and (if we are synchronous) writes them to disk.
 307 *      In other words, it prepares a branch that can be spliced onto the
 308 *      inode. It stores the information about that chain in the branch[], in
 309 *      the same format as ext4_get_branch() would do. We are calling it after
 310 *      we had read the existing part of chain and partial points to the last
 311 *      triple of that (one with zero ->key). Upon the exit we have the same
 312 *      picture as after the successful ext4_get_block(), except that in one
 313 *      place chain is disconnected - *branch->p is still zero (we did not
 314 *      set the last link), but branch->key contains the number that should
 315 *      be placed into *branch->p to fill that gap.
 316 *
 317 *      If allocation fails we free all blocks we've allocated (and forget
 318 *      their buffer_heads) and return the error value the from failed
 319 *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 320 *      as described above and return 0.
 321 */
 322static int ext4_alloc_branch(handle_t *handle,
 323                             struct ext4_allocation_request *ar,
 324                             int indirect_blks, ext4_lblk_t *offsets,
 325                             Indirect *branch)
 326{
 327        struct buffer_head *            bh;
 328        ext4_fsblk_t                    b, new_blocks[4];
 329        __le32                          *p;
 330        int                             i, j, err, len = 1;
 331
 332        for (i = 0; i <= indirect_blks; i++) {
 333                if (i == indirect_blks) {
 334                        new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
 335                } else
 336                        ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
 337                                        ar->inode, ar->goal,
 338                                        ar->flags & EXT4_MB_DELALLOC_RESERVED,
 339                                        NULL, &err);
 340                if (err) {
 341                        i--;
 342                        goto failed;
 343                }
 344                branch[i].key = cpu_to_le32(new_blocks[i]);
 345                if (i == 0)
 346                        continue;
 347
 348                bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
 349                if (unlikely(!bh)) {
 350                        err = -ENOMEM;
 351                        goto failed;
 352                }
 353                lock_buffer(bh);
 354                BUFFER_TRACE(bh, "call get_create_access");
 355                err = ext4_journal_get_create_access(handle, bh);
 356                if (err) {
 357                        unlock_buffer(bh);
 358                        goto failed;
 359                }
 360
 361                memset(bh->b_data, 0, bh->b_size);
 362                p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
 363                b = new_blocks[i];
 364
 365                if (i == indirect_blks)
 366                        len = ar->len;
 367                for (j = 0; j < len; j++)
 368                        *p++ = cpu_to_le32(b++);
 369
 370                BUFFER_TRACE(bh, "marking uptodate");
 371                set_buffer_uptodate(bh);
 372                unlock_buffer(bh);
 373
 374                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 375                err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
 376                if (err)
 377                        goto failed;
 378        }
 379        return 0;
 380failed:
 381        for (; i >= 0; i--) {
 382                /*
 383                 * We want to ext4_forget() only freshly allocated indirect
 384                 * blocks.  Buffer for new_blocks[i-1] is at branch[i].bh and
 385                 * buffer at branch[0].bh is indirect block / inode already
 386                 * existing before ext4_alloc_branch() was called.
 387                 */
 388                if (i > 0 && i != indirect_blks && branch[i].bh)
 389                        ext4_forget(handle, 1, ar->inode, branch[i].bh,
 390                                    branch[i].bh->b_blocknr);
 391                ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
 392                                 (i == indirect_blks) ? ar->len : 1, 0);
 393        }
 394        return err;
 395}
 396
 397/**
 398 * ext4_splice_branch - splice the allocated branch onto inode.
 399 * @handle: handle for this transaction
 400 * @inode: owner
 401 * @block: (logical) number of block we are adding
 402 * @chain: chain of indirect blocks (with a missing link - see
 403 *      ext4_alloc_branch)
 404 * @where: location of missing link
 405 * @num:   number of indirect blocks we are adding
 406 * @blks:  number of direct blocks we are adding
 407 *
 408 * This function fills the missing link and does all housekeeping needed in
 409 * inode (->i_blocks, etc.). In case of success we end up with the full
 410 * chain to new block and return 0.
 411 */
 412static int ext4_splice_branch(handle_t *handle,
 413                              struct ext4_allocation_request *ar,
 414                              Indirect *where, int num)
 415{
 416        int i;
 417        int err = 0;
 418        ext4_fsblk_t current_block;
 419
 420        /*
 421         * If we're splicing into a [td]indirect block (as opposed to the
 422         * inode) then we need to get write access to the [td]indirect block
 423         * before the splice.
 424         */
 425        if (where->bh) {
 426                BUFFER_TRACE(where->bh, "get_write_access");
 427                err = ext4_journal_get_write_access(handle, where->bh);
 428                if (err)
 429                        goto err_out;
 430        }
 431        /* That's it */
 432
 433        *where->p = where->key;
 434
 435        /*
 436         * Update the host buffer_head or inode to point to more just allocated
 437         * direct blocks blocks
 438         */
 439        if (num == 0 && ar->len > 1) {
 440                current_block = le32_to_cpu(where->key) + 1;
 441                for (i = 1; i < ar->len; i++)
 442                        *(where->p + i) = cpu_to_le32(current_block++);
 443        }
 444
 445        /* We are done with atomic stuff, now do the rest of housekeeping */
 446        /* had we spliced it onto indirect block? */
 447        if (where->bh) {
 448                /*
 449                 * If we spliced it onto an indirect block, we haven't
 450                 * altered the inode.  Note however that if it is being spliced
 451                 * onto an indirect block at the very end of the file (the
 452                 * file is growing) then we *will* alter the inode to reflect
 453                 * the new i_size.  But that is not done here - it is done in
 454                 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
 455                 */
 456                jbd_debug(5, "splicing indirect only\n");
 457                BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
 458                err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
 459                if (err)
 460                        goto err_out;
 461        } else {
 462                /*
 463                 * OK, we spliced it into the inode itself on a direct block.
