linux/include/linux/edac.h
<<
>>
Prefs
   1/*
   2 * Generic EDAC defs
   3 *
   4 * Author: Dave Jiang <djiang@mvista.com>
   5 *
   6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
   7 * the terms of the GNU General Public License version 2. This program
   8 * is licensed "as is" without any warranty of any kind, whether express
   9 * or implied.
  10 *
  11 */
  12#ifndef _LINUX_EDAC_H_
  13#define _LINUX_EDAC_H_
  14
  15#include <linux/atomic.h>
  16#include <linux/device.h>
  17#include <linux/completion.h>
  18#include <linux/workqueue.h>
  19#include <linux/debugfs.h>
  20#include <linux/numa.h>
  21
  22struct device;
  23
  24#define EDAC_OPSTATE_INVAL      -1
  25#define EDAC_OPSTATE_POLL       0
  26#define EDAC_OPSTATE_NMI        1
  27#define EDAC_OPSTATE_INT        2
  28
  29extern int edac_op_state;
  30extern int edac_err_assert;
  31extern atomic_t edac_handlers;
  32extern struct bus_type edac_subsys;
  33
  34extern int edac_handler_set(void);
  35extern void edac_atomic_assert_error(void);
  36extern struct bus_type *edac_get_sysfs_subsys(void);
  37extern void edac_put_sysfs_subsys(void);
  38
  39enum {
  40        EDAC_REPORTING_ENABLED,
  41        EDAC_REPORTING_DISABLED,
  42        EDAC_REPORTING_FORCE
  43};
  44
  45extern int edac_report_status;
  46#ifdef CONFIG_EDAC
  47static inline int get_edac_report_status(void)
  48{
  49        return edac_report_status;
  50}
  51
  52static inline void set_edac_report_status(int new)
  53{
  54        edac_report_status = new;
  55}
  56#else
  57static inline int get_edac_report_status(void)
  58{
  59        return EDAC_REPORTING_DISABLED;
  60}
  61
  62static inline void set_edac_report_status(int new)
  63{
  64}
  65#endif
  66
  67static inline void opstate_init(void)
  68{
  69        switch (edac_op_state) {
  70        case EDAC_OPSTATE_POLL:
  71        case EDAC_OPSTATE_NMI:
  72                break;
  73        default:
  74                edac_op_state = EDAC_OPSTATE_POLL;
  75        }
  76        return;
  77}
  78
  79/* Max length of a DIMM label*/
  80#define EDAC_MC_LABEL_LEN       31
  81
  82/* Maximum size of the location string */
  83#define LOCATION_SIZE 256
  84
  85/* Defines the maximum number of labels that can be reported */
  86#define EDAC_MAX_LABELS         8
  87
  88/* String used to join two or more labels */
  89#define OTHER_LABEL " or "
  90
  91/**
  92 * enum dev_type - describe the type of memory DRAM chips used at the stick
  93 * @DEV_UNKNOWN:        Can't be determined, or MC doesn't support detect it
  94 * @DEV_X1:             1 bit for data
  95 * @DEV_X2:             2 bits for data
  96 * @DEV_X4:             4 bits for data
  97 * @DEV_X8:             8 bits for data
  98 * @DEV_X16:            16 bits for data
  99 * @DEV_X32:            32 bits for data
 100 * @DEV_X64:            64 bits for data
 101 *
 102 * Typical values are x4 and x8.
 103 */
 104enum dev_type {
 105        DEV_UNKNOWN = 0,
 106        DEV_X1,
 107        DEV_X2,
 108        DEV_X4,
 109        DEV_X8,
 110        DEV_X16,
 111        DEV_X32,                /* Do these parts exist? */
 112        DEV_X64                 /* Do these parts exist? */
 113};
 114
 115#define DEV_FLAG_UNKNOWN        BIT(DEV_UNKNOWN)
 116#define DEV_FLAG_X1             BIT(DEV_X1)
 117#define DEV_FLAG_X2             BIT(DEV_X2)
 118#define DEV_FLAG_X4             BIT(DEV_X4)
 119#define DEV_FLAG_X8             BIT(DEV_X8)
 120#define DEV_FLAG_X16            BIT(DEV_X16)
 121#define DEV_FLAG_X32            BIT(DEV_X32)
 122#define DEV_FLAG_X64            BIT(DEV_X64)
 123
 124/**
 125 * enum hw_event_mc_err_type - type of the detected error
 126 *
 127 * @HW_EVENT_ERR_CORRECTED:     Corrected Error - Indicates that an ECC
 128 *                              corrected error was detected
 129 * @HW_EVENT_ERR_UNCORRECTED:   Uncorrected Error - Indicates an error that
 130 *                              can't be corrected by ECC, but it is not
 131 *                              fatal (maybe it is on an unused memory area,
 132 *                              or the memory controller could recover from
 133 *                              it for example, by re-trying the operation).
 134 * @HW_EVENT_ERR_DEFERRED:      Deferred Error - Indicates an uncorrectable
 135 *                              error whose handling is not urgent. This could
 136 *                              be due to hardware data poisoning where the
 137 *                              system can continue operation until the poisoned
 138 *                              data is consumed. Preemptive measures may also
 139 *                              be taken, e.g. offlining pages, etc.
 140 * @HW_EVENT_ERR_FATAL:         Fatal Error - Uncorrected error that could not
 141 *                              be recovered.
 142 */
 143enum hw_event_mc_err_type {
 144        HW_EVENT_ERR_CORRECTED,
 145        HW_EVENT_ERR_UNCORRECTED,
 146        HW_EVENT_ERR_DEFERRED,
 147        HW_EVENT_ERR_FATAL,
 148        HW_EVENT_ERR_INFO,
 149};
 150
 151static inline char *mc_event_error_type(const unsigned int err_type)
 152{
 153        switch (err_type) {
 154        case HW_EVENT_ERR_CORRECTED:
 155                return "Corrected";
 156        case HW_EVENT_ERR_UNCORRECTED:
 157                return "Uncorrected";
 158        case HW_EVENT_ERR_DEFERRED:
 159                return "Deferred";
 160        case HW_EVENT_ERR_FATAL:
 161                return "Fatal";
 162        default:
 163        case HW_EVENT_ERR_INFO:
 164                return "Info";
 165        }
 166}
 167
 168/**
 169 * enum mem_type - memory types. For a more detailed reference, please see
 170 *                      http://en.wikipedia.org/wiki/DRAM
 171 *
 172 * @MEM_EMPTY           Empty csrow
 173 * @MEM_RESERVED:       Reserved csrow type
 174 * @MEM_UNKNOWN:        Unknown csrow type
 175 * @MEM_FPM:            FPM - Fast Page Mode, used on systems up to 1995.
 176 * @MEM_EDO:            EDO - Extended data out, used on systems up to 1998.
 177 * @MEM_BEDO:           BEDO - Burst Extended data out, an EDO variant.
 178 * @MEM_SDR:            SDR - Single data rate SDRAM
 179 *                      http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
 180 *                      They use 3 pins for chip select: Pins 0 and 2 are
 181 *                      for rank 0; pins 1 and 3 are for rank 1, if the memory
 182 *                      is dual-rank.
 183 * @MEM_RDR:            Registered SDR SDRAM
 184 * @MEM_DDR:            Double data rate SDRAM
 185 *                      http://en.wikipedia.org/wiki/DDR_SDRAM
 186 * @MEM_RDDR:           Registered Double data rate SDRAM
 187 *                      This is a variant of the DDR memories.
 188 *                      A registered memory has a buffer inside it, hiding
 189 *                      part of the memory details to the memory controller.
 190 * @MEM_RMBS:           Rambus DRAM, used on a few Pentium III/IV controllers.
 191 * @MEM_DDR2:           DDR2 RAM, as described at JEDEC JESD79-2F.
 192 *                      Those memories are labed as "PC2-" instead of "PC" to
 193 *                      differenciate from DDR.
 194 * @MEM_FB_DDR2:        Fully-Buffered DDR2, as described at JEDEC Std No. 205
 195 *                      and JESD206.
 196 *                      Those memories are accessed per DIMM slot, and not by
 197 *                      a chip select signal.
 198 * @MEM_RDDR2:          Registered DDR2 RAM
 199 *                      This is a variant of the DDR2 memories.
 200 * @MEM_XDR:            Rambus XDR
 201 *                      It is an evolution of the original RAMBUS memories,
 202 *                      created to compete with DDR2. Weren't used on any
 203 *                      x86 arch, but cell_edac PPC memory controller uses it.
 204 * @MEM_DDR3:           DDR3 RAM
 205 * @MEM_RDDR3:          Registered DDR3 RAM
 206 *                      This is a variant of the DDR3 memories.