 464                 */
 465                ext4_mark_inode_dirty(handle, ar->inode);
 466                jbd_debug(5, "splicing direct\n");
 467        }
 468        return err;
 469
 470err_out:
 471        for (i = 1; i <= num; i++) {
 472                /*
 473                 * branch[i].bh is newly allocated, so there is no
 474                 * need to revoke the block, which is why we don't
 475                 * need to set EXT4_FREE_BLOCKS_METADATA.
 476                 */
 477                ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
 478                                 EXT4_FREE_BLOCKS_FORGET);
 479        }
 480        ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
 481                         ar->len, 0);
 482
 483        return err;
 484}
 485
 486/*
 487 * The ext4_ind_map_blocks() function handles non-extents inodes
 488 * (i.e., using the traditional indirect/double-indirect i_blocks
 489 * scheme) for ext4_map_blocks().
 490 *
 491 * Allocation strategy is simple: if we have to allocate something, we will
 492 * have to go the whole way to leaf. So let's do it before attaching anything
 493 * to tree, set linkage between the newborn blocks, write them if sync is
 494 * required, recheck the path, free and repeat if check fails, otherwise
 495 * set the last missing link (that will protect us from any truncate-generated
 496 * removals - all blocks on the path are immune now) and possibly force the
 497 * write on the parent block.
 498 * That has a nice additional property: no special recovery from the failed
 499 * allocations is needed - we simply release blocks and do not touch anything
 500 * reachable from inode.
 501 *
 502 * `handle' can be NULL if create == 0.
 503 *
 504 * return > 0, # of blocks mapped or allocated.
 505 * return = 0, if plain lookup failed.
 506 * return < 0, error case.
 507 *
 508 * The ext4_ind_get_blocks() function should be called with
 509 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 510 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 511 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 512 * blocks.
 513 */
 514int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
 515                        struct ext4_map_blocks *map,
 516                        int flags)
 517{
 518        struct ext4_allocation_request ar;
 519        int err = -EIO;
 520        ext4_lblk_t offsets[4];
 521        Indirect chain[4];
 522        Indirect *partial;
 523        int indirect_blks;
 524        int blocks_to_boundary = 0;
 525        int depth;
 526        int count = 0;
 527        ext4_fsblk_t first_block = 0;
 528
 529        trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
 530        J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
 531        J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
 532        depth = ext4_block_to_path(inode, map->m_lblk, offsets,
 533                                   &blocks_to_boundary);
 534
 535        if (depth == 0)
 536                goto out;
 537
 538        partial = ext4_get_branch(inode, depth, offsets, chain, &err);
 539
 540        /* Simplest case - block found, no allocation needed */
 541        if (!partial) {
 542                first_block = le32_to_cpu(chain[depth - 1].key);
 543                count++;
 544                /*map more blocks*/
 545                while (count < map->m_len && count <= blocks_to_boundary) {
 546                        ext4_fsblk_t blk;
 547
 548                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 549
 550                        if (blk == first_block + count)
 551                                count++;
 552                        else
 553                                break;
 554                }
 555                goto got_it;
 556        }
 557
 558        /* Next simple case - plain lookup failed */
 559        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
 560                unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
 561                int i;
 562
 563                /*
 564                 * Count number blocks in a subtree under 'partial'. At each
 565                 * level we count number of complete empty subtrees beyond
 566                 * current offset and then descend into the subtree only
 567                 * partially beyond current offset.
 568                 */
 569                count = 0;
 570                for (i = partial - chain + 1; i < depth; i++)
 571                        count = count * epb + (epb - offsets[i] - 1);
 572                count++;
 573                /* Fill in size of a hole we found */
 574                map->m_pblk = 0;
 575                map->m_len = min_t(unsigned int, map->m_len, count);
 576                goto cleanup;
 577        }
 578
 579        /* Failed read of indirect block */
 580        if (err == -EIO)
 581                goto cleanup;
 582
 583        /*
 584         * Okay, we need to do block allocation.
 585        */
 586        if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
 587                                       EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
 588                EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
 589                                 "non-extent mapped inodes with bigalloc");
 590                return -EUCLEAN;
 591        }
 592
 593        /* Set up for the direct block allocation */
 594        memset(&ar, 0, sizeof(ar));
 595        ar.inode = inode;
 596        ar.logical = map->m_lblk;
 597        if (S_ISREG(inode->i_mode))
 598                ar.flags = EXT4_MB_HINT_DATA;
 599        if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 600                ar.flags |= EXT4_MB_DELALLOC_RESERVED;
 601
 602        ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
 603
 604        /* the number of blocks need to allocate for [d,t]indirect blocks */
 605        indirect_blks = (chain + depth) - partial - 1;
 606
 607        /*
 608         * Next look up the indirect map to count the totoal number of
 609         * direct blocks to allocate for this branch.