 207 * @MEM_LRDDR3:         Load-Reduced DDR3 memory.
 208 * @MEM_DDR4:           Unbuffered DDR4 RAM
 209 * @MEM_RDDR4:          Registered DDR4 RAM
 210 *                      This is a variant of the DDR4 memories.
 211 * @MEM_LRDDR4:         Load-Reduced DDR4 memory.
 212 * @MEM_NVDIMM:         Non-volatile RAM
 213 */
 214enum mem_type {
 215        MEM_EMPTY = 0,
 216        MEM_RESERVED,
 217        MEM_UNKNOWN,
 218        MEM_FPM,
 219        MEM_EDO,
 220        MEM_BEDO,
 221        MEM_SDR,
 222        MEM_RDR,
 223        MEM_DDR,
 224        MEM_RDDR,
 225        MEM_RMBS,
 226        MEM_DDR2,
 227        MEM_FB_DDR2,
 228        MEM_RDDR2,
 229        MEM_XDR,
 230        MEM_DDR3,
 231        MEM_RDDR3,
 232        MEM_LRDDR3,
 233        MEM_DDR4,
 234        MEM_RDDR4,
 235        MEM_LRDDR4,
 236        MEM_NVDIMM,
 237};
 238
 239#define MEM_FLAG_EMPTY          BIT(MEM_EMPTY)
 240#define MEM_FLAG_RESERVED       BIT(MEM_RESERVED)
 241#define MEM_FLAG_UNKNOWN        BIT(MEM_UNKNOWN)
 242#define MEM_FLAG_FPM            BIT(MEM_FPM)
 243#define MEM_FLAG_EDO            BIT(MEM_EDO)
 244#define MEM_FLAG_BEDO           BIT(MEM_BEDO)
 245#define MEM_FLAG_SDR            BIT(MEM_SDR)
 246#define MEM_FLAG_RDR            BIT(MEM_RDR)
 247#define MEM_FLAG_DDR            BIT(MEM_DDR)
 248#define MEM_FLAG_RDDR           BIT(MEM_RDDR)
 249#define MEM_FLAG_RMBS           BIT(MEM_RMBS)
 250#define MEM_FLAG_DDR2           BIT(MEM_DDR2)
 251#define MEM_FLAG_FB_DDR2        BIT(MEM_FB_DDR2)
 252#define MEM_FLAG_RDDR2          BIT(MEM_RDDR2)
 253#define MEM_FLAG_XDR            BIT(MEM_XDR)
 254#define MEM_FLAG_DDR3           BIT(MEM_DDR3)
 255#define MEM_FLAG_RDDR3          BIT(MEM_RDDR3)
 256#define MEM_FLAG_DDR4           BIT(MEM_DDR4)
 257#define MEM_FLAG_RDDR4          BIT(MEM_RDDR4)
 258#define MEM_FLAG_LRDDR4         BIT(MEM_LRDDR4)
 259#define MEM_FLAG_NVDIMM         BIT(MEM_NVDIMM)
 260
 261/**
 262 * enum edac-type - Error Detection and Correction capabilities and mode
 263 * @EDAC_UNKNOWN:       Unknown if ECC is available
 264 * @EDAC_NONE:          Doesn't support ECC
 265 * @EDAC_RESERVED:      Reserved ECC type
 266 * @EDAC_PARITY:        Detects parity errors
 267 * @EDAC_EC:            Error Checking - no correction
 268 * @EDAC_SECDED:        Single bit error correction, Double detection
 269 * @EDAC_S2ECD2ED:      Chipkill x2 devices - do these exist?
 270 * @EDAC_S4ECD4ED:      Chipkill x4 devices
 271 * @EDAC_S8ECD8ED:      Chipkill x8 devices
 272 * @EDAC_S16ECD16ED:    Chipkill x16 devices
 273 */
 274enum edac_type {
 275        EDAC_UNKNOWN =  0,
 276        EDAC_NONE,
 277        EDAC_RESERVED,
 278        EDAC_PARITY,
 279        EDAC_EC,
 280        EDAC_SECDED,
 281        EDAC_S2ECD2ED,
 282        EDAC_S4ECD4ED,
 283        EDAC_S8ECD8ED,
 284        EDAC_S16ECD16ED,
 285};
 286
 287#define EDAC_FLAG_UNKNOWN       BIT(EDAC_UNKNOWN)
 288#define EDAC_FLAG_NONE          BIT(EDAC_NONE)
 289#define EDAC_FLAG_PARITY        BIT(EDAC_PARITY)
 290#define EDAC_FLAG_EC            BIT(EDAC_EC)
 291#define EDAC_FLAG_SECDED        BIT(EDAC_SECDED)
 292#define EDAC_FLAG_S2ECD2ED      BIT(EDAC_S2ECD2ED)
 293#define EDAC_FLAG_S4ECD4ED      BIT(EDAC_S4ECD4ED)
 294#define EDAC_FLAG_S8ECD8ED      BIT(EDAC_S8ECD8ED)
 295#define EDAC_FLAG_S16ECD16ED    BIT(EDAC_S16ECD16ED)
 296
 297/**
 298 * enum scrub_type - scrubbing capabilities
 299 * @SCRUB_UNKNOWN               Unknown if scrubber is available
 300 * @SCRUB_NONE:                 No scrubber
 301 * @SCRUB_SW_PROG:              SW progressive (sequential) scrubbing
 302 * @SCRUB_SW_SRC:               Software scrub only errors
 303 * @SCRUB_SW_PROG_SRC:          Progressive software scrub from an error
 304 * @SCRUB_SW_TUNABLE:           Software scrub frequency is tunable
 305 * @SCRUB_HW_PROG:              HW progressive (sequential) scrubbing
 306 * @SCRUB_HW_SRC:               Hardware scrub only errors
 307 * @SCRUB_HW_PROG_SRC:          Progressive hardware scrub from an error
 308 * SCRUB_HW_TUNABLE:            Hardware scrub frequency is tunable
 309 */
 310enum scrub_type {
 311        SCRUB_UNKNOWN = 0,
 312        SCRUB_NONE,
 313        SCRUB_SW_PROG,
 314        SCRUB_SW_SRC,
 315        SCRUB_SW_PROG_SRC,
 316        SCRUB_SW_TUNABLE,
 317        SCRUB_HW_PROG,
 318        SCRUB_HW_SRC,
 319        SCRUB_HW_PROG_SRC,
 320        SCRUB_HW_TUNABLE
 321};
 322
 323#define SCRUB_FLAG_SW_PROG      BIT(SCRUB_SW_PROG)
 324#define SCRUB_FLAG_SW_SRC       BIT(SCRUB_SW_SRC)
 325#define SCRUB_FLAG_SW_PROG_SRC  BIT(SCRUB_SW_PROG_SRC)
 326#define SCRUB_FLAG_SW_TUN       BIT(SCRUB_SW_SCRUB_TUNABLE)
 327#define SCRUB_FLAG_HW_PROG      BIT(SCRUB_HW_PROG)
 328#define SCRUB_FLAG_HW_SRC       BIT(SCRUB_HW_SRC)
 329#define SCRUB_FLAG_HW_PROG_SRC  BIT(SCRUB_HW_PROG_SRC)
 330#define SCRUB_FLAG_HW_TUN       BIT(SCRUB_HW_TUNABLE)
 331
 332/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
 333
 334/* EDAC internal operation states */
 335#define OP_ALLOC                0x100
 336#define OP_RUNNING_POLL         0x201
 337#define OP_RUNNING_INTERRUPT    0x202
 338#define OP_RUNNING_POLL_INTR    0x203
 339#define OP_OFFLINE              0x300
 340
 341/*
 342 * Concepts used at the EDAC subsystem
 343 *
 344 * There are several things to be aware of that aren't at all obvious:
 345 *
 346 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
 347 *
 348 * These are some of the many terms that are thrown about that don't always
 349 * mean what people think they mean (Inconceivable!).  In the interest of
 350 * creating a common ground for discussion, terms and their definitions
 351 * will be established.
 352 *
 353 * Memory devices:      The individual DRAM chips on a memory stick.  These
 354 *                      devices commonly output 4 and 8 bits each (x4, x8).
 355 *                      Grouping several of these in parallel provides the
 356 *                      number of bits that the memory controller expects:
 357 *                      typically 72 bits, in order to provide 64 bits +
 358 *                      8 bits of ECC data.