 610         */
 611        ar.len = ext4_blks_to_allocate(partial, indirect_blks,
 612                                       map->m_len, blocks_to_boundary);
 613
 614        /*
 615         * Block out ext4_truncate while we alter the tree
 616         */
 617        err = ext4_alloc_branch(handle, &ar, indirect_blks,
 618                                offsets + (partial - chain), partial);
 619
 620        /*
 621         * The ext4_splice_branch call will free and forget any buffers
 622         * on the new chain if there is a failure, but that risks using
 623         * up transaction credits, especially for bitmaps where the
 624         * credits cannot be returned.  Can we handle this somehow?  We
 625         * may need to return -EAGAIN upwards in the worst case.  --sct
 626         */
 627        if (!err)
 628                err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
 629        if (err)
 630                goto cleanup;
 631
 632        map->m_flags |= EXT4_MAP_NEW;
 633
 634        ext4_update_inode_fsync_trans(handle, inode, 1);
 635        count = ar.len;
 636got_it:
 637        map->m_flags |= EXT4_MAP_MAPPED;
 638        map->m_pblk = le32_to_cpu(chain[depth-1].key);
 639        map->m_len = count;
 640        if (count > blocks_to_boundary)
 641                map->m_flags |= EXT4_MAP_BOUNDARY;
 642        err = count;
 643        /* Clean up and exit */
 644        partial = chain + depth - 1;    /* the whole chain */
 645cleanup:
 646        while (partial > chain) {
 647                BUFFER_TRACE(partial->bh, "call brelse");
 648                brelse(partial->bh);
 649                partial--;
 650        }
 651out:
 652        trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
 653        return err;
 654}
 655
 656/*
 657 * O_DIRECT for ext3 (or indirect map) based files
 658 *
 659 * If the O_DIRECT write will extend the file then add this inode to the
 660 * orphan list.  So recovery will truncate it back to the original size
 661 * if the machine crashes during the write.
 662 *
 663 * If the O_DIRECT write is intantiating holes inside i_size and the machine
 664 * crashes then stale disk data _may_ be exposed inside the file. But current
 665 * VFS code falls back into buffered path in that case so we are safe.
 666 */
 667ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
 668                           const struct iovec *iov, loff_t offset,
 669                           unsigned long nr_segs)
 670{
 671        struct file *file = iocb->ki_filp;
 672        struct inode *inode = file->f_mapping->host;
 673        struct ext4_inode_info *ei = EXT4_I(inode);
 674        handle_t *handle;
 675        ssize_t ret;
 676        int orphan = 0;
 677        size_t count = iov_length(iov, nr_segs);
 678        int retries = 0;
 679
 680        /* DAX uses iomap path now */
 681        if (WARN_ON_ONCE(IS_DAX(inode)))
 682                return 0;
 683
 684        if (rw == WRITE) {
 685                loff_t final_size = offset + count;
 686
 687                if (final_size > inode->i_size) {
 688                        /* Credits for sb + inode write */
 689                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 690                        if (IS_ERR(handle)) {
 691                                ret = PTR_ERR(handle);
 692                                goto out;
 693                        }
 694                        ret = ext4_orphan_add(handle, inode);
 695                        if (ret) {
 696                                ext4_journal_stop(handle);
 697                                goto out;
 698                        }
 699                        orphan = 1;
 700                        ext4_update_i_disksize(inode, inode->i_size);
 701                        ext4_journal_stop(handle);
 702                }
 703        }
 704
 705retry:
 706        if (rw == READ && ext4_should_dioread_nolock(inode)) {
 707                /*
 708                 * Nolock dioread optimization may be dynamically disabled
 709                 * via ext4_inode_block_unlocked_dio(). Check inode's state
 710                 * while holding extra i_dio_count ref.
 711                 */
 712                inode_dio_begin(inode);
 713                smp_mb();
 714                if (unlikely(ext4_test_inode_state(inode,
 715                                                    EXT4_STATE_DIOREAD_LOCK))) {
 716                        inode_dio_end(inode);
 717                        goto locked;
 718                }
 719                ret = __blockdev_direct_IO(rw, iocb, inode,
 720                                        inode->i_sb->s_bdev, iov,
 721                                        offset, nr_segs,
 722                                        ext4_get_block, NULL, NULL, 0);
 723                inode_dio_end(inode);
 724        } else {
 725locked:
 726                ret = blockdev_direct_IO(rw, iocb, inode, iov,
 727                                        offset, nr_segs, ext4_get_block);
 728
 729                if (unlikely((rw & WRITE) && ret < 0)) {
 730                        loff_t isize = i_size_read(inode);
 731                        loff_t end = offset + iov_length(iov, nr_segs);
 732
 733                        if (end > isize)
 734                                ext4_truncate_failed_write(inode);
 735                }
 736        }
 737        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 738                goto retry;
 739
 740        if (orphan) {
 741                int err;
 742
 743                /* Credits for sb + inode write */
 744                handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
 745                if (IS_ERR(handle)) {
 746                        /*
 747                         * We wrote the data but cannot extend
 748                         * i_size. Bail out. In async io case, we do
 749                         * not return error here because we have
 750                         * already submmitted the corresponding
 751                         * bio. Returning error here makes the caller
 752                         * think that this IO is done and failed
 753                         * resulting in race with bio's completion
 754                         * handler.
 755                         */
 756                        if (!ret)
 757                                ret = PTR_ERR(handle);
 758                        if (inode->i_nlink)
 759                                ext4_orphan_del(NULL, inode);
 760
 761                        goto out;
 762                }
 763                if (inode->i_nlink)
 764                        ext4_orphan_del(handle, inode);
 765                if (ret > 0) {
 766                        loff_t end = offset + ret;
 767                        if (end > inode->i_size || end > ei->i_disksize) {
 768                                ext4_update_i_disksize(inode, end);
 769                                if (end > inode->i_size)
 770                                        i_size_write(inode, end);
 771                                /*
 772                                 * We're going to return a positive `ret'
 773                                 * here due to non-zero-length I/O, so there's
 774                                 * no way of reporting error returns from
 775                                 * ext4_mark_inode_dirty() to userspace.  So
 776                                 * ignore it.