 359 *
 360 * Memory Stick:        A printed circuit board that aggregates multiple
 361 *                      memory devices in parallel.  In general, this is the
 362 *                      Field Replaceable Unit (FRU) which gets replaced, in
 363 *                      the case of excessive errors. Most often it is also
 364 *                      called DIMM (Dual Inline Memory Module).
 365 *
 366 * Memory Socket:       A physical connector on the motherboard that accepts
 367 *                      a single memory stick. Also called as "slot" on several
 368 *                      datasheets.
 369 *
 370 * Channel:             A memory controller channel, responsible to communicate
 371 *                      with a group of DIMMs. Each channel has its own
 372 *                      independent control (command) and data bus, and can
 373 *                      be used independently or grouped with other channels.
 374 *
 375 * Branch:              It is typically the highest hierarchy on a
 376 *                      Fully-Buffered DIMM memory controller.
 377 *                      Typically, it contains two channels.
 378 *                      Two channels at the same branch can be used in single
 379 *                      mode or in lockstep mode.
 380 *                      When lockstep is enabled, the cacheline is doubled,
 381 *                      but it generally brings some performance penalty.
 382 *                      Also, it is generally not possible to point to just one
 383 *                      memory stick when an error occurs, as the error
 384 *                      correction code is calculated using two DIMMs instead
 385 *                      of one. Due to that, it is capable of correcting more
 386 *                      errors than on single mode.
 387 *
 388 * Single-channel:      The data accessed by the memory controller is contained
 389 *                      into one dimm only. E. g. if the data is 64 bits-wide,
 390 *                      the data flows to the CPU using one 64 bits parallel
 391 *                      access.
 392 *                      Typically used with SDR, DDR, DDR2 and DDR3 memories.
 393 *                      FB-DIMM and RAMBUS use a different concept for channel,
 394 *                      so this concept doesn't apply there.
 395 *
 396 * Double-channel:      The data size accessed by the memory controller is
 397 *                      interlaced into two dimms, accessed at the same time.
 398 *                      E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
 399 *                      the data flows to the CPU using a 128 bits parallel
 400 *                      access.
 401 *
 402 * Chip-select row:     This is the name of the DRAM signal used to select the
 403 *                      DRAM ranks to be accessed. Common chip-select rows for
 404 *                      single channel are 64 bits, for dual channel 128 bits.
 405 *                      It may not be visible by the memory controller, as some
 406 *                      DIMM types have a memory buffer that can hide direct
 407 *                      access to it from the Memory Controller.
 408 *
 409 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory.
 410 *                      Motherboards commonly drive two chip-select pins to
 411 *                      a memory stick. A single-ranked stick, will occupy
 412 *                      only one of those rows. The other will be unused.
 413 *
 414 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
 415 *                      access different sets of memory devices.  The two
 416 *                      rows cannot be accessed concurrently.
 417 *
 418 * Double-sided stick:  DEPRECATED TERM, see Double-Ranked stick.
 419 *                      A double-sided stick has two chip-select rows which
 420 *                      access different sets of memory devices. The two
 421 *                      rows cannot be accessed concurrently. "Double-sided"
 422 *                      is irrespective of the memory devices being mounted
 423 *                      on both sides of the memory stick.
 424 *
 425 * Socket set:          All of the memory sticks that are required for
 426 *                      a single memory access or all of the memory sticks
 427 *                      spanned by a chip-select row.  A single socket set
 428 *                      has two chip-select rows and if double-sided sticks
 429 *                      are used these will occupy those chip-select rows.
 430 *
 431 * Bank:                This term is avoided because it is unclear when
 432 *                      needing to distinguish between chip-select rows and
 433 *                      socket sets.
 434 *
 435 * Controller pages:
 436 *
 437 * Physical pages:
 438 *
 439 * Virtual pages:
 440 *
 441 *
 442 * STRUCTURE ORGANIZATION AND CHOICES
 443 *
 444 *
 445 *
 446 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
 447 */
 448
 449/**
 450 * enum edac_mc_layer - memory controller hierarchy layer
 451 *
 452 * @EDAC_MC_LAYER_BRANCH:       memory layer is named "branch"
 453 * @EDAC_MC_LAYER_CHANNEL:      memory layer is named "channel"
 454 * @EDAC_MC_LAYER_SLOT:         memory layer is named "slot"
 455 * @EDAC_MC_LAYER_CHIP_SELECT:  memory layer is named "chip select"
 456 * @EDAC_MC_LAYER_ALL_MEM:      memory layout is unknown. All memory is mapped
 457 *                              as a single memory area. This is used when
 458 *                              retrieving errors from a firmware driven driver.