 777                                 */
 778                                ext4_mark_inode_dirty(handle, inode);
 779                        }
 780                }
 781                err = ext4_journal_stop(handle);
 782                if (ret == 0)
 783                        ret = err;
 784        }
 785out:
 786        return ret;
 787}
 788
 789/*
 790 * Calculate the number of metadata blocks need to reserve
 791 * to allocate a new block at @lblocks for non extent file based file
 792 */
 793int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
 794{
 795        struct ext4_inode_info *ei = EXT4_I(inode);
 796        sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
 797        int blk_bits;
 798
 799        if (lblock < EXT4_NDIR_BLOCKS)
 800                return 0;
 801
 802        lblock -= EXT4_NDIR_BLOCKS;
 803
 804        if (ei->i_da_metadata_calc_len &&
 805            (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
 806                ei->i_da_metadata_calc_len++;
 807                return 0;
 808        }
 809        ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
 810        ei->i_da_metadata_calc_len = 1;
 811        blk_bits = order_base_2(lblock);
 812        return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
 813}
 814
 815/*
 816 * Calculate number of indirect blocks touched by mapping @nrblocks logically
 817 * contiguous blocks
 818 */
 819int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
 820{
 821        /*
 822         * With N contiguous data blocks, we need at most
 823         * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
 824         * 2 dindirect blocks, and 1 tindirect block
 825         */
 826        return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
 827}
 828
 829/*
 830 * Truncate transactions can be complex and absolutely huge.  So we need to
 831 * be able to restart the transaction at a conventient checkpoint to make
 832 * sure we don't overflow the journal.
 833 *
 834 * Try to extend this transaction for the purposes of truncation.  If
 835 * extend fails, we need to propagate the failure up and restart the
 836 * transaction in the top-level truncate loop. --sct
 837 *
 838 * Returns 0 if we managed to create more room.  If we can't create more
 839 * room, and the transaction must be restarted we return 1.
 840 */
 841static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
 842{
 843        if (!ext4_handle_valid(handle))
 844                return 0;
 845        if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
 846                return 0;
 847        if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
 848                return 0;
 849        return 1;
 850}
 851
 852/*
 853 * Probably it should be a library function... search for first non-zero word
 854 * or memcmp with zero_page, whatever is better for particular architecture.
 855 * Linus?
 856 */
 857static inline int all_zeroes(__le32 *p, __le32 *q)
 858{
 859        while (p < q)
 860                if (*p++)
 861                        return 0;
 862        return 1;
 863}
 864
 865/**
 866 *      ext4_find_shared - find the indirect blocks for partial truncation.
 867 *      @inode:   inode in question
 868 *      @depth:   depth of the affected branch
 869 *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
 870 *      @chain:   place to store the pointers to partial indirect blocks
 871 *      @top:     place to the (detached) top of branch
 872 *
 873 *      This is a helper function used by ext4_truncate().
 874 *
 875 *      When we do truncate() we may have to clean the ends of several
 876 *      indirect blocks but leave the blocks themselves alive. Block is
 877 *      partially truncated if some data below the new i_size is referred
 878 *      from it (and it is on the path to the first completely truncated
 879 *      data block, indeed).  We have to free the top of that path along
 880 *      with everything to the right of the path. Since no allocation
 881 *      past the truncation point is possible until ext4_truncate()
 882 *      finishes, we may safely do the latter, but top of branch may
 883 *      require special attention - pageout below the truncation point
 884 *      might try to populate it.
 885 *
 886 *      We atomically detach the top of branch from the tree, store the
 887 *      block number of its root in *@top, pointers to buffer_heads of
 888 *      partially truncated blocks - in @chain[].bh and pointers to
 889 *      their last elements that should not be removed - in
 890 *      @chain[].p. Return value is the pointer to last filled element
 891 *      of @chain.
 892 *
 893 *      The work left to caller to do the actual freeing of subtrees:
 894 *              a) free the subtree starting from *@top
 895 *              b) free the subtrees whose roots are stored in
 896 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
 897 *              c) free the subtrees growing from the inode past the @chain[0].
 898 *                      (no partially truncated stuff there).  */
 899
 900static Indirect *ext4_find_shared(struct inode *inode, int depth,
 901                                  ext4_lblk_t offsets[4], Indirect chain[4],
 902                                  __le32 *top)
 903{
 904        Indirect *partial, *p;
 905        int k, err;
 906
 907        *top = 0;
 908        /* Make k index the deepest non-null offset + 1 */
 909        for (k = depth; k > 1 && !offsets[k-1]; k--)
 910                ;
 911        partial = ext4_get_branch(inode, k, offsets, chain, &err);
 912        /* Writer: pointers */
 913        if (!partial)
 914                partial = chain + k-1;
 915        /*
 916         * If the branch acquired continuation since we've looked at it -
 917         * fine, it should all survive and (new) top doesn't belong to us.
 918         */
 919        if (!partial->key && *partial->p)
 920                /* Writer: end */
 921                goto no_top;
 922        for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
 923                ;
 924        /*
 925         * OK, we've found the last block that must survive. The rest of our
 926         * branch should be detached before unlocking. However, if that rest
 927         * of branch is all ours and does not grow immediately from the inode
 928         * it's easier to cheat and just decrement partial->p.
 929         */
 930        if (p == chain + k - 1 && p > chain) {
 931                p->p--;
 932        } else {
 933                *top = *p->p;
 934                /* Nope, don't do this in ext4.  Must leave the tree intact */
 935#if 0
 936                *p->p = 0;
 937#endif
 938        }
 939        /* Writer: end */
 940
 941        while (partial > p) {
 942                brelse(partial->bh);
 943                partial--;
 944        }
 945no_top:
 946        return partial;
 947}
 948
 949/*
 950 * Zero a number of block pointers in either an inode or an indirect block.
 951 * If we restart the transaction we must again get write access to the
 952 * indirect block for further modification.
 953 *
 954 * We release `count' blocks on disk, but (last - first) may be greater
 955 * than `count' because there can be holes in there.
 956 *
 957 * Return 0 on success, 1 on invalid block range
 958 * and < 0 on fatal error.
 959 */
 960static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
 961                             struct buffer_head *bh,
 962                             ext4_fsblk_t block_to_free,
 963                             unsigned long count, __le32 *first,
 964                             __le32 *last)
 965{
 966        __le32 *p;
 967        int     flags = EXT4_FREE_BLOCKS_VALIDATED;
 968        int     err;
 969
 970        if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
 971                flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
 972        else if (ext4_should_journal_data(inode))
 973                flags |= EXT4_FREE_BLOCKS_FORGET;
 974
 975        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
 976                                   count)) {
 977                EXT4_ERROR_INODE(inode, "attempt to clear invalid "
 978                                 "blocks %llu len %lu",
 979                                 (unsigned long long) block_to_free, count);
 980                return 1;
 981        }
 982
 983        if (try_to_extend_transaction(handle, inode)) {
 984                if (bh) {
 985                        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 986                        err = ext4_handle_dirty_metadata(handle, inode, bh);
 987                        if (unlikely(err))
 988                                goto out_err;
 989                }
 990                err = ext4_mark_inode_dirty(handle, inode);
 991                if (unlikely(err))
 992                        goto out_err;
 993                err = ext4_truncate_restart_trans(handle, inode,
 994                                        ext4_blocks_for_truncate(inode));
 995                if (unlikely(err))
 996                        goto out_err;
 997                if (bh) {
 998                        BUFFER_TRACE(bh, "retaking write access");
 999                        err = ext4_journal_get_write_access(handle, bh);
1000                        if (unlikely(err))
1001                                goto out_err;
1002                }
1003        }
1004
1005        for (p = first; p < last; p++)
1006                *p = 0;
1007
1008        ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
1009        return 0;
1010out_err:
1011        ext4_std_error(inode->i_sb, err);
1012        return err;
1013}
1014
1015/**
1016 * ext4_free_data - free a list of data blocks
1017 * @handle:     handle for this transaction
1018 * @inode:      inode we are dealing with
1019 * @this_bh:    indirect buffer_head which contains *@first and *@last
1020 * @first:      array of block numbers
1021 * @last:       points immediately past the end of array
1022 *
1023 * We are freeing all blocks referred from that array (numbers are stored as
1024 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1025 *
1026 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1027 * blocks are contiguous then releasing them at one time will only affect one
1028 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1029 * actually use a lot of journal space.
1030 *
1031 * @this_bh will be %NULL if @first and @last point into the inode's direct
1032 * block pointers.
1033 */
1034static void ext4_free_data(handle_t *handle, struct inode *inode,
1035                           struct buffer_head *this_bh,
1036                           __le32 *first, __le32 *last)
1037{
1038        ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1039        unsigned long count = 0;            /* Number of blocks in the run */
1040        __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
1041                                               corresponding to
1042                                               block_to_free */
1043        ext4_fsblk_t nr;                    /* Current block # */
1044        __le32 *p;                          /* Pointer into inode/ind
1045                                               for current block */
1046        int err = 0;
1047
1048        if (this_bh) {                          /* For indirect block */
1049                BUFFER_TRACE(this_bh, "get_write_access");
1050                err = ext4_journal_get_write_access(handle, this_bh);
1051                /* Important: if we can't update the indirect pointers
1052                 * to the blocks, we can't free them. */
1053                if (err)
1054                        return;
1055        }
1056
1057        for (p = first; p < last; p++) {
1058                nr = le32_to_cpu(*p);
1059                if (nr) {
1060                        /* accumulate blocks to free if they're contiguous */
1061                        if (count == 0) {
1062                                block_to_free = nr;
1063                                block_to_free_p = p;
1064                                count = 1;
1065                        } else if (nr == block_to_free + count) {
1066                                count++;
1067                        } else {
1068                                err = ext4_clear_blocks(handle, inode, this_bh,
1069                                                        block_to_free, count,
1070                                                        block_to_free_p, p);
1071                                if (err)
1072                                        break;
1073                                block_to_free = nr;
1074                                block_to_free_p = p;
1075                                count = 1;
1076                        }
1077                }
1078        }
1079
1080        if (!err && count > 0)
1081                err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1082                                        count, block_to_free_p, p);
1083        if (err < 0)
1084                /* fatal error */
1085                return;
1086
1087        if (this_bh) {
1088                BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1089
1090                /*
1091                 * The buffer head should have an attached journal head at this
1092                 * point. However, if the data is corrupted and an indirect
1093                 * block pointed to itself, it would have been detached when
1094                 * the block was cleared. Check for this instead of OOPSing.
1095                 */
1096                if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1097                        ext4_handle_dirty_metadata(handle, inode, this_bh);
1098                else
1099                        EXT4_ERROR_INODE(inode,
1100                                         "circular indirect block detected at "
1101                                         "block %llu",
1102                                (unsigned long long) this_bh->b_blocknr);
1103        }
1104}
1105
1106/**
1107 *      ext4_free_branches - free an array of branches
1108 *      @handle: JBD handle for this transaction
1109 *      @inode: inode we are dealing with
1110 *      @parent_bh: the buffer_head which contains *@first and *@last
1111 *      @first: array of block numbers
1112 *      @last:  pointer immediately past the end of array
1113 *      @depth: depth of the branches to free
1114 *
1115 *      We are freeing all blocks referred from these branches (numbers are
1116 *      stored as little-endian 32-bit) and updating @inode->i_blocks
1117 *      appropriately.