 459 *
 460 * This enum is used by the drivers to tell edac_mc_sysfs what name should
 461 * be used when describing a memory stick location.
 462 */
 463enum edac_mc_layer_type {
 464        EDAC_MC_LAYER_BRANCH,
 465        EDAC_MC_LAYER_CHANNEL,
 466        EDAC_MC_LAYER_SLOT,
 467        EDAC_MC_LAYER_CHIP_SELECT,
 468        EDAC_MC_LAYER_ALL_MEM,
 469};
 470
 471/**
 472 * struct edac_mc_layer - describes the memory controller hierarchy
 473 * @layer:              layer type
 474 * @size:               number of components per layer. For example,
 475 *                      if the channel layer has two channels, size = 2
 476 * @is_virt_csrow:      This layer is part of the "csrow" when old API
 477 *                      compatibility mode is enabled. Otherwise, it is
 478 *                      a channel
 479 */
 480struct edac_mc_layer {
 481        enum edac_mc_layer_type type;
 482        unsigned                size;
 483        bool                    is_virt_csrow;
 484};
 485
 486/*
 487 * Maximum number of layers used by the memory controller to uniquely
 488 * identify a single memory stick.
 489 * NOTE: Changing this constant requires not only to change the constant
 490 * below, but also to change the existing code at the core, as there are
 491 * some code there that are optimized for 3 layers.
 492 */
 493#define EDAC_MAX_LAYERS         3
 494
 495/**
 496 * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer array
 497 *                 for the element given by [layer0,layer1,layer2] position
 498 *
 499 * @layers:     a struct edac_mc_layer array, describing how many elements
 500 *              were allocated for each layer
 501 * @n_layers:   Number of layers at the @layers array
 502 * @layer0:     layer0 position
 503 * @layer1:     layer1 position. Unused if n_layers < 2
 504 * @layer2:     layer2 position. Unused if n_layers < 3
 505 *
 506 * For 1 layer, this macro returns &var[layer0] - &var
 507 * For 2 layers, this macro is similar to allocate a bi-dimensional array
 508 *              and to return "&var[layer0][layer1] - &var"
 509 * For 3 layers, this macro is similar to allocate a tri-dimensional array
 510 *              and to return "&var[layer0][layer1][layer2] - &var"
 511 *
 512 * A loop could be used here to make it more generic, but, as we only have
 513 * 3 layers, this is a little faster.
 514 * By design, layers can never be 0 or more than 3. If that ever happens,
 515 * a NULL is returned, causing an OOPS during the memory allocation routine,
 516 * with would point to the developer that he's doing something wrong.
 517 */
 518#define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({               \
 519        int __i;                                                        \
 520        if ((nlayers) == 1)                                             \
 521                __i = layer0;                                           \
 522        else if ((nlayers) == 2)                                        \
 523                __i = (layer1) + ((layers[1]).size * (layer0));         \
 524        else if ((nlayers) == 3)                                        \
 525                __i = (layer2) + ((layers[2]).size * ((layer1) +        \
 526                            ((layers[1]).size * (layer0))));            \
 527        else                                                            \
 528                __i = -EINVAL;                                          \
 529        __i;                                                            \
 530})
 531
 532/**
 533 * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
 534 *                 for the element given by [layer0,layer1,layer2] position
 535 *
 536 * @layers:     a struct edac_mc_layer array, describing how many elements
 537 *              were allocated for each layer
 538 * @var:        name of the var where we want to get the pointer
 539 *              (like mci->dimms)
 540 * @n_layers:   Number of layers at the @layers array
 541 * @layer0:     layer0 position
 542 * @layer1:     layer1 position. Unused if n_layers < 2
 543 * @layer2:     layer2 position. Unused if n_layers < 3
 544 *
 545 * For 1 layer, this macro returns &var[layer0]
 546 * For 2 layers, this macro is similar to allocate a bi-dimensional array
 547 *              and to return "&var[layer0][layer1]"
 548 * For 3 layers, this macro is similar to allocate a tri-dimensional array
 549 *              and to return "&var[layer0][layer1][layer2]"
 550 */
 551#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({  \
 552        typeof(*var) __p;                                               \
 553        int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2);      \
 554        if (___i < 0)                                                   \
 555                __p = NULL;                                             \
 556        else                                                            \
 557                __p = (var)[___i];                                      \
 558        __p;                                                            \
 559})
 560
 561struct dimm_info {
 562        struct device dev;
 563
 564        char label[EDAC_MC_LABEL_LEN + 1];      /* DIMM label on motherboard */
 565
 566        /* Memory location data */
 567        unsigned location[EDAC_MAX_LAYERS];
 568
 569        struct mem_ctl_info *mci;       /* the parent */
 570
 571        u32 grain;              /* granularity of reported error in bytes */
 572        enum dev_type dtype;    /* memory device type */
 573        enum mem_type mtype;    /* memory dimm type */
 574        enum edac_type edac_mode;       /* EDAC mode for this dimm */
 575
 576        u32 nr_pages;                   /* number of pages on this dimm */
 577
 578        unsigned csrow, cschannel;      /* Points to the old API data */
 579};
 580
 581/**
 582 * struct rank_info - contains the information for one DIMM rank
 583 *
 584 * @chan_idx:   channel number where the rank is (typically, 0 or 1)
 585 * @ce_count:   number of correctable errors for this rank
 586 * @csrow:      A pointer to the chip select row structure (the parent
 587 *              structure). The location of the rank is given by
 588 *              the (csrow->csrow_idx, chan_idx) vector.