1118 */
1119static void ext4_free_branches(handle_t *handle, struct inode *inode,
1120                               struct buffer_head *parent_bh,
1121                               __le32 *first, __le32 *last, int depth)
1122{
1123        ext4_fsblk_t nr;
1124        __le32 *p;
1125
1126        if (ext4_handle_is_aborted(handle))
1127                return;
1128
1129        if (depth--) {
1130                struct buffer_head *bh;
1131                int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1132                p = last;
1133                while (--p >= first) {
1134                        nr = le32_to_cpu(*p);
1135                        if (!nr)
1136                                continue;               /* A hole */
1137
1138                        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1139                                                   nr, 1)) {
1140                                EXT4_ERROR_INODE(inode,
1141                                                 "invalid indirect mapped "
1142                                                 "block %lu (level %d)",
1143                                                 (unsigned long) nr, depth);
1144                                break;
1145                        }
1146
1147                        /* Go read the buffer for the next level down */
1148                        bh = sb_bread(inode->i_sb, nr);
1149
1150                        /*
1151                         * A read failure? Report error and clear slot
1152                         * (should be rare).
1153                         */
1154                        if (!bh) {
1155                                EXT4_ERROR_INODE_BLOCK(inode, nr,
1156                                                       "Read failure");
1157                                continue;
1158                        }
1159
1160                        /* This zaps the entire block.  Bottom up. */
1161                        BUFFER_TRACE(bh, "free child branches");
1162                        ext4_free_branches(handle, inode, bh,
1163                                        (__le32 *) bh->b_data,
1164                                        (__le32 *) bh->b_data + addr_per_block,
1165                                        depth);
1166                        brelse(bh);
1167
1168                        /*
1169                         * Everything below this this pointer has been
1170                         * released.  Now let this top-of-subtree go.
1171                         *
1172                         * We want the freeing of this indirect block to be
1173                         * atomic in the journal with the updating of the
1174                         * bitmap block which owns it.  So make some room in
1175                         * the journal.
1176                         *
1177                         * We zero the parent pointer *after* freeing its
1178                         * pointee in the bitmaps, so if extend_transaction()
1179                         * for some reason fails to put the bitmap changes and
1180                         * the release into the same transaction, recovery
1181                         * will merely complain about releasing a free block,
1182                         * rather than leaking blocks.
1183                         */
1184                        if (ext4_handle_is_aborted(handle))
1185                                return;
1186                        if (try_to_extend_transaction(handle, inode)) {
1187                                ext4_mark_inode_dirty(handle, inode);
1188                                ext4_truncate_restart_trans(handle, inode,
1189                                            ext4_blocks_for_truncate(inode));
1190                        }
1191
1192                        /*
1193                         * The forget flag here is critical because if
1194                         * we are journaling (and not doing data
1195                         * journaling), we have to make sure a revoke
1196                         * record is written to prevent the journal
1197                         * replay from overwriting the (former)
1198                         * indirect block if it gets reallocated as a
1199                         * data block.  This must happen in the same
1200                         * transaction where the data blocks are
1201                         * actually freed.
1202                         */
1203                        ext4_free_blocks(handle, inode, NULL, nr, 1,
1204                                         EXT4_FREE_BLOCKS_METADATA|
1205                                         EXT4_FREE_BLOCKS_FORGET);
1206
1207                        if (parent_bh) {
1208                                /*
1209                                 * The block which we have just freed is
1210                                 * pointed to by an indirect block: journal it
1211                                 */
1212                                BUFFER_TRACE(parent_bh, "get_write_access");
1213                                if (!ext4_journal_get_write_access(handle,
1214                                                                   parent_bh)){
1215                                        *p = 0;
1216                                        BUFFER_TRACE(parent_bh,
1217                                        "call ext4_handle_dirty_metadata");
1218                                        ext4_handle_dirty_metadata(handle,
1219                                                                   inode,
1220                                                                   parent_bh);
1221                                }
1222                        }
1223                }
1224        } else {
1225                /* We have reached the bottom of the tree. */
1226                BUFFER_TRACE(parent_bh, "free data blocks");
1227                ext4_free_data(handle, inode, parent_bh, first, last);
1228        }
1229}
1230
1231void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1232{
1233        struct ext4_inode_info *ei = EXT4_I(inode);
1234        __le32 *i_data = ei->i_data;
1235        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1236        ext4_lblk_t offsets[4];
1237        Indirect chain[4];
1238        Indirect *partial;
1239        __le32 nr = 0;
1240        int n = 0;
1241        ext4_lblk_t last_block, max_block;
1242        unsigned blocksize = inode->i_sb->s_blocksize;
1243
1244        last_block = (inode->i_size + blocksize-1)
1245                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1246        max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1247                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1248
1249        if (last_block != max_block) {
1250                n = ext4_block_to_path(inode, last_block, offsets, NULL);
1251                if (n == 0)
1252                        return;
1253        }
1254
1255        ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1256
1257        /*
1258         * The orphan list entry will now protect us from any crash which
1259         * occurs before the truncate completes, so it is now safe to propagate
1260         * the new, shorter inode size (held for now in i_size) into the
1261         * on-disk inode. We do this via i_disksize, which is the value which
1262         * ext4 *really* writes onto the disk inode.