 589 * @dimm:       A pointer to the DIMM structure, where the DIMM label
 590 *              information is stored.
 591 *
 592 * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
 593 *        This is a bad assumption, but it makes this patch easier. Later
 594 *        patches in this series will fix this issue.
 595 */
 596struct rank_info {
 597        int chan_idx;
 598        struct csrow_info *csrow;
 599        struct dimm_info *dimm;
 600
 601        u32 ce_count;           /* Correctable Errors for this csrow */
 602};
 603
 604struct csrow_info {
 605        struct device dev;
 606
 607        /* Used only by edac_mc_find_csrow_by_page() */
 608        unsigned long first_page;       /* first page number in csrow */
 609        unsigned long last_page;        /* last page number in csrow */
 610        unsigned long page_mask;        /* used for interleaving -
 611                                         * 0UL for non intlv */
 612
 613        int csrow_idx;                  /* the chip-select row */
 614
 615        u32 ue_count;           /* Uncorrectable Errors for this csrow */
 616        u32 ce_count;           /* Correctable Errors for this csrow */
 617
 618        struct mem_ctl_info *mci;       /* the parent */
 619
 620        /* channel information for this csrow */
 621        u32 nr_channels;
 622        struct rank_info **channels;
 623};
 624
 625/*
 626 * struct errcount_attribute - used to store the several error counts
 627 */
 628struct errcount_attribute_data {
 629        int n_layers;
 630        int pos[EDAC_MAX_LAYERS];
 631        int layer0, layer1, layer2;
 632};
 633
 634/**
 635 * edac_raw_error_desc - Raw error report structure
 636 * @grain:                      minimum granularity for an error report, in bytes
 637 * @error_count:                number of errors of the same type
 638 * @top_layer:                  top layer of the error (layer[0])
 639 * @mid_layer:                  middle layer of the error (layer[1])
 640 * @low_layer:                  low layer of the error (layer[2])
 641 * @page_frame_number:          page where the error happened
 642 * @offset_in_page:             page offset
 643 * @syndrome:                   syndrome of the error (or 0 if unknown or if
 644 *                              the syndrome is not applicable)
 645 * @msg:                        error message
 646 * @location:                   location of the error
 647 * @label:                      label of the affected DIMM(s)
 648 * @other_detail:               other driver-specific detail about the error
 649 * @enable_per_layer_report:    if false, the error affects all layers
 650 *                              (typically, a memory controller error)
 651 */
 652struct edac_raw_error_desc {
 653        /*
 654         * NOTE: everything before grain won't be cleaned by
 655         * edac_raw_error_desc_clean()
 656         */
 657        char location[LOCATION_SIZE];
 658        char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
 659        long grain;
 660
 661        /* the vars below and grain will be cleaned on every new error report */
 662        u16 error_count;
 663        int top_layer;
 664        int mid_layer;
 665        int low_layer;
 666        unsigned long page_frame_number;
 667        unsigned long offset_in_page;
 668        unsigned long syndrome;
 669        const char *msg;
 670        const char *other_detail;
 671        bool enable_per_layer_report;
 672};
 673
 674/* MEMORY controller information structure
 675 */
 676struct mem_ctl_info {
 677        struct device                   dev;
 678        struct bus_type                 *bus;
 679
 680        struct list_head link;  /* for global list of mem_ctl_info structs */
 681
 682        struct module *owner;   /* Module owner of this control struct */
 683
 684        unsigned long mtype_cap;        /* memory types supported by mc */
 685        unsigned long edac_ctl_cap;     /* Mem controller EDAC capabilities */
 686        unsigned long edac_cap; /* configuration capabilities - this is
 687                                 * closely related to edac_ctl_cap.  The
 688                                 * difference is that the controller may be
 689                                 * capable of s4ecd4ed which would be listed
 690                                 * in edac_ctl_cap, but if channels aren't
 691                                 * capable of s4ecd4ed then the edac_cap would
 692                                 * not have that capability.