1263         */
1264        ei->i_disksize = inode->i_size;
1265
1266        if (last_block == max_block) {
1267                /*
1268                 * It is unnecessary to free any data blocks if last_block is
1269                 * equal to the indirect block limit.
1270                 */
1271                return;
1272        } else if (n == 1) {            /* direct blocks */
1273                ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1274                               i_data + EXT4_NDIR_BLOCKS);
1275                goto do_indirects;
1276        }
1277
1278        partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1279        /* Kill the top of shared branch (not detached) */
1280        if (nr) {
1281                if (partial == chain) {
1282                        /* Shared branch grows from the inode */
1283                        ext4_free_branches(handle, inode, NULL,
1284                                           &nr, &nr+1, (chain+n-1) - partial);
1285                        *partial->p = 0;
1286                        /*
1287                         * We mark the inode dirty prior to restart,
1288                         * and prior to stop.  No need for it here.
1289                         */
1290                } else {
1291                        /* Shared branch grows from an indirect block */
1292                        BUFFER_TRACE(partial->bh, "get_write_access");
1293                        ext4_free_branches(handle, inode, partial->bh,
1294                                        partial->p,
1295                                        partial->p+1, (chain+n-1) - partial);
1296                }
1297        }
1298        /* Clear the ends of indirect blocks on the shared branch */
1299        while (partial > chain) {
1300                ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1301                                   (__le32*)partial->bh->b_data+addr_per_block,
1302                                   (chain+n-1) - partial);
1303                BUFFER_TRACE(partial->bh, "call brelse");
1304                brelse(partial->bh);
1305                partial--;
1306        }
1307do_indirects:
1308        /* Kill the remaining (whole) subtrees */
1309        switch (offsets[0]) {
1310        default:
1311                nr = i_data[EXT4_IND_BLOCK];
1312                if (nr) {
1313                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1314                        i_data[EXT4_IND_BLOCK] = 0;
1315                }
1316        case EXT4_IND_BLOCK:
1317                nr = i_data[EXT4_DIND_BLOCK];
1318                if (nr) {
1319                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1320                        i_data[EXT4_DIND_BLOCK] = 0;
1321                }
1322        case EXT4_DIND_BLOCK:
1323                nr = i_data[EXT4_TIND_BLOCK];
1324                if (nr) {
1325                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1326                        i_data[EXT4_TIND_BLOCK] = 0;
1327                }
1328        case EXT4_TIND_BLOCK:
1329                ;
1330        }
1331}
1332
1333/**
1334 *      ext4_ind_remove_space - remove space from the range
1335 *      @handle: JBD handle for this transaction
1336 *      @inode: inode we are dealing with
1337 *      @start: First block to remove
1338 *      @end:   One block after the last block to remove (exclusive)
1339 *
1340 *      Free the blocks in the defined range (end is exclusive endpoint of
1341 *      range). This is used by ext4_punch_hole().
1342 */
1343int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1344                          ext4_lblk_t start, ext4_lblk_t end)
1345{
1346        struct ext4_inode_info *ei = EXT4_I(inode);
1347        __le32 *i_data = ei->i_data;
1348        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1349        ext4_lblk_t offsets[4], offsets2[4];
1350        Indirect chain[4], chain2[4];
1351        Indirect *partial, *partial2;
1352        Indirect *p = NULL, *p2 = NULL;
1353        ext4_lblk_t max_block;
1354        __le32 nr = 0, nr2 = 0;
1355        int n = 0, n2 = 0;
1356        unsigned blocksize = inode->i_sb->s_blocksize;
1357
1358        max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1359                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1360        if (end >= max_block)
1361                end = max_block;
1362        if ((start >= end) || (start > max_block))
1363                return 0;
1364
1365        n = ext4_block_to_path(inode, start, offsets, NULL);
1366        n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1367
1368        BUG_ON(n > n2);
1369
1370        if ((n == 1) && (n == n2)) {
1371                /* We're punching only within direct block range */
1372                ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1373                               i_data + offsets2[0]);
1374                return 0;
1375        } else if (n2 > n) {
1376                /*
1377                 * Start and end are on a different levels so we're going to
1378                 * free partial block at start, and partial block at end of
1379                 * the range. If there are some levels in between then
1380                 * do_indirects label will take care of that.
1381                 */
1382
1383                if (n == 1) {
1384                        /*
1385                         * Start is at the direct block level, free
1386                         * everything to the end of the level.
1387                         */
1388                        ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1389                                       i_data + EXT4_NDIR_BLOCKS);
1390                        goto end_range;
1391                }
1392
1393
1394                partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1395                if (nr) {
1396                        if (partial == chain) {
1397                                /* Shared branch grows from the inode */
1398                                ext4_free_branches(handle, inode, NULL,
1399                                           &nr, &nr+1, (chain+n-1) - partial);
1400                                *partial->p = 0;
1401                        } else {
1402                                /* Shared branch grows from an indirect block */
1403                                BUFFER_TRACE(partial->bh, "get_write_access");
1404                                ext4_free_branches(handle, inode, partial->bh,
1405                                        partial->p,
1406                                        partial->p+1, (chain+n-1) - partial);
1407                        }
1408                }
1409
1410                /*
1411                 * Clear the ends of indirect blocks on the shared branch
1412                 * at the start of the range
1413                 */
1414                while (partial > chain) {
1415                        ext4_free_branches(handle, inode, partial->bh,
1416                                partial->p + 1,
1417                                (__le32 *)partial->bh->b_data+addr_per_block,
1418                                (chain+n-1) - partial);
1419                        partial--;
1420                }
1421
1422end_range:
1423                partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1424                if (nr2) {
1425                        if (partial2 == chain2) {
1426                                /*
1427                                 * Remember, end is exclusive so here we're at
1428                                 * the start of the next level we're not going
1429                                 * to free. Everything was covered by the start
1430                                 * of the range.
1431                                 */
1432                                goto do_indirects;
1433                        }
1434                } else {
1435                        /*
1436                         * ext4_find_shared returns Indirect structure which
1437                         * points to the last element which should not be
1438                         * removed by truncate. But this is end of the range
1439                         * in punch_hole so we need to point to the next element
1440                         */
1441                        partial2->p++;
1442                }
1443
1444                /*
1445                 * Clear the ends of indirect blocks on the shared branch
1446                 * at the end of the range
1447                 */
1448                while (partial2 > chain2) {
1449                        ext4_free_branches(handle, inode, partial2->bh,
1450                                           (__le32 *)partial2->bh->b_data,
1451                                           partial2->p,
1452                                           (chain2+n2-1) - partial2);
1453                        partial2--;
1454                }
1455                goto do_indirects;
1456        }
1457
1458        /* Punch happened within the same level (n == n2) */
1459        partial = p = ext4_find_shared(inode, n, offsets, chain, &nr);
1460        partial2 = p2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1461
1462        /* Free top, but only if partial2 isn't its subtree. */
1463        if (nr) {
1464                int level = min(partial - chain, partial2 - chain2);
1465                int i;
1466                int subtree = 1;
1467
1468                for (i = 0; i <= level; i++) {
1469                        if (offsets[i] != offsets2[i]) {
1470                                subtree = 0;
1471                                break;
1472                        }
1473                }
1474
1475                if (!subtree) {
1476                        if (partial == chain) {
1477                                /* Shared branch grows from the inode */
1478                                ext4_free_branches(handle, inode, NULL,
1479                                                   &nr, &nr+1,
1480                                                   (chain+n-1) - partial);
1481                                *partial->p = 0;
1482                        } else {
1483                                /* Shared branch grows from an indirect block */
1484                                BUFFER_TRACE(partial->bh, "get_write_access");
1485                                ext4_free_branches(handle, inode, partial->bh,
1486                                                   partial->p,
1487                                                   partial->p+1,
1488                                                   (chain+n-1) - partial);
1489                        }
1490                }
1491        }
1492
1493        if (!nr2) {
1494                /*
1495                 * ext4_find_shared returns Indirect structure which
1496                 * points to the last element which should not be
1497                 * removed by truncate. But this is end of the range
1498                 * in punch_hole so we need to point to the next element
1499                 */
1500                partial2->p++;
1501        }
1502
1503        while (partial > chain || partial2 > chain2) {
1504                int depth = (chain+n-1) - partial;
1505                int depth2 = (chain2+n2-1) - partial2;
1506
1507                if (partial > chain && partial2 > chain2 &&
1508                    partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1509                        /*
1510                         * We've converged on the same block. Clear the range,
1511                         * then we're done.
1512                         */
1513                        ext4_free_branches(handle, inode, partial->bh,
1514                                           partial->p + 1,
1515                                           partial2->p,
1516                                           (chain+n-1) - partial);
1517                        goto cleanup;
1518                }
1519
1520                /*
1521                 * The start and end partial branches may not be at the same
1522                 * level even though the punch happened within one level. So, we
1523                 * give them a chance to arrive at the same level, then walk
1524                 * them in step with each other until we converge on the same
1525                 * block.
1526                 */
1527                if (partial > chain && depth <= depth2) {
1528                        ext4_free_branches(handle, inode, partial->bh,
1529                                           partial->p + 1,
1530                                           (__le32 *)partial->bh->b_data+addr_per_block,
1531                                           (chain+n-1) - partial);
1532                        partial--;
1533                }
1534                if (partial2 > chain2 && depth2 <= depth) {
1535                        ext4_free_branches(handle, inode, partial2->bh,
1536                                           (__le32 *)partial2->bh->b_data,
1537                                           partial2->p,
1538                                           (chain2+n2-1) - partial2);
1539                        partial2--;
1540                }
1541        }
1542
1543cleanup:
1544        while (p && p > chain) {
1545                BUFFER_TRACE(p->bh, "call brelse");
1546                brelse(p->bh);
1547                p--;
1548        }
1549        while (p2 && p2 > chain2) {
1550                BUFFER_TRACE(p2->bh, "call brelse");
1551                brelse(p2->bh);
1552                p2--;
1553        }
1554        return 0;
1555
1556do_indirects:
1557        /* Kill the remaining (whole) subtrees */
1558        switch (offsets[0]) {
1559        default:
1560                if (++n >= n2)
1561                        break;
1562                nr = i_data[EXT4_IND_BLOCK];
1563                if (nr) {
1564                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1565                        i_data[EXT4_IND_BLOCK] = 0;
1566                }
1567        case EXT4_IND_BLOCK:
1568                if (++n >= n2)
1569                        break;
1570                nr = i_data[EXT4_DIND_BLOCK];
1571                if (nr) {
1572                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1573                        i_data[EXT4_DIND_BLOCK] = 0;
1574                }
1575        case EXT4_DIND_BLOCK:
1576                if (++n >= n2)
1577                        break;
1578                nr = i_data[EXT4_TIND_BLOCK];
1579                if (nr) {
1580                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1581                        i_data[EXT4_TIND_BLOCK] = 0;
1582                }
1583        case EXT4_TIND_BLOCK:
1584                ;
1585        }
1586        goto cleanup;
1587}
1588