 693                                 */
 694        unsigned long scrub_cap;        /* chipset scrub capabilities */
 695        enum scrub_type scrub_mode;     /* current scrub mode */
 696
 697        /* Translates sdram memory scrub rate given in bytes/sec to the
 698           internal representation and configures whatever else needs
 699           to be configured.
 700         */
 701        int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
 702
 703        /* Get the current sdram memory scrub rate from the internal
 704           representation and converts it to the closest matching
 705           bandwidth in bytes/sec.
 706         */
 707        int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
 708
 709
 710        /* pointer to edac checking routine */
 711        void (*edac_check) (struct mem_ctl_info * mci);
 712
 713        /*
 714         * Remaps memory pages: controller pages to physical pages.
 715         * For most MC's, this will be NULL.
 716         */
 717        /* FIXME - why not send the phys page to begin with? */
 718        unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
 719                                           unsigned long page);
 720        int mc_idx;
 721        struct csrow_info **csrows;
 722        unsigned nr_csrows, num_cschannel;
 723
 724        /*
 725         * Memory Controller hierarchy
 726         *
 727         * There are basically two types of memory controller: the ones that
 728         * sees memory sticks ("dimms"), and the ones that sees memory ranks.
 729         * All old memory controllers enumerate memories per rank, but most
 730         * of the recent drivers enumerate memories per DIMM, instead.
 731         * When the memory controller is per rank, csbased is true.
 732         */
 733        unsigned n_layers;
 734        struct edac_mc_layer *layers;
 735        bool csbased;
 736
 737        /*
 738         * DIMM info. Will eventually remove the entire csrows_info some day
 739         */
 740        unsigned tot_dimms;
 741        struct dimm_info **dimms;
 742
 743        /*
 744         * FIXME - what about controllers on other busses? - IDs must be
 745         * unique.  dev pointer should be sufficiently unique, but
 746         * BUS:SLOT.FUNC numbers may not be unique.
 747         */
 748        struct device *pdev;
 749        const char *mod_name;
 750        const char *mod_ver;
 751        const char *ctl_name;
 752        const char *dev_name;
 753        void *pvt_info;
 754        unsigned long start_time;       /* mci load start time (in jiffies) */
 755
 756        /*
 757         * drivers shouldn't access those fields directly, as the core
 758         * already handles that.
 759         */
 760        u32 ce_noinfo_count, ue_noinfo_count;
 761        u32 ue_mc, ce_mc;
 762        u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
 763
 764        struct completion complete;
 765
 766        /* Additional top controller level attributes, but specified
 767         * by the low level driver.
 768         *
 769         * Set by the low level driver to provide attributes at the
 770         * controller level.
 771         * An array of structures, NULL terminated
 772         *
 773         * If attributes are desired, then set to array of attributes
 774         * If no attributes are desired, leave NULL
 775         */
 776        const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
 777
 778        /* work struct for this MC */
 779        struct delayed_work work;
 780
 781        /*
 782         * Used to report an error - by being at the global struct
 783         * makes the memory allocated by the EDAC core
 784         */
 785        struct edac_raw_error_desc error_desc;
 786
 787        /* the internal state of this controller instance */
 788        int op_state;
 789
 790#ifdef CONFIG_EDAC_DEBUG
 791        struct dentry *debugfs;
 792        u8 fake_inject_layer[EDAC_MAX_LAYERS];
 793        u32 fake_inject_ue;
 794        u16 fake_inject_count;
 795#endif
 796};
 797
 798#endif
 799